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Abstract—Vehicular cooperative perception aims to provide
connected and automated vehicles (CAVs) with a longer and
wider sensing range, making perception less susceptible to occlu-
sions. However, this prospect is dimmed by the imperfection of
onboard localization sensors such as Global Navigation Satellite
Systems (GNSS), which can cause errors in aligning over-the-air
perception data (from a remote vehicle) with a Host vehicle’s
(HV’s) local observation. To mitigate this challenge, we propose
a novel LiDAR-based relative localization framework based on
the iterative closest point (ICP) algorithm. The framework seeks
to estimate the correct transformation matrix between a pair of
CAVs’ coordinate systems, through exchanging and matching a
limited yet carefully chosen set of point clouds and usage of a
coarse 2D map. From the deployment perspective, this means our
framework only consumes conservative bandwidth in data trans-
mission and can run efficiently with limited resources. Extensive
evaluations on both synthetic dataset (COMAP) and KITTI-
360 show that our proposed framework achieves state-of-the-art
(SOTA) performance in cooperative localization. Therefore, it can
be integrated with any upper-stream data fusion algorithm and
serves as a preprocessor for high-quality cooperative perception.

Index Terms—Cooperative Localization, Error Calibration,
Point Cloud Registration

I. INTRODUCTION

Vehicle-to-Everything communications (V2X) enable con-
nected and automated vehicles (CAVs) to “talk” to each other
and operate cooperatively. As an immediate example, cooper-
ative perception shares vehicles’ local perception information
(raw or processed) with surrounding peers to achieve a wider
and longer perception field [1], [2]. There are many driving
scenarios where cooperative perception can be beneficial. For
example, as shown in the first row of Fig. 1 two CAVs are
approaching an intersection from different streets. Cooperative
perception information can help them “see” objects on other
streets that may be occluded to their onboard sensors. In
this setting, two cooperative CAVs are referred as Remote
Vehicles (RVs) and Host Vehicles (HVs), respectively, with
RV transmitting the over-the-air information to HV. Such over-
the-air information offers extra lead time for both vehicles to
make well-informed decisions, minimize collision risk, and
ultimately increase navigation safety and efficiency.

Despite having great potential, the performance of cooper-
ative perception hinges on the quality of sensor data fusion at
recipient vehicles. Due to the imperfection of positioning sen-

Deyuan Qu
University of North Texas
deyuanqu@my.unt.edu

Hongsheng Lu
Toyota Motor North America
hongsheng.lu@toyota.com

Sikai Chen
University of Wisconsin-Madison
sikai.chen@wisc.edu

Samuel Labi
Purdue University
labi @purdue.edu

=0.92

Conf

0.96

Conf

0.91

Conf

‘GNSS Ours

GT

Fig. 1: Qualitative results of the proposed method. red: RV,
blue: HV, Each row represents a different scene sampled from
COMAP dataset. The columns represent the fused point clouds
using ground truth (GT) data, raw GNSS measures (GNSS),
and our method (Ours), respectively. The Conf indicates the
confidence level output by our method.

sors such as the Global Navigation Satellite System (GNSS),
localization errors are inevitable, which can further cause
data misalignment in coordinate transformation. As illustrated
in the second column of Fig. 1, the HV (in blue) might
fail to align RV’s (in red) cooperative perception data as a
consequence of the error in estimating RV’s pose using GNSS.
Under this circumstance, the RV’s data is noisy and less useful.

To mitigate this problem, we propose a cooperative lo-
calization framework that runs as a preprocessor for all the
downstream data fusion steps. It significantly reduces the
relative localization error between CAVs using LiDAR point
cloud registration. This framework achieves the state-of-the-art
(SOTA) performance and can boost the data fusion as shown
in the third column in Fig. 1. In particular, our framework
sends only a small yet carefully chosen subset of RV’s LiDAR
point cloud to HV for point cloud registration, making it
suitable for low-bandwidth V2X communication technologies
(e.g., DSRC, LTE-V2X). These selected LiDAR points, called



keypoints, are combined with the 2D map data at HV to help
the point cloud registration process find a high-quality transfor-
mation matrix even when few correspondences between HV’s
and RV’s point clouds exist. Moreover, our algorithm features
an additional “sanity-check” component that can estimate the
quality of the computed transform matrix and only outputs
accurate ones for downstream data fusion tasks.

From the technical perspective, the key novelty of the
proposed method lies in our keypoints preprocessing module
and an inlier augmentation mechanism in the inter-CAV point
cloud registration step of our framework. It is worth noting
that the point cloud registration step in our framework reuses
the prior art, the Iterative Closest Point (ICP) algorithm. We
duly recognize that although there are many more advanced
alternative choices, the fundamental challenges to all of these
solutions (including ICP) are that they all need a non-trivial
overlap between the RV and HV’s point clouds with a certain
inlier-outlier ratio. Moreover, the existing approaches gener-
ally search correspondences using two full point clouds and
may require the RV to send the entire 3D scan to HV. This is
impractical in our scenario as the communication bandwidth
among CAVs is limited and shared. Also, as RV and HV’s
relative location keeps varying over time, it is not guaranteed
to always have enough “co-visible” regions (overlaps in the
field of views) to find enough inliers. This requires any
solution to self-adjust and rebalance the inliers and outliers.
In this work, we employ the ICP algorithm as an example to
demonstrate the architecture and flow of our framework, but
the framework has the flexibility to be integrated with many
other point cloud registration algorithms.

The main contributions of this work are summarised as
follows:

o We propose a 3D LiDAR points registration framework
which obtains the SOTA performance on relative pose
estimation between cooperative CAVs.

o The proposed algorithm suppresses more than 80% of
errors in relative pose estimation for CAVs, evaluated on
both the simulated dataset (COMAP) and the realistic
dataset created from KITTI-360.

o The proposed approach sends a small portion of the HV’s
point cloud (2.7% from COMAP and 15% from KITTI-
360), significantly reducing requirement on communi-
cation bandwidth. It is also computationally efficient,
making it suitable for edge devices such as vehicle
onboard computing units.

The rest of the paper is organized as follows: Section II
reviews the relative works for point cloud registration and
vehicle localization; Section III introduces our overall match-
ing framework; Section IV and V document the experiments
settings and the corresponding results; and finally Section VI
concludes the work.

II. RELATIVE WORKS
A. Point Cloud Registration

Point cloud registration is the process of estimating the
relative transformation between two sets of point clouds

and aligning them into the same coordinate frame, which
in essence solves the same problem as our LiDAR-based
cooperative localization. There are two categories in point
cloud registration methods, namely traditional approaches and
learning-based approaches. Traditional approaches seek to
find the transformation by either minimizing the point-wise
distances e.g., ICP [3] and its many variants [4]-[6], or
between correspondences found using hand-crafted features
such as SHOT [7], Fast Point Feature Histogram (FPFH) [8],
RoPS [9]. Generally, finding transformation through hand-
crafted features is susceptible to outliers, therefore Random
Sample Consensus (RANSAC) [10] is often applied for outlier
filtering. In addition, there are other traditional approaches
such as TEASER [11] that reformulate the point registration
as optimization problems, which have demonstrated superior
performance compared to RANSAC. More recently, many
learning-based approaches leveraging deep neural networks to
either generate matching features [12]-[15] or directly end-to-
end learning the relative transformation were published [16],
[17]. Despite with great prosperity, learning-based methods
suffer from low interpretability and generally need large vol-
umes of data for training compared to traditional approaches.

B. LiDAR-based Multi-Vehicle Localization

CAVs with LiDAR sensors can leverage perception-based
vehicle localization, which generally has higher accuracy than
GNSS in self-localization. Currently, cooperative localization
can leverage the High-definition (HD) maps [18]-[20] or
LiDAR odometry [21]-[23] for relative pose estimation and
motion calibration. However, these methods need to store
historical motion information and multiple LiDAR scans at
different timestamps and can have a high requirement on
the hardware. A more recent work using LiDAR point cloud
registration for cooperative localization between two CAVs is
[24]. In this work, the authors utilize maximum consensus
[25] to find correspondence in the keypoints and calibrate the
relative localization error.

C. Difference of Our Work

Compared to the previous works, ours differ in the following
ways. First, the RV and HV can have limited “co-visible”
regions, resulting in insufficient correspondence between point
clouds for the aforementioned algorithms to function appropri-
ately. Second, the communication bandwidth between RV and
HV can be limited, which makes sharing the entire LiDAR
point cloud infeasible. Thirdly, while it can be beneficial, we
don’t require CAVs to have an advanced positioning system
based on LiDAR or camera. Therefore, from the deployment
perspective, it has low requirements on the hardware and can
be embedded into the existing CAV systems without additional
perquisites.

III. METHODOLOGY

This section introduces the proposed cooperative localiza-
tion framework. Fig. 2 shows its overall architecture which
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Fig. 2: Overall framework (red:RV,

consists of three components: Keypoints Preprocessing, Rel-
ative Pose Estimation, and Confidence Prediction. For
Keypoints Preprocessing, it can be divided into three submod-
ules: Road Center Projection, Keypoints Extraction, and Intra
Vehicle Matching. The working flow is as follows: the Key-
point Preprocessing module runs in parallel on both HV and
RV independently to obtain representative and high-quality
keypoints. Then the keypoints from RV are transmitted to
HV. After that, the Relative Pose Estimation module deployed
on HV computes the relative pose between the two CAVs.
Finally, the Confidence Prediction module evaluates the results
of upstream localization modules and removes low-confident
outputs. More details on the design of each module can be
found below.

A. Keypoints Preprocessing

1) Keypoints Extractor: As the name suggests, this module
utilizes a deep learning based point classifier to extract the
most representative points (keypoints) from the raw LiDAR
point cloud. Inspired by the work in [24], we configure RV
to select LiDAR points estimated to be reflected by road
boundaries, buildings, fences, and walls as the keypoints.
The reason is that these types of points well captured the
geometry of the environment. This geometric information
exists on both vehicles’ map data and can be leveraged as
correspondence in the point cloud registration process later
on. We adopt a Voxelnet-based architecture similar to the
feature extraction module in [26] to classify LiDAR points.
As shown in Fig. 3, the network consists of two branches for
obtaining point features: one for preserving raw point-based
features while the other for generating voxel-based features. To
reduce the computation load, Furthest Points Sampling (FPS)
approach is applied to evenly sample a predefined number of
sparse points from the raw 3D scans. To generate voxel-wise
features, we adopt a 4-sparse-convolution-layer based sparse
CNN backbone with a downsampling factor of 8. Then the
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Fig. 3: Key point extractor architecture

output from the last sparse convolutional layer is compressed
in height to generate an eye view (BEV). Based on the
selected sparse points from the first branch, we further use
the Voxel Set Abstraction (VSA) with the same parameters as
in [26] to aggregate the voxel-based point features of different
resolutions, the BEV features, and the raw point-wise features.
Then, this combined feature map is fed into a classifier for
label prediction.

2) Lane Center Projection: CAVs that rely on GNSS for
positioning service can suffer large translation errors w.r.t
the ground truth location. Such error impacts the relative
localization performance by providing a noise-impaired initial-
ization. To mitigate this error, we leverage 2D map data. More
specifically, we project a vehicle’s noisy GNSS location to the
“closest” lane center point on the map, a technique widely
used in navigation applications today. More specifically, the
“closest” is defined in terms of both geometrical distance and
heading direction, which is to guarantee that the vehicles are
projected to the correct side of the road. By preprocessing
the 2D map, we can obtain the lane center points (LCPs:
x = [x,y]T) with their corresponding heading directions (h),
as shown in Fig. 4a: black points represent the LCPs, and
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the red arrow indicates one example point’s heading direction.
Then based on the raw pose estimation, we identify the closest
LCP following Eqgn. 1

[wc:hc]: argmin wh|hv hc|+wt||93'v_mc”2 (1)

zCx hcEhs

where x, represents the vehicle location from raw GNSS.
wp, and w; are the weight for balancing heading difference
and translation difference, respectively. Generally, in order to
prevent projecting point clouds to the wrong side of the road,
wp >> we. Overall, in this stage, all the keypoints obtained
from keypoints extractor are first projected to the global frame
using raw vehicle poses (from GNSS). Then these points
are moved onto the road with the translation x, — x.. For
simplicity, this translation operation is denoted as Ty and T2
for the RV and HV, respectively.

3) Intra Vehicle Matching: Apart from positional errors,
heading errors can also significantly impair initialization qual-
ity for the downstream point cloud registration algorithm,
which can even lead the process to diverge. Therefore, we
design an intra vehicle matching module for keypoints refine-
ment so as to create a better initialization for point cloud
registration between RV and HV. Here, “intra” means this
stage is conducted within each individual CAV so as to match
its keypoints with its own map data. More specifically, for HV
(the process is identical for RV), we match its “road boundary
points” (RBPs) (i.e. Keypoints from previous step and labeled
as “road boundary“) with the corresponding RBPs from the
map as shown in Fig. 4b and 4c. This stage requires the map
RBPs to have directional information indicating the “left” and
“right” w.r.t the projected LCP’s heading direction (h.) as
plotted in Fig. 4a, where red and green points indicating left
RBPs and right RBPs, respectively. The RBPs from vehicles
obtained from keypoints extractor are also labeled with left”
and “right” based on the sign of points’ y coordinates in the
local framework.

With these ingredients, the intra-vehicle matching stage
seeks to register RBPs using the “class-based ICP” algorithm
whose key idea is to match the closest points from different
clouds yet with the same class. The outputs of the intra-vehicle
matching stage contain: a) two transformation matrices (17
and TJ") that can align the RBP keypoints from both RV
and HV to the road in the map, respectively; b) 2 matching
“supports” s] and s}, (the proportion of points that can be
matched, range from 0-1) indicating the matching performance

for RV and HV. These support values are saved for the later
confidence prediction module. The effect of this stage, as
shown in Fig. 4¢ (blue points are from the vehicle, pink points
are from the map), indicates the CAV RBPs are having better
alignment with the map RBPs with a much smaller heading
error. After this stage of calibration, the keypoints from HV
can be transmitted to RV for relative pose estimation.

B. Relative Pose Estimation

So far, the Keypoints Preprocessing module has provided
a good initialization for inter-vehicle localization. However,
there may still exist the problem of a low inlier-outlier ratio,
which can further lead to poor registration performance. In the-
ory, for two sets of point clouds to be registered successfully,
there needs to exist sufficient correct point-wise correspon-
dence. This is the underlying assumption for all the algorithms
surveyed in Sec. Il Such an assumption may not always
hold for driving scenarios. Considering a scenario when an
HV and an RV drive from perpendicular streets to the same
intersection (first row in Fig. 1). The correspondences between
their keypoints only exist in the “co-visible” region that can
be commonly seen by both CAVs, which may only take a
small portion of all the keypoints. Therefore, the ratio between
number of points with correspondence (inliers) to the rest
pairs of points (outliers), called inlier-outlier ratio, is tiny. This
can cause failure to any point cloud registration algorithms.
Moreover, there exits no way for HV and RV to know this
ratio ahead of time and stop the algorithm accordingly. So
in our design, we specifically design an inlier augmentation
mechanism so that our algorithm can accommodate a wide
range of inlier-outlier ratios.

We propose to improve the inlier-outlier ratio by the usage
of the aforementioned 2D map. More specially, after getting
RV’s keypoints, HV can recompute the map RBPs that RV
has matched in its previous intra-vehicle matching stage. This
can be achieved simply by sampling on HV’s 2D map for
map points that are around or nearest to RV’s shared RBP
keypoints. HV adds these regenerated artificial RV map RBP
to its keypoints set as if they were scanned by HV’s LiDAR.
Then the augmented HV keypoints are registered with the
received RV keypoints. Note that the artificial RV map RBPs
regenerated by HV are inliers to the received RV keypoints
and can serve as anchors to prevent point cloud registration
algorithms from completely diverging when facing low inlier-
outlier ratio scenarios. In addition, this augmentation can also
balance the effect of intra-vehicle matching and inter-vehicle
matching, preventing the latter stage from completely wash
away the effects of the former stage. After augmenting, we
again leverage the class-based ICP algorithm to compute the
transformation matrix between HV and RV. The outputs from
this stage are a transformation matrix T3 and its corresponding
support value ss.

C. Confidence Predictor

As the system starts with a deep learning-based keypoints
extraction module, there may exist errors and uncertainties,



which can cause failure in the subsequent matching stages.
In order to be deployed in real CAVs, an additional alarming
function is needed to judge whether the matching result is
good enough for cooperative sensing. Therefore, we further
design this module to output a confidence score for the entire
matching framework. We first conduct another round of class-
based ICP to match the fused RBPs (containing both HV and
RV’s RBPs) with the map RBPs, which will output another
transformation matrix 73 and its corresponding matching
support s3. Then we leverage the data-driven approach and
train a logistic regression model to predict a binary flag (“pass”
or “fail”) indicating whether to accept the results from the
matching algorithm. The model takes all the pre-computed
four “support” values from all the matching stages (s, s7,
S92, and s3) as input and output the probability of “pass”. The
labels for training the model can be customized according to
the application context (e.g., the translation and heading errors
of relative localization below certain thresholds). We report the
model performance on different criteria on different in the later
V-B section. In addition, T3 can be used to further refine the
HV’s pose if the predicted confidence is high enough.
The above matching steps are summarized in the Alg. 1

Algorithm 1: Relative Localization Algorithm
Data: Map RBPs, LCPs, RV keypoints K", HV
keypoints K"
/+ In the local frame of HV and RV */
T§ = LaneCenterProject (K", LCPs);
T(? = LaneCenterProject (KM, LCPs);
K" =TyK", K" = ThK™",
T7,s] = ClassBasedICP (I{'T,RBPS) ;
Tlh,s}f = ClassBasedICP (Kth, RBPs) ;
K" =TrK", K" = ThK",
Transmit K™ and sy to HV ;
/* In global frame x/
s Kh = InlierAugment (Kh,KT, MPB:s) ;
9 Ty, 59 = ClassBasedICP (Kr, K"
10 K = T2KT;
11 Kgyseqa = Concatenate (Kh,KT)
12 T3,s3 = ClassBasedICP (K tysed » MPBs)
13 Conf = LogisticRegression (s},s", sq,53)

N A R W N -

IV. EXPERIMENTS
A. Datasets

1) Synthetic Dataset COMAP: COMAP [27] is a synthetic
dataset that is co-simulated by CARLA [28] and SUMO
[29]. Tt is suitable for the cooperative perception-related task
since each frame contains multiple cooperative CAVs with
varying sizes of “co-visible” regions. The dataset contains
7788 frames of samples, with each frame containing point
clouds, accurate vehicle poses, and object detection bounding
boxes for all cooperative CAVs. In addition, the ‘“virtual”
sensors implemented in CARLA can provide high-quality and

realistic measures with ground truth labels for the point clouds,
which can facilitate the training of our keypoint extractor
neural network. Hence, in this paper, we utilize this synthetic
dataset collected for empirical studies, following the concept
of multiple pioneering works such as [30], [31].

2) Realitic Dataset from KITTI-360: To further test the
proposed algorithm in more realistic situations, we modify the
KITTI-360 dataset [32] to create cooperative perception sce-
narios. More specifically, since the original KITTI-360 dataset
only contains frames for one single autonomous vehicle (AV),
we fuse two frames of the same AV at different timestamps
and treat them as 2 cooperative CAVs. To guarantee the
existence of “co-visible” regions between 2 CAVs, the two
frames selected are constrained in time difference.

3) Error Injection: The raw data in both COMAP and
KITTI-360 only contain the accurate vehicle poses for both
RV and HV. However, the ultimate goal of our proposed
algorithm is to reduce the error in the relative pose for
cooperative perception, which requires an “erroneous” dataset
for evaluation. In this work, we manually inject noises into
the vehicle poses by randomly adding translations in x- and
y- direction and rotation in the yaw (heading) from zero mean
normal distributions: e (0, o). Where « represents the error
scale, which can reflect the uncertainty in the GNSS system for
each individual CAV. In the subsequent experiments, we set the
standard deviation of the translation error as o, = [1,1]7(m)
and the standard deviation of heading error as oy, = 2°, then
vary the o value from 1 to 8.

B. Baseline Methods

To validate the performance of the proposed matching
algorithm, three baseline approaches with the same keypoints
configuration are adopted in this study:

1) Maximum consensus algorithm: As introduced in [25]
and utilized in [24] maximum consensus is a greedy approach
that searches over a grid of potential transformation matrices
and picks the one that can produce the maximum number of
matches. By definition, it is not an iterative approach and can
have a large search space when GNSS error is non-trivial.

2) Vanilla ICP algorithm: This baseline utilizes a vanilla
class-based ICP algorithm to match the keypoints extracted
from raw 3d scans. The reason for only applying ICP on the
keypoints is that it has the same transmission requirement as
the proposed hierarchical matching algorithm.

3) Raw GNSS: This is the “do nothing” baseline that purely
relies on the raw GNSS measurements to compute the relative
pose between RV and HV.

C. Experiment Setup

1) Training keypoint extractor: To train our keypoint ex-
tractor model, we use the cross entropy loss with 5 categories
and a set of class balance weights. Overall 25 epochs are
trained on the COMAP training set (70% of 7788 frames) with
the Adam optimizer and an initial learning rate of 0.001. As for
the other training parameters, we utilize the same configuration
as in [24]. After training, the model is sufficient to output
keypoints for downstream matching.



2) Prerequisites on map: As mentioned in the methodology
section, our proposed matching framework requires a “coarse”
2D map with some information including road boundary points
(RBPs) and lane center points (LCPs) shown in Fig. 4a. Road
boundary points can be obtained either through 2D satellite
maps such as Google Maps or 3D LiDAR scans from multiple
AV trips. In our work, we adopt the latter approach and extract
the envelope of all the road points detected by AV in multiple
trips. More specifically, we first aggregate all the road points
from all CAVs and all frames, then utilize Polylidar 3D [33]
tool to extract the boundary polygon as the road boundary
points. Once the road boundary points are obtained, the rest
information as in Fig. 4a can be acquired via geometry.

3) Matching radius: There is only one hyper-parameter in
each class-based ICP step, which is the searching radius for
inlier matching points. In other words, for each keypoint in
the RV, the class-based ICP finds the nearest neighbor in the
HV’s keypoints set. If the distance of this pair of two points
is below the radius threshold r, they are considered a “inlier”.
Then, the overall transformation matrix is computed through
all the inliers. Intuitively, this radius should increase as the
initialization error increases. Based on our experiments, the
algorithm yields the best performance if setting radius r as the
function of error scale: 7 = 3o+ 2 for intra vehicle matching
stage and a fixed radius as 3m for inter vehicle matching and
confidence regression stages.

4) Evaluation Metrics: The output from our proposed
framework is a “relative” pose between the RV and HV CAVs,
which is a transformation matrix that describes the pose of RV
CAV from HV CAV’s perspective. To evaluate the efficacy of
the proposed framework, following the previous work [15],
[34], we report the error between the calibrated relative pose
with the ground truth pose in terms of relative translation error
A (m) and relative heading angle error 6 (degree).

V. RESULTS
A. Quantitative Matching Results

1) On COMAP dataset: The experiments on COMAP
dataset are conducted by varying the error scale factor from 1-
8. The mean values of translation errors A and heading errors
0 are documented in Tab. I. The columns in Tab. I represent
relative pose errors for the following experiments: the raw
GNSS measure (GNSS), maximum consensus algorithm (max
con), vanilla class-based ICP (ICP, no intra vehicle matching
stage), and our proposed approach (ours).

2) On KITTI-360 dataset: The same experiments as on the
COMAP dataset are conducted on the selected KITTI-360
scenarios. To prevent repetition, we report the same statistics
with error scales [1,3,5,8] in Tab. II indicating the small,
medium, and large error cases.

From these results, the proposed matching approach attains
the highest accuracy in cooperative localization with the lowest
errors for both translation and orientation than other baselines.
Also, as the error scale varies from 1-8, our approach output
consistently better results with an error reduction rate higher
than 70%. In contrast, baselines including vanilla class-based

ICP and maximum consensus algorithms can show only decent
performance in the low error cases. As the error scale increase,
their performance decreases drastically, and the maximum
consensus can even amplify the errors in high error scale cases.

As an ablation study, we remove the inlier-augmentation
operation as introduced in III-B while keeping the rest modules
of the framework unchanged. The result is in the ours-
aug columns in Tab. I, which indicates the proposed inlier-
augmentation mechanism is effective.

B. Results on Confidence Prediction

As mentioned before, the confidence prediction model can
be trained with customized labels. In this work, we test the
following criteria for generating positive samples (pass):

o Criterion I: After the two stage calibration, Ay < 1.5m
& 05 < 3°.
« Ciriterion II: After the two stage calibration, Ay < 3m &
0y < 5°.
e Criterion III: After calibration, the relative localization
error is smaller than using raw GNSS measurements:
Ay <Agnss & 02 < Ognss-
In Tab III, we report the proportion of positive samples over
all the data (the proportion that satisfies the criteria in all
the frames), the precision, recall, F1 score, and Area under
ROC curve (AUC) for the regression model. In real-world
applications, one can also customize the confidence threshold
to adjust precision and recall for “pass” and “fail”.

C. Transmission Bandwidth Analysis

As a main contribution of this work is to achieve accurate
cooperative localization by only transmitting keypoints, in this
section, we compare the number of selected keypoints versus
the number of total points in the original frame for both
COMAP and KITTI-360 dataset. The mean, standard deviation
(Std.), and selection rate (Rate) for all the frames are shown
in Tab. IV. For the KITTI dataset, we use all the keypoints
(reflecting the static objects including walls, fences, buildings,
and road boundaries) in the frame without FPS. Therefore, the
number of keypoints is much greater than COMAP. This is also
one of the underlying reasons that our proposed framework has
higher performance on KITTI-360 than COMAP as reflected
in Tab. I and Tab. II

D. Visualization of Matching Results

1) COMAP: The visualization of fused point clouds from
three random cases with high matching confidence is shown
in Fig. 1. Specifically, the “confidences” in the figure are
trained with criterion I: Ay < 1.5m & 65 < 3°. These results
indicate the efficacy of the proposed approach in that both
point clouds and detected vehicle bounding boxes inside the
co-visible regions can be registered.

2) KITTI-360: Fig. 5 plots the fused point clouds (with
highlighted regions) in one representative scenario under dif-
ferent error scales. As the error scale increases, the remaining
errors in translation and heading increase. When the error
scale reaches 8, the matching fails to output a high-quality



TABLE I: Relative pose errors on COMAP

error Mean error in translation A (m) Mean error in heading 6 (degree)
scale | GNSS max con ICP ours-aug ours reduction rate | GNSS max con ICP  ours-aug ours reduction rate
1 2.29 1.60 1.77 0.50 0.31 0.82 2.75 0.89 1.20 0.37 0.24 0.75
2 4.58 4.95 2.33 0.58 0.37 0.89 5.60 1.94 1.30 0.39 0.25 0.92
3 6.87 9.96 3.00 0.87 0.72 0.89 8.48 6.01 1.64 0.59 0.55 0.90
4 9.17 14.20 4.57 1.13 0.94 0.89 11.32 17.20 4.58 0.81 0.68 0.90
5 11.46 16.73 6.75 1.98 1.55 0.86 14.16 28.32 8.06 2.10 1.37 0.89
6 13.75 16.65 10.62 2.74 2.09 0.85 17.00 29.61 12.94 2.77 2.12 0.89
7 16.04 15.20 13.06 3.74 2.82 0.82 19.84 36.62 15.93 3.84 3.21 0.86
8 18.33 15.00 14.39 5.61 4.16 0.74 22.67 30.60 18.70 8.06 6.00 0.81
TABLE II: Relative pose errors on KITTI-360
error Mean error in translation A (m) Mean error in heading 6 (degree)
scale | GNSS max con ICP ours reduction rate | GNSS max con ICP ours reduction rate
1 2.60 2.41 1.01 034 0.81 4.50 3.85 2.37 0.60 0.81
3 6.83 7.62 1.12  0.62 0.86 13.81 11.97 2.62 0.95 0.91
5 11.68 6.62 1.55 0.82 0.88 22.15 20.75 3.52 1.12 0.92
8 18.22 22.33 4.45 1.88 0.86 35.08 32.21 11.42 2.40 0.90
TABLE III: Confidence prediction results other than LiDAR. In our future work, we will explore the
matching algorithm for simultaneously considering LiDAR
criteria_| proportion precision recall F1__AUC and cameras, and also consider the temporal fusi h
i 0.80 095 083 088 00l ’ p usion when
I 0.83 0.97 085 091 094 historical information is available. Furthermore, the algorithm
1 0.94 0.96 073 083 0.76 can be tested in real-world experiments for robustness and

TABLE IV: # of keypoints v.s. # total points

# Keypoints # All points
Dataset Mean  Std. Mean Std. Rate
COMAP 497 71 18102 422 | 0.027
KITTI-360 | 17995 8736 | 116710 5416 | 0.154

localization, as shown in the last column of Fig. 5, where RV’s
point clouds are flipped. In this case, the confidence prediction
is 0.32. The system will output a “fail” flag indicating the
localization results are unreliable.

VI. CONCLUSION

In this paper, we present a LiDAR-based matching frame-
work to achieve accurate relative localization, which provides
a solid foundation for cooperative perception. The framework
sequentially applies class-based ICP to refine the relative
pose between the RV and HV. According to the results
from extensive empirical experiments conducted on both the
simulated dataset COMAP and the realistic dataset KITTI-
360, our framework can significantly reduce the errors from
GNSS and outperform multiple baselines by a great margin.
Furthermore, it contains a confidence prediction module that
can automatically judge the reliability of the matching results.
In addition, the proposed framework only has low require-
ments on self-localization solutions such as GNSS sensors
and has the benefit of saving transmission bandwidth and
computation resources. Therefore, it can be directly deployed
as the preprocessor for any downstream cooperative sensing
applications. Moving forward, cooperative localization can
be further enhanced by jointly considering multiple sensors

efficiency.
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