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The ability to use the temporal and spatial degrees of freedom of quantum states of light to encode and transmit 
information is crucial for a robust and efficient quantum network. In particular, the potential offered by the large 
dimensionality of the spatial degree of freedom remains unfulfilled, as the necessary level of control required to 
encode information remains elusive. We encode information in the distribution of the spatial correlations of 
entangled twin beams by taking advantage of their dependence on the angular spectrum of the pump 
needed for four-wave mixing. We show that the encoded information can only be extracted through joint 
spatial measurements of the twin beams and not through individual beam measurements and that the temporal 
quantum correlations are not modified. The ability to engineer the spatial properties of twin beams will enable 
high-capacity quantum networks and quantum-enhanced spatially resolved sensing and imaging.
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INTRODUCTION
The use of quantum correlations to enable new and enhanced real- 
world technology is one of the defining features of the ongoing 
second quantum revolution (1). Quantum correlations in the 
spatial degree of freedom, in particular, promise to have a substan­
tial impact on quantum information science due to the infinite di­
mensionality of the corresponding Hilbert space (2-5). Specifically, 
quantum-correlated spatial modes of light can provide higher ca­
pacity information encoding down to the single-photon level (6, 
7) while simultaneously offering better security and robustness to 
noise in optical communication protocols (8). While, for classical 
systems, spatial modes of light have been already used for high-ca­
pacity transmission both in free-space and fiber-based communica­
tion channels (9-11), in the quantum regime this has been an 
elusive task due to the limited control and manipulation of spatial 
correlations. Here, we go beyond the demonstration of spatial cor­
relations and show that the ability to engineer their distribution can 
enable a novel degree of freedom to encode and transfer informa­
tion efficiently. Moreover, this capability can extend beyond the ef­
ficient transfer of information on a quantum network into 
applications such as quantum-enhanced imaging and sensing, for 
which the presence of multiple spatial modes can lead to enhanced 
resolution and sensitivity (12-14).

Entangled twin beams of light are at the heart of a number of 
applications in quantum information science and are natural can­
didates for encoding information in the spatial degree of freedom, as 
they can be generated with a large number of spatial modes (15-17). 
Their generation requires a nonlinear parametric process, such as 
parametric down-conversion (PDC) or four-wave mixing (FWM), 
that can simultaneously emit pairs of photons. Such a nonlinear 
parametric process conserves both the energy and momentum of
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the involved fields, with energy conservation leading to temporal 
quantum correlations and momentum conservation (or phase ? 
matching) to spatial quantum correlations. As a result of phase |_ 
matching, in particular, the spatial quantum properties of the gen- 
erated photons depend on the spatial properties of the input pump S. 
photons (2, 3). This dependence provides an effective way to intro- 3 
duce quantum correlations between specific spatial modes of the 5- 
output photons. The engineering of the correlations between 
spatial modes will give rise to structured quantum states of light 
(18) with a tailored mode distribution for specific applications. | 

The relation between the spatial properties of the pump and the g 
spatial quantum correlations of the generated photons has been ex- | 
tensively studied theoretically for PDC (19), with a few experiments g 
showing that a pump with a modified spatial structure leads to a ® 
change of the spatial correlations between the generated photons ® 
(20-22). Similar results have been experimentally observed for § 
FWM (23-27). While the degree of control over the spatial correla- g 
tions has been limited in these previous experiments, they show the g 
viability of using the pump to modify the distribution of the spatial 5 
correlations. Here, we show that it is possible to take advantage of 
this approach and use a structured pump beam with a specific 
angular spectrum (momentum distribution) to engineer the distri­
bution of the spatial correlations of twin beams. This makes it pos­
sible to encode information jointly in the twin beams, such that if a 
particular k- vector of one of the beams is measured, the distribution 
of ^-vectors in the other beam contains the encoded information.

RESULTS
Experimental setup
In our experiments, we use a FWM process based on a double-A 
configuration (top inset in Fig. 1) (28) to generate twin beams, 
which we refer to as probe and conjugate. This process has been 
shown to generate quantum states of light that are entangled in 
the temporal (16) and spatial (29) domains and, more importantly, 
contain a large number of spatial modes (16). We further take ad­
vantage of the ability of the FWM process to generate bright twin 
beams that contain a large number of correlated photons (~mW of 
power per beam). This enhances the signal-to-noise ratio of the

Nirala eta/., Sci. Adv. 9, eadf9161 (2023) 2 June 2023 1 of 8



SCIENCE ADVANCES RESEARCH ARTICLE

Fig. 1. Experimental setup for encoding information in the distribution of the spatial correlations of twin beams. A hot 85Rb vapor cell is used as the nonlinear 
medium needed for the FWM process that generates quantum-correlated twin beams, which we refer to as probe and conjugate. The FWM is based on a double-A 
configuration in the D1 line of 85Rb, as shown on the top inset. The pump beam is reflected from an SLM (spatial light modulator) that imprints a phase pattern onto it to 
obtain the necessary momentum distribution (angular spectrum) for the pump. The phase-structured pump is then imaged to the center of the cell via a 4f optical system. 
Last, the momentum distribution of the probe and the conjugate beams is mapped to a position distribution onto an EMCCD (electron multiplying charge-coupled 
device) camera in the far field using a single lens in an f-to-f configuration. Images acquired with the EMCCD are then used to measure the distribution of the spatial 
correlations and extract the encoded information in the twin beams. To generate bright twin beams, we seed the FWM with an input probe beam to achieve a photon flux 
of ~1014 photons/s per output beam, which is limited by saturation of the EMCCD.

performed measurements to obtain a robust characterization of the 
spatial properties of the generated twin beams.

In the FWM process, two input pump photons are simultane­
ously converted into correlated probe and conjugate photon pairs 
[see Fig. 1 (top inset)]. As a result of phase matching, the momen­
tum correlations between the generated probe and conjugate are 
dictated by the momentum distribution, or angular spectrum, of 
the pump fields. In our experiments, the FWM is based on a con­
figuration in which the two required pump photons come from a 
single pump field, as shown in Fig. 1, which leads to the phase 
matching condition shown in the lower inset of Fig. 1 for the case 
of a plane-wave pump (5-function angular spectrum corresponding 
to a single fc-vector). This leads to probe and conjugate photons with 
anticorrelated transverse emission directions with respect to the 
propagation direction of the pump, such that their transverse k- 
vectors are oriented in opposite directions, as shown in Fig. 1. 
The momentum distribution, or fc-vector content, of the twin 
beams can be mapped to a position distribution in the far field, 
which, for a pump with a 5-function angular spectrum, translates 
to point-to-point correlations. Any broadening of the pump 
angular spectrum, as result of a localized pump beam (e.g., a Gauss­
ian beam), leads to a spread of the position correlations between the 
twin beams in the far field from point-to-point to point-to-area. We 
have experimentally verified such distribution both in the near and 
far fields and shown that the spatial correlations are quantum in 
nature (29, 30). Going beyond such a spread requires additional 
modifications of the angular spectrum of the pump to further rear­
range the distribution of the spatial correlations between the probe 
and conjugate.

Role of angular spectrum of pump
The ability to modify the distribution of the spatial correlations in a 
controlled way, as needed to encode information, requires knowl­
edge of the relationship between the pump's angular spectrum 
and the spatial correlations between the probe and conjugate. In 
particular, we consider the spatial cross-correlation between the 
twin beams, as its distribution in the far field gives information 
about the relative momentum distribution of photons in one of

the beam conditioned upon a measurement of photons in the 
other beam with a specific momentum value. Furthermore, for 
the bright twin beams used in our experiments, previous studies 
have shown that the spatial quantum properties can be effectively 
characterized through a statistical analysis of the spatial intensity 
fluctuations of images of the twin beams acquired with a charge- 
coupled device (CCD) (29-33). In the bright limit, the spatial 
cross-correlation, ccross(*i, x2), of the intensity or photon number 
fluctuations is equivalent to the spatial cross-correlation of the 
quadrature fluctuations (see section SI) such that

Ccmss(*l,*2) - (1)

where 5N is the photon number fluctuation operator, SX is the am­
plitude quadrature fluctuation operator, and (•) represents the 
quantum expectation value. The subscripts pr and c represent 
probe and conjugate fields, respectively, while Xy and x2 are the 
two-dimensional transverse positions in the far field for the probe 
and the conjugate, respectively, with respect to the center of the 
pump beam.

To find the functional dependence of the spatial cross-correla­
tion on the angular spectrum of the pump, we perform a perturba­
tive expansion of the twin beam wave function to first order in the 
interaction Flamiltonian of the FWM. In this limit, we can show (see 
section SI) that the spatial cross-correlation takes the form

Ccn,ss(L)^^#pr(-%)6X,(% + (+)} oc%e{0(L)} (2)

where = Xy + x2 is the two-dimensional transverse relative posi­
tion, x = —Xy, and 0 = (8?0 * W0). FI ere, 8?0 is the angular spectrum 
of the pump, which is given by the Fourier transform of the trans­
verse pump field at the center of the nonlinear medium, and * 
denotes the convolution operation. Because ccross(^) is translation- 
ally invariant with respect to x, the cross-correlation is independent 
of this variable and depends only on the relative position given by i^. 
We take advantage of this fact in our analysis and take the average of 
the cross-correlation for all values of x to increase the signal-to- 
noise ratio of the measured correlation functions. The negative 
sign in the spatial argument of SXpr reflects the fact that correlated
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probe and conjugate are generated with opposite momenta in the 
transverse plane (following the phase matching condition). Equa­
tion 2 shows that to first order the distribution of the far-field 
spatial correlations is determined by the convolution of the 
angular spectra of the two pump photons that participate in the 
FWM process.

Control of distribution of spatial correlations
We take advantage of Eq. 2 to encode information in the distribu­
tion of the spatial correlations of the twin beams by implementing 
the FWM with a spatially structured high-power laser beam as the 
pump (see Methods) in a 85Rb vapor cell. Bright twin beams are 
generated by seeding the FWM process with a weak probe beam 
(see Fig. 1 and Methods). A single lens in an/-to-/configuration 
is then used to map the momentum distribution of the twin 
beams to a position distribution in the far field that is imaged by 
an electron multiplying CCD (EMCCD), as shown in Fig. 1. To 
extract the spatial intensity fluctuations to calculate the spatial 
cross-correlation and thus read out the encoded information, two 
images are taken in rapid succession with the EMCCD and subtract­
ed (see Methods and section S2). This approach also cancels any 
classical noise introduced by the seed beam (32).

To illustrate that it is possible to encode information in the 
spatial correlations, we choose two patterns, the University of Okla­
homa (OU) logo and h (Planck's constant), to be encoded in the

twin beams as target far-field spatial correlation distributions (see 
Fig. 2). FI ere, we restrict to only phase changes to the pump beam 
to achieve the required angular spectrum. For each target, we 
imprint the necessary phase distribution on the pump beam with 
a phase-only computer-generated hologram (CGF1) implemented 
with a spatial light modulator (SLM), as shown in Fig. 1. A 4/ 
optical system is used to perform a one-to-one imaging of the 
phase-structured pump reflected from the SLM to the cell center. 
Given that the angular spectrum of the pump is a complex quantity, 
the implemented phase-only CGF1 has to be designed to produce 
the calculated amplitude and phase for the pump's angular spec­
trum. Any deviation will affect the real part of the convolution func­
tion and, hence, the fidelity of the information encoded in the far- 
field spatial correlations. To minimize such deviations, we imple­
ment a mixed-region amplitude freedom (MRAF) algorithm 
coupled with conjugate-gradient optimization to calculate the re­
quired CGF1 (see section S3) (34).

Figure 2, which gives a comparison between target, simulated, 
and experimentally obtained far-field spatial cross-correlation pat­
terns, shows the capability of our system to encode information in 
the distribution of the spatial correlations of the twin beams. The 
simulated patterns are based on Eq. 2 and the corresponding calcu­
lated CGF1, which takes into account the limited spatial and phase 
resolution (8-bit) of the SLM. As can be seen, there is excellent 
agreement between our experimental results and the expected

Fig. 2. Information encoding in the distribution of the spatial correlations of twin beams. (A and E) Target information to be encoded in the spatial cross-correlation 
of the twin beams. The target is used to calculate the corresponding CGH (Band F) with a MRAF algorithm. The dimensions of the SLM pixels (12.5 gm by 12.5 gm) and its 
8-bit resolution together with the f-to-foptical system are taken into account to calculate the simulated cross-correlations in frames (C and G). The measured spatial cross­
correlations between the probe and conjugate intensity fluctuations reveal the encoded information, as shown in frames (D and H). Except for frames (B) and (F), each 
pixel value is normalized to the sum of the amplitude squared of all the pixels in the image to provide a better comparison between the simulation and experiment. The 
maximum values for the cross-correlations, shown in bright yellow, of the experimental and simulated data are larger than for the target due to the nonuniform distri­
butions that result from a nonideal setup and CGH. One can notice a small rotation (~5°) in the measured spatial cross-correlations, which is due to experimental align­
ment imperfections. All figures, except for the CGH, are in the EMCCD pixel basis, with a pixel size of 16 gm by 16 gm. The color bar for the CGH frames (B) and (F) 
correspond to the 8-bit encoding of the phase in the range of 0 to 2it. For a detailed explanation of the measurement procedure and calculation of the spatial cross­
correlations, see Methods and section 52.
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spatial cross-correlation patterns obtained from the simulation. 
These results show that it is possible to achieve arbitrary spatial dis­
tributions in the twin beam correlations and, thus, represent a sub­
stantial advancement with respect to previous proof-of-principle 
experiments with PDC (20, 22).

The fundamental limit to the resolution of the patterns that can 
be encoded is given by the number of spatial modes that the FWM 
process can support, which is mainly limited by the size of the pump 
beam as the use of an atomic system to implement the FWM makes 
it such that a cavity is not required to obtain a large nonlinear re­
sponse. For our experiments, the pump size is limited by the 
maximum power output of the Thsapphire laser. Note that the 
main deviation from the target distribution comes from a non- 
optimal phase-only CGF1 to implement the required angular spec­
trum of the pump. This can be seen from the degradation of the 
resolution of the simulated spatial cross-correlation patterns in 
comparison to the target. There are several factors that lead to dis­
crepancies between the simulated and measured cross-correlations. 
One is related to a decrease in efficiency of the SLM at higher spatial 
frequencies, which limits the spatial bandwidth of the angular spec­
trum imparted on the pump. A second one is that Eq. 2 accounts 
only for the leading order contribution of the FWM interaction. 
Last, the simulated patterns do not take into account the finite 
size of the bright probe and conjugate beams that effectively set 
the measurement region. Despite these limitations, which are 
mostly technical in nature, if we consider, for the present configu­
ration, the size of the smallest feature on the measured cross-corre­
lations, we can, in principle, independently control a 12 x 12 grid of 
elements (each with 10 x 10 pixels). Even if we consider a simple 
binary encoding consisting of only two levels, we would be able to 
encode 144-bits per image or achieve an encoding rate of ~150 kbps 
even with the current SLM that has a limited frame rate of ~kElz. 
Novel spatial modulators under development with nanosecond re­
sponse time (35) will enable orders of magnitude larger rates. This 
illustrates the potential offered by the control of the spatial correla­
tions toward a practical implementation of continuous-variable 
quantum secure direct communication (36, 37).

For the distribution of the spatial correlations to be a viable 
degree of freedom for the secure transfer of information compatible 
with current approaches in quantum information science, it is

necessary to preserve the temporal quantum correlations for secur­
ity verification and for the encoded information to only be accessi­
ble through joint measurements of the twin beams (38, 39). The 
security of the channel can then be quantified through the degree 
of quantum correlations present in the system (40, 41). Because a 
modification of the angular spectrum of the pump only affects the 
relative momentum of the generated photons, its main effect is ex­
pected to be on the spatial properties of the generated twin beams 
and not the temporal ones. We have verified that the degree of in­
tensity difference squeezing in the time domain is preserved when 
the pump is modified, with the main impact coming from the ad­
ditional noise due to scattered pump photons (see fig. S6).

In terms of the spatial degree of freedom, each beam individually 
does not reveal the encoded information. While, in principle, the 
bright spatial profiles of the generated twin beams should be mod­
ified with a change of the angular spectrum of the pump, we avoid 
encoding information on the bright spatial profiles by adding a 
small constant-phase circular region at the center of the CGE1, as 
can be seen in Fig. 2 (B and F). The radius of this constant-phase 
region is kept as small as possible to minimize any impact on the 
CGE1 and, thus, the desired angular spectrum of the pump. The 
FWM process is aligned such that the seed probe beam overlaps 
with this constant phase region, which results in the generation of 
bright twin beams with Gaussian spatial profiles (see fig. S2A). In 
addition, as can be seen in Fig. 3, the measured autocorrelation of 
the spatial fluctuations for each beam is localized, consistent with 
the calculated autocorrelation, which takes the form (see section S4)

bright limit
Cauto ((- ) (3)

where = x2 — ay As shown in section S4 and as can be seen in 
Fig. 3, the autocorrelation cannot be used to recover the encoded 
information. This is to be expected when the twin beams are com­
posed of a large number of spatial modes that contribute to their 
spatial correlations. Thus, the information encoded through the 
modification of the angular spectrum of the pump can only be re­
covered through joint measurements, such as the cross-correlation 
of the spatial fluctuations of the twin beams.

Fig. 3. Spatial autocorrelations. Experimental measurement of the autocorrelations of the spatial intensity fluctuations of the (A) probe and (B) conjugate fields. For 
these measurements, the phase-structured pump beam is set to generate the OU logo pattern in the spatial cross-correlation between the twin beams, as shown in the 
top row of Fig. 2. While the encoded information can clearly be read out through joint measurements of the probe and the conjugate, each beam by itself (as seen by the 
autocorrelations) does not reveal the encoded information. The insets show a cross section of the autocorrelations. The measured autocorrelations are localized and 
almost identical to those obtained when the pump has not been modified (see section S4). An artificial peak at the center of the autocorrelations, which is due to the use 
of the same image to calculate them, is removed. The experimental results are in good agreement with the simulation of the autocorrelation (C). As shown in section S4, in 
theory, the autocorrelation functions for the probe and conjugate fields are equal to each other.
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Control of degree of correlations
For a spontaneous (nonseeded) FWM process, the probe and con­
jugate fields are generated over a region centered around the pump 
with an angular bandwidth limited by the phase matching condi­
tion. The phase matching condition determines the spatial eigen- 
modes of the FWM process into which probe and conjugate 
photons are emitted. When seeded, in addition to these spontane­
ously generated photons, the FWM generates bright probe and con­
jugate beams that are localized to a subregion of the spontaneous 
emission region, as determined by the size of the seed probe 
beam and its angle with respect to the pump. The bright portions 
of the twin beams effectively act as local oscillators (LOs), one for 
the probe and one for the conjugate, for the FWM eigenmodes they 
overlap with, which leads to the amplification of the spatial fluctu­
ations. This is analogous to measurements of the quantum proper­
ties of bright twin beams in the time domain, where the bright 
portion serves as an LO to amplify the temporal fluctuations. As a 
result, for the measurements performed with the EMCCD, the 
bright twin beams provide an effective self-homodyning of the 
FWM eigenmodes whose spatial profiles overlap with the Gaussian 
spatial profiles of the bright probe and conjugate beams. When the 
angular spectrum of the pump is modified, the spatial eigenmodes 
of the FWM are correspondingly modified, which leads to the 
changes in the spatial cross-correlation.

As described above, we add a constant-phase circular region at 
the center of the phase-structured pump to maintain the Gaussian 
spatial profiles of the bright probe and conjugate beams. An addi­
tional advantage of this approach is that it allows us to control the 
relative phase between the bright portions of the probe and conju­
gate, which act as LOs. In particular, for the FWM process in which 
two photons are absorbed from a single pump beam, the involved 
fields have to satisfy the phase relation

2([)p = (|)pr + 4>c (4)

where the subscript p, pr, and c stand for the pump, probe, and con­
jugate fields, respectively, and cfs denotes the phase of the respective 
fields. This relation leads, for example, to optical phase conjugation 
(42) for the generated conjugate for the case in which 4>p = 0. In our 
experiments, the phase-only CGF1 is generated with the constraint 
of having a constant-phase circular region at the center. This leads 
to an effective self-homodyning of the probe and the conjugate for 
which the corresponding amplitude quadratures are naturally mea­
sured, as given by Eq. 1. If we now locally change the phase value of 
the constant-phase circular region by A4>p while keeping the phase 
of the rest of the CGE1 intact, then we can change the phase of the 
generated bright conjugate with respect to the bright probe by t[)c = 
2 AcfSp, as dictated by Eq. 4, without a substantial modification of the 
spatial eigenmodes of the FWM process. This effectively rotates the 
phase of the conjugate LO with respect to the generated spatial ei­
genmodes, which makes it possible to select the quadrature that is 
being measured for the conjugate beam. Figure 4 shows the mea­
sured spatial cross-correlation for A(j>p = 0, A(j>p = rr/4, and A(|)p = 
n/2. As expected, the correlations are significantly reduced for 
A(|)p = rr/4, as, ideally, this corresponds to a measurement of uncor­
related quadratures in the form of (SXpr(—x)STc(x + {,)), and 
become negative for A(|)p = n/2, as the measurement is proportional 
to (SXpr(—*)[—SXc(x + i;)]}- This process can be used in general

for any CGE1 to further control the degree and sign of the 
correlations.

DISCUSSION
In summary, we have shown that it is possible to encode informa­
tion in the distribution of the spatial correlations of twin beams. 
This is achieved through a complete control of the spatial correla­
tions in the twin beams generated using FWM with a phase-struc­
tured pump beam. The degree of control that we are able to obtain is 
key to enable information encoding in the form of a target spatial 
distribution and is a substantial advancement over previous exper­
iments with PDC (20, 22). Furthermore, the information cannot be 
read out from either of the individual beams, and the additional use 
of a constant-phase region at the center of the CGE1 prevents the 
information from being present in the bright spatial profiles of 
the generated twin beams. Therefore, the capability to engineer 
the distribution of the spatial correlations directly at the source pro­
vides us with a novel approach to explore the use of the spatial 
degree of freedom of entangled bright twin beams for applications 
in quantum information science and could enable a source with on- 
demand entanglement between any arbitrary superposition of 
spatial modes. In particular, much of the progress to date toward 
mode engineering has focused on the time-frequency domain, 
which has enabled the development of devices such as quantum 
pulse gates (43) and the generation of high-purity single photons 
in any given temporal mode (44). We envision that the results pre­
sented here will help usher similar progress in the spatial domain.

Given that optical quantum correlations, which can be present in 
both the temporal and spatial degrees of freedom, form the basis for 
many emerging quantum technologies, the results presented here 
promise to have a substantial impact in quantum information 
science. For example, the ability to encode information in the 
spatial degree of freedom of twin beams, such that it is only acces­
sible through joint measurements, while simultaneously preserving 
the temporal quantum correlations opens the possibility of using 
spatial correlations for high-capacity secure exchange of quantum 
information that takes advantage of the infinite-dimensional 
ETilbert space of spatial modes (8). On the other hand, for 
quantum sensing applications, a tunable multispatial-mode 
quantum state can lead to enhanced imaging and positioning via 
the tailored distribution of spatial modes (45). Furthermore, the 
bright nature of the generated multispatial-mode states is particu­
larly useful for applications demanding real-time imaging based on 
single/few-shot measurements (29). From a fundamental perspec­
tive, control of spatial correlations directly at the source provides 
a way to systematically study and understand the limits on the 
control of quantum correlations between various spatial modes. 
This knowledge could be beneficial for exploring potential applica­
tions in quantum information and scalable quantum computa­
tion (46).

METHODS
Experimental details
To generate quantum-correlated twin beams, referred to as probe 
and conjugate, we use a FWM process based on a double-A 
system in a non-collinear configuration, as shown in Fig. 1. 
During the FWM process, two pump photons from a single
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Fig. 4. Control of the degree of correlation. ACGH with a constant-phase central region can be used to control the degree of correlation between the twin beams. (A) 
OU logo CGH with zero-phase circular region at the center. Choosing a suitable change in phase (A4>p) for the constant-phase region without altering the rest of the CGH 
makes it possible to change the degree of correlation from (B) positively correlated (Ai|>p = 0) to (C) uncorrelated (Ai|>p = rt/4) to (D) negatively correlated (Ai|>p = it/2). (B) to 
(D) are not normalized to obtain an absolute comparison of the degree of correlation as the phase of the constant-phase central region is changed.

pump beam are simultaneously converted into a pair of probe and 
conjugate photons. Because of their simultaneous generation, the 
probe and conjugate beams are entangled in the temporal domain 
(16). When seeded, the FWM amplifies the input probe beam and 
generates a bright conjugate beam to produce bright twin beams. 
Tuning the number of photons in the input seed allows us to 
control the number of correlated photons in the generated bright 
twin beams.

We implement the FWM in the D1 line of 85Rb in a vapor cell 
with a diameter of 1 inch and a length of 12 mm. The pump beam 
has a power ~2 W and is locked with a sideband saturation spectro­
scopy lock 1.38 GFlz to the blue of the F = 2 —> F = 3 transition. A 
high-frequency acousto-optic modulator is used to red-shift a small 
portion of the pump by 3.04 GFlz to generate the input seed probe. 
Orthogonally polarized pump and probe beams are made to inter­
sect at an angle of 0.4° at the center of the Rb vapor cell, which is 
held at a temperature of 114°C. Optical systems are used before the 
cell to position the waists of both beams at the center of the cell with 
a 1/e2 waist diameter of 4.4 mm for the pump and 0.4 mm for the 
probe. With this configuration, we obtain a gain of ~2.6, which is 
limited by the power available for the pump beam.

After the Rb vapor cell, a polarization filter separates the twin 
beams from the strong pump beam before they are imaged by the 
EM CCD. While most of the pump is blocked with the polarization 
filter, the use of a structured pump significantly increases the 
amount of scattered pump light that makes it through the filter 
and onto the EMCCD. These uncorrelated photons significantly 
affect the cross-correlation measurements and can even saturate 
the EMCCD. To absorb the unwanted scattered pump photons se­
lectively, we place an additional isotopically pure 87Rb 3-inch-long 
vapor cell heated to 97°C before the EMCCD camera. We set the 
detuning of the pump beam to maximize pump absorption while 
minimizing the losses for the probe and conjugate, which leads to 
a larger-than-optimal one-photon detuning for the FWM process. 
With this approach, we can obtain a pump transmission of ~10% 
through the 87Rb cell, while the probe and conjugate transmission is 
kept at >90%.

Correlation measurements
For the correlation measurements, a 500-mm lens is placed in an /- 
to-/ configuration between the center of the vapor cell and the 
EMCCD. The/-to-/optical system maps the transverse momenta 
of the fields at the cell center to transverse position on the 
EMCCD (see Fig. 1), such that a photon with transverse momentum

(k2") is mapped to transverse position x =jk±/k in the far field, 
where k is the magnitude of the total momentum of the photon.

Given that the characterization of the distribution of the spatial 
correlation is based on calculating the cross-correlation of the 
spatial intensity fluctuations of the twin beams, as given by Eq. 1, 
we implement a detection scheme in which two frames are acquired 
in fast succession using the kinetics mode of the EMCCD. The ki­
netics mode allows us to capture multiple frames in a single acqui­
sition from the EMCCD. Each frame consists of a probe and a 
conjugate image captured at the same time. Successive frames 
and, thus, images for the probe and conjugate can be taken with a 
time difference of ~60 ps between them (32). A subtraction of two 
successive frames provides images of the spatial intensity fluctua­
tions in each beam, which are then used to evaluate the two-dimen­
sional spatial cross-correlation needed to characterize the 
distribution of the spatial correlations. Before calculating the 
cross-correlation, the image of the conjugate spatial fluctuations is 
rotated by 180° to account for the transverse momentum anticorre­
lations between the probe and conjugate that result from phase 
matching. Additional details can be found in section S2.
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Section SI. SPATIAL CROSS-CORRELATION

In order to show the dependence of the spatial cross-correlation on the angular spectrum of the pump given by Eq. (2) in the 
main text, we start with the interaction Hamiltonian for the four-wave mixing (FWM) process, which can be written as [47],

9^ = a /^r%^(r)E(+)(r,f)E(+)(r,f)%)(r,f)E(-)(r,f) + H.c. (SI)

Here x^ is the third order nonlinear response of the atomic media and the subscripts p, pr, and c denote pump, probe, and 
conjugate fields, respectively. We have also assumed that the two required pump photons come from a single pump beam, as is 
the case for our experiment. These two pump photons are simultaneously converted into a pair of photons, one for the probe and 
one for the conjugate, as shown in Fig. SI A. In the undepleted pump approximation we can treat the pump as a classical held. If 
we take the pump to be propagating along the ^-direction, it can be written as

E+(r,f) = (S2)

where k~ denotes the ^-component of the pump’s ^-vector, p is the two-dimensional position in the transverse plane at the 
center of the nonlinear medium, and Ea(p, z) is a complex function representing the slowly varying envelop of the pump’s 
electric held. In our experiments, the waist of the pump is placed at the center of the x® nonlinear medium (atomic vapor 
cell) and its transverse spatial distribution is assumed to remain unchanged throughout the length of the nonlinear medium. As 
a result, the slowly varying held amplitude is assumed to be independent of z, that is Ea(p, z) = E0(p).

FIG. SI. Four-wave mixing. (A) Schematic diagram of the FWM process used in the experiment in which two photons are absorbed from 
a single pump field to generate quantum correlated probe and conjugate fields. (B) Phase matching condition for the configuration in which 
two pump photons are absorbed from a single pump field. Phase matching needs to be satisfied for an efficient FWM process and leads to 
momentum correlations between the generated probe and conjugate photons. The non-collinear configuration results from the response of the 
atomic medium used for the FWM process [48].

In momentum space (A>space) the held operators for the probe and conjugate can be written as

Kr(r,t) = T)
2tt I

3/2

'k„r’ (53)

(54)

where j is the creation operator for a probe (conjugate) photon with a spatial prohle given by a plane wave and ftk
momentum. Using Eqs. (S2), (S3), and (S4), the FWM interaction Hamiltonian can be rewritten as

^2A y^y 6^ + H.c. (S5)

it

+ H.c., (S6)

where we have assumed that x'3' is spatially independent so that it can be taken outside the integral and absorbed into I = 
X^3V(27r)3- The term Alt- = 2k~ - k~r - k~ denotes the longitudinal phase-mismatch, as shown in Fig. SIB, and k^r (k^) is 
the probe (conjugate) momentum vector in the transverse plane. In obtaining Eq. (S6) we have assumed the angular frequency 
mismatch (Acv = 2cup - cupr - cuc) to be zero.

In order to highlight the dependence of the FWM on the transverse spatial prohle of the pump, we further write the interaction 
Hamiltonian as

a = *ft27iT dzd]iprdkc
2 y p itr^iCc “t- H.c.

dzdkprdkcK(k7;r+kc)elAkzZali + H.c.

(S7)

*ft27iT (S8)



where we have introduced the function K(k- + k-) = 0- J dpE20(p)e 1(kp-'+k= '\p, which contains all the information 

about the pump transverse spatial profile and represents the transverse Fourier transform of E0(p). We can further simply this 
expression by writing the pump’s transverse spatial distribution in momentum space, such that

Eo(p) - dkpEo(k_)ei (S9)

where Eo(k- ) represents the angular spectrum of the pump. We can then substitute Eq. (S9) in the expression for K to rewrite 
it as

K(k^r + k-) = ^/ d^"dk%(k^)eikp-py dkp^Eo(kp^)eikp'-^ e-i(kpr+k^)-p
(2n)3

1
W

1
(2n)

1
(2n)

1
(2n)

^ dk-dkp- Eo(k^)Eo(kp^^" dpei(kp+k^-kpr-k^)'p 

dk^dkp^Eo(k^)Eo(kp^)d(kP^ - (k-r + k- - k-))

J dk-Eo(k--)Eo(k-r + k- - k-)

$(k-r + k-), (S10)

where $(k- + k-) = / dk-f0(k--)f0(k-r + k- - k-) is the convolution of the angular spectra of the two pump photons 
involved in the FWM process. Finally, substituting Eq. (S10) into Eq. (S8) and integrating over the length L of the media (from 
-L/2 to L/2) allows us to write the interaction Hamiltonian as

H = iAFL dkpr dkc$(k. + k-) sinc(AkzL/2)&k bk + H.c. (S11)

= ihYL dkpr dkcF(kpr, kc)a-k bk + H.c., (S12)

where we have defined the two-photon amplitude function F(kpr, kc) = $(k-r + k-) sinc(AkzL/2), which takes into account 
the angular spectrum of the pump through function $ and the phase matching condition through the sinc function. Note that 
the interaction Hamiltonian is very similar to the one for parametric down-conversion (PDC) [49-51], except that in PDC the 
function $ is directly given by the angular spectrum of the single pump photon involved in the process instead of the convolution 
of the angular spectra of the two pump photons involved in FWM.

With this interaction Hamiltonian we can approximate the state of the generated twin beams by using first order perturbation 
theory to write the twin beam state (TBS) wavefunction as

I T X _iHt
|^TBS) = e H |^o)

1 - ^ ) |*o)

|#o) + Cl

|#o) + Cl

dkpr dkc F(kpr , kc)av bkc F (kpr , kc)akpr bkc |^0 }

dkprdkcF(kpr, kc)a-k bk |^o)

(513)

(514)

(515)

where we have assumed the input state to be the multimode vacuum state |^o) = |{0}kpr, {0}kc) with notation |{0}k) = 
]lk |0k) and Ci = FLt with interaction time t. It is important to note that even though we seed the process for the present 
experiment, the seed does not have an impact on the eigenmodes of the FWM and only serves to generate bright probe and 
conjugate beams with Gaussian profiles that serve as local oscillators for measuring the correlations in the FWM eigenmodes, 
as described in the main text. The form of the TBS wavefunction given in Eq. (S15) is the same as the one from type-I 
SPDC [21,49-53] with the angular spectrum of pump field replaced with the convolution of the angular spectra of the two pump 
photons involved in the FWM process. The second term in Eq. (S15) is responsible for the momentum correlations between the 
probe and conjugate beams with a distribution dictated by F(kpr, kc), such that if a single k-vector for the probe is measured the 
distribution of the corresponding correlated k-vectors for the conjugate can be engineered by changing the angular spectrum of 
the pump.

With the TBS wavefunction given in Eq. (S15), we are now in a position to calculate the spatial cross-correlation defined in 
the main text in terms of the spatial intensity fluctuations of images acquired by the EMCCD. We start by noting that a f -to-f



optical system is used to map the momentum distribution to a position distribution on the EMCCD in the far field; hence, the 
transverse spatial cross-correlation of the spatial intensity fluctuations in the far field can be written as

Ccross(x1, xO)

f-to-f
optical system

&Npr (xi; zf )JNc (xo; zf)

JNpr (k-; Zo)J7V"c(k-; z^M = (JNpr (k-,kZ )J7V"c(k-,kZ)

(S16)

where zf and zo indicate the far field and near field along the propagation direction (z-axis), respectively, JN = N - (N)

with photon number operator N, and xi and xo are two-dimensional transverse positions in the far field. The measurements are 
done in the far field where a photon with a transverse momentum vector k- is mapped to spatial location x = f k-/k by the

f-to-f optical system. In the last expression, the z-component of the k-vector is given by kz = k0 - |k-12, where kj is the 
magnitude of the corresponding k-vector.

We also note that in the bright limit the photon number fluctuations are proportional to the amplitude quadrature fluctuations 
of the field. This can be shown by writing the field operators as a = |a| + Ja, with |a| representing the mean value (amplitude) 
of the field and Ja the field fluctuation operator, such that

N = at a = (|a| + Ja)^(|a| + Ja) — |a|O + |a| (Ja^ + Ja) , (S17)

where we have taken advantage of the fact that in the bright limit | Ja | /1 a | < 1 to drop the term quadratic in the field fluctuations. 
Here we can identify (N\ = |a|2 and JX = (Ja^ + Ja)/V2 to rewrite Eq. (S17) as

JN ^2|a|J^a,

which makes it possible to write the spatial cross-correlation in terms of quadrature operators

Ccross(xi, xo) = (JNpr (xi; zf )JNc(xo; zf )
bngM limit / , a / \ r a / \JXtpr(xi; zf )JXc(xo; zf )or

f-=-f
optical system

JXpr (k-; zo)JXc(k-; zoO = (JXpr (ki)JXc(ko)
Z = Z0

(S18)

(S19)

We can now take the first order approximation of the TBS wavefunction given in Eq. (S15) to calculate the required expectation 
value of the spatial cross-correlation of the quadrature fluctuations in k-space given in Eq. (S19). If we take into account that
\X{priC}) vanishes for |^tbs), we have that

JXpr(ki)JXc(ko) ) = (Xpr(ki)Xc(ko)) (S20)

- (#o|Xpr (ki)Xc(ko)|^o) + 2 jj dkpr dkc R^ CiF(kpr , kc)(^o|Xpr (ki)Xc(ko)akCpr bkc |^o)|

+ |Ci|^/dkprdk^T"dkPrdkCF(kpr,kc)F*(kPr,kC)(^o|bkC&kpr^^pr(kl),a"c(k2)&kprbkc |^o)

(S21)

dkpr dkcR^[ CiF(kpr, kc)(^o|(ak1 bk2 + «ki bk2 + 4: bk^ + bk2 )akpr bkc |^o)j

dkpr dkc Re {Ci$(k- + k-) sinc(Akz L/2)} J(ki - kpr )J(ko - kc)

= sinc[(2kp - kf - k^)L/2]Re {Ci$(k- + k-)} . (S22)

For the case in which the correlations are measured within a small region around the optimal direction of the FWM process, the 
phase-mismatch (Akz) is close to zero and the sinc function can be taken to be unity [54, 55]. In our experiments, the regions 
in the far field that contribute to the measurements are selected by the spatial extent of the bright probe and conjugate beams 
and represent a small region of the full spatial bandwidth of the FWM process, as required to approximate the sinc function as a



constant. Finally, taking into account the mapping between position and momentum in the far field, we can express Eq. (S22) in 
position coordinates (xi, x2) such that

Ccross(%i, #2) z/)) ^ + #2)} , (S23)

where we have taken constant C\ to be real without loss in generality, as the phase of the nonlinear response of the atomic 
medium, given by can be set to zero and serve as a phase reference for the rest of the fields involved in the FWM process. 
Additionally, we note that as a result of the conservation of momentum, non-zero correlations are only possible if —x\ % x2 
(up to the uncertainty in transverse momentum). Thus, one can define £+ = x\ + x2 and x = —x\ to rewrite Eq. (S23) as

Cc,„ss(5+) “g“ “mit (5Xpr{-x)5Xc{x + $+)) oc 9te {$($+)} , (S24)

which corresponds to Eq. (2) in the main text. Here we have taken into account the translationally invariant nature of the 
cross-correlation to drop the dependence on position x.

Section S2. IMAGE ACQUISITION AND MEASUREMENT OF SPATIAU CORREUATIONS

In order to measure the spatial cross-correlation and auto-correlations of the spatial intensity fluctuations, we acquire images 
of the bright probe and conjugate beams with an electron multiplying charge coupled device (EMCCD). To extract the spatial 
intensity fluctuations from these images, we take two frames (each with a bright probe and conjugate image) in rapid succession 
using the kinetics mode of the EMCCD [30, 32]. The timing sequence for the pump and probe pulses for the two frames is 
shown in Fig. S2A. The input probe and pump beams are pulsed with a time duration of 1 /zs and 10 /zs, respectively, with the 
timing synchronized with the data acquisition by the EMCCD. The probe pulse is delayed by 6 /zs with respect to the pump pulse 
to avoid transient effects in the FWM. The active area of the EMCCD is divided into frames with 170 (rows) x 512 (columns) 
pixels. Given the maximum charge transfer rate of 300 ns/row in the kinetics mode, the minimum time difference between 
two adjacent frames is 51 /zs. The camera exposure time per frame is set to 12 /zs, which leads to a time scale between two 
consecutive images of ^ 60 /zs.

FIG. S2. Image acquisition sequence and spatial cross-correlation of the spatial intensity fluctuations. (A) Images of bright probe and 
conjugate beams in two consecutive frames for a structured pump set to encode the OU logo. The pulse sequence, which is synchronized 
with the data acquisition of the EMCCD, is shown on the left. The separation between two seed probe pulses is ~ 60/zs. (B) The spatial 
intensity fluctuation images for the probe (left) and conjugate (right) beams are obtained by performing a pixel to pixel subtraction of the two 
consecutive frames. (C) After rotation of one of the fluctuation images, a two dimensional spatial cross-correlation is implemented to calculate 
the distribution of the relative spatial correlations between the probe and the conjugate.



Figure S2A shows bright probe and conjugate images acquired in two consecutive frames of the EMCCD. As can be seen, 
the peak region of the probe image has ~ 5 x 104 photocounts per pixel. The probe and conjugate spatial intensity fluctuations, 
shown in Fig. S2B, are obtained by performing a pixel to pixel subtraction of the two consecutive frames. Such a differential 
analysis technique extracts the spatial fluctuations while reducing the common spatial classical noise present in the twin beams. 
Given that the two consecutive frames are taken with a time difference longer than the inverse of the bandwidth of the FWM 
process (~ 20 MHz), there are no quantum correlations between them, so the subtraction has no impact on the quantum properties 
of the twin beams.

To calculate the spatial cross-correlations of the spatial intensity fluctuations, we first rotate one of the fluctuation images by 
180° as required by the conservation of momentum, see Eq. (S24). This allows us to obtain the translationally invariant form of 
$, and hence the spatial cross-correlation function cauto(£+) by directly evaluating a two dimensional spatial cross-correlation 
between the probe and conjugate spatial intensity fluctuation images. As illustrated in the top part of Fig. S2C, this is done by 
taking a portion of the spatial intensity fluctuations of the probe and using it to calculate the cross-correlation with the spatial 
intensity fluctuations of the conjugate as a function of the relative displacement, £+, between corresponding pixels. The process 
is repeated 2,000 times and the resulting spatial cross-correlations are then averaged to obtain the distribution shown in the 
bottom part of Fig. S2C. The same procedure is used to calculate the auto-correlation functions, except that the same fluctuation 
image (either for the probe or conjugate) is used as the two images needed to calculate the correlation, as illustrated in the top 
part of Fig. S2C, with no rotation of either image.

Section S3. IMPLEMENTATION OF COMPUTER GENERATED HOLOGRAM

As shown in the main text, we are able to engineer the distribution of the spatial correlations between the twin beams by using 
a structured pump beam. This requires imparting a specific angular spectrum on the pump, as dictated by Eq. (S24). The desired 
pump structure, determined by $(k^ + k^), is implemented via the numerical computation of a suitable phase pattern ^ that 
is transferred to the pump beam with a spatial light modulator (SLM). The phase structured pump beam then goes through a 
4f -imaging system such that it is mapped to the center of the Rb vapor cell (pump beam waist location). A computer generated 
hologram (CGH) is used to impart the necessary phase distribution for a given target. The goal then is to calculate the necessary 
CGH with phase distribution ^(p), with p = (p1; p2) the transverse position coordinate at the center of the cell, such that the 
pump field in the far field, Eout, matches the amplitude and phase of the target field distribution T, that is

Eout Eo

T

£) * MF (S25)

2 1
Eo(p)e'f(p)

1 = T (S26)

where Eo(p) is the pump field incident on the SLM, which for our case has a Gaussian profile and flat wavefront, * denotes the 
convolution operation, and F represents a Fourier transform.

Figure S3 shows the procedure to calculate and optimize the CGH to obtain the required angular spectrum for the pump. The 
incident pump field on the SLM, Eo, is multiplied with an initial guess phase pattern ^ to initialize the input field, Ein. This initial 
field is then used as a starting point to calculate Eout and subsequently used to optimize the phase distribution ^ by assigning a 
cost to any deviations from the target pattern T and using a minimization algorithm to reduce that cost. A low cost value gives a 
high degree of overlap between Fout and T and ensures an optimal angular spectrum for the pump field. For the optimization of 
Eout, we use a conjugate minimization algorithm [34] coupled with the mixed-region-amplitude-freedom (MRAF) approach. In 
MRAF, the transverse plane of the target field is divided into a signal and a noise region and the cost function is only evaluated 
over the signal region, thus allowing Fout to take any values outside this region. As a result, a mismatch between T and Eout in 
the noise region does not affect the cost values.

For the minimization using the conjugate gradient minimization algorithm, we define the cost function (C) as

C 10d

2

1 Re{T • Eout}
pixels

(S27)

where d =10, T represents the complex conjugate of the target field, and • denotes the point-wise multiplication. Following 
the MRAF approach, the cost function is evaluated over the signal region only, as indicated by an asterisk over the summation. 
Depending on the spatial resolution and/or size of the grid over which phase ^ is defined, the cost function represents a surface 
in N2-dimensional space for an N x N grid size. We choose a 512 x 512 grid size to minimize C, which results in the 
optimization of 5122 independent phase values. To achieve this, the gradient of the cost function, dC/d^, is calculated on 
the multi-dimensional cost surface based on which a conjugate direction is chosen, see Fig. S3. While descending along a
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FIG. S3. Calculation and optimization of the computer generated hologram. The flowchart shows the procedure for calculating the optimal 
Bout using the conjugate minimization approach coupled with the MRAF algorithm. The pump beam is modified with a phase pattern at the 
SLM plane such that £0ut in the far-field plane matches the desired target field T. The procedure is initialized with an initial guess phase <f> 
and the corresponding E0m is compared with target pattern T to estimate an initial cost using the cost function C. The cost function is then 
iteratively minimized along various conjugate directions, d. until the cost function stagnates. After implementing a final phase-compression 
algorithm to eliminate the zero order from the SLM reflection, the final phase pattern is converted into BMP format and exported to the SLM.

specific conjugate direction, the cost function is then reduced in finite size steps until a minimum is reached. The resulting phase 
distribution <f>min is then used to calculate a new gradient and a corresponding conjugate direction for further minimization. This 
process is iterated until the cost function stagnates. A large constant (10d) in the cost function provides faster convergence while 
avoiding local minima.

Once the optimization algorithm is finalized, the final phase distribution 4>min is further phase compressed for zero-order 
suppression [56]. This is needed due to the limited efficiency of the SLM for higher spatial frequencies of the phase distribution. 
Such a reduction in efficiency with increasing spatial frequency results in a portion of the field reflecting from the SLM without 
acquiring the calculated phase changes. The portion of the field that does not experience a phase change presents itself as a 
zero order in the Fourier plane. The overall phase values can be adjusted to suppress this effect. Finally, after compression, the 
resulting phase distribution is converted to an 8-bit format image and exported to the SLM.



Section S4. SPATIAL AUTO-CORRELATIONS AND TEMPORAL SQUEEZING

In order to be useful for applications in secure quantum communications, it is important for the encoded information to only 
be accessible through joint measurements of the twin beams and not through individual beam measurements. To address this 
point, we start by determining the explicit dependence of the auto-correlation, cauto(x!, x2), on the angular spectrum of the 
pump. In analogy to Eq. (S19) for the cross-correlation, we can write

Canto(x1, x2)
bright limit

%
f-to-f

dXpr (ki)dXpr (k2)
z=zo

To evaluate this expression, we use Eq. (S21) as a starting point, such that

(S28)

JXpr(ki)dXpr(k2)^ ^ (#d|Xpr(kl)Xpr(k2)|#d) + 2 // dkprdkcR^CiF(kpr, kc)(^o|^Xpr(kl),Xpr(k2)&kprbkc |#d)j

dkPrdkCF(kpr, k^)F* (k' , kC) (»o |bkC&kPrXpr (ki)Xpr (k2)&kprbkc |#o)+ |Ci| JJ dkprdkc

= 2 (^0|(«ki ak2 + “id ak2 )|^g)

+
M

2 dkpr dkr dkPrdkCF(kpr, kc)F*(kPr, kC)(*0|bkCakPr (akiak2 +ak1 ak2)«kprbkc |^0)

^(kl 2 k2) + // dkpr dkc ZY dkPr dkCF(kpr, kc)F'(kPr, kC)d(kc - kC)

X [^(kpr — k2)d(kpr — k1) + d(kPr — k1)d(kpr — k2) + d(kpr — ]&!pr )d(ki — k2)]

1 (l + |Ci|2g) d(ki — k2) + |Ci|2 /dkcRe{F(ki,kc)F'(k2,kc)} (S29)

where B = ff dkprdkC|F(kpr, kc)|2 is a constant. The delta function term arises from the perfect correlations between every 
transverse position of the probe field with itself for the vacuum and one photon Fock states. As can be seen, only the second term 
contains information on the angular spectrum of the pump, and thus the encoded information. We thus omit the delta function 
term for the rest of the derivation.

As described in Section S1, for our experiments measurements are limited to a small region along the optimal direction for 
the FWM, such that the phase-mismatch (Akz) is close to zero. Therefore, the auto-correlation function in the far-field can be 
written as

Cauto(zi, X2) / d^ Rg {$(%! + Zc)$*(%2 + *c)} ' (S30)

In this expression, the integration over xc traces over the conjugate position degree of freedom.
As opposed to the cross-correlation, for the auto-correlation we expect a non-zero correlation only when x1 % x2. Thus, one 

can define = x2 — x1, = x1 + xc to rewrite Eq. (S30) as

c,uo(f_) brig%limit j" Re {$((') $*((_ + f)} . (S31)

This equation determines the shape of the auto-correlation and thus provides insight into the amount of information it contains. 
Since it is non-invertible in general, it is impossible to extract the angular spectrum of the pump to reconstruct the information 
encoded in the cross-correlation. A similar derivation for the auto-correlation of the conjugate gives the same expression as the 
one for the probe.

We can now use Eq. (S31) to simulate the auto-correlation and find that for all the cases we consider it is localized and has the 
same shape, as shown in Fig. S4. We can also perform the analysis described in Section S2 for the measured probe and conjugate 
individually to evaluate their spatial auto-correlations. The results are shown in Fig. S4 and agree well with the simulations. As 
can be seen, the auto-correlations for all cases are almost identical and do not reveal the information encoded through the angular 
spectrum of the pump.

Furthermore, as mentioned in the main text, the fact that the encoded information is not present in the auto-correlations, whose 
shape is effectively independent of the angular spectrum of the pump (see Fig. S4), is a result of having highly multi-spatial mode 
twin beams in which a large number of the modes contribute roughly equally to the spatial correlations. In order to show that 
this is the case, we start with the general wavefunction for spatially multimode twin beams, which can be written in terms of the
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FIG. S4. Spatial correlations. Spatial cross-correlation and auto-correlations for the probe and conjugate for the cases when no pattern is 
encoded (top row), the OU logo is encoded (middle row), and h is encoded (bottom row). The required phase patterns to encode information on 
the twin beams for (A) a flat wavefront (no information), (D) the OU logo, and (G) symbol h are transferred to the pump beam through a CGH 
implemented on an SLM. The encoded information is extracted through the corresponding cross-correlations (B), (E), and (H), respectively. On 
the other hand, the auto-correlations for both the probe and conjugate for all cases, (C), (F), and (I), remain unchanged even when information 
is encoded in the distribution of the spatial correlations. The measured auto-correlations are consistent with their corresponding simulations, 
which further show that the auto-correlation remains unchanged for different pump angular spectra. Therefore, each beam by itself does not 
contain the encoded information, which can only be extracted via the spatial cross-correlation between the two beams. All figures, except for 
the CGH patterns, are shown in the EMCCD pixel basis. The center portion of the auto-correlations was removed as it contains an artificial 
maximum due to the use of the same images to calculate it.

spatial eigenmodes of the system as [3, 57, 58]

oc oc
l$)=EZ A".’ IKrh) IK},), (S32)

i= 1 n=0

where |{n}^) represents a state with n photons in spatial eigenmode i, subscripts pr and c represent probe and conjugate, 
respectively, YlZi ^2n=o |Am|2=L and An^ oc sech(s^) tanhn(s*) with the degree of squeezing of eigenmode i and the 
proportionality constant determined by the number of eigenmodes with Si / 0. The exact spatial profile of the eigenmodes will 
depend on the angular spectrum of the pump, and thus will be different for each of the cases considered in Fig. S4. To calculate 
the auto-correlation, we first need the reduced density matrix for one of the beams, say the probe. It is easy to show that the



density matrix for the probe beam by itself is given by

Ppr — Trc{ppr,c} — ^^53 |An,i| |{npr }i) {{npr }i| j (S33)
i= 1 n=0

where ppr,c is the density matrix for the full state.
As shown in Section S1, for our experimental conditions the fluctuations of the number operator are proportional to the 

fluctuations of the amplitude quadrature operator. Thus, by using Eqs. (S19) and (S20), we can rewrite the auto-correlation of 
the spatial intensity fluctuations of the probe in the far field, Eq. (S28), as

Cauto(xi, Zg) (X /jXpr(zij Zf )JXpr(z%; Zf)\ — /Xpr(zi; Zf )Xpr(z%; Zf A , (S34)

where X(x; Zf) — [a(x; Zf) + aj(x; Zf )]/%/2. For simplicity of notation, we drop the explicit z dependence for the quadrature 
and field operators as it is assumed that they are taken to be in the far field. To evaluate the auto-correlation, we first expand the 
field operators in terms of the eigenmodes of the probe, which we denote as ui (x), to obtain

a(x) — ^ Uj (x)aj, (S35)
j= 1

where we have taken the spatial dependence out of the field operator aj, which subtracts a photon from eigenmode j. With this 
expansion we can write

X(x) — 75 ^ [uj(x)aj + uj(x)aJ j

which makes it possible to express the spatial auto-correlation after normal ordering as

cauto(x1j x2) x Xpr ( x 1) Xpr (x2 A Tr{Ppr Xpr (x1 )Xpr (x2)}

(S36)

(S37)
oo oo oo

n=0 i,j=1 k = 1
2 ^ ^ ^ ^ 1 An,k 1 ui(x 1)uj (x2) (^i,j + {{npr } k | ajai |{npr } k ) j + uj (x1)uj (x2 ) {{npr } k | aj aj |{npr } k)

— 2 |An,k I2 ^ ui (z1)uj(z2) + 2 ^ y]n!An,k|2 [uk (x1)uk (x2) + uk (x1)uk(x2)] . (S38)2 n,k i 1 i 2 2
n=0k=1 i=1 n=0k=1

Since the eigenmodes ui(x) form a complete basis, we have from the closure relation that

y^uifa^uXag) — #(%! - xg), (S39)
i=1

which allows us to rewrite Eq. (S38) as

Cauto(x1, xg) x 1 J(^1 - 2g) + ^n^ |An,k|2Re{uk(%1 )uk(xg)} . (S40)
2 n=0 k=1

In order to see the connection of this result with the one obtained from the first order expansion of the wavefunction, we can take 
Eq. (S30) and expand $ in terms of the eigenmodes for the probe (ui(x)) and the corresponding eigenmodes for the conjugate 
(vi(x)), such that $(xpr + xc) — i Aiud(xpr)vi(xj. In this case, we can rewrite Eq. (S30) as

Cauto(%1, xg) X Re I>a; dxc Ui(Zl)uj(Z2)Vi(Zc)vj(Zc)

^ y] |Ai|gRe {ui(zl)uj(z2)}, (S41)

where we have used the orthonormality of the eigenmodes to obtain the last expression, which is just the first order expansion of 
the second term on the right hand side of Eq. (S40).



If we now consider the case in which the process generates twin beams with M spatial modes that dominate and have roughly 
the same level of squeezing, as needed for all of them to contribute equally to the spatial correlations, then s; = s and thus 
An.i = A„ is the same for all spatial eigenmodes /'. In this case, we can approximate the auto-correlation as

M

Camo(zi,Z2) 0( -#(%! - Zg) +

,1=1
(S42)

The suimnation in the curly brackets can be seen as a delta sequence such that as M tends to infinity it tends to a Dirac delta 
function.

We can get an estimate of the number of spatial modes our system can support by taking the ratio of the area of the pump 
to the area of the independently-correlated regions in the near held, i.e., at the center of the cell [49]. Taking into account 
the corresponding values from previous work with the FWM system [29, 59] and the fact that the number of modes scales 
quadrahcally with the size of the pump, we can estimate the number of spatial modes for our experimental parameters to be at 
least of the order of hundreds of modes. As a result, the auto-correlation becomes localized, as given by Eq. (S42). The same 
procedure can be used to show that the spatial auto-correlation for the conjugate becomes localized for our system. Note that 
this result is independent of the exact nature of the eigenmodes, which means that the auto-correlations are independent of the 
angular spectrum of the pump, as is the case for our experiment and verified by simulation (see Fig. S4).

In order to quantify the amount of information leaked into the auto-correlation functions, we compare the measured correlation 
functions through the correlation-coefficient, r, defined as

Ym Yn {A-mn A) (B,,,,, B)

Ym Yn (Amn ~ A) Yn (Bmn ~ B)
(S43)

where A„„, and Bmn represent the matrix elements of the correlation functions being considered and A and B are the corre­
sponding mean values. The correlation-coefficient provides a measure of similarity between A and B with values ranging from 
-1 to 1.

In order to calculate r, we take a 121 x 121 pixel region around the center for each of the correlation functions. The relevant 
results are shown in Fig. S5A. We first compare the experimental auto-correlations of the probe (or conjugate) for the cases in
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FIG. S5. Correlation-coefficient r between correlation distributions. The similarity between the correlation distributions can be quantified 
through the correlation-coefficient. We calculate r by taking a region of 121 x 121 pixels around the center of each correlation function, 
which is about the size of the region where information is encoded. The values of r on the left (A) show the similarity between the different 
correlation distributions, while the ones on the right (B) show the degree to which information is leaked into the background and are calculated 
by setting to zero the pixels within a circular region of 10 pixels at the center of each correlation distribution.



which the OU logo is encoded (Fig. S4F), the h is encoded (Fig. S4I), and no information is encoded, i.e. flat pump (Fig. S4C). 
We find value of r > 0.78 for all cases, which indicates that the shape of the auto-correlation does not significantly change when 
information is encoded in the system. A big part of the degradation is due to artifacts left when removing the sharp central peak 
from the measured auto-correlation functions. As expected, given that the probe and conjugate auto-correlations are in theory 
equal to each other, the correlation-coefficient r between them is large. It is also important to note that the similarity between 
the corresponding auto-correlations and cross-correlation is low except for the case of a flat pump, for which the correlation 
functions are all approximately Gaussian. This further shows that the approximately Gaussian peak at the center of the auto 
correlations does not contain any significant information.

Next, we check if any of the encoded information might be present in the background of the auto-correlation functions. For 
this we take the measured correlations and remove the central region, which contains the main Gaussian peak for the auto­
correlations, by setting all pixels within a circular region with a radius of 10 pixels around the center to zero. We then take 
these modified correlation functions and calculate the correlation-coefficient. As shown in Fig. S5B, when we compare the 
modified auto-correlations with the corresponding cross-correlation we find r <0.1 for all cases, mostly due to the fluctuations 
of the backgrounds. These results further show that there is no significant information leaked into the auto-correlation functions. 
It is interesting to note that even with the central region removed, the value of r between the measured and simulated cross­
correlations for the OU logo and h remain almost unchanged.

Another essential component for the implementation of a secure quantum communication channel using twin beams is for 
the temporal quantum correlations between the two modes to be preserved even when information is encoded in the distribution 
of their spatial correlations. To verify that this is the case, we perform temporal intensity difference squeezing measurements 
by bypassing the EMCCD camera and detecting the bright probe and conjugate fields with photodiodes to perform an intensity 
difference detection. As can be seen in Fig. S6, the level of temporal intensity difference squeezing is preserved even when the 
angular spectrum of the pump is modified. It is important to note that for the results shown in Fig. S6, we have subtracted the 
noise from the scattered pump photons, which can become significant for a structured pump. However, we have verified that if 
we place the additional isotropically pure 87Rb cell to filter out the unwanted scattered pump photons in front of the balanced 
detection system we measure the same level of intensity-difference squeezing without the need of subtracting the background 
pump noise. These results show that the degree of temporal quantum correlations is not affected by the information encoded in 
the spatial degree of freedom.

Frequency [MHz]

FIG. S6. Temporal quantum correlations. The presence of quantum correlations in the temporal domain is verified through measurements 
of intensity difference squeezing. The same level of squeezing is measured, after subtraction of the scattered pump noise, independent of the 
information encoded in the spatial degree of freedom. The solid black trace shows the shot noise level, while the other traces show the intensity 
difference noise when no information is encoded (solid red trace), the OU logo is encoded (dotted green trace), and h is encoded (dashed blue 
trace). The same levels of temporal squeezing are measured, irrespective of the encoded information, without the need to subtract the scattered 
pump photons if an additional 8‘ Rb absorption cell is placed before the photodiodes to absorb the scattered pump, which becomes significant 
for the case of a structured pump beam.
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