Networked and Multimodal 3D Modeling of Cities
for Collaborative Virtual Environments

Benjamin Halll, Joseph Kessler?, Osayamen Edo-Ohanba3, Jaired Collins?, Haoxiang Zhang?,
Nick Allegreti#, Ye Duan*, Songjie Wang®, Kannappan Palaniappan®, Prasad Calyam?
1Dept. of Engineering Physics, Murray State University, Murray, KY
2Computer Science Dept., Truman State University, Kirksville, MO
3Dept. of Computer Science Electrical Engineering, University of Missouri-Kansas City, Kansas City, MO
4Dept. of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO

Abstract—3D city-scale models are useful in a number of appli-
cations, including education, city planning, navigation systems,
artificial intelligence training, and simulations. However, final
models need to be immersive and interactive, which requires a
mixed reality (XR) environment design that combines e.g., a
Cave Automatic Virtual Environment (CAVE) VR system with
the Microsoft Hololens2 in a networked and multimodal setting.
In this paper, we propose a pipeline to convert a city-scale
point cloud into a finalized city-scale textured mesh in which, a
number of XR devices can share the same environment and co-
exist in a shared space for model interactions. Specifically, we
use input point clouds obtained from wide area motion
imagery systems or off-the-shelf drones pertaining to cities of
Albuquerque, New Mexico; Columbia, Missouri; and Berkeley,
California. Using four different traditional algorithms and an
additional deep learning method, we create meshes for the model
interactions. For each mesh produced, we map high-resolution
textures onto them, producing a more accurate city, whichis
then passed into the shared/networked Unity environment. Ten
participants provided their assessment of mesh quality and
interactivity of the networked environment during exploration
of different city reconstructions with the CAVE and laptop
device modalities. Results on the perceptual immersive quality of
the Point2Mesh deep learning meshes highlights the need for
improvements to handle large city scale point clouds.

Index Terms—3D Reconstruction, Mixed Reality, Pipeline,
3D Meshes, Texture Mapping, Depth/Z buffering, Point Cloud,
Multimodal

I. INTRODUCTION

Because of the rise in popularity and utilization of mixed
reality (XR) devices in everyday life, there is a need to explore
all of the possible applications. While there has been some
research into the application of city visualization, such as
Davis et al. [1], there is room for improvement in the meshing
algorithms and the texturing process. The meshing algorithms
are what turn a 3D point cloud, or a large set of points in 3D
space, into a mesh that is more recognizable and usable. The
texturing process applies the real life texture to this mesh,
adding realism to the mesh system.

However, there is dearth of works on applying interactive
city scale meshes in a multiplayer environment with multiple
XR devices with different modalities, such as the Cave Auto-
matic Virtual Environment (CAVE) system [2] and Microsoft
Hololens2. In addition, there is need to study methods to create
an interactive network that could support multiple people on

Fig. 1: Exemplar collaborative environment scene involving
multimodal devices and two users that are represented by
avatars during their 3D shared/networked space exploration.

different XR devices in which the entire meshes could be
explored collaboratively. To address these needs, many chal-
lenges exist in transferring city meshes into such a networked
and multimodal XR environment. One major issue relates
to ensuring low communication latency between devices to
support the interactivity. Additionally, for certain systems such
as a HololLens2, the rendering performance is tied to triangle
count. For total immersion and realism, collision should be
added to the environment in order to ensure the users walk
on solid ground, and do not fall through the mesh. Lastly, a
networking configuration needs to be designed e.g., using the
Unity Mirror [3] capability in order to concurrently support a
large amount of devices.

In this paper, we address above challenges by proposing
a networked and multimodal XR environment design that
features a pipeline to convert a city scale point cloud into a
finalized textured mesh that is both immersive and interactive.
Specifically, we use meshing algorithms for visualization ef-
forts, such as Point2Mesh [4] that utilizes deep learning to im-
prove their meshes over time, considering input point clouds of
3 different cities i.e., Alouquerque, NM; Columbia, MO; and
Berkeley, CA. Our pipeline transformed these textured meshes

{ Meshing Algorithms

[Texture Mapping With \

(Import Mesh \

Depth Buffer Into Unity
Ball-pivoting algorithm
Networking Multimodal Networked
; ; o Unity Environment
input Point Greedy triangulation Tt mEm () Unity Mirror
- f .
Cloud —> Poisson reconstruction - coordshv;l:zlﬁ]cgclusmn He Sis
. HoloLens2
Screened Poisson Plugins clotens
Middle
MRTK
Point2Mesh VR

Fig. 2: Our proposed pipeline. A point cloud generated from Wide Area Motion Imagery (WAMI) or drone data is used as input
into chosen meshing algorithms. Those meshes are then textured mapped with camera matrices that were bundle adjusted as part of
the point cloud generation. A depth buffer is used to handle occlusion and reduce spurious textures, mostly observed on the ground
near buildings. The textured mesh is imported into Unity, a game engine, with Unity Mirror for networking and Middle VR and
MRTK plugins for multimodal devices. The final product is an environment where multiple devices can connect and interact

within.

with an interactive shared/networked Unity environment that
could be accessed and explored concurrently in a multi-user
setting with both CAVE [2] and multiple laptop interfaces.
Figure 1 shows one of the meshes and two users collaborating in
our XR environment using multimodal devices; users can see
and interact with each other, pointing out observations and
working together.

To measure the effectiveness of the meshing algorithms
that we utilized and the XR environment that we created, we
organized a qualitative survey using our proposed pipeline
shown in Figure 2. In the survey experiment, we had 2 groups
of 5 participants using different devices including laptops and
the CAVE system [2] to explore the meshes that we created.
To measure the quality, the participants filled out a survey
that inquired about the quality of their experience during the
3D model explorations. The results from this survey were
then analyzed and normalized to create the results that we
collected to measure how the different algorithms compared to
each other as well as how much they would recommend the
technology for wider adoption.

The remainder of the paper is as follows: Section Il presents
related works, Section |11 presents our methods for reconstruc-
tion and display of city scale point cloud meshes. Section IV
presents the performance evaluation results. Section V
concludes the paper.

Il. RELATED WORKS

A. Meshing Algorithms

There are two different classes of meshing algorithms
that we explored in this paper, including traditional and

deep learning meshing algorithms. Traditional algorithms are
algorithms that do not incorporate deep learning into the
evaluation of point clouds. Bernardini et al. [5] is one of
the earliest examples of this, using a virtual ball that rotates
around the point selected and connects to points it touches,
called ball-pivoting algorithm (BPA). Kazhdan and Hoppe [6]
and Kazhdan et al. [7] are Poisson and screened Poisson,
respectively. Screened Poisson regularizes over a group of
points before executing the local and global fitting in the
original Poisson reconstruction. In Csaba et al. [8], triangles
are formed from edges created initially within the point cloud
and it takes the first generation of these faces. Wongwaen et al.
[9], mesheder et al. [10], Niu et al. [11], Jamin et al. [12] are
other examples of this traditional approach, incorporating
different ideas trying to overcome the difficulty of creating a
fully accurate mesh from a set of points.

The deep learning method approaches to meshing incorpo-
rate trained networks in an effort to improve the accuracy of
the generated meshes through multiple generations. Hanocka
et al. [4] uses a convex hull of the initial point cloud, and
over multiple generations shrinks the hull to the points and
attempts to recognize patterns within the generated mesh and
continue them. Some other examples of applying deep learning
methods trained on previous point clouds and ground truths
include Badki et al. [13], Lin et al. [14], and Lv et al. [15].

There are also different ways to evaluate the effectiveness of
a generated mesh, as Berger et al. [16] attempts to implement
such a method. It suggests a three phase pipeline for evaluating
the accuracy of a reconstruction algorithm. In the first phase,
it uses implicit surfaces for several differing surfaces (bumpy,

smooth, sharp, etc.). From each surface, point clouds are
synthetically created. Using the surfaces in combination with
the synthetic point cloud, Berger uses Hausdorff distances to
measure the accuracy of the reconstruction.

Our novel contributions to this area of mesh generation and
viewing include applying a deep learning algorithm to city
visualization, which, to the best of our knowledge, has not
been explored yet.

B. XR Networking

The Visbox CAVE system [2] used in our experiments is a
walk-in virtual reality environment with CAVE glasses and a
handheld device used to communicate pose information and
moving requests to the processing system for the 3D visuals.
Our CAVE system consists of four 3 meter-by-3 meter sides
and a projector for each side. In our exploration, we use it
as an XR device as a part of our multiplayer environment
used to view our generated meshes. We explored other XR
devices such as the Microsoft Hololens2 [17], which runs on
Mixed Reality Toolkit (MRTK). The Hololens2 is a mountable
headset that can display interactive objects and programs in 3D
on the glasses part of the device through the use of sensors
on the top of the device. It is responsive to hand movements
and incorporates hand gestures to make it interactive. The
connect our XR devices together, we explored two different en-
vironments, including Unity Netcode and Unity Mirror. Unity
Netcode is a networking library created by Unity that was built
with the ease of use for developers in mind, using the Unity
game engine via abstraction of the raw networking. Unity
Mirror is what we ended up using to set up our multiplayer
environment. Mirror is a high level networking environment
that makes creating networked systems very quick. We found
this one to be more effective in our area of work because it
allowed for us to create a quick connection between many
multimodal devices.

Our work demonstrates a novel pipeline to explore viewing
these generated meshes in an interactive and collaborative
environment, making viewing these models accessible to a
wider audience. Our work also extends prior work in Davis et
al. [1] in terms of creating meshes that use an improved
version of a texture mapping function that features a depth
buffer, and a multiplayer shared/networked environment using
XR devices to view the newly generated meshes.

I[1l. METHODS FOR RECONSTRUCTION OF POINT CLOUDS
AND DIsPLAY OF CITY SCALE POINT CLOUD MESHES

This section details our pipeline for creating multimodal
3D city models for collaborative virtual environments. First,
a dense 3D point cloud is refined to be more conducive
to good normal estimation and mesh generation. Then, the
point cloud is used as input into meshing algorithms using
freely available software packages. Afterward, our custom
high-resolution texturing algorithm is applied. Finally, the
textured 3D model is imported into a Unity environment
with networking to facilitate collaboration. We demonstrate

the portability of the software by running it within a CAVE
VR system and multiple computers.

A. Mesh Creation

Aerial imagery collected by Transparent Sky [18] in an air-
plane is used, specifically Albuquerque, New Mexico (Figure
3a); Columbia, Missouri (Figure 4a); and Berkeley, Califor-
nia (Figure 5a). General aerial imagery collected by other
vehicles such as drones can also be used. The images are used
in the VB3 D aerial multiview stereo algorithm [19] to create
a dense point cloud. To improve the results from the meshing
algorithms, a single layer of points is obtained by creating a
voxel at every point and using a depth buffer at every camera
location.

Each refined point cloud created from the cities are used in
our chosen meshing algorithm, ball-pivoting algorithm [5],
greedy triangle [8], Poisson reconstruction [6], screened Pois-
son reconstruction [7], and Point2Mesh [4]. A summary of
each city and mesh is available in Figures 3, 4, and 5, where
a grayscale height ramp is applied to provide a clearer view
of the landscape in the reconstruction.

The ball-pivoting algorithm (BPA) uses a ball with a fixed
radius to roll around a point cloud. Whenever three points
are in contact with the ball, they are connected and form a
triangle. Unless the input point cloud is uniform, it is highly
likely that holes will be in the result. To close these, the authors
recommend rerunning the algorithm with increasing radii [5].
Our chosen software that implements BPA, MeshLab [20], has
a known bug that crashes the program on subsequent runs or if
the input point cloud is too large. To that end, the results with
BPA have been cropped and are much smaller than the full
city.

Greedy triangulation [8] was created for fast, online surface
reconstruction. Each point is assigned a fixed number of
neighbors, and then a weighted least squares plane is fitted
to that neighborhood to estimate the surface normal. Points
are pruned based on visibility, connected to the original point,
and then connected to each other to form triangles. Several
parameters for angles are used to reduce the smoothing of
corners.

Poisson surface reconstruction casts mesh generation as
a Poisson problem, which results in a global solution that
is smooth and robust to noise [6]. The surface is extracted
from oriented point samples by estimating an inside-outside
indicator function and the marching cubes algorithm. The
screened Poisson surface reconstruction [7] is similar to its
predecessor, except a regularization term is added that weights
the points in the global equation. The result is the surface
retains more details and is less smooth, while still retaining
its robustness to noise.

Finally, Point2Mesh [4] differs from the previous methods
by using deep learning. It aims to recognize repeating patterns
within the input point cloud. For sparse areas, Point2Mesh can
interpolate the missing data to create a more complete mesh.

(a) Albuquerque, New Mexico point cloud (b) Ball-pivoting algorithm on Albuquerque point cloud*

(c) Greedy Triangulation Algorithm on Albuquerque point cloud (d) Poisson Reconstruction Algorithm on Albuquerque point cloud

(e) Screened Poisson Reconstruction Algorithm on Albuquerque (f) Point2Mesh Algorithm on the Albuquerque point cloud
point cloud

(g) Texture mapped Albuquerque, New Mexico screened Poisson reconstruction

Fig. 3: Visual Comparison between point clouds and their respective meshes for Albuquerque, New Mexico. Note: The BPA
input point cloud was cropped to a much smaller set due to a known bug that crashes MeshLab.

(a) Columbia, Missouri point cloud (b) Ball-pivoting algorithm on Columbia point cloud*

(c) Greedy Triangulation Algorithm on Columbia point cloud (d) Poisson Reconstruction Algorithm on Columbia point cloud

—

(e) Screened Poisson Reconstruction Algorithm on Columbia point (f) Point2Mesh Algorithm on the Columbia point cloud
cloud

(g) Texture mapped Columbia, Missouri screened Poisson reconstruction

Fig. 4: Visual Comparison between point clouds and their respective meshes for Columbia, Missouri. Note: The BPA input
point cloud was cropped to a much smaller set due to a known bug that crashes MeshLab.

(a) Berkeley, California point cloud (b) Ball-pivoting algorithm on Berkeley point cloud*

(c) Greedy Triangulation Algorithm on Berkeley point cloud (d) Poisson Reconstruction Algorithm on Berkeley point cloud

(e) Screened Poisson Reconstruction Algorithm on Berkeley point (f) Point2Mesh Algorithm on the Berkeley point cloud
cloud

(g) Texture mapped Berkeley, California screened Poisson reconstruction

Fig. 5: Visual Comparison between point clouds and their respective meshes for Berkeley, California. Note: The BPA input
point cloud was cropped to a much smaller set due to a known bug that crashes MeshLab.

Algorithm 1 Face Assignment

Algorithm 2 Generate Texture Map Coordinates for Triangles

1
2
3
4:
5:
6
7
8
9

: Input

: Output

10:
11: AssignFaces(M, n, Zy)

12: InitializeDepthBuffers(M, P, Z,, w, h)
13:
14: procedure ASSIGNFACES(M, n, Z,)

15:
16:
17:
18:
19:
20:
21:
22:
23:

end procedure

24:
25: procedure INITIALIZEDEPTHBUFFERS(M, Pn, Zn, W, h)

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

36:
37:
38:
39:
40:
41:
42:
43:

triangle rasterization
foralll2 L andx,y 2 X,Y do
if | > Di(x,y) then
ReassignFace(i, f, M, Z,)
break . Exit loop. Face is reassigned
end if

end for
end for
end procedure

44:
: procedure REASSIGNFACE(i, f, M, Z)
vertex 0, 1,2 2 f

45

46:
47:
48:
49:
50:
51:
52:

Vo, V1, V2
u Vi1 Vo
\" V2 V1

Mf,assigned
end procedure

j

M mesh with faces in winding order

n number of cameras for texturing

Pn array of cameras, size n

Z, array of camera look-at directions, size n
w image width

h image height

M¢ mesh with assigned faces

for all face f 2 M do

Vo, V1, V2 vertex 0, 1,2 2 f

u Vi Vo

\ V2 Vi1

p u-iv/|u-tv| . Face f’s normal

i argmin{p-z,z2 Z,}

M assigned i . Face f 2 M assigned camera i
end for

initialize D with size w, h
for all f 2 M¢ do
i Mf,assigned
for vo,v1,v2 2 f do . Vertices in the face
convert vo, V1, V2 to homogeneous
(xo0, Yo) Pivo . Project vp to camera i
(x1,y1) Piva . Project vi to camera i
(x2,vy2) Piva . Project v, to camera i
end for
L, X,Y interpolate depths L from implicit

P u-iv/|u-ny| . Face f’s normal
j argmin{p-z|z2 Z,,i 2 Zn}

. Face f 2 M is assigned camera j

1: Input

2: M mesh with assigned faces

3 n number of cameras for texturing

4 Pn camera matrices associated with desired images
5 w image width

6: h image height

7: Output

8: T textured mesh coordinates

9: for all face f 2 M do

10: i My assigned . Index of camera for face
11: for all vertex v2 f do

12: convert v to homogeneous

13: (u, v) Piv . Project and dehomogenize
14: u u/w . Normalize
15: v v/(1 (v/h)) . Normalize and flip
16: T¢.add (u, v) . Append (u,v) to T forf 17:
end for

18: end for

B. Texture Mapping/Depth Buffer

To create a realistic 3D model of a city, the meshes should
be textured. The previous work by Davis et al. [1] did not
handle occlusion, so the ground near buildings were textured
incorrectly. To remedy this, we implemented a depth buffer
to improve texture quality and handle occlusion. Algorithms 1
and 2 start with an untextured 3D mesh and corresponding
images from different angles of the area of the mesh and
outputs pixel assignments for each face of the mesh.

Algorithm 1 starts with each face f and calculates its normal
vector. After calculating this normal, it computes projection of
the normal with the camera view vector i. The most negative
value represents the camera that is most able to view the face.
Therefore, it assigns face f to camera i for pixel assignment.
Afterwards, a depth buffer is initialized with the width and
height of the image resolution. Each assigned face’s vertices
are projected onto the camera using the camera matrix for the
assigned camera. It then interpolates the depth of the face
using implicit triangle rasterization and compares it to the
existing value in the depth buffer matrix. If the calculated
depth is smaller than the depth buffer, then it reassigns the
camera to the face with the distance. Afterwards, the face is
assigned to the camera with the next most negative dot product.

Then, the texture map generation function shown in Algo-
rithm 2 uses the assigned faces and meshes to map (u,v)
coordinates. It iterates through each vertex v in each face
f and its assigned camera i, and converts the coordinate to
homogeneous coordinates. It then projects the homogenized v
onto the camera with its matrix P;. Subsequently, it normalizes
the coordinates and appends the location of the pixel for the
vertex to the textured mesh coordinates T.

C. Mesh to Networked Unity Environment

The textured meshes were then put into a Unity environment
to produce a first-person, player-to-player, and networked 3D

Fig. 6: User in the CAVE during an experiment in the multi-
player environment setup with the Unity Mirror capability.

city experience as shown in Figure 6. In order to achieve
networking between multimodal devices, we created platform-
dependent build files to distribute among platforms. Unity
supports networking with its own in-house libraries, but we
found that documentation and maturity are lacking. Instead,
we use Unity Mirror [3], which has more support and works
well out of the box. Through Unity Mirror, with a properly
defined player prefab, network manager, and network HUD, a
networked environment was produced and distributed to our
target platforms.

Pseudocode of Mirror is shown in Algorithm 3. When a
server starts, a network manager is created on the server. This
facilitates the communication and synchronization between
clients. Once a client requests access to the server, the client
registers itself with the network manager and then starts a loop
until it disconnects. The client processes network messages,
updates synchronization variables, calls Unity’s standard up-
date methods, and then sends its own networks to the network
manager.

For the CAVE [21], Middle VR was used in addition to
the networking libraries. There was much more time de-
voted to the networking of the HoloLens2 device, but the
HoloLens2 did not run similarly to the Visbox CAVE because
of their differing software, MRTK—specifically for head-
mounted devices—while the Middle VR software could only
be run on a computer. Due to this, there was a huge hindrance
in the ability to integrate the HoloLens2 into the environment.

From the finished product, a number of different users—
limited to 100—could access and see the same mesh and in-
teract with other users in the environment. Assessment is hard,
since we did not have ground truth 3D cities. Additionally, no
reliable quantitative measure was found. To remedy this, we
conducted a qualitative survey with ten different individuals
as detailed in Section IV. They were asked to explore the
environment that we created, and then asked to rate their
experience in different aspects, such as the quality of the

Algorithm 3 Unity Mirror Networking

1: Input
S Server
C Client
N Mirror network manager

2

3

4

5:

6: initialize server S
7: OnServerStart(S, N)
8:
9:

procedure ONSERVERSTART(S, N)

10: Initialize network manager N on server S
11: while S is listening for clients C do

12: if C requests access to S then

13: C initializes networked widgets with N
14: C is placed in the hosted world of S
15: ClientLoop(N, C)

16: end if

17: end while

18: end procedure

19:

20: procedure CLIENTLOOP(N, C)

21: while C is connected to N do

22: Process network messages from N

23: Update synchronization variables

24: Unity FixedUpdate, Update, LateUpdate
25: Send network messages to N

26: end while

27: end procedure

meshes, their virtual reality experience, and quality of the
collaborative networking.

IV. PERFORMANCE EVALUATION

We applied five different meshing algorithms to three
different point clouds that were collected previously from
Transparent Sky [18]. In Figures 3, 4, and 5 for Albuquerque,
New Mexico; Columbia, Missouri; and Berkeley, California,
respectively, we can see the original point cloud followed by
the five different meshing algorithms, and then a textured
version of the Screened Poisson Reconstruction meshes. For
the ball pivoting algorithm in each city, due to the constraints of
the software, we were unable to run it for the whole city point
cloud. Instead, we took a crop from a part of the city that
contained a few buildings and meshed the smaller point cloud.

The depth buffer texturing algorithm shows improvement
over Davis et al. [1] by removing most occluded artifacts. That
is, a building’s texture is mostly unseen on the ground around it.
However, the illumination between the different images used
to texture the models varies heavily, which reduces the
accuracy and immersion of the overall model. Large faces
without noise that mostly face any chosen image look the best.
Otherwise, a global illumination model can be used to better
smooth the textures in the future.

0.4

03

0z

Normalized Quality

01

0.0
Poisson BPA PCL F2M

Screened

Method

Fig. 7: The sum of the Qualitative rating for each of our
methods on the Albuquerque point cloud. The higher the
number, the better the quality.

A qualitative test was performed to measure the effective-
ness of our pipeline. We asked ten different individuals to
participate in our experiment to gauge how the different 3D
models look compared to each other. The five different recon-
structed models from Albuquerque, New Mexico were placed
in the same Unity environment and asked the participants to
explore for five minutes. They were then surveyed for their
impressions and asked to rank the models. The results obtained
are presented as a sum of the qualitative rating of each mesh as
shown in Figure 7. With x, representing the score from 1-10
for every algorithm from the nth participant and p representing
the number of participants, we can normalize the quality for
each mesh, shown in Eq. 2.

XP
Quality = Xn (1)
n=1
lit
NormalizedQuality = M (2)
10p

We observe that the highest quality mesh according to our
metric was made with greedy triangulation [8]. Even though
there are more holes in this mesh than the other ones, the
reason that people thought more positively about this method is
because of the way that it represented the city. It was more
recognizable from far away, which is something that was an
issue. The reason being that - while they were in the
multiplayer environment, there was no collision where there
were holes. This meant that the participants could fall through
the map, leading to a less effective analysis of the mesh.

V. CONCLUSION

Creating meshed and textured city-scale 3D models in a
multimodal and networked environment provides unique chal-
lenges that are hard to overcome with any single algorithm.
Multiple points in the process can be scrutinized and improved,
especially meshing algorithms and texturing. For meshing, we
test four popular algorithms and a deep learning method—
Point2Mesh—showing that usable models can be obtained

with free and open source software. While deep learning is
very promising, our own tests with city data and Point2Mesh
severely underperformed compared to traditional methods.

The 3D meshes were created in a coordinate space that
allowed easy texture mapping. Each point was projected to
each selected camera and a depth buffer was added to remove
spurious textures. Without such a buffer, areas around the
ground of buildings were incorrectly mapped since occlusions
were not being tested. To measure mesh quality, we asked
ten participants to explore a networked Unity environment
on several computers and a CAVE. They were surveyed
for their experience, and obtained results show that greedy
triangulation and screened Poisson are the best, perhaps due to
the surfaces being closely tied to the points. For regular
Poisson reconstruction, it is common to have the surface stray
away from the underlying points. BPA only connects points,
but is unpopular due to the noise caused by our input data. Our
results also show that Point2Mesh is the least popular, which is
not surprising given that the output was mostly incoherent to
the users.

Future work can build on our work that demonstrates how
a pipeline can be designed to transform point clouds into a
networked and multimodal environment using freely available
software. Extended results can focus on how a custom texture
mapping with a depth buffer can provide highly detailed city-
scale reconstructions. Further, networking code and platform-
specific plugins such as Middle VR or MRTK can be added
to better integrate Hololens2 in visualization experiments.

ACKNOWLEDGEMENTS

Benjamin Hall (Murray State University), Joseph Kessler
(Truman State University), and Osay Edo-Ohanba (University
of Missouri-Kansas City) were supported by the NSF REU
program at the University of Missouri EECS Department. The
research was partially supported by the National Science Foun-
dation under awards CNS-1950873 (REU) and NSF CNS-
2018850 (MRI). Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the U.S.
Government or agency thereof.

REFERENCES

[1] C. Davis, J. Collins, J. Fraser, H. Zhang, S. Yao, E. Lattanzio, B. Bal-
akrishnan, Y. Duan, P. Calyam, K. Palaniappan, and et al., “3d modeling
of cities for virtual environments,” 2021 IEEE International Conference
on Big Data (Big Data), 2021.

[2] R. Tredinnick, B. Boettcher, S. Smith, S. Solovy, and K. Ponto, “Uni-
cave: A unity3d plugin for non-head mounted vr display systems,” in
2017 IEEE Virtual Reality (VR), 2017, pp. 393-394.

[3] “Open source networking for unity.” [Online]. Available: https://mirror-
networking.com/

[4] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2mesh: A
self-prior for deformable meshes,” ACM Trans. Graph., vol. 39, no. 4,
2020. [Online]. Available: https://doi.org/10.1145/3386569.3392415

[5] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The
ball-pivoting algorithm for surface reconstruction,” IEEE transactions on
visualization and computer graphics, vol. 5, no. 4, pp. 349-359, 1999.

[6] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

71
(8]

[0l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transactions on Graphics (ToG), vol. 32, no. 3, pp. 1-13, 2013.

Z. Csaba, R. B. Marton, M. Beetz et al., “On fast surface reconstruction
methods for large and noisy point clouds,” in Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, 2009, pp. 3218-
3223.

N. Wongwaen, S. Tiendee, and C. Sinthanayothin, “Method of 3d mesh
reconstruction from point cloud using elementary vector and geometry
analysis,” in 2012 8th International Conference on Information Science
and Digital Content Technology (ICIDT2012), vol. 1. 1EEE, 2012, pp.
156-159.

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3d reconstruction in function space,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 4460-4470.

Y. Niu, J. Chen, X. Ke, and J. Chen, “Stereoscopic image saliency
detection optimization: A multi-cue-driven approach,” IEEE Access,
vol. 7, pp. 19835-19 847, 2019.

C. Jamin, P. Alliez, M. Yvinec, and J.-D. Boissonnat, “Cgalmesh: a
generic framework for delaunay mesh generation,” ACM Transactions
on Mathematical Software (TOMS), vol. 41, no. 4, pp. 1-24, 2015.

A. Badki, O. Gallo, J. Kautz, and P. Sen, “Meshlet priors for 3d
mesh reconstruction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 2849-2858.

C.-H. Lin, O. Wang, B. C. Russell, E. Shechtman, V. G. Kim, M. Fisher,
and S. Lucey, “Photometric mesh optimization for video-aligned 3d
object reconstruction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 969-978.

C. Lv, W. Lin, and B. Zhao, “Voxel structure-based mesh reconstruction
from a 3d point cloud,” IEEE Transactions on Multimedia, vol. 24, pp.
1815-1829, 2021.

M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, “A
benchmark for surface reconstruction,” ACM Transactions on Graphics
(TOG), vol. 32, no. 2, pp. 1-17, 2013.

D. Ungureanu, F. Bogo, S. Galliani, P. Sama, X. Duan, C. Meekhof,
J. Stuhmer, T. J. Cashman, B. Tekin, J. L. Schonberger, P. Olszta, and
M. Pollefeys, “Hololens 2 research mode as a tool for computer vision
research,” ArXiv, vol. abs/2008.11239, 2020.

Transparent Sky, “https://transparentsky.net/,” [Online; Accessed on July
22, 2021].

S. Yao, H. AliAkbarpour, G. Seetharaman, and K. Palaniappan, “3D
patch-based multi-view stereo for high-resolution imagery,” in Geospa-
tial Informatics, Motion Imagery, and Network Analytics VIII, vol.
10645. International Society for Optics and Photonics, Apr. 2018,
p. 106450K.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G.
Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,”
Eurographics Italian Chapter Conference, pp. 129-136, 2008.

Visbox. [Online]. Available: http://www.visbox.com/

