

TESTING CORRELATION OF UNLABELED RANDOM GRAPHS

BY YIHONG WU^{1,a}, JIAMING XU^{2,b} AND SOPHIE H. YU^{2,c}

¹Department of Statistics and Data Science, Yale University, ^ayihong.wu@yale.edu

²The Fuqua School of Business, Duke University, ^bjx77@duke.edu, ^chaoyang.yu@duke.edu

We study the problem of detecting the edge correlation between two random graphs with n unlabeled nodes. This is formalized as a hypothesis testing problem, where under the null hypothesis, the two graphs are independently generated; under the alternative, the two graphs are edge-correlated under some latent node correspondence, but have the same marginal distributions as the null. For both Gaussian-weighted complete graphs and dense Erdős–Rényi graphs (with edge probability $n^{-o(1)}$), we determine the sharp threshold at which the optimal testing error probability exhibits a phase transition from zero to one as $n \rightarrow \infty$. For sparse Erdős–Rényi graphs with edge probability $n^{-\Omega(1)}$, we determine the threshold within a constant factor.

The proof of the impossibility results is an application of the conditional second-moment method, where we bound the truncated second moment of the likelihood ratio by carefully conditioning on the typical behavior of the intersection graph (consisting of edges in both observed graphs) and taking into account the cycle structure of the induced random permutation on the edges. Notably, in the sparse regime, this is accomplished by leveraging the pseudoforest structure of subcritical Erdős–Rényi graphs and a careful enumeration of subpseudoforests that can be assembled from short orbits of the edge permutation.

1. Introduction. Understanding and quantifying the correlation between datasets are among the most fundamental tasks in statistics. In many modern applications, the observations may not be in the familiar form of vectors but rather graphs. Furthermore, the node labels may be absent or scrambled, in which case one needs to decide the similarity between these *unlabeled graphs* on the sheer basis of their topological structures. Equivalently, it amounts to determining whether there exists a node correspondence under which the (weighted) edges of the two graphs are correlated. This problem arises naturally in a wide range of fields:

- In social network analysis, one is interested in deciding whether two friendship networks on different social platforms share structural similarities, where the node labels are frequently anonymized due to privacy considerations [30, 31].
- In computer vision, 3-D shapes are commonly represented by geometric graphs, where nodes are subregions and edges encode the adjacency relationships between different regions. A key building block for pattern recognition and image processing is to determine whether two graphs correspond to the same object that undergoes different rotations or deformations (changes in pose or topology) [6, 9].
- In computational biology, an important task is to assess the correlation of two biological networks in two different species so as to enrich one dataset using the other [37, 40].
- In natural language processing, the so-called ontology alignment problem refers to uncovering the correlation between two knowledge graphs that are in either different languages [20] or different domains (e.g., Library of Congress versus Wikipedia [5]).

Received February 2021; revised December 2021.

MSC2020 subject classifications. Primary 62H15, 05C80; secondary 05C60, 68Q87, 05C30.

Key words and phrases. Hypothesis testing, graph matching, unlabeled graphs, Erdős–Rényi graphs, conditional second moment method, cycle decomposition.

Inspired by the hypothesis testing model proposed by Barak et al. [4], we formulate a general problem of testing network correlation as follows. Let $G = ([n], W)$ denote a weighted undirected graph on the node set $[n] \triangleq \{1, \dots, n\}$ with weighted adjacency matrix W , where $W_{ii} = 0$ and for any $1 \leq i < j \leq n$, $W_{ij} = 1$ (or the edge weight) if i and j are adjacent and $W_{ij} = 0$ otherwise. Recall that two weighted graphs $G = ([n], W)$ and $H = ([n], W')$ are *isomorphic* and denoted by $G \cong H$ if there exists a permutation (called a graph isomorphism) π on $[n]$ such that $W_{ij} = W'_{\pi(i)\pi(j)}$ for all i, j . Given a weighted graph G , its *isomorphism class* \overline{G} is the equivalence class $\overline{G} = \{H : H \cong G\}$. We refer to an isomorphism class as an unlabeled graph and \overline{G} as the unlabeled version of G .

PROBLEM 1 (Testing correlation of unlabeled graphs). Let $G_1 = ([n], W)$ and $G_2 = ([n], W')$ be two weighted random graphs, where the edge weights $\{(W_{ij}, W'_{ij}) : 1 \leq i < j \leq n\}$ are i.i.d. pairs of random variables, and W_{ij} and W'_{ij} have the same marginal distribution. Under the null hypothesis \mathcal{H}_0 , W_{ij} and W'_{ij} are independent; under the alternative hypothesis \mathcal{H}_1 , W_{ij} and W'_{ij} are correlated. Given the unlabeled versions of G_1 and G_2 , that is, their isomorphism classes $\overline{G}_1 = \{G : G \cong G_1\}$ and $\overline{G}_2 = \{G : G \cong G_2\}$, the goal is to test \mathcal{H}_0 versus \mathcal{H}_1 .

Note that were the node labels of G_1 and G_2 observed, one could stack all the edge weights as a vector and reduce the problem to simply testing the correlation of two random vectors. However, when the node labels are unobserved, the inherent correlation between G_1 and G_2 is obscured by the latent node correspondence, making the testing problem significantly more challenging. Indeed, since the observed graphs are unlabeled, the test needs to rely on *graph invariants* (i.e., graph properties that are invariant under graph isomorphisms), such as subgraphs counts (e.g., the number of edges and triangles) and spectral information (e.g., eigenvalues of adjacency matrices or Laplacians).

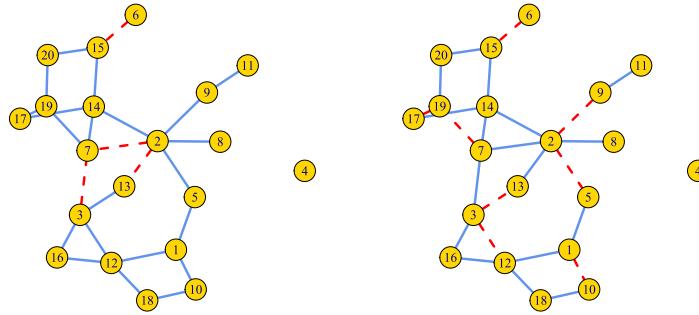
In this work, we focus on the following two special cases of particular interests:

- (Gaussian Wigner model). Suppose that under \mathcal{H}_1 , each pair of edges weights W_{ij} and W'_{ij} are jointly normal with zero mean, unit variance and correlation coefficient $\rho \in [0, 1]$; under \mathcal{H}_0 , W_{ij} and W'_{ij} are independent standard normals. Note that marginally W , W' are two Gaussian Wigner random matrices under both \mathcal{H}_0 and \mathcal{H}_1 . The correlated Gaussian Wigner model is proposed in [14] as a prototypical model for random graph matching and further studied in [15, 18].
- (Erdős–Rényi random graph). Let $\mathcal{G}(n, p)$ denote the Erdős–Rényi random graph model with edge probability $p \in [0, 1]$. Consider the edge sampling process that generates a children graph from a given parent graph by keeping each edge independently with probability $s \in [0, 1]$. Suppose that under \mathcal{H}_1 , G_1 and G_2 are independently subsampled from a common parent graph $G \sim \mathcal{G}(n, p)$; under \mathcal{H}_0 , G_1 and G_2 are independently subsampled from two independent parent graphs $G, G' \sim \mathcal{G}(n, p)$, respectively. See Figure 1 for an illustration.

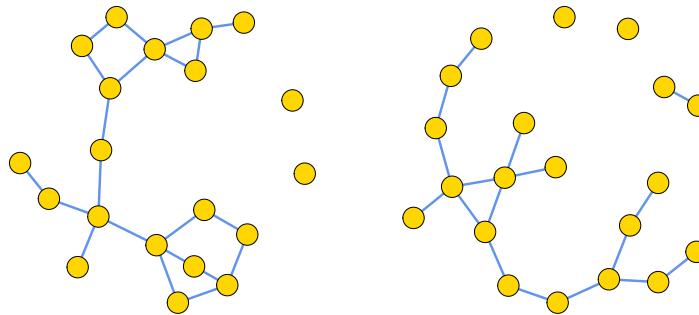
Note that G_1 and G_2 are both instances of $\mathcal{G}(n, ps)$ that are independent under \mathcal{H}_0 and correlated under \mathcal{H}_1 . This specific model of correlated Erdős–Rényi random graphs is initially proposed by [34] and has been widely used for studying the problem of matching random graphs [4, 10–14, 19, 21, 24, 29].

We further focus on the following two natural types of testing guarantees.

DEFINITION 1 (Strong and weak detection). Let \mathcal{Q} and \mathcal{P} denote the probability measure under \mathcal{H}_0 and \mathcal{H}_1 , respectively. We say a test statistic $\mathcal{T}(\overline{G}_1, \overline{G}_2)$ with threshold τ achieves:



(a) Two labeled graphs G_1 and G_2 are subsampled from a common parent graph according to the correlated Erdős-Rényi graph model with $n = 20$, $p = 0.1$, and $s = 0.8$ under \mathcal{H}_1 , where blue edges are edges sampled from the parent graph, and red, dashed edges are edges deleted from the parent graph.



(b) Two observed graphs \bar{G}_1 and \bar{G}_2 are the unlabeled versions of G_1 and G_2 , respectively.

FIG. 1. Example of testing correlation of two Erdős-Rényi random graphs. The task is to test the underlying hypothesis (\mathcal{H}_0 or \mathcal{H}_1) based on the two unlabeled graphs in panel (b).

- *strong detection* if the sum of type I and type II error converges to 0 as $n \rightarrow \infty$, that is,

$$(1) \quad \lim_{n \rightarrow \infty} [\mathcal{P}(\mathcal{T}(\bar{G}_1, \bar{G}_2) < \tau) + \mathcal{Q}(\mathcal{T}(\bar{G}_1, \bar{G}_2) \geq \tau)] = 0;$$

- *weak detection*, if the sum of type I and type II error is bounded away from 1 as $n \rightarrow \infty$, that is,

$$(2) \quad \limsup_{n \rightarrow \infty} [\mathcal{P}(\mathcal{T}(\bar{G}_1, \bar{G}_2) < \tau) + \mathcal{Q}(\mathcal{T}(\bar{G}_1, \bar{G}_2) \geq \tau)] < 1.$$

Note that strong detection requires the test statistic to determine with high probability whether (\bar{G}_1, \bar{G}_2) is drawn from \mathcal{Q} or \mathcal{P} , while weak detection only aims at strictly outperforming random guessing. It is well known that the minimal sum of type I and type II error is $1 - \text{TV}(\mathcal{P}, \mathcal{Q})$, achieved by the likelihood ratio test, where $\text{TV}(\mathcal{P}, \mathcal{Q}) = \frac{1}{2} \int |\text{d}\mathcal{P} - \text{d}\mathcal{Q}|$ denotes the total variation distance between \mathcal{P} and \mathcal{Q} . Thus strong and weak detection are equivalent to $\lim_{n \rightarrow \infty} \text{TV}(\mathcal{P}, \mathcal{Q}) = 1$ and $\liminf_{n \rightarrow \infty} \text{TV}(\mathcal{P}, \mathcal{Q}) > 0$, respectively.

Recent work [4] developed a polynomial-time test based on counting certain subgraphs that correctly distinguishes between \mathcal{H}_0 and \mathcal{H}_1 with probability at least 0.9, provided that the edge subsampling probability $s = \Omega(1)$ and the average degree satisfies certain conditions; however, the fundamental limit of detection remains elusive. The main objective of this paper is to obtain tight necessary and sufficient conditions for strong and weak detection.

1.1. Main results.

THEOREM 1 (Gaussian Wigner model). *If*

$$(3) \quad \rho^2 \geq \frac{4 \log n}{n-1},$$

then $\text{TV}(\mathcal{P}, \mathcal{Q}) = 1 + o(1)$. Conversely, if

$$(4) \quad \rho^2 \leq \frac{(4-\epsilon) \log n}{n}$$

for any constant $\epsilon > 0$, then $\text{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$.

THEOREM 2 (Erdős–Rényi graphs). *If*

$$(5) \quad s^2 \geq \frac{2 \log n}{(n-1)p(\log \frac{1}{p} - 1 + p)},$$

then $\text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1)$.

Conversely, assume that p is bounded away from 1.

- (Dense regime): If $p = n^{-o(1)}$ and

$$(6) \quad s^2 \leq \frac{(2-\epsilon) \log n}{np(\log \frac{1}{p} - 1 + p)}$$

for any constant $\epsilon > 0$, then $\text{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$.

- (Sparse regime): If $p = n^{-\Omega(1)}$ and

$$(7) \quad s^2 \leq \frac{1 - \omega(n^{-1/3})}{np} \wedge c_0$$

for some universal constant c_0 ($c_0 = 0.01$ works), then $\text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - \Omega(1)$. In addition, if (7) holds and $s = o(1)$, then $\text{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$.

For the Gaussian Wigner model, Theorem 1 shows that the fundamental limit of detection in terms of the limiting value of $\frac{n\rho^2}{\log n}$ exhibits a sharp threshold at 4, above which strong detection is possible and below which weak detection is impossible, a phenomenon known as the “all-or-nothing” phase transition [36]. In the Erdős–Rényi model, for dense parent graphs with $p = n^{-o(1)}$ and bounded away from 1, Theorem 2 shows that a similar sharp threshold for $\frac{nps^2(\log(1/p)-1+p)}{\log n}$ exists at 2. Curiously, the function $p \mapsto p(\log \frac{1}{p} - 1 + p)$ is *not* monotone and uniquely maximized at $p_* \approx 0.203$, the solution to the equation $\log \frac{1}{p} = 2(1-p)$. This shows the counterintuitive fact that the parent graph with edge density p_* is the “easiest” for detection as it requires the lowest sampling probability s ; nevertheless, such nonmonotonicity in the detection threshold can be anticipated by noting that in the extreme cases of $p = 0$ and $p = 1$, the observed two graphs are always independent and the two hypotheses are identical.

For sparse parent graphs with $p = n^{-\Omega(1)}$, the picture is less clear:

- Unbounded average degree $np = \omega(1)$: For simplicity, assume that $p = n^{-\alpha+o(1)}$ for some constant $\alpha \in (0, 1]$. Theorem 2 implies that strong detection is possible if $\liminf nps^2 > \frac{2}{\alpha}$ and weak detection is impossible if $\limsup nps^2 < 1$; these two conditions differ by a constant factor.

- Bounded average degree $np = \Theta(1)$: For simplicity, assume that $p = d/n$ for some constant $d > 0$. Theorem 2 shows that strong detection is possible if $s^2 > \frac{2}{d}$ and impossible if $s^2 < c_0 \wedge \frac{1}{d}$.

For both cases, it is an open problem to determine the sharp threshold for detection (or the existence thereof).

REMARK 1 (Simple test for weak detection). In the nontrivial case of $p = \omega(1/n^2)$ and p bounded away from 1, as long as the sampling problem s is any constant, weak detection can be achieved in linear time by simply comparing the number of edges of the two observed graphs. Intuitively, their difference behaves like a centered Gaussian with slightly different scale parameters under the two hypotheses which can then be distinguished nontrivially (see Section 7.1 of the Supplementary Material [42] for a rigorous justification). In view of the negative result for weak detection in Theorem 2, we conclude that for parent graph with bounded average degree $np = O(1)$, weak detection is possible if and only if $s = \Omega(1)$.

As discussed in the next subsection, the testing procedure used to achieve strong detection in both Theorem 1 and Theorem 2 involves a combinatorial optimization that is intractable in the worst case. Thus it is of interest to compare the optimal threshold to the performance of existing computationally efficient algorithms. These methods are based on subgraph counts that extend the simple idea of counting edges in Remark 1. For Erdős–Rényi graphs, the polynomial-time test in [4], Theorem 2.2, (based on counting certain probabilistically constructed subgraphs) correctly distinguishes between \mathcal{H}_0 and \mathcal{H}_1 with probability at least 0.9, provided that the edge subsampling probability $s = \Omega(1)$ and $nps \in [n^\epsilon, n^{1/153}] \cup [n^{2/3}, n^{1-\epsilon}]$ for some small constant $\epsilon > 0$. This performance guarantee is highly suboptimal compared to $s^2 = \Omega(\frac{\log n}{np \log(1/p)})$ given by Theorem 2. In a companion paper [27], we propose a polynomial-time algorithm based on counting trees that achieves strong detection, provided that $np \geq n^{-o(1)}$ and $\rho^2 \triangleq \frac{s^2(1-p)^2}{(1-ps)^2} > \frac{1}{\beta}$ where $\beta \triangleq \lim_{k \rightarrow \infty} [t(k)]^{1/k} \approx 2.956$ and $t(k)$ is the number of unlabeled trees with k vertices [32]. Achieving the optimal threshold with polynomial-time tests remains an open problem.

1.2. Test statistic and proof techniques. To introduce our testing procedure and the analysis, we first reformulate the testing problem given in Problem 1 in a more convenient form. Due to the exchangeability of the (i.i.d.) edge weights, observing the unlabeled version is equivalent to observing its randomly relabeled version. Indeed, let π_1 and π_2 be two independent random permutations uniformly drawn from the set \mathcal{S}_n of all permutations on $[n]$. Consider the relabeled version of $G_1 = ([n], W)$ with weighted adjacency matrix A , where $A_{ij} = W_{\pi_1(i)\pi_1(j)}$; similarly, let B correspond to the relabeled version of $G_2 = ([n], W')$ with $B_{ij} = W'_{\pi_2(i)\pi_2(j)}$. It is clear that observing the unlabeled graphs \overline{G}_1 and \overline{G}_2 is equivalent to observing the labeled graphs A and B . Since $\pi_2^{-1} \circ \pi_1$ is also a uniform random permutation, we arrive at the following formulation that is equivalent to Problem 1.

PROBLEM 2 (Reformulation of Problem 1). Let A and B denote the weighted adjacency matrices of two weighted graphs on the vertex set $[n]$, both consisting of i.i.d. edge weights. Under \mathcal{H}_0 , A and B are independent; under \mathcal{H}_1 , conditional on a latent permutation π drawn uniformly at random from \mathcal{S}_n , $\{(A_{ij}, B_{\pi(i)\pi(j)}) : 1 \leq i < j \leq n\}$ are i.i.d. and each pair A_{ij} and $B_{\pi(i)\pi(j)}$ are correlated. Upon observing A and B , the goal is to test \mathcal{H}_0 versus \mathcal{H}_1 .

Note that under \mathcal{H}_1 , the latent random permutation π represents the hidden node correspondence under which A and B are correlated. For this reason, we refer to \mathcal{H}_1 as the *planted model* and \mathcal{H}_0 as the *null model*. The likelihood ratio is given by

$$(8) \quad \frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} = \frac{1}{n!} \sum_{\pi \in \mathcal{S}_n} \frac{\mathcal{P}(A, B | \pi)}{\mathcal{Q}(A, B)},$$

which is the optimal test statistic but difficult to analyze due to the averaging over all $n!$ permutations. Instead, we consider the *generalized likelihood ratio* by replacing the average with the maximum:

$$(9) \quad \max_{\pi \in \mathcal{S}_n} \frac{\mathcal{P}(A, B | \pi)}{\mathcal{Q}(A, B)}.$$

As shown later in Section 2, for both the Gaussian Wigner and the Erdős–Rényi graph model, (9) is equivalent to

$$(10) \quad \mathcal{T}(A, B) \triangleq \max_{\pi \in \mathcal{S}_n} \mathcal{T}_\pi, \quad \text{where } \mathcal{T}_\pi \triangleq \sum_{i < j} A_{ij} B_{\pi(i), \pi(j)},$$

which amounts to computing the maximal edge correlation over all possible node correspondences between A and B . As desired, the test statistic $\mathcal{T}(A, B)$ is invariant to the relabeling of both A and B and can be applied to their unlabeled versions. The combinatorial optimization problem (10) is an instance of the *quadratic assignment problem* [33], which is known to be NP-hard to solve or to approximate within a growing factor [26].

To show the test statistic $\mathcal{T}(A, B)$ achieves detection, first observe that in the planted model with hidden permutation π , $\mathcal{T}(A, B)$ is trivially bounded from below by $\sum_{i < j} A_{ij} \times B_{\pi(i)\pi(j)}$, which can be further shown to exceed some threshold τ with high probability by concentration inequalities. For the null model, we use a simple first moment argument (union bound) to show that $\mathcal{Q}(\mathcal{T}(A, B) \geq \tau) = o(1)$. Together we conclude that $\mathcal{T}(A, B)$ with threshold τ achieves strong detection and $\text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1)$.

Next we provide an overview of the impossibility proof, which constitutes the bulk of the paper. To this end, we bound the second moment of the likelihood ratio. It is well known that¹

$$(11) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = O(1) \implies \text{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) \leq 1 - \Omega(1)$$

$$(12) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = 1 + o(1) \implies \text{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) = o(1),$$

which correspond to the impossibility of strong and weak detection, respectively.

To compute the second moment, we introduce an independent copy $\tilde{\pi}$ of the latent permutation π and express the squared likelihood ratio as

$$\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 = \mathbb{E}_{\tilde{\pi} \perp\!\!\!\perp \pi} \left[\prod_{i < j} X_{ij} \right], \quad \text{where } X_{ij} \triangleq \frac{P(A_{ij}, B_{\pi(i)\pi(j)}) P(A_{ij}, B_{\tilde{\pi}(i)\tilde{\pi}(j)})}{Q(A_{ij}, B_{\pi(i)\pi(j)}) Q(A_{ij}, B_{\tilde{\pi}(i)\tilde{\pi}(j)})},$$

where for any $(i, j) \in [n]$, Q denotes the joint density function of A_{ij} and B_{ij} under \mathcal{Q} , and P denotes the joint density function of A_{ij} and $B_{\pi(i)\pi(j)}$ under \mathcal{P} given its latent permutation π . Fixing π and $\tilde{\pi}$, we then decompose this as a product over independent randomness indexed by the so-called *edge orbits*. Specifically, the permutation $\sigma \triangleq \pi^{-1} \circ \tilde{\pi}$ on the node set naturally induces a permutation σ^E on the edge set of the complete graph by permuting

¹Indeed, (11) follows from, e.g., [38], Lemma 2.6 and 2.7, and (12) is by Cauchy–Schwarz inequality.

the end points. Denoting by \mathcal{O} the collection of edge orbits (orbit in the cycle decomposition of the edge permutation σ^E), we show that

$$\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^2 = \mathbb{E}_{\tilde{\pi} \perp\!\!\!\perp \pi} \left[\prod_{O \in \mathcal{O}} X_O \right], \quad X_O \triangleq \prod_{(i, j) \in O} X_{ij},$$

where X_O 's are mutually independent under \mathcal{Q} conditioned on π and $\tilde{\pi}$.

Then, we take expectation $\mathbb{E}_{(A, B) \sim \mathcal{Q}}$ on the right-hand side and interchange the two expectations. For both the Gaussian and Erdős–Rényi models, this calculation can be explicitly carried out by evaluating the trace of certain operators. In particular, this computation shows the following dichotomy: the second moment is $1 + o(1)$ when $\rho^2 \leq \frac{(2-\epsilon)\log n}{n}$, but unbounded when $\rho^2 \geq \frac{(2+\epsilon)\log n}{n}$, where ρ is the correlation coefficient in the Gaussian case and $\rho = \frac{s(1-p)}{1-ps}$ in the Erdős–Rényi case. Compared with Theorems 1 and 2, we see that directly applying the second-moment method fails to capture the sharp threshold: The impossibility condition $\rho^2 \leq \frac{(2-\epsilon)\log n}{n}$ is suboptimal by a multiplicative factor of 2 in the Gaussian case and by an unbounded factor in the Erdős–Rényi case when $p = o(1)$.

It turns out that the second moment is mostly influenced by those short edge orbits of length $k = O(\log n)$ for which $\prod_{|O|=k} X_O$ has a large expectation (see Section 3.3 for a detailed explanation). Fortunately, the atypically large magnitude of $\prod_{|O|=k} X_O$ can be attributed to certain rare events associated with the *intersection graph* (edges that are included in both A and $B^\pi = (B_{\pi(i)\pi(j)})$), which is distributed as $\mathcal{G}(n, ps^2)$ under the planted model \mathcal{P} . This observation prompts us to apply the *conditional second moment method*, which truncates the squared likelihood ratio on an appropriately chosen *global event* that has high probability under \mathcal{P} . Specifically:

- In the dense case (including Gaussian model and dense Erdős–Rényi graphs), the dominating contribution comes from fixed points ($k = 1$) which can be regulated by conditioning on the edge density of large induced subgraphs of the intersection graph. Note that for Erdős–Rényi graphs, even though the density of small induced subgraphs (e.g., induced by $\Theta(\log n)$ vertices) can deviate significantly from their expectations [2], fortunately we only need to consider sufficiently large subgraphs here.
- For sparse Erdős–Rényi graphs, the argument is much more involved and combinatorial, as one needs to control the contribution of not only fixed points, but all edge orbits of length $O(\log n)$. Crucially, the major contribution is due to those edge orbits that are subgraphs of the intersection graph. Under the impossibility condition of Theorem 2, the intersection graph $\mathcal{G}(n, ps^2)$ is subcritical and a pseudoforest (each component having at most one cycle) with high probability. This global structure significantly limits the co-occurrence of edge orbits in the intersection graph. We thus truncate the squared likelihood ratio on the global event that the intersection graph is a pseudoforest. To compute the conditional second moment, we first study the graph structure of edge orbits, then reduce the problem to enumerating pseudoforests that are disjoint union of edge orbits and bounding their generating functions, and finally average over the cycle lengths of the random permutation σ . This is the most challenging part of the paper.

1.3. Connection to the literature. This work joins an emerging line of research which examines inference problems on networks from statistical and computational perspectives. We discuss some particularly relevant work below.

Random graph matching. Given a pair of graphs, the problem of *graph matching* (or network alignment) refers to finding a node correspondence that maximizes the edge correlation [8, 25], which amounts to solving the QAP in (10). Due to the worst-case intractability of

TABLE 1

Thresholds for various recovery criteria in the correlated Erdős–Rényi graph model when $p = o(1)$

Performance metric	Positive result	Negative result
Exact recovery	$nps^2 \geq \log n + \omega(1) \text{ & } p = O(\log^{-3}(n))$ [11]	$nps^2 \leq \log n - \omega(1)$ [10]
Almost exact recovery	$nps^2 = \omega(1) \text{ & } p \leq n^{-\Omega(1)}$ [12]	$nps^2 = O(1)$ [12]
Partial recovery	$nps \in (1, \lambda_0] \text{ & } s \in (s_0, 1]$ [19]	$nps^2 \log \frac{1}{p} = o(1)$ [21]
Detection (This paper)	$nps^2 \log \frac{1}{p} \geq (2 + \epsilon) \log n$	$p = n^{-o(1)} \text{ & }$ $nps^2 \log \frac{1}{p} \leq (2 - \epsilon) \log n,$ or $p = n^{-\Omega(1)} \text{ & }$ $s^2 \leq \frac{1 - \omega(n^{-1/3})}{np} \wedge 0.01$

the QAP, there is a recent surge of interest in the average-case analysis of matching two correlated random graphs [4, 10–14, 19, 21, 24, 29], where the goal is to reconstruct the hidden node correspondence between the two graphs accurately with high probability. To this end, the correlated Erdős–Rényi graph model (the alternative hypothesis \mathcal{H}_1 in Problem 2) has been used as a popular model, for which the solution to the QAP (10) is the maximal likelihood estimator. It is shown in [11] that exact recovery of the hidden node correspondence with high probability is information-theoretically possible if $nps^2 - \log n \rightarrow +\infty$ and $p = O(\log^{-3}(n))$, and impossible if $nps^2 - \log n = O(1)$. In contrast, the state of the art of polynomial-time algorithms achieve the exact recovery only when $np = \text{poly}(\log n)$ and $1 - s = 1/\text{poly}(\log n)$ [14, 15, 24].

Recent work [12] initiated the study of almost exact recovery, that is, to obtain a matching (possibly imperfect) of size $n - o(n)$ that is contained in the true matching with high probability. It shows that the almost exact recovery is information-theoretically possible if $nps^2 = \omega(1)$ and $p \leq n^{-\Omega(1)}$, and impossible if $nps^2 = O(1)$. Another work [19] considers a weaker objective of partial recovery, that is, to output a matching that contains $\Theta(n)$ correctly matched vertex pairs with high probability. It is shown that the partial recovery can be attained in polynomial time by a neighborhood tree matching algorithm in the sparse graph regime where $nps \in (1, \lambda_0]$ for some constant λ_0 close to 1 and $s \in (s_0, 1]$ for some constant s_0 close to 1. More recently, the partial recovery is shown to be information-theoretically impossible if $nps^2 \log \frac{1}{p} = o(1)$ when $p = o(1)$ [21]. For ease of comparison, we summarize the different thresholds under various performance metrics in Table 1 in the Erdős–Rényi model.

In contrast to the aforementioned work focusing on recovering the latent matching, this work studies the hypothesis testing aspect of graph matching, which, nevertheless, has direct consequences on the recovery problem. As an application of the truncated second moment calculation, in a companion paper [41] we resolve the sharp threshold of recovery by characterizing the asymptotic mutual information $I(A, B; \pi)$. In particular, we show that in the dense regime with $p = n^{-o(1)}$, the sharp threshold of recovery exactly matches the detection threshold above which almost exact recovery is possible and below which partial recovery is impossible, thereby closing the gap in Table 1. In the sparse regime with $p = n^{-\Omega(1)}$, we show that the information-theoretic threshold for partial recovery is at $nps^2 \asymp 1$, which coincides with the detection threshold up to a constant factor.

Detection problems in networks. There is a recent flurry of work using the first and second-moment methods to study hypothesis testing problems on networks with latent structures such as community detection under stochastic block models [1, 3, 28, 39]. Notably, a conditional second moment argument was applied by Arias–Castro and Verzelen in [1] and [39]

to study the problem of detecting the presence of a planted community in dense and sparse Erdős–Rényi graphs, respectively. Similar to our work, for dense graphs, they condition on the edge density of induced subgraphs (see also the earlier work [7] for the Gaussian model); for sparse graphs, they condition on the planted community being a forest and bound the truncated second-moment by enumerating subforests using Cayley’s formula. However, the crucial difference is that in our setting simply enumerating the pseudoforests is inadequate for proving Theorem 2. Instead, we need to take into account the cycle structure of permutations and enumerate *orbit pseudoforests*, that is, pseudoforests assembled from edge orbits (see the discussion before Theorem 4 in Section 5 for details). By separately accounting for orbits of different lengths and their graph properties, we are able to obtain a much finer control on the generating function of orbit pseudoforests that allows the conditional second moment to be bounded after averaging over the random permutation. This proof technique is of particular interest, and likely to be useful for other detection problems regarding permutations.

Finally, we mention that the recent work [35] studied a related correlation detection problem, where the observed two graphs are either independent, or correlated randomly growing graphs (which grow together until time t_* and grow independently afterwards according to either uniform and preferential attachment models). Sufficient conditions are obtained for both weak detection and strong detection as $t_* \rightarrow \infty$. However, the problem setup, main results and proof techniques are very different from the current paper.

1.4. Notation and paper organization. For any $n \in \mathbb{N}$, let $[n] = \{1, 2, \dots, n\}$ and \mathcal{S}_n denote the set of all permutations on $[n]$. For a given graph G , let $V(G)$ denote its vertex set and $E(G)$ its edge set. For two graphs on $[n]$ with (weighted) adjacency matrices A and B , their *intersection graph* is a graph on $[n]$ with (weighted) adjacency matrix $A \wedge B$, where

$$(13) \quad (A \wedge B)_{ij} \triangleq A_{ij} B_{\pi(i)\pi(j)};$$

in the unweighted case, the edge set of $A \wedge B$ is the intersection of those of A and B . Given a permutation $\pi \in \mathcal{S}_n$, let $B^\pi = (B_{\pi(i)\pi(j)})$ denote the relabeled version of B according to π . For any $S \subset [n]$, define $e_A(S) \triangleq \sum_{i < j \in S} A_{ij}$ as the total edge weights in the subgraph induced by S .

For any $a, b \in \mathbb{R}$, let $a \wedge b = \min\{a, b\}$ and $a \vee b = \max\{a, b\}$. Given any $n, m \in \mathbb{N}$, let $\text{lcm}(n, m)$ denote the least common multiple of n and m . Given any $n, m \in \mathbb{N}$, and some nonnegative integers $\{k_i\}_{i=1}^m$ such that $\sum_{i=1}^m k_i = n$, let $\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! k_2! \dots k_m!}$ be a multinomial coefficient. We use standard asymptotic notation: for two positive sequences $\{a_n\}$ and $\{b_n\}$, we write $a_n = O(b_n)$ or $a_n \lesssim b_n$, if $a_n \leq Cb_n$ for some absolute constant C and for all n ; $a_n = \Omega(b_n)$ or $a_n \gtrsim b_n$, if $b_n = O(a_n)$; $a_n = \Theta(b_n)$ or $a_n \asymp b_n$, if $a_n = O(b_n)$ and $a_n = \Omega(b_n)$; $a_n = o(b_n)$ or $b_n = \omega(a_n)$, if $a_n/b_n \rightarrow 0$ as $n \rightarrow \infty$.

The rest of the paper is organized as follows. In Section 2 we prove the positive result of strong detection for both the Gaussian Wigner model and Erdős–Rényi random graphs. To lay the groundwork for the conditional second moment method, in Section 3 we present the unconditional second moment calculation and discuss the key reasons for its looseness. Section 4 presents the conditional second-moment proof for weak detection in the dense regime. Due to their similarity, the proof for the Gaussian Wigner model is given in Section 4.1 and the (more technical) proof for dense Erdős–Rényi graphs is given in Section 7.3 of the Supplementary Material [42]. Section 5 provides the impossibility proofs of both strong and weak detection for sparse Erdős–Rényi random graphs. Several other technical proofs are also relegated to Section 7 and Section 8 of the Supplementary Material [42]. Some useful concentration inequalities and facts about random permutations are collected in the Supplementary Material for readers’ convenience.

2. First moment method for detection. In this section we prove the positive parts of Theorems 1 and 2 by analyzing the test statistic (9). Recall from Section 1.2 the reformulated Problem 2 with observations A and B , whose distributions are specified as follows

- Gaussian Wigner model:

$$(14) \quad \mathcal{H}_0 : (A_{ij}, B_{ij}) \stackrel{\text{iid}}{\sim} \mathcal{N}((0, 0), (1 0, 0 1)),$$

$$(15) \quad \mathcal{H}_1 : (A_{ij}, B_{\pi(i)\pi(j)}) \stackrel{\text{iid}}{\sim} \mathcal{N}((0, 0), (1 \rho, \rho 1)) \text{ conditional on } \pi \sim \text{Uniform}(\mathcal{S}_n).$$

- Erdős–Rényi random graph:

$$(16) \quad \mathcal{H}_0 : (A_{ij}, B_{ij}) \stackrel{\text{iid}}{\sim} \text{Bern}(ps) \otimes \text{Bern}(ps),$$

$\mathcal{H}_1 : (A_{ij}, B_{\pi(i)\pi(j)}) \stackrel{\text{iid}}{\sim} \text{pair of correlated Bern}(ps) \text{ conditional on } \pi \sim \text{Uniform}(\mathcal{S}_n),$

$$(17) \quad \text{where } A_{ij} \sim \text{Bern}(ps) \text{ and } B_{\pi(i)\pi(j)} \sim \begin{cases} \text{Bern}(s) & \text{if } A_{ij} = 1, \\ \text{Bern}\left(\frac{ps(1-s)}{1-ps}\right) & \text{if } A_{ij} = 0. \end{cases}$$

Then we get

$$(18) \quad \frac{\mathcal{P}(A, B | \pi)}{\mathcal{Q}(A, B)} = \prod_{1 \leq i < j \leq n} L(A_{ij}, B_{\pi(i)\pi(j)}),$$

where

$$(19) \quad L(A_{ij}, B_{\pi(i)\pi(j)}) \triangleq \frac{P(A_{ij}, B_{\pi(i)\pi(j)})}{Q(A_{ij}, B_{\pi(i)\pi(j)})}.$$

For the Gaussian Wigner model, we have

$$(20) \quad L(a, b) = \frac{1}{\sqrt{1 - \rho^2}} \exp\left(\frac{-\rho^2(b^2 + a^2) + 2\rho ab}{2(1 - \rho^2)}\right).$$

For the Erdős–Rényi graph model, we have

$$(21) \quad L(a, b) = \begin{cases} \frac{1}{p} & a = 1, b = 1, \\ \frac{1-s}{1-ps} & a = 1, b = 0 \text{ or } a = 0, b = 1, \\ \frac{1-2ps+ps^2}{(1-ps)^2} & a = 0, b = 0. \end{cases}$$

Then, it yields that the generalized likelihood ratio test (9) is equivalent to

$$(22) \quad \max_{\pi \in \mathcal{S}_n} \frac{\mathcal{P}(A, B | \pi)}{\mathcal{Q}(A, B)} \iff \max_{\pi \in \mathcal{S}_n} \sum_{i < j} A_{ij} B_{\pi(i)\pi(j)}$$

for both the Gaussian Wigner model and Erdős–Rényi random graphs. In particular, for the Erdős–Rényi graphs model, this follows from

$$L(A_{ij}, B_{\pi(i)\pi(j)}) = \left(\frac{L(1, 1)L(0, 0)}{L(0, 1)L(1, 0)}\right)^{A_{ij}B_{\pi(i)\pi(j)}} \left(\frac{L(1, 0)}{L(0, 0)}\right)^{A_{ij}} \left(\frac{L(0, 1)}{L(0, 0)}\right)^{B_{\pi(i)\pi(j)}} L(0, 0),$$

and the fact that $\frac{L(1, 1)L(0, 0)}{L(0, 1)L(1, 0)} \geq 1$.

2.1. *Proof of Theorem 1: Positive part.* Throughout the proof, denote $m = \binom{n}{2}$ for brevity. Without loss of generality, we assume that (3) holds with equality, that is, $\rho^2 = \frac{2n \log n}{m}$; otherwise, one can apply the test to (A', B') where $A' = \cos(\theta)A + \sin(\theta)Z$, $B' = \cos(\theta)B + \sin(\theta)Z$ with an appropriately chosen θ , and Z is standard normal and independent of (A, B) . Define

$$(23) \quad \tau = \rho m - a_n,$$

where a_n is some sequence to be chosen satisfying $a_n = \omega(n)$ and $a_n = O(n^{3/2})$.

We first analyze the error event under the alternative hypothesis (15). Let π denote the latent permutation such that $(A_{ij}, B_{\pi(i)\pi(j)})$ are i.i.d. pairs of standard normals with correlation coefficient ρ . Applying the Hanson–Wright inequality (see Lemma 10 in Section 9 of the Supplementary Material [42]) with $M = I_m$ to $\mathcal{T}_\pi = \sum_{1 \leq i < j \leq n} A_{ij} B_{\pi(i)\pi(j)}$, we get that

$$\mathcal{P}(\mathcal{T}_\pi \leq \tau) = \mathcal{P}(\mathcal{T}_\pi \leq \rho m - a_n) \leq e^{-ca_n} + e^{-ca_n^2/m},$$

for some universal constant c . Since by definition $\mathcal{T} \geq \mathcal{T}_\pi$, it follows that $\mathcal{P}(\mathcal{T} \leq \tau) = o(1)$.

To analyze the error event under the null hypothesis (14), in which case for each $\pi \in \mathcal{S}_n$, $(A_{ij}, B_{\pi(i)\pi(j)})$ are i.i.d. pairs of independent standard normals. Note that for $X, Y \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ and any $\lambda \in (-1, 1)$, we have

$$(24) \quad \mathbb{E}[\exp(\lambda XY)] = \mathbb{E}\left[\exp\left(\frac{\lambda^2 Y^2}{2}\right)\right] = \frac{1}{\sqrt{1 - \lambda^2}}.$$

Then by the Chernoff bound, for any $\lambda \in (0, 1)$,

$$\mathcal{Q}(\mathcal{T}_\pi \geq \tau) = \mathcal{Q}(\exp(\lambda \mathcal{T}_\pi) \geq \exp(\lambda \tau)) \leq \exp\left\{-\frac{m}{2} \log(1 - \lambda^2) - \lambda \tau\right\}.$$

Choosing $\lambda = \frac{\tau}{m}$, which satisfies $0 < \lambda = o(1)$ in view of (3) and (23), we have $\mathcal{Q}(\mathcal{T}_\pi \geq \tau) \leq e^{-\frac{\tau^2}{2m} + O(\tau^4/m^3)}$. Finally by the union bound and Stirling approximation that $n! \leq e^{n^2 + \frac{1}{2}} e^{-n}$, $\mathcal{Q}(\mathcal{T} \geq \tau) \leq n! e^{-\frac{\tau^2}{2m} + O(\tau^4/m^3)} = o(1)$, provided that $\frac{\rho^2 m}{2} - \rho a_n - O(\rho^4 m) - n \log \frac{n}{e} - \frac{\log n}{2} \rightarrow +\infty$. This is ensured by the assumption that $\rho^2 = \frac{2n \log n}{m}$ and the choice of $a_n = n^{1.1}$.

2.2. *Proof of Theorem 2: Positive part.* Throughout the proof, denote $m = \binom{n}{2}$ for brevity. Without loss of generality, we assume that (5) holds with equality, that is,

$$(25) \quad mps^2 \left(\log \frac{1}{p} - 1 + p \right) = n \log n;$$

otherwise, one can apply the test to (A', B') where A' (B') are edge-subsampled from A (B) with an appropriately chosen subsampling probability s' . It follows from (25) that $p \geq 1/n$ and $mps^2 = \Omega(n)$. Define

$$(26) \quad \tau = mps^2(1 - \delta_n),$$

where $0 < \delta_n < 1$ is some sequence to be chosen satisfying $\delta_n = \omega(1/\sqrt{mps^2})$.

We first analyze the error event under the alternative hypothesis (17). Let π denote the latent permutation such that $(A_{ij} B_{\pi(i)\pi(j)}) \stackrel{\text{iid}}{\sim} \text{Bern}(ps^2)$. Then $\mathcal{T}_\pi \sim \text{Binom}(m, ps^2)$. Applying the Chernoff bound (see equation (118) in Section 9 of the Supplementary Material [42]), $\mathcal{P}(\mathcal{T}_\pi \leq \tau) \leq \exp(-\delta_n^2 mps^2/2) = o(1)$. Since by definition $\mathcal{T} \geq \mathcal{T}_\pi$, it follows that $\mathcal{P}(\mathcal{T} \leq \tau) = o(1)$.

Next, we analyze the error event under the null hypothesis (16), in which case for each $\pi \in \mathcal{S}_n$, $(A_{ij} B_{\pi(i)\pi(j)}) \stackrel{\text{iid}}{\sim} \text{Bern}(p^2 s^2)$ and thus $\mathcal{T}_\pi \sim \text{Binom}(m, p^2 s^2)$. Using the multiplicative Chernoff bound for Binomial distributions (see equation (117) in Section 9 of the Supplementary Material [42]) we obtain that

$$\begin{aligned} \mathcal{Q}(\mathcal{T}_\pi \geq \tau) &\leq \exp\left(-\tau \log \frac{\tau}{e\mu} - \mu\right) \\ &= \exp\left(-mps^2(1 - \delta_n) \log \frac{1 - \delta_n}{ep} - mp^2 s^2\right) \\ &\leq \exp\left(-mps^2\left(\log \frac{1}{p} - 1 + p\right) + mps^2 \delta_n \log \frac{1}{p}\right), \end{aligned}$$

where $\mu = mp^2 s^2$, and the last inequality holds due to $(1 - \delta_n) \log \frac{1 - \delta_n}{e} \geq -1$.

Then by applying union bound and Stirling approximation that $n! \leq en^{n+\frac{1}{2}}e^{-n}$, we have that

$$\begin{aligned} \mathcal{Q}(\mathcal{T} \geq \tau) &\leq e \exp\left(-mps^2\left(\log \frac{1}{p} - 1 + p\right) + mps^2 \delta_n \log \frac{1}{p} + n \log \frac{n}{e} + \frac{1}{2} \log n\right) \\ &= e \exp\left((mps^2)^{0.6} \log \frac{1}{p} - n + \frac{1}{2} \log n\right) = o(1), \end{aligned}$$

where the first equality holds by the assumption $mps^2(\log \frac{1}{p} - 1 + p) = n \log n$ and choosing $\delta_n = 1/(mps^2)^{0.4}$; the last equality holds by the claim that $(mps^2)^{0.6} \log \frac{1}{p} = o(n)$. To finish the proof, it suffices to verify the claim, which is done separately in the following two cases.

Suppose $1 - p = \Omega(1)$. Thus, in view of assumption (25), we get that $mps^2 = O(n \log n / \log(1/p))$. It follows that $(mps^2)^{0.6} \log(1/p) \leq O((n \log n)^{0.6} \log^{0.4}(1/p)) = o(n)$, where the last equality holds due to $p \geq 1/n$.

Suppose $1 - p = o(1)$. As $\log(1/p) - 1 + p \geq (1 - p)^2/2$, it follows from assumption (25) that $(1 - p)^2 = \Omega(\log n / n)$. Furthermore, $\log(1/p) \leq \frac{1-p}{p}$. Thus by assumption (25), $(mps^2)^{0.6} \log \frac{1}{p} \leq O((n \log n)^{0.6} (1 - p)^{-0.2}) = O(n^{0.7} \log^{0.5} n) = o(n)$.

3. Unconditional second moment method and obstructions. In this section, we apply the unconditional second moment method to derive impossibility conditions for detection. As mentioned in Section 1.2 (and described in detail in Section 3.3), these conditions do not match the positive results in Section 2, due to the obstructions presented by the short edge orbits. To overcome these difficulties, in Sections 4 and 5, we apply the conditional second moment method by building upon the second moment computation in this section. We start by introducing some preliminary definitions associated with permutations.

3.1. Node permutation, edge permutation and cycle decomposition. Let $\sigma \in S_n$ be a permutation on $[n]$. For each element $a \in [n]$, its *orbit* is a cycle (a_0, \dots, a_{k-1}) for some $k \leq n$, where $a_i = \sigma^i(a)$, $i = 0, \dots, k-1$ and $\sigma(a_{k-1}) = a$. Each permutation can be decomposed as disjoint orbits. For example, consider the permutation $\sigma \in S_8$ that swaps 1 with 2, swaps 3 with 4, and cyclically shifts 5678. Then σ consists of three orbits represented in canonical notation as $\sigma = (12)(34)(5678)$.

Consider the complete graph K_n with vertex set $[n]$. Each permutation $\sigma \in S_n$ naturally induces a permutation σ^E on the edge set of K_n , the set $\binom{[n]}{2}$ of all unordered pairs, according to

$$(27) \quad \sigma^E((i, j)) \triangleq (\sigma(i), \sigma(j)).$$

We refer to σ and σ^E as *node permutation* and *edge permutation*, whose orbits are referred to as *node orbits* and *edge orbits*, respectively. For each edge (i, j) , let O_{ij} denotes its orbit under σ^E . As a concrete example, consider again the permutation $\sigma = (12)(34)(5678)$. Then $O_{12} = \{(1, 2)\}$ and $O_{34} = \{(3, 4)\}$ are 1-edge orbits (fixed point of σ^E) and $O_{56} = \{(5, 6), (6, 7), (7, 8), (8, 5)\}$ is a 4-edge orbit. (See Table 2 in Section 5.1 for more examples.)

The cycle structure of the edge permutation is determined by that of the node permutation. Let n_k (resp. N_k) denote the number of k -node (resp. k -edge) orbits in σ (resp. σ^E). For example,

$$(28) \quad N_1 = \binom{n_1}{2} + n_2, \quad N_2 = \binom{n_2}{2} \times 2 + n_1 n_2 + n_4.$$

This is due to the following reasoning.

- Consider a 1-edge orbit given by $\{(i, j)\}$. Since (i, j) is unordered, it follows that either both i, j are fixed points of σ or i, j form a 2-node orbit of σ . Thus, $N_1 = \binom{n_1}{2} + n_2$.
- Consider a 2-edge orbit given by $\{(i, j), (\sigma(i), \sigma(j))\}$. Then there are three cases: (a) i, j belong to two different 2-node orbits; (b) i is a fixed point and j lies in a 2-node orbit; (c) i, j belong to a common 4-node orbit of the form $(i * j *)$. Thus $N_2 = \binom{n_2}{2} \times 2 + n_1 n_2 + n_4$.

3.2. Second moment calculation. Recall the second-moment method described in Section 1.2. When \mathcal{P} is a mixture distribution, the calculation of the second moment can proceed as follows. Note that the likelihood ratio is $\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} = \mathbb{E}_\pi \left[\frac{\mathcal{P}(A, B|\pi)}{\mathcal{Q}(A, B)} \right]$, where π is a random permutation uniformly distributed over \mathcal{S}_n . Introducing an independent copy $\tilde{\pi}$ of π and noting that B has the same marginal distribution under both \mathcal{P} and \mathcal{Q} , the squared likelihood ratio can be expressed as

$$(29) \quad \left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 = \mathbb{E}_{\tilde{\pi} \perp\!\!\!\perp \pi} \left[\frac{\mathcal{P}(A, B|\pi)}{\mathcal{Q}(A, B)} \frac{\mathcal{P}(A, B|\tilde{\pi})}{\mathcal{Q}(A, B)} \right] \stackrel{(19)}{=} \mathbb{E}_{\tilde{\pi} \perp\!\!\!\perp \pi} \left[\prod_{i < j} X_{ij} \right],$$

where $\pi \perp\!\!\!\perp \tilde{\pi}$ denotes that π and $\tilde{\pi}$ are independent, and

$$(30) \quad X_{ij} \triangleq L(A_{ij}, B_{\pi(i)\pi(j)}) L(A_{ij}, B_{\tilde{\pi}(i)\tilde{\pi}(j)}).$$

Interchanging the expectations yields

$$(31) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = \mathbb{E}_{\tilde{\pi} \perp\!\!\!\perp \pi} \left[\mathbb{E}_{(A, B) \sim \mathcal{Q}} \left[\prod_{i < j} X_{ij} \right] \right].$$

Fixing π and $\tilde{\pi}$, we first compute the inner expectation in (31). Observe that X_{ij} may not be independent across different pairs of (i, j) . For example, suppose $(i_1, j_1) \neq (i_2, j_2)$ and $(\pi(i_1), \pi(j_1)) = (\tilde{\pi}(i_2), \tilde{\pi}(j_2))$, then $B_{\pi(i_1), \pi(j_1)} = B_{\tilde{\pi}(i_2), \tilde{\pi}(j_2)}$ and $X_{i_1 j_1}$ is not independent of $X_{i_2 j_2}$. In order to decompose $\prod_{i < j} X_{ij}$ as a product over independent randomness, we use the notion of cycle decomposition introduced in Section 3.1. Define

$$(32) \quad \sigma \triangleq \pi^{-1} \circ \tilde{\pi},$$

which is also uniformly distributed on \mathcal{S}_n . Let σ^E denote the edge permutation induced by σ as in (27), that is, $\sigma^E(i, j) = (\sigma(i), \sigma(j))$. For each edge orbit O of σ^E , define

$$(33) \quad X_O \triangleq \prod_{(i, j) \in O} X_{ij} = \prod_{(i, j) \in O} L(A_{ij}, B_{\pi(i)\pi(j)}) L(A_{ij}, B_{\tilde{\pi}(i)\tilde{\pi}(j)}).$$

Importantly, observe that X_O is a function of $(A_{ij}, B_{\pi(i)\pi(j)})_{(i, j) \in O}$. Indeed, since $(\tilde{\pi}(i), \tilde{\pi}(j)) = \pi(\sigma(i), \sigma(j))$, or equivalently in terms of edge permutation, $\tilde{\pi}^E = \pi^E \circ \sigma^E$, and O is an orbit of σ^E , we have $\{B_{\pi(i)\pi(j)}\}_{(i, j) \in O} = \{B_{\tilde{\pi}(i)\tilde{\pi}(j)}\}_{(i, j) \in O}$.

Let \mathcal{O} denote the collection of all edge orbits of σ . Since edge orbits are disjoint, we have

$$(34) \quad \prod_{i < j} X_{ij} = \prod_{O \in \mathcal{O}} X_O.$$

Since $\{A_{ij}\}_{i < j}$ and $\{B_{ij}\}_{i < j}$ are *i.i.d.* under \mathcal{Q} , we conclude $\{X_O\}_{O \in \mathcal{O}}$ are mutually independent under \mathcal{Q} . Therefore, by (31),

$$(35) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\prod_{O \in \mathcal{O}} \mathbb{E}_{(A, B) \sim \mathcal{Q}} [X_O] \right].$$

Recall that, for the Gaussian Wigner model, ρ denotes the correlation coefficient of edge weights in the planted model \mathcal{P} . For the Erdős–Rényi graph model, the correlation parameter in the planted model \mathcal{P} is defined as

$$(36) \quad \rho \triangleq \frac{\text{Cov}(A_{ij}, B_{\pi(i)\pi(j)})}{\sqrt{\text{Var}(A_{ij})} \sqrt{\text{Var}(B_{\pi(i)\pi(j)})}} = \frac{s(1-p)}{1-ps}.$$

PROPOSITION 1. *Fixing π and $\tilde{\pi}$, for any edge orbit O of $\sigma = \pi^{-1} \circ \tilde{\pi}$, we have:*

- *for Gaussian Wigner models,*

$$(37) \quad \mathbb{E}_{(A, B) \sim \mathcal{Q}} [X_O] = \frac{1}{1 - \rho^{2|O|}},$$

- *for Erdős–Rényi random graphs,*

$$(38) \quad \mathbb{E}_{(A, B) \sim \mathcal{Q}} [X_O] = 1 + \rho^{2|O|}.$$

PROOF. Recall from (19) that $L(x, y) = \frac{P(x, y)}{\mathcal{Q}(x, y)} = \frac{P(x, y)}{\mathcal{Q}(x)\mathcal{Q}(y)}$. This kernel defines an operator as follows: for any square-integrable function f under \mathcal{Q} ,

$$(39) \quad (Lf)(x) \triangleq \mathbb{E}_{Y \sim \mathcal{Q}} [L(x, Y) f(Y)] = \mathbb{E}_{(X, Y) \sim \mathcal{P}} [f(Y) | X = x].$$

In addition, $L^2 = L \circ L$ is given by $L^2(x, y) = \mathbb{E}_{Z \sim \mathcal{Q}} [L(x, Z)L(Z, y)]$ and L^k is similarly defined. For both the Gaussian and Bernoulli model, we have $L(x, y) = L(y, x)$ and hence L is self-adjoint. Furthermore, since $\iint L(x, y)^2 \mathcal{Q}(dx) \mathcal{Q}(dy) < \infty$, L is Hilbert–Schmidt. Thus L is diagonalizable with eigenvalues λ_i 's and the trace of L is given by $\text{tr}(L) = \mathbb{E}_{Y \sim \mathcal{Q}} [L(Y, Y)] = \sum \lambda_i$.

Let $k = |\mathcal{O}|$. To simplify the notation, let a_i 's and b_i 's be independent sequences of *i.i.d.* random variables drawn from \mathcal{Q} . Since O is an edge orbit of σ^E , we have $\{B_{\pi(i)\pi(j)}\}_{(i, j) \in O} = \{B_{\tilde{\pi}(i)\tilde{\pi}(j)}\}_{(i, j) \in O}$ and $(\tilde{\pi}(i), \tilde{\pi}(j)) = \pi(\sigma(i), \sigma(j))$. By (33),

$$\begin{aligned} \mathbb{E}_{A, B \sim \mathcal{Q}} [X_O] &= \mathbb{E}_{A, B \sim \mathcal{Q}} \left[\prod_{(i, j) \in O} L(A_{ij}, B_{\pi(i)\pi(j)}) L(A_{ij}, B_{\tilde{\pi}(i)\tilde{\pi}(j)}) \right] \\ &= \mathbb{E} \left[\prod_{\ell=1}^k L(a_\ell, b_\ell) L(a_\ell, b_{(\ell+1) \bmod k}) \right] \\ &= \mathbb{E} \left[\prod_{\ell=1}^k L^2(b_\ell, b_{(\ell+1) \bmod k}) \right] \\ &= \text{tr}(L^{2k}) = \sum \lambda_i^{2k}. \end{aligned}$$

For the Gaussian Wigner model, $L(x, y)$ given in (20) is known as Mehler's kernel and can be diagonalized by Hermite polynomials as

$$L(x, y) = \sum_{i=0}^{\infty} \frac{\rho^i}{i!} H_i(x) H_i(y),$$

where $\mathbb{E}_{Y \sim \mathcal{N}(0, 1)}[H_i(Y) H_j(Y)] = i! \mathbf{1}_{\{i=j\}}$ [23]. It follows that the eigenvalues of operator L are given by $\lambda_i = \rho^i$ for $i \geq 0$ and thus $\text{tr}(L^{2k}) = \sum_{i=0}^{\infty} \rho^{2ki} = \frac{1}{1-\rho^{2k}}$.

For Erdős–Rényi graphs,

$$(Lf)(x) = \sum_{y \in \{0, 1\}} \frac{P(x, y)}{Q(x) Q(y)} f(y) Q(y) = \frac{1}{Q(x)} \sum_{y \in \{0, 1\}} P(x, y) f(y).$$

Thus the eigenvalues of L are given by the eigenvalues of the following 2×2 row-stochastic matrix M with rows and columns indexed by $\{0, 1\}$ and $M(x, y) = \frac{P(x, y)}{Q(x)}$. Explicitly, by (21) we have

$$M = \begin{pmatrix} 1 - ps(2-s) & ps(1-s) \\ 1 - ps & 1 - ps \\ 1 - s & s \end{pmatrix}.$$

The eigenvalues of M are 1 and $\rho = \frac{s(1-p)}{1-ps}$, so $\text{tr}(L^{2k}) = 1 + \rho^{2k}$. \square

In view of Propositions 1, $\mathbb{E}_{(A, B) \sim \mathcal{Q}}[X_O]$ decreases when the orbit length $|O|$ increases. Let n_k denote the total number of k -node orbits in the cycle decomposition of node permutation σ , and let N_k denote the total number of k -edge orbits in the cycle decomposition of edge permutation σ^E , for $k \in \mathbb{N}$. For the Gaussian Wigner model, by (35) and (37), we get

$$(40) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\prod_{O \in \mathcal{O}} \left(\frac{1}{1 - \rho^{2|O|}} \right) \right] = \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\prod_{k=1}^{\binom{n}{2}} \left(\frac{1}{1 - \rho^{2k}} \right)^{N_k} \right].$$

For the Erdős–Rényi graphs, by (35) and (38), we get

$$(41) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\prod_{O \in \mathcal{O}} (1 + \rho^{2|O|}) \right] = \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\prod_{k=1}^{\binom{n}{2}} (1 + \rho^{2k})^{N_k} \right].$$

Let us assume

$$(42) \quad n^2 \rho^6 = o(1),$$

which is ensured by (4) for Gaussian model in Theorem 1 or (6) for dense Erdős–Rényi model with $p = n^{-o(1)}$ in Theorem 2.

For the Gaussian model, consider the orbits of length $k \geq 3$. Since $\sum_{k=3}^{\binom{n}{2}} N_k \leq \binom{n}{2}$, we have

$$(43) \quad \begin{aligned} \prod_{k=3}^{\binom{n}{2}} \left(\frac{1}{1 - \rho^{2k}} \right)^{N_k} &\leq \left(\frac{1}{1 - \rho^6} \right)^{\binom{n}{2}} = \left(1 + \frac{\rho^6}{1 - \rho^6} \right)^{\binom{n}{2}} \\ &\leq \exp \left(\frac{n^2 \rho^6}{2(1 - \rho^6)} \right) = 1 + o(1), \end{aligned}$$

where the last equality holds due to (42). Moreover, for 1-orbits and 2-orbits,

$$\begin{aligned} \left(\frac{1}{1 - \rho^2} \right)^{N_1} \left(\frac{1}{1 - \rho^4} \right)^{N_2} &\leq \left(1 + \frac{\rho^2}{1 - \rho^2} \right)^{N_1} \left(1 + \left(\frac{\rho^2}{1 - \rho^2} \right)^2 N_2 \right)^{N_2} \\ &\leq \exp \left(\frac{\rho^2}{1 - \rho^2} N_1 + \left(\frac{\rho^2}{1 - \rho^2} \right)^2 N_2 \right). \end{aligned}$$

Therefore,

$$(44) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] \leq (1 + o(1)) \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\exp \left(\frac{\rho^2}{1 - \rho^2} N_1 + \left(\frac{\rho^2}{1 - \rho^2} \right)^2 N_2 \right) \right].$$

For Erdős–Rényi graphs, analogously, for the orbits of length $k \geq 3$,

$$(45) \quad \prod_{k=3}^n (1 + \rho^{2k})^{N_k} \leq (1 + \rho^6)^{\binom{n}{2}} \leq \exp \left(\frac{n^2 \rho^6}{2} \right) = 1 + o(1),$$

where the last equality holds due to (42). For 1-orbits and 2-orbits, $(1 + \rho^2)^{N_1} (1 + \rho^4)^{N_2} \leq \exp(\rho^2 N_1 + \rho^4 N_2)$. Therefore,

$$(46) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] \leq (1 + o(1)) \mathbb{E}_{\pi \perp \tilde{\pi}} [\exp(\rho^2 N_1 + \rho^4 N_2)].$$

Next, we bound the contribution of N_1 and N_2 to the second moment for both models using the following proposition. The proof, based on Poisson approximation, is deferred to Section 7.2 of the Supplementary Material [42].

PROPOSITION 2. *Assume $\mu, \nu, \tau \geq 0$ such that $\tau^2 = o(\frac{1}{n})$, and $\mu b + \nu + 2 - \log b \leq 0$ for some $1 \leq b \leq n$ such that $b = \omega(1)$.*

- If $a = \omega(1)$ and $\nu \leq \log(a) - 3$,

$$(47) \quad \mathbb{E}_{\pi \perp \tilde{\pi}} [\exp(\mu n_1^2 + \nu n_1 + \tau n_2 + \tau^2 N_2) \mathbf{1}_{\{a \leq n_1 \leq b\}}] = o(1).$$

- If $a = 0$ and $\nu = o(1)$,

$$(48) \quad \mathbb{E}_{\pi \perp \tilde{\pi}} [\exp(\mu n_1^2 + \nu n_1 + \tau n_2 + \tau^2 N_2) \mathbf{1}_{\{a \leq n_1 \leq b\}}] \leq 1 + o(1).$$

In particular, if $0 \leq \tau \leq \frac{2(\log n - 2)}{n}$, then

$$(49) \quad \mathbb{E}_{\pi \perp \tilde{\pi}} [\exp(\tau N_1 + \tau^2 N_2)] = 1 + o(1).$$

Finally, we arrive at a sufficient condition for bounded second moment, which turns out to be essentially necessary as we will see shortly in Section 3.3.

THEOREM 3 (Impossibility condition by unconditional second moment method). *Fix any constant $\epsilon > 0$. If*

$$(50) \quad \rho^2 \leq \frac{(2 - \epsilon) \log n}{n},$$

then for both Gaussian Wigner and Erdős–Rényi graphs, $\mathbb{E}_{\mathcal{Q}}[(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)})^2] = 1 + o(1)$, which further implies that $\text{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$, the impossibility of weak detection.

PROOF. Note that (50) implies (42). Thus, by combining (44) or (46) with (49) in Proposition 2, we get $\mathbb{E}_{\mathcal{Q}}[(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)})^2] = 1 + o(1)$, which yields $\text{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$ in view of (12). \square

3.3. Obstruction from short orbits. The impossibility condition in Theorem 3 is not optimal. In the Gaussian case, (50) differs by a factor of 2 from the positive result of $\rho^2 \geq \frac{(4+\epsilon)\log n}{n}$ in Theorem 1. For Erdős–Rényi graphs the suboptimality is more severe: Theorem 2 shows that if $nps^2(\log \frac{1}{p} - 1 + p) \geq (2 + \epsilon)\log n$, then strong detection is possible. In the regime of $p = o(1)$, since $\rho = (1 + o(1))s$, this translates to the condition $\rho^2 \geq \frac{(2+\epsilon)\log n}{np \log \frac{1}{p}}$, which differs from (50) by an unbounded factor. This is the limitation of the second moment method, as the condition $\rho^2 \leq \frac{(2-\epsilon)\log n}{n}$ is actually tight for the second moment to be bounded. When $\rho^2 \geq \frac{(2+\epsilon)\log n}{n}$, the second moment diverges because of certain rare events associated with short orbits in $\sigma = \pi^{-1} \circ \tilde{\pi}$. Below we describe the lower bound on the second moment due to short orbits, which motivates the conditional second moment arguments in Sections 4 and 5 that eventually overcome these obstructions.

Specifically, in view of (29) and (34), for both Gaussian and Erdős–Rényi models, the squared likelihood ratio factorizes into products over the edge orbits of σ :

$$\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 = \mathbb{E}_{\pi \perp\!\!\!\perp \tilde{\pi}} \left[\prod_{O \in \mathcal{O}} X_O \right],$$

where X_O is defined in (33). Since both π and $\tilde{\pi}$ are uniform random permutations, so is $\sigma = \pi^{-1} \circ \tilde{\pi}$. For each divisor k of n , consider the rare event that σ decomposes into (n/k) disjoint k -node orbits (i.e., $n_k = n/k$ and all the other n_j 's are zero), which occurs with probability $\frac{1}{(n/k)!k^{n/k}} \geq n^{-n/k}$. These short node orbits create an abundance of short edge orbits, as each pair of distinct k -node orbits can form k different k -edge orbits.² Thus, the following lower bound on the second moment ensues

$$\begin{aligned} \mathbb{E}_{(A, B) \sim \mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] &= \mathbb{E}_{\pi \perp\!\!\!\perp \tilde{\pi}} \left[\prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}}[X_O] \right] \\ &\stackrel{(a)}{\geq} \mathbb{E}[(1 + \rho^{2k})^{\binom{n}{2}k}] \geq n^{-n/k} (1 + \rho^{2k})^{\binom{n}{2}k} \\ (51) \quad &= \exp \left(-\frac{n}{k} \log n + \binom{n/k}{2} k \log(1 + \rho^{2k}) \right), \end{aligned}$$

where (a) holds because $\mathbb{E}_{\mathcal{Q}}[X_O] \geq 1 + \rho^{2k}$ for each k -edge orbit O in both Gaussian ((37)) and Erdős–Rényi models ((38)).

Consequently, for any $k = o(n)$,

$$\rho^{2k} \geq \frac{(2 + \epsilon) \log n}{n} \implies \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] \rightarrow \infty.$$

In particular, the strongest obstruction comes from $k = 1$ (fixed points):

$$\rho^2 \geq \frac{(2 + \epsilon) \log n}{n} \implies \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] \rightarrow \infty.$$

In this case, the culprit is the rare event of π “colliding” with $\tilde{\pi}$ ($\sigma = \text{id}$), which holds with probability $1/n!$ but has an excessive contribution of $(1 + \rho^2)^{\binom{n}{2}}$ to the second moment.

In conclusion, the second moment is susceptible to the influence of short edge orbits, for which $\prod_{|O|=k} X_O$ for small k has a large expectation. Fortunately, it turns out that the

²For example, (12) and (34) can form two edge orbits O_{13} and O_{14} of length 2; these edge orbits will be referred to as Type-M; see Section 5.1 for a full classification of edge orbits.

atypically large magnitude of $\prod_{|O|=k} X_O$ can be attributed to certain rare events associated with the intersection graph $A \wedge B^\pi$ under the planted model \mathcal{P} . This motivates us to condition on some appropriate high-probability event under \mathcal{P} , so that the excessively large magnitude of $\prod_{|O|=k} X_O$ is truncated. As we will see in Section 4, in the dense regime (including the Gaussian Wigner model and dense Erdős–Rényi graphs), it suffices to consider $k = 1$ and regulate $\prod_{|O|=1} X_O$ by conditioning on the edge density for all sufficiently large induced subgraphs of $A \wedge B^\pi$ under \mathcal{P} . In contrast, in the sparse regime, we need to consider all edge orbits up to length $k = \Theta(\log n)$ for which more sophisticated techniques are called for, as we will see in Section 5.

4. Conditional second moment method: Dense regime. In this section, we improve Theorem 3 by applying the conditional second moment method. The proof of the sharp threshold for the Gaussian model is given in full details in Section 4.1. The proof for dense Erdős–Rényi graphs uses similar ideas but is technically more involved and hence deferred to Section 7.3 of the Supplementary Material [42]. We start by describing the general program of conditional second moment method. Note that sometimes certain rare events under \mathcal{P} can cause the second moment to explode, while $\text{TV}(\mathcal{P}, \mathcal{Q})$ remains bounded away from one. To circumvent such catastrophic events, we can compute the second moment conditioned on events that are typical under \mathcal{P} . More precisely, given an event \mathcal{E} such that $\mathcal{P}(\mathcal{E}) = 1 + o(1)$, define the planted model conditional on \mathcal{E} :

$$\mathcal{P}'(A, B, \pi) \triangleq \frac{\mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{P}(\mathcal{E})} = (1 + o(1)) \mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}},$$

the last equality holds because $\mathcal{P}(\mathcal{E}) = 1 + o(1)$. Then the likelihood ratio between the conditioned planted model \mathcal{P}' and the null model \mathcal{Q} is given by

$$\begin{aligned} \frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} &= \frac{\int \mathcal{P}'(A, B, \pi) d\pi}{\mathcal{Q}(A, B)} = (1 + o(1)) \int \frac{\mathcal{P}(\pi) \mathcal{P}(A, B | \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{Q}(A, B)} d\pi \\ &= (1 + o(1)) \mathbb{E}_\pi \left[\frac{\mathcal{P}(A, B | \pi)}{\mathcal{Q}(A, B)} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \right]. \end{aligned}$$

By the same reasoning that led to (35), the conditional second moment is given by

$$\begin{aligned} \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] &= (1 + o(1)) \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\mathbb{E}_{\mathcal{Q}} \left[\frac{\mathcal{P}(A, B | \pi)}{\mathcal{Q}(A, B)} \frac{\mathcal{P}(A, B | \tilde{\pi})}{\mathcal{Q}(A, B)} \right. \right. \\ (52) \quad &\quad \left. \left. \times \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \tilde{\pi}) \in \mathcal{E}\}} \right] \right] \\ &= (1 + o(1)) \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \tilde{\pi}) \in \mathcal{E}\}} \right] \right], \end{aligned}$$

where the last equality follows from the decomposition (34) over edge orbits $O \in \mathcal{O}$ of $\sigma = \pi^{-1} \circ \tilde{\pi}$. Compared to the unconditional second moment in (29), the extra indicators in (52) will be useful for ruling out those rare events causing the second moment to blow up.

We caution the reader that, crucially, the conditioning event \mathcal{E} must be measurable with respect to the observed and the latent variables (A, B, π) . Thus we *cannot* rule out the rare event that π is close to its independent copy $\tilde{\pi}$ so that $\sigma = \pi^{-1} \circ \tilde{\pi}$ induces a proliferation of short edge orbits. Instead, as we will see, by truncating certain rare events associated with the intersection graph $A \wedge B^\pi$, the excessively large magnitude of $\prod_{|O|=k} X_O$ can be regulated for small k .

By the data processing inequality of total variation, we have

$$\text{TV}(\mathcal{P}(A, B), \mathcal{P}'(A, B)) \leq \text{TV}(\mathcal{P}(A, B, \pi), \mathcal{P}'(A, B, \pi)) = \mathcal{P}((A, B, \pi) \notin \mathcal{E}) = o(1).$$

Combining this with the second moment bound (11)–(12) and applying the triangle inequality, we arrive at the following conditions for nondetection:

$$(53) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = O(1) \implies \text{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) \leq 1 - \Omega(1),$$

$$(54) \quad \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = 1 + o(1) \implies \text{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) = o(1).$$

4.1. *Sharp threshold for the Gaussian model.* In this section, we improve over the impossibility condition $\rho^2 \leq \frac{(2-\epsilon)\log n}{n}$ established in Theorem 3, showing that if $\rho^2 \leq \frac{(4-\epsilon)\log n}{n}$, then weak detection is impossible. This completes the impossibility proof of Theorem 2 for the Gaussian model.

Before the rigorous analysis, we first explain the main intuition. Let F denote the set of fixed points of $\sigma = \pi^{-1} \circ \tilde{\pi}$, so that $|F| = n_1$. Let

$$\mathcal{O}_1 = \binom{F}{2},$$

which is a subset of fixed points of the edge permutation (cf. (28)). As argued in Section 3.3, the unconditional second moment blows up when $\rho^2 \geq \frac{(2+\epsilon)\log n}{n}$ due to the obstruction of fixed points of σ , or more precisely, an atypically large magnitude of $\prod_{O \in \mathcal{O}_1} X_O$. By (20) and (30),

$$(55) \quad \begin{aligned} \prod_{O \in \mathcal{O}_1} X_O &= \prod_{i < j \in F} X_{ij} \\ &= (1 - \rho^2)^{-\binom{n_1}{2}} \exp \left\{ \frac{1}{1 - \rho^2} \left(-\rho^2 \sum_{i < j \in F} (A_{ij}^2 + B_{\pi(i)\pi(j)}^2) \right. \right. \\ &\quad \left. \left. + 2\rho \sum_{i < j \in F} A_{ij} B_{\pi(i)\pi(j)} \right) \right\}. \end{aligned}$$

Recall that for any $S \subset [n]$, $e_{A \wedge B^\pi}(S) = \sum_{i < j \in S} A_{ij} B_{\pi(i)\pi(j)}$ as defined in (13). To truncate $\prod_{i < j \in F} X_{ij}$, one natural idea is to condition on the typical value of $e_{A \wedge B^\pi}(F)$ under the planted model \mathcal{P} when $|F| = n_1$ is large. More specifically, for each $S \subset [n]$, define

$$\begin{aligned} \mathcal{E}_S &\triangleq \left\{ (A, B, \pi) : \sum_{i < j \in S} A_{ij}^2 \geq \binom{|S|}{2} - Cn^{3/2}, \sum_{i < j \in S} B_{\pi(i)\pi(j)}^2 \geq \binom{|S|}{2} - Cn^{3/2}, \right. \\ &\quad \left. e_{A \wedge B^\pi}(S) \leq \rho \binom{|S|}{2} + Cn^{3/2} \right\}, \end{aligned}$$

where C is an absolute constant. We will condition on the event

$$(56) \quad \mathcal{E} \triangleq \bigcap_{S \subset [n]: |S| \geq n/2} \mathcal{E}_S,$$

which will be shown to hold with high probability under the planted model \mathcal{P} . Note that here in order to truncate $\prod_{i < j \in F} X_{ij}$, \mathcal{E} is defined as the intersection of \mathcal{E}_S over all subsets S with $|S| \geq n/2$, so that it implies \mathcal{E}_F when $|F| \geq n/2$. The reason that we cannot condition on \mathcal{E}_F directly is because the set of fixed points F depends on $\sigma = \pi^{-1} \circ \tilde{\pi}$ rather than π alone, and thus is not measurable with respect to (A, B, π) .

Let

$$(57) \quad \zeta = \rho \binom{n_1}{2} + Cn^{3/2}.$$

When $n_1 \geq n/2$, we have $\zeta = \rho \binom{n_1}{2} (1 + o(1))$. Furthermore, on the event \mathcal{E} , it follows from (55) and $\rho = o(1)$ that

$$\begin{aligned} \mathbb{E}_{\mathcal{Q}} \left[\prod_{i < j \in F} X_{ij} \mathbf{1}_{\mathcal{E}} \right] &\leq \exp \left\{ -(1 + o(1)) \rho^2 \binom{n_1}{2} \right\} \mathbb{E}_{\mathcal{Q}} \left[\exp \left\{ \frac{2\rho}{1 - \rho^2} e_{A \wedge B^\pi}(F) \right\} \mathbf{1}_{\{e_{A \wedge B^\pi}(F) \leq \zeta\}} \right] \\ &\leq \exp \left\{ \frac{1 + o(1)}{2} \rho^2 \binom{n_1}{2} \right\}, \end{aligned}$$

where the last inequality is by evaluating the truncated MGF of $e_{A \wedge B^\pi}(F)$ (see (59) below). Note that without the truncation $e_{A \wedge B^\pi}(F) \leq \zeta$, we recover the unconditional bound $\mathbb{E}_{\mathcal{Q}}[\prod_{i < j \in F} X_{ij}] = \exp\{(1 + o(1))\rho^2 \binom{n_1}{2}\}$. Thus, the conditional bound improves over the unconditional one by a multiplicative factor of 2 in the exponent.

Finally, to ensure the second moment after conditioning is $1 + o(1)$, analogous to (51), in the extreme case of $n_1 = n$, we need to ensure

$$\frac{1}{n!} \exp \left\{ \frac{1 + o(1)}{2} \rho^2 \binom{n}{2} \right\} = \exp \left\{ -(1 + o(1))n \log n + \frac{1 + o(1)}{4} \rho^2 n^2 \right\} = o(1),$$

which corresponds precisely to the desired condition $\rho^2 \leq \frac{(4-\epsilon) \log n}{n}$.

Next, we proceed to the rigorous proof. As the impossibility of weak detection when $\rho^2 \leq \frac{\log n}{n}$ has already been shown in Theorem 3, henceforth we only need to focus on

$$\frac{\log n}{n} \leq \rho^2 \leq \frac{(4-\epsilon) \log n}{n}.$$

The following lemma proves that \mathcal{E} holds with high probability under the planted model \mathcal{P} .

LEMMA 1. *It holds that $\mathcal{P}((A, B, \pi) \in \mathcal{E}) \geq 1 - e^{-\Omega(n)}$.*

PROOF. Fix an integer $n/2 \leq k \leq n$ and let $m = \binom{k}{2}$. Let $t = c(\sqrt{m \log(1/\delta)} + \log(1/\delta))$, for a universal constant c and a parameter δ to be specified later.

Fix a subset $S \subset [n]$ with $|S| = k$. Using the Hanson–Wright inequality given in Lemma 10 in Section 9 of the Supplementary Material [42], with probability at least $1 - 3\delta$,

$$\begin{aligned} (58) \quad \sum_{i < j \in S} A_{ij}^2 &\geq m - t, \quad \sum_{i < j \in S} B_{\pi(i)\pi(j)}^2 \geq m - t, \\ e_{A \wedge B^\pi}(S) &= \sum_{i < j \in S} A_{ij} B_{\pi(i)\pi(j)} \leq \rho m + t. \end{aligned}$$

Now there are $\binom{n}{k}$ different choices of $S \subset [n]$ with $|S| = k$. Thus by choosing $1/\delta = 2^k \binom{n}{k}$ and applying the union bound, we get that with probability at least $1 - 3 \sum_{k=n/2}^n 2^{-k} = 1 - e^{-\Omega(n)}$, (58) holds uniformly for all $S \subset [n]$ with $|S| = k$ and all $n/2 \leq k \leq n$. By definition and the fact that $k \geq n/2$, $1/\delta \leq 2^k (\frac{en}{k})^k \leq (4e)^k$, and thus $t \leq c(\sqrt{mk \log(4e)} + k \log(4e)) = O(n^{3/2})$. \square

Now let us compute the conditional second moment. By Lemma 1, it follows from (52) that

$$\mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] = (1 + o(1)) \mathbb{E}_{\pi \perp\!\!\!\perp \tilde{\pi}} \left[\mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \tilde{\pi}) \in \mathcal{E}\}} \right] \right].$$

To proceed further, we fix $\pi, \tilde{\pi}$ and separately consider the following two cases.

Case 1: $n_1 \leq n/2$. In this case, we simply drop the indicators and use the unconditional second moment:

$$\mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \tilde{\pi}) \in \mathcal{E}\}} \right] \leq \mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}} X_O \right] = \prod_{O \in \mathcal{O}} \frac{1}{1 - \rho^{2|O|}},$$

where the last equality follows from (37).

Case 2: $n_1 > n/2$. In this case,

$$\begin{aligned} \mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \tilde{\pi}) \in \mathcal{E}\}} \right] &\stackrel{(a)}{\leq} \mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}_F\}} \right] \\ &\stackrel{(b)}{=} \mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}_1} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}_F\}} \right] \prod_{O \notin \mathcal{O}_1} \mathbb{E}_{\mathcal{Q}}[X_O] \\ &\stackrel{(c)}{=} \mathbb{E}_{\mathcal{Q}} \left[\prod_{i < j \in F} X_{ij} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}_F\}} \right] \prod_{O \notin \mathcal{O}_1} \frac{1}{1 - \rho^{2|O|}}, \end{aligned}$$

where (a) is due to the definition (56), $\mathcal{E} \subset \mathcal{E}_F$ when $n_1 \geq n/2$; (b) holds because X_O is a function of $(A_{ij}, B_{\pi(i)\pi(j)})_{(i, j) \in O}$ that are independent across different $O \in \mathcal{O}$, and $\mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}_F\}}$ only depends on $\{(A_{ij}, B_{\pi(i)\pi(j)})_{(i, j) \in O} : O \in \mathcal{O}_1\}$; (c) follows from (37).

On the event \mathcal{E}_F , we have

$$\begin{aligned} \sum_{i < j \in F} A_{ij}^2 &\geq (1 + o(1)) \binom{n_1}{2}, \\ \sum_{i < j \in F} B_{\pi(i)\pi(j)}^2 &\geq (1 + o(1)) \binom{n_1}{2}, \\ e_{A \wedge B^\pi}(F) &\leq (1 + o(1)) \rho \binom{n_1}{2}, \end{aligned}$$

where we used the fact that $n^{3/2} = o(\rho n_1^2)$ in view of assumption $\rho^2 \geq \frac{\log n}{n}$ and $n_1 > n/2$.

It follows from (55) that

$$\begin{aligned} &\mathbb{E}_{\mathcal{Q}} \left[\prod_{i < j \in F} X_{ij} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}_F\}} \right] \\ &= (1 - \rho^2)^{-\binom{n_1}{2}} \mathbb{E}_{\mathcal{Q}} \left[\exp \left\{ \frac{1}{1 - \rho^2} \left(-\rho^2 \sum_{i < j \in F} (A_{ij}^2 + B_{\pi(i)\pi(j)}^2) + 2\rho e_{A \wedge B^\pi}(F) \right) \right\} \right. \\ &\quad \times \left. \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}_F\}} \right] \\ &\leq (1 - \rho^2)^{-\binom{n_1}{2}} \exp \left\{ -\frac{(2 + o(1))\rho^2}{1 - \rho^2} \binom{n_1}{2} \right\} \\ &\quad \times \mathbb{E}_{\mathcal{Q}} \left[\exp \left\{ \frac{2\rho e_{A \wedge B^\pi}(F)}{1 - \rho^2} \right\} \mathbf{1}_{\{e_{A \wedge B^\pi}(F) \leq \zeta\}} \right], \end{aligned}$$

where $e_{A \wedge B^\pi}(F) = \sum_{i < j \in F} A_{ij} B_{\pi(i)\pi(j)}$ and $\zeta = \rho \binom{n_1}{2} (1 + o(1))$.

Let $\beta = \frac{2\rho}{1-\rho^2}$. Then for any $\lambda \in [0, 1]$,

$$\begin{aligned}
 (59) \quad & \mathbb{E}_{\mathcal{Q}} \left[\exp \left\{ \frac{2\rho e_{A \wedge B}(\pi)}{1-\rho^2} \right\} \mathbf{1}_{\{e_{A \wedge B}(\pi) \leq \zeta\}} \right] \\
 & \leq \mathbb{E}_{\mathcal{Q}} [\exp \{ \beta(\lambda e_{A \wedge B}(\pi) + (1-\lambda)\zeta) \}] \\
 & = \exp \left\{ \beta(1-\lambda)\zeta - \frac{1}{2} \binom{n_1}{2} \log(1-\beta^2\lambda^2) \right\},
 \end{aligned}$$

where the equality uses the MGF expression in (24). Choosing³ $\lambda = (1-\rho^2)/2$ in (59), we obtain

$$\exp \left\{ \beta(1-\lambda)\zeta - \frac{1}{2} \binom{n_1}{2} \log(1-\beta^2\lambda^2) \right\} = \exp \left\{ (\beta-\rho)\zeta - \frac{1}{2} \binom{n_1}{2} \log(1-\rho^2) \right\}.$$

Combining the last three displayed equations yields that

$$\begin{aligned}
 & \mathbb{E}_{\mathcal{Q}} \left[\prod_{i < j \in F} X_{ij} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}_F\}} \right] \\
 & \leq \exp \left\{ -\frac{2\rho^2(1+o(1))}{1-\rho^2} \binom{n_1}{2} + (\beta-\rho)\zeta - \frac{3}{2} \binom{n_1}{2} \log(1-\rho^2) \right\} \\
 & = \exp \left\{ \frac{(1+o(1))\rho^2}{2} \binom{n_1}{2} \right\} \leq \exp \left\{ \frac{(1+o(1))\rho^2 n_1^2}{4} \right\},
 \end{aligned}$$

where the equality holds under the assumption that $\rho = o(1)$ so that $\log(1-\rho^2) = -(1+o(1))\rho^2$.

Combining the two cases yields that

$$\begin{aligned}
 \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] & \leq (1+o(1)) \mathbb{E} \left[\prod_{O \in \mathcal{O}} \frac{1}{1-\rho^{2|O|}} \mathbf{1}_{\{n_1 \leq n/2\}} \right] \\
 & \quad + (1+o(1)) \mathbb{E} \left[\prod_{O \notin \mathcal{O}_1} \frac{1}{1-\rho^{2|O|}} \exp \left\{ \frac{(1+o(1))\rho^2 n_1^2}{4} \right\} \mathbf{1}_{\{n_1 > n/2\}} \right].
 \end{aligned}$$

Let $\tau = \frac{\rho^2}{1-\rho^2}$. Note that

$$\begin{aligned}
 \prod_{O \notin \mathcal{O}_1} \frac{1}{1-\rho^{2|O|}} & = \left(\frac{1}{1-\rho^2} \right)^{n_2} \prod_{k \geq 2} \left(\frac{1}{1-\rho^{2k}} \right)^{N_k} = (1+o(1)) \left(\frac{1}{1-\rho^2} \right)^{n_2} \left(\frac{1}{1-\rho^4} \right)^{N_2} \\
 & \leq (1+o(1)) \exp(\tau n_2 + \tau^2 N_2),
 \end{aligned}$$

where the first equality follows from (28), the second equality holds by (43) under the assumption $\rho^2 \leq (4-\epsilon) \log n/n$, and the last inequality holds because $\frac{1}{1-\rho^2} = 1+\tau \leq \exp(\tau)$ and $\frac{1}{1-\rho^4} \leq 1+\tau^2 \leq \exp(\tau^2)$. Similarly,

$$\prod_{O \in \mathcal{O}_1} \frac{1}{1-\rho^{2|O|}} = \left(\frac{1}{1-\rho^2} \right)^{\binom{n_1}{2}} \leq \exp(\tau n_1^2/2).$$

³This choice is motivated by choosing λ to minimize $-\beta\lambda\zeta + \frac{1}{2} \binom{n_1}{2} \beta^2 \lambda^2$, the first-order approximation of the exponent in (59), leading to $\lambda^* = \zeta / [\binom{n_1}{2} \beta] = (1+o(1))(1-\rho^2)/2$.

Hence,

$$\begin{aligned} \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)}\right)^2\right] &\leq (1 + o(1))\mathbb{E}[\exp(\tau(n_1^2/2 + n_2) + \tau^2 N_2)\mathbf{1}_{\{n_1 \leq n/2\}}] \\ &\quad + (1 + o(1))\mathbb{E}\left[\exp(\tau n_2 + \tau^2 N_2)\exp\left\{\frac{(1 + o(1))\rho^2 n_1^2}{4}\right\}\mathbf{1}_{\{n_1 > n/2\}}\right]. \end{aligned}$$

We upper bound the two terms separately. To bound the first term, we apply (48) in Proposition 2 with $\mu = \tau/2$, $\nu = 0$, $a = 0$ and $b = n/2$. Recall that $\tau = \frac{\rho^2}{1-\rho^2}$. By assumption $\rho^2 \leq (4 - \epsilon)\log n/n$, we have $\tau^2 = o(\frac{1}{n})$ and $\mu b + 2 - \log b = \frac{\rho^2 n}{4(1-\rho^2)} + 2 - \log(n/2) \leq 0$ for all sufficiently large n . Thus it follows from (48) in Proposition 2 that

$$\mathbb{E}[\exp(\tau(n_1^2/2 + n_2) + \tau^2 N_2)\mathbf{1}_{\{n_1 \leq n/2\}}] \leq 1 + o(1).$$

To bound the second term, we apply (47) in Proposition 2 with $\mu = \frac{(1+o(1))\rho^2}{4}$, $\nu = 0$, $a = \frac{n}{2}$ and $b = n$. Recall that $\tau = \frac{\rho^2}{1-\rho^2}$. By assumption $n\rho^2 \leq (4 - \epsilon)\log n$, we have $\tau^2 = o(\frac{1}{n})$ and $\mu b + \nu + 2 - \log b = \frac{(1+o(1))\rho^2 n}{4} + 2 - \log n \leq 0$ for sufficiently large n . Thus it follows from (47) in Proposition 2 that

$$\mathbb{E}\left[\exp(\tau n_2 + \tau^2 N_2)\exp\left\{\frac{(1+o(1))\rho^2 n_1^2}{4}\right\}\mathbf{1}_{\{n_1 > n/2\}}\right] = o(1).$$

Combining the upper bounds for the two terms, we conclude that $\mathbb{E}_{\mathcal{Q}}[(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)})^2] = 1 + o(1)$ under the assumption that $\rho^2 \leq (4 - \epsilon)\log n/n$. Thus $\text{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$ in view of (54).

5. Conditional second moment method: Sparse regime. We focus on the Erdős–Rényi model in the sparse regime of $p = n^{-\Omega(1)}$. The impossibility condition previously obtained in Theorem 3 by the unconditional second moment simplifies to $s^2 \leq (2 - \epsilon)\frac{\log n}{n}$. In this section, we significantly improve this result by showing that if

$$(60) \quad s^2 \leq \frac{1 - \omega(n^{-1/3})}{np} \wedge 0.01,$$

then strong detection is impossible. Moreover, if both $s = o(1)$ and (60) hold, then weak detection is impossible.

Analogous to the proof for the dense case in Section 4 (see also Section 7.3 of the Supplementary Material [42]), we will apply the conditional second moment method. However, the argument in the sparse case is much more sophisticated for the following reason. In the dense regime (both the Gaussian and Erdős–Rényi graph with $p = n^{-o(1)}$), we have shown that the main contribution to the second moment is due to fixed points of $\sigma = \pi^{-1} \circ \tilde{\pi}$, which can be regulated by conditioning on the edge density of large induced subgraphs in the intersection graph. For sparse Erdős–Rényi graphs with $p = n^{-\Omega(1)}$, we need to control the contribution of not just fixed points, but all edge orbits of length up to $k = \Theta(\log n)$. Indeed, as argued in Section 3.3, the unconditional second moment blows up when $\rho^{2k} \geq \frac{(2+\epsilon)\log n}{n}$ due to the obstructions from the k -edge orbits, or more precisely, an atypically large magnitude of $\prod_{|O|=k} X_O$. Note that $\rho = \frac{s(1-p)}{1-ps} = (1 + o(1))s$ in the sparse case. Therefore, to show the desired condition (60), we need to regulate $\prod_{|O|=k} X_O$ beyond $k = 1$ by proper conditioning. In fact, for $p = \Theta(1/n)$, since (60) reduces to $\rho \leq 0.1$, it is necessary to control all k up to $\Theta(\log n)$.

To this end, the crucial observation is as follows. We call a given edge orbit O of $\sigma = \pi^{-1} \circ \tilde{\pi}$ *complete* if it is a subgraph of the intersection graph $A \wedge B^\pi$, that is, $O \subset E(A \wedge B^\pi)$.

For each complete orbit O , we have $A_{ij} = B_{\pi(i)\pi(j)} = B_{\tilde{\pi}(i)\tilde{\pi}(j)} = 1$ for all $(i, j) \in O$ and hence, by (21) and (30), $X_{ij} = L(1, 1)^2 = 1/p^2$, so that X_O attains its maximal possible value, namely

$$(61) \quad X_O = \left(\frac{1}{p}\right)^{2|O|}, \quad \forall O \subset E(A \wedge B^\pi).$$

For incomplete orbits, it is not hard to show (see Proposition 4 below) that

$$\mathbb{E}_{\mathcal{Q}}[X_O \mid O \not\subset A \wedge B^\pi] \leq 1.$$

Hence, the key is to control the contribution of complete edge orbits O that are subgraphs of $A \wedge B^\pi$. Crucially, under the assumption of Theorem 2 in the sparse regime, nps^2 is sufficiently small so that $A \wedge B^\pi$ is subcritical and a pseudoforest (each component having at most one cycle) with high probability under the planted model \mathcal{P} . This global structure significantly limits the possible configurations of complete edge orbits, since many patterns of co-occurrence of edge orbits in $A \wedge B^\pi$ are forbidden. Motivated by this observation, we truncate the likelihood ratio by conditioning on the global event that $A \wedge B^\pi$ is a pseudoforest. Finally, in order to show the conditional second moment is bounded under the desired condition (60), we carefully control the co-occurrence of edge orbits in $A \wedge B^\pi$ under the pseudoforest constraint, which involves a delicate enumeration of pseudoforests that can be assembled from edge orbits.

Next, let us proceed to the rigorous analysis. Define

$$\mathcal{E} \triangleq \{(A, B, \pi) : A \wedge B^\pi \text{ is a pseudoforest}\}.$$

Note that $A \wedge B^\pi \sim \mathcal{G}(n, ps^2)$ under the planted model \mathcal{P} . The following result shows that in the subcritical case $A \wedge B^\pi$ is a pseudoforest.

LEMMA 2 ([17], Lemma 2.10). *If $nps^2 \leq 1 - \omega(n^{-1/3})$, then $\mathcal{P}((A, B, \pi) \in \mathcal{E}) \rightarrow 1 - o(\frac{1}{n^3})$ as $n \rightarrow \infty$.*

Recall from (29) and (34) in Section 3.2 the following representation of the squared likelihood ratio

$$(62) \quad \left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^2 = \mathbb{E}_{\pi \perp\!\!\!\perp \tilde{\pi}} \left[\prod_{O \in \mathcal{O}} X_O \right],$$

where for each edge orbit O of $\sigma = \pi^{-1} \circ \tilde{\pi}$,

$$X_O = \prod_{ij \in O} X_{ij}, \quad X_{ij} = L(A_{ij}, B_{\pi(i)\pi(j)})L(A_{ij}, B_{\tilde{\pi}(i)\tilde{\pi}(j)}),$$

with $L(\cdot, \cdot)$ is defined in (21). In order to decompose (62) further, let us introduce the following key definitions. Recall from Section 3.1 that O_i denotes the node-orbit of i (under the node permutation σ) and O_{ij} denotes the edge-orbit of (i, j) (under the edge permutation σ^E). Fix some k to be specified later.

- Define \mathcal{O}_k as the set of edge orbits of length at most k that are formed by node orbits with length at most k , that is,

$$\mathcal{O}_k = \{O_{ij} : |O_i| \leq k, |O_j| \leq k, |O_{ij}| \leq k, 1 \leq i < j \leq n\}.$$

- Define \mathcal{J}_k as the set of edge orbits $O \in \mathcal{O}_k$ that are subgraphs of $A \wedge B^\pi$, that is,

$$\begin{aligned} \mathcal{J}_k &= \{O \in \mathcal{O}_k : A_{ij} = 1, B_{\pi(i)\pi(j)} = 1, \forall (i, j) \in O\} \\ &= \{O \in \mathcal{O}_k : A_{ij} = 1, B_{\tilde{\pi}(i)\tilde{\pi}(j)} = 1, \forall (i, j) \in O\}, \end{aligned}$$

where the second equality holds because $\{B_{\pi(i)\pi(j)}\}_{(i,j) \in O} = \{B_{\tilde{\pi}(i)\tilde{\pi}(j)}\}_{(i,j) \in O}$.

- Define

$$(63) \quad H_k = \bigcup_{O \in \mathcal{J}_k} O.$$

Note that while \mathcal{O}_k depends only on the random permutation $\sigma = \pi^{-1} \circ \tilde{\pi}$, both \mathcal{J}_k and H_k depend in addition on the random graph $A \wedge B^\pi$.

As will be discussed at length in Section 5.1, each edge orbit can be viewed as a subgraph of the complete graph K_n . Different edge orbits are by definition edge disjoint, and the union of all edge orbits is the edge set of K_n . We shall call a graph an *orbit graph* if it is union of edge orbits. Importantly, by definition, the orbit graph H_k is a subgraph of $A \wedge B^\pi$.

To compute the conditional second moment, by Lemma 2, it follows from (52) that

$$(64) \quad \begin{aligned} \mathbb{E}_Q \left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] &= (1 + o(1)) \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\mathbb{E}_Q \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \tilde{\pi}) \in \mathcal{E}\}} \right] \right] \\ &\leq (1 + o(1)) \mathbb{E}_{\pi \perp \tilde{\pi}} \left[\mathbb{E}_Q \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{H_k \text{ is a pseudoforest}\}} \right] \right], \end{aligned}$$

where the last inequality holds because on the event that $A \wedge B^\pi$ is a pseudoforest, its subgraph H_k is also one.

To further upper bound the right-hand side of (64), we decompose the product over edge orbits into three terms:

$$\prod_{O \in \mathcal{O}} X_O = \prod_{O \notin \mathcal{O}_k} X_O \times \prod_{O \in \mathcal{O}_k \setminus \mathcal{J}_k} X_O \times \prod_{O \in \mathcal{J}_k} X_O$$

which correspond to the contributions of *long orbits*, *short incomplete orbits* (that are not subgraphs of $A \wedge B^\pi$) and *short complete orbits* (that are subgraphs), respectively. As shown earlier in (61), for each complete edge orbit O , we have $X_O = (1/p)^{2|O|}$. Therefore in view of (63), the collective contribution of short complete orbits are

$$(65) \quad \prod_{O \in \mathcal{J}_k} X_O = \left(\frac{1}{p} \right)^{2e(H_k)}.$$

Thus, fixing $\sigma = \pi^{-1} \circ \tilde{\pi}$, we have

$$(66) \quad \begin{aligned} &\mathbb{E}_Q \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{H_k \text{ is a pseudoforest}\}} \right] \\ &= \mathbb{E}_Q \left[\prod_{O \notin \mathcal{O}_k} X_O \right] \mathbb{E}_Q \left[\prod_{O \in \mathcal{O}_k} X_O \mathbf{1}_{\{H_k \text{ is a pseudoforest}\}} \right] \\ &= \mathbb{E}_Q \left[\prod_{O \notin \mathcal{O}_k} X_O \right] \mathbb{E}_{\mathcal{J}_k} \left[\left(\frac{1}{p} \right)^{2e(H_k)} \mathbf{1}_{\{H_k \text{ is a pseudoforest}\}} \mathbb{E}_Q \left[\prod_{O \in \mathcal{O}_k \setminus \mathcal{J}_k} X_O \mid \mathcal{J}_k \right] \right], \end{aligned}$$

where the first equality holds because $\{X_O\}_{O \in \mathcal{O}}$ are mutually independent and $\mathcal{J}_k \subset \mathcal{O}_k$, so that $\{X_O\}_{O \in \mathcal{O} \setminus \mathcal{O}_k}$ is independent of $\{X_O\}_{O \in \mathcal{O}_k}$ and the event that H_k is a pseudoforest; the second equality holds because H_k is measurable with respect to \mathcal{J}_k .

The contributions of long orbits and incomplete orbits can be readily bounded as follows, whose proofs are deferred to Sections 8.1 and 8.2 of the Supplementary Material [42].

PROPOSITION 3 (Long orbits). *Fix any $\sigma = \pi^{-1} \circ \tilde{\pi}$. For any $k \in \mathbb{N}$,*

$$\mathbb{E}_Q \left[\prod_{O \in \mathcal{O} \setminus \mathcal{O}_k} X_O \right] \leq (1 + \rho^k)^{\frac{n^2}{k}}.$$

PROPOSITION 4 (Incomplete orbits). *Fix any $\sigma = \pi^{-1} \circ \tilde{\pi}$. If $p \leq 1/2$ and $s \leq 1/2$, then*

$$\mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}_k \setminus \mathcal{J}_k} X_O | \mathcal{J}_k \right] \leq 1.$$

Applying Proposition 3 and Proposition 4 to (66), we get that for any $\sigma = \pi^{-1} \circ \tilde{\pi}$,

$$(67) \quad \mathbb{E}_{\mathcal{Q}} \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{H_k \text{ is a pseudoforest}\}} \right] \leq (1 + \rho^k)^{\frac{n^2}{k}} \mathbb{E}_{\mathcal{J}_k} \left[\left(\frac{1}{p} \right)^{2e(H_k)} \mathbf{1}_{\{H_k \text{ is a pseudoforest}\}} \right].$$

It remains to further upper bound the RHS of (67). Let \mathcal{H}_k denote the set of all orbit graphs that consist of edge orbits in \mathcal{O}_k and are pseudoforests—we call such graphs *orbit pseudoforests*. As such \mathcal{H}_k depends only on σ but not the graph A and B . Therefore,

$$(68) \quad \begin{aligned} \mathbb{E}_{\mathcal{J}_k} \left[\left(\frac{1}{p} \right)^{2e(H_k)} \mathbf{1}_{\{H_k \text{ is a pseudoforest}\}} \right] &= \sum_{H \in \mathcal{H}_k} \mathcal{Q}(H_k = H) \left(\frac{1}{p} \right)^{2e(H)} \mathbf{1}_{\{H \text{ is a pseudoforest}\}} \\ &\leq \sum_{H \in \mathcal{H}_k} s^{2e(H)}, \end{aligned}$$

where the last step holds because

$$\mathcal{Q}(H_k = H) \leq \mathcal{Q}(A_{ij} = 1, B_{\pi(i)\pi(j)} = 1, \forall (i, j) \in E(H)) = (ps)^{2e(H)}.$$

In view of (68), to further upper bound the second moment, it boils down to bounding the generating function of the class \mathcal{H}_k of orbit pseudoforests. This is done in the following theorem in terms of the cycle type of σ . The proof involves a delicate enumeration of orbit pseudoforests, which constitutes the most crucial part of the analysis. We note that if we ignore the orbit structure and treat \mathcal{H}_k as arbitrary pseudoforests, the resulting bound will be too crude to be useful.

THEOREM 4 (Generating function of orbit pseudoforests). *For any $k \in \mathbb{N}$, $\sigma = \pi^{-1} \circ \tilde{\pi}$, and any $s \in [0, 1]$,*

$$(69) \quad \sum_{H \in \mathcal{H}_k} s^{2e(H)} \leq \prod_{m=1}^k \left(1 + s^m n_m \mathbf{1}_{\{m:\text{even}\}} + 2s^{2m} \sum_{\ell=1}^m \ell n_{\ell} + s^{4m} m n_{2m} \mathbf{1}_{\{2m \leq k\}} \right)^{n_m},$$

where n_m is the number of m -node orbits in $\sigma = \pi^{-1} \circ \tilde{\pi}$ for $1 \leq m \leq k$.

Combining (64), (67), (68) and (69), we get that

$$(70) \quad \begin{aligned} \mathbb{E}_{\mathcal{Q}} \left[\left(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)} \right)^2 \right] \\ \leq (1 + o(1))(1 + \rho^k)^{\frac{n^2}{k}} \mathbb{E}_{\pi \perp \!\!\! \perp \tilde{\pi}} \left[\prod_{m=1}^k \left(1 + s^m n_m \mathbf{1}_{\{m:\text{even}\}} \right)^{n_m} \right. \\ \left. + 2s^{2m} \sum_{\ell \leq m} \ell n_{\ell} + s^{4m} m n_{2m} \mathbf{1}_{\{2m \leq k\}} \right)^{n_m} \right], \end{aligned}$$

which is further bounded by the next result.

PROPOSITION 5. Suppose $k(\log k)^4 = o(n)$. If $s \leq 0.1$,

$$(71) \quad \mathbb{E}_{\pi \perp\!\!\!\perp \tilde{\pi}} \left[\prod_{m=1}^k \left(1 + s^m n_m \mathbf{1}_{\{m:\text{even}\}} + 2s^{2m} \sum_{\ell \leq m} \ell n_\ell + s^{4m} m n_{2m} \mathbf{1}_{\{2m \leq k\}} \right)^{n_m} \right] = O(1).$$

Furthermore, if $s = o(1)$,

$$(72) \quad \mathbb{E}_{\pi \perp\!\!\!\perp \tilde{\pi}} \left[\prod_{\ell=m}^k \left(1 + s^m n_m \mathbf{1}_{\{m:\text{even}\}} + 2s^{2m} \sum_{\ell \leq m} \ell n_\ell + s^{4m} m n_{2m} \mathbf{1}_{\{2m \leq k\}} \right)^{n_m} \right] = 1 + o(1).$$

The proof of Proposition 5 is involved and deferred to Section 8.3 of the Supplementary Material [42]. To provide some concrete ideas, the following simple calculation shows that $s = o(1)$ is necessary for (72) to hold. Indeed, consider $k = 1$ for which the LHS reduces to $\mathbb{E}[(1 + 2s^2 n_1)^{n_1}]$. By Poisson approximation (see Section 10 of the Supplementary Material [42]), replacing n_1 by $\text{Poi}(1)$ yields

$$\mathbb{E}[(1 + 2s^2 n_1)^{n_1}] \approx e^{-1} \sum_{a=0}^{\infty} (1 + 2s^2 a)^a \frac{1}{a!} \geq e^{-1} \sum_{a=0}^{\infty} (1 + 2s^2)^a \frac{1}{a!} = e^{2s^2},$$

which is $1 + o(1)$ if and only if $s = o(1)$. To evaluate the full expectation in (72), note that even if we use Poisson approximation to replace n_m 's by independent Poissons, the terms inside the product over $[k]$ are still dependent. To this end, we carefully partition the product into disjoint parts, and recursively peeling off the expectation backwards.

We are now ready to complete the proof of Theorem 2 in the sparse case.

PROOF OF THEOREM 2: IMPOSSIBILITY RESULT IN SPARSE REGIME. Let $k = 3 \log n$. If $s \leq \frac{1}{2}$, then $\frac{n^2 s^k}{k} = o(1)$ and thus

$$(1 + \rho^k)^{\frac{n^2}{k}} \leq \exp\left(\frac{n^2 \rho^k}{k}\right) \leq \exp\left(\frac{n^2 s^k}{k}\right) = 1 + o(1).$$

Note that $k(\log k)^4 = o(n)$. Combining (70) with (71) and (72) yields that $\mathbb{E}_{\mathcal{Q}}[(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)})^2] = O(1)$ for $s \leq 0.1$ and $\mathbb{E}_{\mathcal{Q}}[(\frac{\mathcal{P}'(A, B)}{\mathcal{Q}(A, B)})^2] = 1 + o(1)$ for $s = o(1)$, which completes the proof in view of (53) and (54). \square

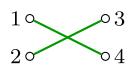
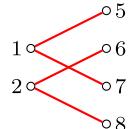
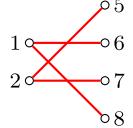
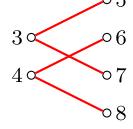
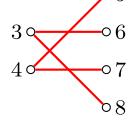
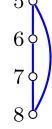
The remainder of this section is organized as follows. To prepare for the proof of Theorem 4, we study the graph structure and the classification of edge orbits in Section 5.1. An equivalent representation of orbit graphs as backbone graphs is given in Section 5.2 to aid the enumeration argument. As a warm-up, we first enumerate orbit forests (orbit graphs that are forests) and bound their generating function in Section 5.3. The more challenging case of orbit pseudoforests is tackled in Section 5.4, completing the proof of Theorem 4. Section 8 of the Supplementary Material [42] contains the proofs of Propositions 3–5.

5.1. *Classification of edge orbits.* To prove Theorem 4, we are interested in orbit graphs consisting of short edge orbits, and the main task lies in enumerating those that are pseudo-forests. To this end, we need to understand the graph structure of edge orbits.

Throughout this subsection, fix a node permutation σ . For a given edge (i, j) , its edge orbit can be viewed as a graph with vertex set $O_i \cup O_j$ and edge set O_{ij} . Let $|O_i| = \ell$ and $|O_j| = m$. Each edge orbit can be classified into the following four categories (see Table 2 for a concrete example).

TABLE 2

Edge orbits corresponding to the node permutation $\sigma = (12)(34)(5678)$. When representing an edge orbit in cycle notation, each edge (i, j) is abbreviated as ij . As a convention, nodes in each node orbit are vertically aligned and arranged in the order of the permutation σ . For edge orbits, type M are in green, type B in red, type C in blue and type S in black

Type	Edge orbit	Orbit graph
M	(13,24)	
	(14,23)	
B	(15,26,17,28)	
	(16,27,18,25)	
	(35,46,37,48)	
C	(36,47,38,45)	
	(56,67,78,85)	
	(12)	
S	(34)	
	(57,68)	

Type M (Matching): i and j belong to different node orbits of the same length. In this case, $|O_{ij}| = m$ and O_{ij} is a perfect matching. We call such O_{ij} an M_m edge orbit (or a *matching*). Furthermore, for two distinct node orbits O and O' of length m , the total number of possible M_m edge orbit is m .

Type B (Bridge): i and j belong to different node orbits of different lengths. Without loss of generality, assume that the orbit of i is shorter than that of j , that is, $\ell < m$. In this case, let $M = \text{lcm}(\ell, m)$. Then $|O_{ij}| = M$ and O_{ij} consists of $\frac{\ell m}{M}$ vertex-disjoint copies of the complete bipartite graphs $K_{M/\ell, M/m}$. We call such edge orbit a $B_{m,\ell}$ edge orbit (or a *bridge*). Furthermore, for two node orbits O and O' with $|O| = \ell < |O'| = m$, the total number of possible bridges is $\frac{\ell m}{M}$.

Of special interest is the case where ℓ is a divisor of m and the orbit is $\ell K_{1, \frac{m}{\ell}}$ (i.e., ℓ copies of $\frac{m}{\ell}$ -stars). These are the only bridges that are cycle-free; otherwise the bridge contains a component with *at least two* cycles. This observation is useful for the enumeration argument in Sections 5.3 and 5.4 under constraints on the number of cycles.

Type C (Cycle): i and j belong to the same node orbit of length m and $j \neq \sigma^{m/2}(i)$. In this case, $|O_{ij}| = m$ and O_{ij} is an m -cycle. We call such O_{ij} a C_m edge orbit (or a *cycle*), and there are a total number $\lfloor \frac{m-1}{2} \rfloor$ of them for the same node orbit.

Type S (Split): i and j belong to the same node orbit (of even length m) and $j = \sigma^{m/2}(i)$. In this case, $|O_{ij}| = m/2$ and O_{ij} is a perfect matching. We call such O_{ij} an S_m edge orbit (or a *split*). Clearly, for each node orbit of even length, there is a unique way for it to split into an S_m edge orbit.

In summary, matchings and bridges are edge orbits formed by two distinct node orbits, which are bipartite graphs with vertex sets O_i and O_j . Cycles and splits are edge orbits formed by a single node orbit O_i , which can either form a full cycle or split into a perfect matching.

5.2. Orbit graph and backbone graph. Every orbit graph H can be equivalently and succinctly represented as a *backbone* graph Γ defined as follows.

DEFINITION 2 (Backbone graph). Given an orbit graph H , its *backbone* graph is an undirected labeled multigraph, whose nodes and edges (referred to as *giant nodes* and *giant edges*) correspond to node orbits and edge orbits in H , respectively. Each giant node carries a binary label (represented as shaded or nonshaded) indicating whether the node orbit forms a Type S edge orbit (split) or not. Each giant edge carries a label (an integer) encoding the specific realization of the edge orbit. Specially:

- A Type S edge orbit (split) is represented by a shaded giant node.
- A Type C_m edge orbit (cycle) is represented by a self-loop, whose edge label takes values in $\lfloor \frac{m-1}{2} \rfloor$.
- A Type M_m edge orbit (matching) is represented by a giant edge between two m -node orbits, with edge label taking values in $[m]$.
- A Type $B_{m,\ell}$ edge orbit (bridge) is represented by a giant edge between a ℓ -node orbit and a m -node orbit ($\ell < m$), with edge label taking values in $\lfloor \frac{\ell m}{\text{lcm}(\ell, m)} \rfloor$.

See Figure 2 for an example of an orbit graph and its corresponding backbone graph. As a convention, for the backbone graph, the labeled giant edges representing Type M, Type B and Type C edge orbits are colored green, red and blue, respectively. Each shaded giant node represents a Type S edge orbit. For convenience, the number inside each giant node represents the length of its corresponding node orbit.

Recall that \mathcal{H}_k denotes the collection of orbit pseudoforests consisting of edge orbits of length at most k formed by node orbits of size at most k . To enumerate $H \in \mathcal{H}_k$, it is equivalent to enumerating the corresponding backbone graph Γ . To facilitate the enumeration, we introduce the following definitions:

- Let S_m denote the set of giant nodes corresponding to m -node orbits.

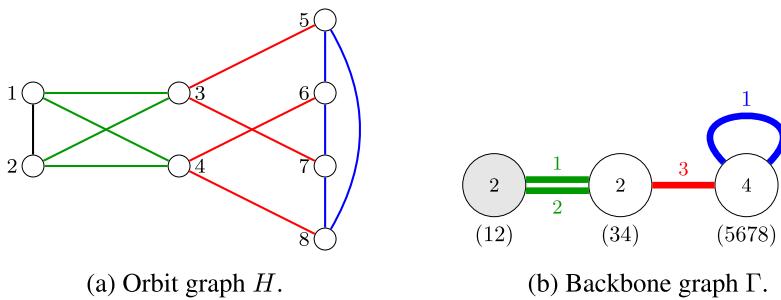


FIG. 2. Example of an orbit graph and its corresponding backbone graph for $\sigma = (12)(34)(5678)$. The labels of giant edges are determined based on the enumeration of edge orbits in Table 2. For instance, the two green giant edges correspond to the two Type M (perfect matchings) between node orbits (12) and (34) , and the red giant edge corresponds to the Type B edge orbits (bridge) between node orbits (34) and (5678) .

- Let $\Gamma_m = \Gamma[S_m]$ denote the subgraph of Γ induced by node set S_m for $1 \leq m \leq k$. Let $\Gamma_{m,\ell} = \Gamma[S_m, S_\ell]$ denote the (bipartite) subgraph of Γ induced by edges between S_m and S_ℓ , for $1 \leq \ell < m \leq k$. Each giant edge in $\Gamma_{m,\ell}$ corresponds to a $B_{m,\ell}$ edge orbit (bridge).
- A connected component of Γ_m is called *plain* if it contains no split and is not incident to any bridge in $\bigcup_{\ell < m} \Gamma_{m,\ell}$.

Following [22], page 112, we define the *excess* of a graph G , denoted by $\text{ex}(G)$, as its number of edges minus its number of nodes. Given a connected component C in Γ_m , let H_C denote the orbit graph consisting of edge orbits (including splits, matchings and cycles) in C , as well as bridges in $\bigcup_{\ell < m} \Gamma_{m,\ell}$ that are incident to C . The following two operations can be recursively applied to C to increase $\text{ex}(H_C)$:

- (O1) Adding one split in C increases $\text{ex}(H_C)$ by $m/2$;
- (O2) Adding one $B_{m,\ell}$ bridge ($\ell < m$) to C increases $\text{ex}(H_C)$ by at least $\text{lcm}(\ell, m) - \ell$.

In addition, we need the following fact about the excess of an orbit graph:

LEMMA 3. For any connected component C in Γ_m , $\text{ex}(H_C) \geq -m$, where the equality holds if and only if C is a plain tree component in Γ_m .

PROOF. Given a connected component C in Γ_m , let a and b denote the total number of giant edges and giant nodes in C , respectively. If C is a plain tree component, we have $a + 1 = b$. Since each giant edge in Γ_m represents an m -edge orbit, and each giant node represents an m -node orbit, we have $\text{ex}(H_C) = am - bm = -m$. By (O1), (O2), and the fact that adding one self-loop in C increases $\text{ex}(H_C)$ by m , we have $\text{ex}(H_C) \geq -m$, where the equality holds if and only if C does not contain any split or self-loop and is not incident to any bridge in $\bigcup_{\ell < m} B_{m,\ell}$ that is, C is a plain tree component in Γ_m . \square

As we will see next, the pseudoforest (forest) constraint of H restricts the possible configurations of Γ_m and forbids certain operations on its components (which would otherwise generate too many cycles).

5.3. *Warm-up: Generating function of orbit forests.* Fix $\sigma = \pi^{-1} \circ \tilde{\pi}$ and recall that n_m denotes the number of m -node orbits in σ . Our enumeration scheme crucially exploits the classification of edge orbits and orbit graphs in Section 5.1 and the representation of orbit graphs as backbone graphs introduced in Section 5.2. As a warm-up, in this section we bound

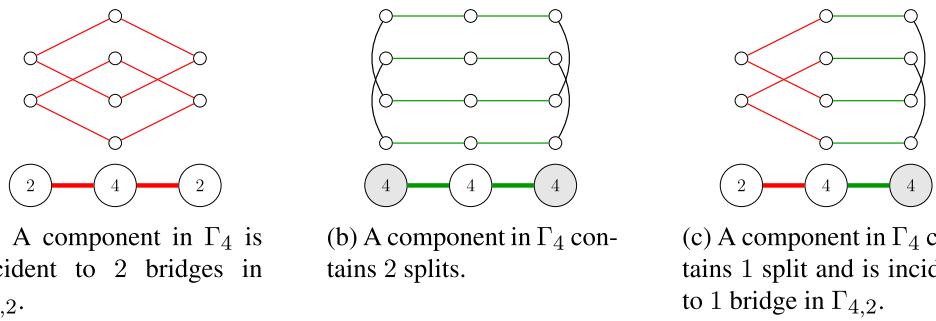


FIG. 3. Examples of backbone graphs violating (T4), whose corresponding orbit graphs contain cycles.

the generating function of orbit forests, which is much simpler than orbit pseudoforests. Restricting the summation to the set \mathcal{F}_k of orbit forests, a strict subset of \mathcal{H}_k , we show the following improved version of (69):

$$(73) \quad \sum_{H \in \mathcal{F}_k} s^{2e(H)} \leq \prod_{1 \leq m \leq k} \left(1 + s^m \mathbf{1}_{\{m: \text{even}\}} + s^{2m} \sum_{\ell \leq m} \ell n_\ell \right)^{n_m}.$$

When the orbit graph H is a forest, its corresponding backbone graph Γ must satisfy the following four conditions:

- (T1) For each $1 \leq m \leq k$, Γ_m is a forest with simple edges (of multiplicity 1);
- (T2) For each $1 \leq \ell < m \leq k$, $\Gamma_{m,\ell}$ is empty unless ℓ is a divisor of m ;
- (T3) There is no self-loop;
- (T4) For each $1 \leq m \leq k$, each component of Γ_m either contains at most 1 split or is incident to at most 1 bridge in $\bigcup_{\ell < m} \Gamma_{m,\ell}$, but not both.

Otherwise, H contains at least one cycle. Indeed, (T1)–(T3) can be readily verified based on the classification of edge orbits and orbit graphs in Section 5.1. Suppose the condition in (T4) does not hold. Then by (O1), (O2) and Lemma 3, there exists a component C in Γ_m such that $\text{ex}(H_C) \geq 0$, contradicting H being a forest. See Figure 3 for an illustration of forbidden patterns that violate (T4) for $m = 4$ and $\ell = 2$.

Next, we describe an algorithm for generating all possible backbone graphs Γ that satisfy the aforementioned conditions (T1)–(T4). Given a sequence of integers $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (a_m, b_m, c_m)_{1 \leq m \leq k}$ with $b_m = 0$ for odd m , we construct Γ in Algorithm 1.

We claim that any orbit forest can be generated by Algorithm 1. To verify this claim formally, let H be an orbit forest and Γ denote the its corresponding backbone graph in Definition 2, which, for $1 \leq m \leq k$, contains:

- a_m matchings corresponding to Type M_m edge orbits;

Algorithm 1 Forest enumeration algorithm

- 1: **for** each $t = 1, \dots, k$ **do**
- 2: **Step 1: Matching stage.** Construct a rooted forest Γ_t with n_t giant nodes and a_t giant edges; Attach a label from $[t]$ to each giant edge;
- 3: **Step 2: Splitting stage.** Choose b_t components from $n_t - a_t$ tree components of Γ_t , and within each chosen component, add a split to the root;
- 4: **Step 3: Bridging stage.** Choose c_t out of the remaining $n_t - a_t - b_t$ tree components of Γ_t , and for each chosen component, add a bridge connecting its root to a giant node in Γ_ℓ for some $\ell < t$ that is a divisor of t . Attach a label from $[\ell]$ to the added bridge.
- 5: **end for**

- b_m splits corresponding to Type S_m edge orbits;
- c_m bridges corresponding to Type $B_{m,\ell}$ edge orbits for some $\ell < m$ that is a divisor of m .

For each Γ_m , we arbitrarily choose the root for each plain tree component, and specify the root in each nonplain tree component as the *unique* giant node that either splits or is incident to a bridge in $\bigcup_{\ell < m} \Gamma_{m,\ell}$. Then clearly Steps 1–3 can realize any configuration of matchings, splits and bridges in Γ , thanks to the properties (T1)–(T4).

Note that the total number of edges in the corresponding orbit forest H is determined by the input parameter $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ as

$$\sum_{m=1}^k [m(a_m + c_m) + mb_m/2].$$

To enumerate the orbit forests, it suffices to count all possible output backbone graphs Γ of Algorithm 1 as follows. For $t = 1, \dots, k$:

1. It is well known that the total number of rooted forests on n vertices with a edges is

$$(74) \quad \binom{n-1}{a} n^a$$

(see e.g., [16], II.18, p. 128). Moreover, each giant edge added in Step 1 has t possible labels. Therefore, the total number of rooted *backbone* graphs Γ_t is at most

$$(75) \quad \binom{n_t - 1}{a_t} (tn_t)^{a_t} \leq \binom{n_t}{a_t} (tn_t)^{a_t}.$$

2. The total number of ways of placing b_t splits is at most

$$(76) \quad \binom{n_t - a_t}{b_t}.$$

3. The total number of ways of placing c_t bridges is at most

$$(77) \quad \binom{n_t - a_t - b_t}{c_t} \left(\sum_{\ell < t} \ell n_\ell \right)^{c_t}.$$

Note that we could further restrict the summation over ℓ to divisors of t and get a tighter upper bound, but this is not needed for the main results.

Combining (75), (76) and (77), we get that the total number of output backbone graphs Γ with input parameter $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ is at most

$$(78) \quad \prod_{1 \leq t \leq k} \mathbf{1}_{\{b_t=0 \text{ for odd } t\}} \binom{n_t}{a_t, b_t, c_t} (tn_t)^{a_t} \left(\sum_{\ell < t} \ell n_\ell \right)^{c_t}.$$

Then the desired (73) readily follows from

$$\begin{aligned} \sum_{H \in \mathcal{F}_k} s^{2e(H)} &\leq \sum_{\mathbf{a}, \mathbf{b}, \mathbf{c}} \prod_{1 \leq t \leq k} \mathbf{1}_{\{b_t=0 \text{ for odd } t\}} \binom{n_t}{a_t, b_t, c_t} (tn_t)^{a_t} \left(\sum_{\ell < t} \ell n_\ell \right)^{c_t} s^{2ta_t + tb_t + 2tc_t} \\ &\leq \prod_{1 \leq t \leq k} \left(1 + s^t \mathbf{1}_{\{t: \text{even}\}} + s^{2t} \sum_{\ell \leq t} \ell n_\ell \right)^{n_t}. \end{aligned}$$

5.4. Proof of Theorem 4: Generating function of orbit pseudoforests. Fix $\sigma = \pi^{-1} \circ \tilde{\pi}$ and recall n_m denotes the number of m -node orbits in σ . In this section we bound the generating function (68) of orbit pseudoforests $H \in \mathcal{H}_k$ and prove Theorem 4. Recall that each orbit graph H can be equivalently represented as a backbone graph Γ as in Definition 2. In addition, we need the following vocabularies: For $1 \leq m \leq k$ and each $u \in S_m$, let $C(u)$ denote the connected component in Γ_m containing u .

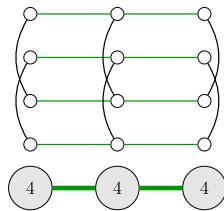
Similar to the reasoning in Section 5.3, when H is a pseudoforest, its backbone graph Γ must satisfy the following properties:

- (P1) For each $1 \leq m \leq k$, Γ_m is a pseudoforest (with self-loops and parallel edges counted as cycles);
- (P2) For each $1 \leq \ell < m \leq k$, $\Gamma_{m,\ell}$ is empty unless ℓ is a divisor of m .
- (P3) Each unicyclic component of Γ_m is plain.
- (P4) A tree component in Γ_m contains at most two splits.
- (P5) Let $(u, v) \in \Gamma_{m,\ell_1}$ and $(u', v') \in \Gamma_{m,\ell_2}$ be two bridges with $\ell_1, \ell_2 < m$, such that u and u' belong to the same tree component in Γ_m . Then m must be even and $\ell_1 = \ell_2 = m/2$.
- (P6) Let $(u, v) \in \Gamma_{m,\ell}$ be a bridge with $\ell < m$ such that u belongs to a tree component that contains a split in Γ_m . Then m must be even and $\ell = m/2$. Furthermore, v must belong to a plain tree component in $\Gamma_{m/2}$.
- (P7) For each (u, v) and (u', v') that satisfy either (P5) or (P6) where $v \neq v'$, the ending points v and v' must belong to distinct plain tree components in $\Gamma_{m/2}$.

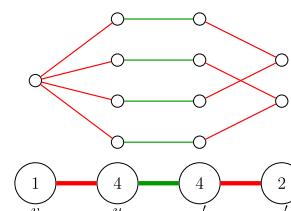
Otherwise, H contains a component with at least two cycles, violating the pseudoforest constraint. See Figure 4–Figure 6 for illustrations of forbidden patterns that violate (P4)–(P7).

Properties (P1)–(P7) are justified by the following arguments:

- Paralleling conditions (T1) and (T2) for the forest constraint, (P1) and (P2) follow from the classification of edge orbits and orbit graphs in Section 5.1;
- Suppose (P3) does not hold. Since the excess of the corresponding orbit graph of a plain unicyclic component in Γ_m is 0, by (O1) and (O2), there exists a unicyclic component component C in Γ_m such that $\text{ex}(H_C) > 0$, contradicting H being a pseudo-forest;
- Suppose (P4) does not hold. Then by (O1) and Lemma 3, there exists a tree component component C in Γ_m such that $\text{ex}(H_C) > 0$, contradicting H being a pseudo-forest;
- Suppose (P5) does not hold. Then by (O2) and Lemma 3, there exists a tree component component C in Γ_m such that $\text{ex}(H_C) > 0$, contradicting H being a pseudo-forest;
- To prove (P6), let G_1 denote the orbit graph of $C(u)$ consisting of edge orbits (including splits, matchings, and cycles). Let G_2 denote the orbit graph of $C(v)$ consisting of edge orbits (including splits, matchings, and cycles) in $C(v)$, as well as bridges in $\bigcup_{\ell < m/2} \Gamma_{m/2,\ell}$



(a) A component in Γ_4 contains 3 splits.



(b) A component in Γ_4 is incident to a bridge $(u, v) \in \Gamma_{4,1}$ and a bridge $(u', v') \in \Gamma_{4,2}$.

FIG. 4. Examples of backbone graphs violating (P4) and (P5), shown in (a) and (b), respectively, and the corresponding orbit graphs.

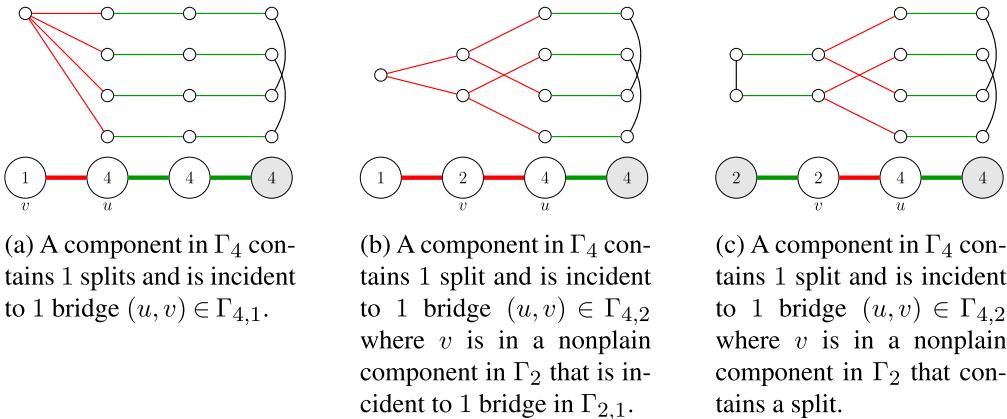


FIG. 5. Examples of backbone graphs violating (P6) and the corresponding orbit graphs.

that are incident to $C(v)$. Let G_{new} denote the edge-disjoint union of G_1 , G_2 , and the edge orbit corresponding to the bridge (u, v) . Since $C(u)$ contains a split, by (O1) and Lemma 3, $\text{ex}(G_1) \geq -m/2$. Then we have

$$\text{ex}(G_{\text{new}}) = \text{ex}(G_1) + \text{ex}(G_2) + m \geq \text{ex}(G_2) + m/2 \geq 0,$$

where the last inequality is met with equality if and only if $C(v)$ is a plain tree component in $\Gamma_{m/2}$ by Lemma 3. Hence, (P6) follows.

- To prove (P7), let $C = C(u) \cup C(u')$. Let G_1 denote the orbit graph of C consisting of edge orbits (including splits, matchings and cycles), as well as bridges in $\bigcup_{\ell < m} \Gamma_{m,\ell}$ except for (u, v) and (u', v') that are incident to C . If $C(u) = C(u')$, then $\text{ex}(G_1) \geq -m$ by Lemma 3. If $C(u) \neq C(u')$, then G_1 is an edge-disjoint union of H_1 and H'_1 , where

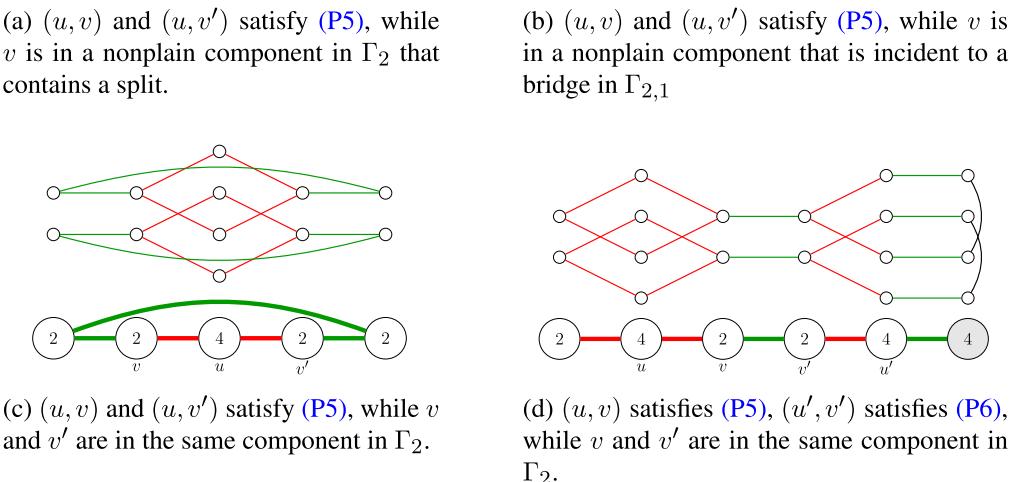


FIG. 6. Examples of backbone graphs violating (P7) and the corresponding orbit graphs.

H_1 (resp. H'_1) is the orbit graph of $C(u)$ (resp. $C(u')$) consisting of edge orbits (including splits, matchings and cycles) in $C(u)$ (resp. $C(u')$), as well as bridges in $\bigcup_{\ell < m} \Gamma_{m,\ell}$ except for (u, v) (resp. (u', v')) that are incident to $C(u)$ (resp. $C(u')$). By assumption, together with (O1), (O2) and Lemma 3, $\text{ex}(H_1) \geq -m/2$ and $\text{ex}(H'_1) \geq -m/2$ and thus $\text{ex}(G_1) \geq \text{ex}(H_1) + \text{ex}(H'_1) \geq -m$.

Let $C' = C(v) \cup C(v')$. Note that by (P5) and (P6), both $C(v)$ and $C(v')$ are components in $\Gamma_{m/2}$. Let G_2 denote the orbit graph of C' consisting of edge orbits (including splits, matchings and cycles) in C' , as well as bridges in $\bigcup_{\ell < m/2} \Gamma_{m/2,\ell}$ that are incident to C' . Let G_{new} denote the edge-disjoint union of G_1 , G_2 , and the edge orbits corresponding to the two bridges (u, v) and (u', v') . Then,

$$\text{ex}(G_{\text{new}}) \geq \text{ex}(G_1) + \text{ex}(G_2) + 2m \geq -m + \text{ex}(G_2) + 2m = \text{ex}(G_2) + m.$$

By assumption, G_{new} is a pseudo-forest and thus $\text{ex}(G_{\text{new}}) \leq 0$. It follows that $\text{ex}(G_2) \leq -m$ and hence v and v' must be in distinct plain tree components in $\Gamma_{m/2}$ by Lemma 3.

The implication of (P4)-(P7) is the following. For each $m \in [k]$, define

$$\mathcal{E}(m) \triangleq \bigcup_{\ell < m} E(\Gamma_{m,\ell})$$

consisting of all bridges between m -node orbits and shorter orbits. Then $\mathcal{E}(m)$ can be divided into two sets of bridges as follows. For each $u \in S_m$, recall that $C(u)$ denotes the connected component in Γ_m containing u . A bridge is denoted by a giant edge $(u, v) \in \Gamma_{m,\ell}$ with $\ell < m$, where $u \in S_m$ in the longer orbit is called the *starting point* and $v \in S_\ell$ in the shorter orbit is called the *ending point*. Define

$$\mathcal{E}_{\text{single}}(m) \triangleq \{(u, v) \in E(\Gamma) : u \in S_m, v \in \bigcup_{\ell < m} S_\ell,$$

$$(79) \quad C(u) \text{ contains no split and is not incident to any bridge in} \\ \bigcup_{\ell < m} \Gamma_{m,\ell} \text{ other than } (u, v)\}$$

$$\mathcal{E}_{\text{double}}(m) \triangleq \{(u, v) \in E(\Gamma) : u \in S_m, v \in S_{m/2},$$

$$(80) \quad C(u) \text{ contains a split or is incident to some bridge in} \\ \bigcup_{\ell < m} \Gamma_{m,\ell} \text{ other than } (u, v)\}.$$

By Properties (P6)–(P7), we have $\mathcal{E}(m) = \mathcal{E}_{\text{single}}(m) \cup \mathcal{E}_{\text{double}}(m)$. Moreover:

- For each $(u, v), (u', v') \in \mathcal{E}_{\text{single}}(m)$, the starting points u and u' belong to separate tree components in Γ_m , that is, $C(u)$ and $C(u')$ are distinct tree components in Γ_m . Furthermore, $C(u)$ (resp. $C(u')$) contains no split and is not incident to any bridge other than (u, v) (resp. (u', v')). (This is just repeating the definition.)
- For each $(u, v), (u', v') \in \mathcal{E}_{\text{double}}(m)$, the ending points v and v' belong to separate plain tree components in $\Gamma_{m/2}$, by (P7).

The above observation suggests that to specify the bridges in $\mathcal{E}_{\text{single}}(m)$, one can use the *forward construction* by first choosing their starting points from separate components of Γ_m then choosing the ending points from shorter orbits $\bigcup_{\ell < m} S_\ell$ in an unconstrained way; to specify the bridges in $\mathcal{E}_{\text{double}}(m)$, one can use the *backward construction* by first choosing their ending points from separate components of $\Gamma_{m/2}$ then choosing the starting points from S_m in an unconstrained way. This separate account of bridges is useful in the enumeration scheme which we describe next.

Algorithm 2 Pseudoforest enumeration algorithm

- 1: **for** each $t = 1, \dots, k$ **do**
- 2: **Step 1: Matching stage.** Construct a rooted pseudoforest Γ_t with n_t giant nodes and a_t giant edges (allowing self-loops and multiple edges). Attach a label from $[t]$ to each giant edge and a label from $[\lfloor \frac{t-1}{2} \rfloor]$ to each self-loop;
- 3: **Step 2: Splitting stage.** Choose b_t components from $n_t - a_t$ tree components of Γ_t , and within each chosen component, choose a node: if the node chosen is the same as the root, add a split to the root; otherwise, add two splits, one at the root and the other one at the chosen node;
- 4: **Step 3: Forward bridging stage.** Choose c_t out of the remaining $n_t - a_t - b_t$ tree components of Γ_t , and for each chosen component, add a bridge connecting its root to a giant node in Γ_ℓ for some $\ell < t$ that is a divisor of t . Attach a label from $[\ell]$ to the added bridge.
- 5: **Step 4: Backward bridging stage.** Choose d_t from the remaining $n_t - a_t - b_t - c_t$ tree components of Γ_t . For each chosen component, add a bridge by connecting its root to a giant node in Γ_{2t} . Attach a label from $[t]$ to the added bridge.
- 6: **end for**

Next, we describe an algorithm for generating all possible backbone graphs Γ that satisfy the properties (P1)–(P7). Given a sequence of integers $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) = (a_t, b_t, c_t, d_t)_{1 \leq t \leq k}$ with $b_t = 0$ for odd t and $d_t = 0$ if $2t > k$, we construct Γ in Algorithm 2.

We note that an output graph of Algorithm 2 is not necessarily a pseudoforest; nevertheless any orbit pseudoforest can be generated by Algorithm 2, which is what we need for upper bounding the generating function of orbit pseudoforests, $\sum_{H \in \mathcal{H}_k} s^{2e(H)}$. To verify this claim formally, let H be an orbit pseudoforest and let Γ denote its backbone graph as in Definition 2, where for $1 \leq m \leq k$ there are:

- a_m giant edges (including self-loops) corresponding to either Type M_m or C_m edge orbits;
- b_m components that contain splits corresponding to Type S_m edge orbits;
- c_m giant edges corresponding to Type $B_{m,\ell}$ edge orbits for some $\ell < m$ that is a divisor of m ;
- d_m giant edges corresponding to Type $B_{m,2m}$ edge orbits.

For each Γ_m where $1 \leq m \leq k$, we arbitrarily choose the root for each plain tree component, and specify the root in each nonplain tree component as the giant node that either splits or is incident to a bridge in $\mathcal{E}_{\text{single}}(m) \cup \mathcal{E}_{\text{double}}(2m)$ (when there are two giant nodes that split in a tree component, we choose any one of them as the root; otherwise, the choice of the root is unique). Then it is clear that Steps 1 and 2 can realize any configuration of splits and matchings in Γ , thanks to Properties (P1)–(P4). Finally, note that bridges in $\mathcal{E}_{\text{single}}(m)$ are added by Step 3 (forward bridging) at iteration $t = m$ with $c_m = |\mathcal{E}_{\text{single}}(m)|$, and bridges in $\mathcal{E}_{\text{double}}(m)$ are added by Step 4 (backward bridging) at iteration $t = m/2$ with $d_{m/2} = |\mathcal{E}_{\text{double}}(m)|$.

Next we bound the generating function $\sum_{H \in \mathcal{H}_k} s^{2e(H)}$ from above. We first state an auxiliary lemma, which extends the well-known formula (74) for enumerating rooted forests.

LEMMA 4. *The number of rooted pseudoforests on n nodes with a edges (allowing self-loops and multiple edges) is at most*

$$(81) \quad \binom{n}{a} (2n)^a.$$

PROOF. To see this, let m denote the number of cycles (including self-loops and parallel edges). Then the number of connected components is $n - a + m$. To enumerate all such rooted pseudoforests, we first enumerate all rooted forests on n vertices with $a - m$ edges, then choose m roots out of $n - a + m$ roots, and finally add one edge to each chosen root to form a cycle within its corresponding component. Each added edge can either be a self-loop at the root or connect the root to some other node, so there are at most n different choices of the added edge. Therefore, the total number of rooted pseudoforests on n vertices with a edges is at most

$$\sum_{m=0}^a \binom{n}{a-m} n^{a-m} \binom{n-a+m}{m} n^m = n^a \underbrace{\sum_{m=0}^a \binom{n}{a-m} \binom{n-a+m}{m}}_{2^a \binom{n}{a}} = \binom{n}{a} (2n)^a. \quad \square$$

Now we can enumerate all possible output backbone graphs Γ of Algorithm 2 as follows. For $t = 1, \dots, k$:

1. Note that Γ_t constructed in Step 1 is a rooted pseudoforest with n_t giant nodes and a_t giant edges. Moreover, each giant edge added in Step 1 carries at most t possible labels. Hence, the total number of all possible rooted pseudoforests Γ_t constructed in Step 1 is at most:

$$(82) \quad \binom{n_t}{a_t} (2tn_t)^{a_t}.$$

2. The total number of different ways of splitting is at most

$$(83) \quad \binom{n_t - a_t}{b_t} n_t^{b_t}.$$

3. The total number of different ways of forward bridging is at most:

$$(84) \quad \binom{n_t - a_t - b_t}{c_t} \left(\sum_{\ell < t} \ell n_\ell \right)^{c_t}.$$

4. The total number of different ways of backward bridging is at most:

$$(85) \quad \binom{n_t - a_t - b_t - c_t}{d_t} (tn_{2t})^{d_t}.$$

Combining (82), (83), (84) and (85), we conclude that the total number of possible output backbone graphs Γ with input parameter $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$ is at most

$$\prod_{t=1}^k \mathbf{1}_{\{b_t=0 \text{ for odd } t\}} \mathbf{1}_{\{d_t=0 \text{ if } 2t>k\}} \binom{n_t}{a_t, b_t, c_t, d_t} (2tn_t)^{a_t} n_t^{b_t} \left(\sum_{\ell < t} \ell n_\ell \right)^{c_t} (tn_{2t})^{d_t}.$$

Note that for each output backbone graph, the total number of edges in the corresponding orbit graph H satisfies

$$e(H) \geq \sum_{t=1}^k t(a_t + b_t/2 + c_t + 2d_t).$$

Combining the above two displays, we obtain

$$\begin{aligned} \sum_{H \in \mathcal{H}_k} s^{2e(H)} &\leq \sum_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}} \prod_{t=1}^k \mathbf{1}_{\{b_t=0 \text{ for odd } t\}} \mathbf{1}_{\{d_t=0 \text{ if } 2t>k\}} \binom{n_t}{a_t, b_t, c_t, d_t} \\ &\quad \times (2tn_t)^{a_t} n_t^{b_t} \left(\sum_{\ell < t} \ell n_\ell \right)^{c_t} (tn_{2t})^{d_t} \times s^{2ta_t + tb_t + 2td_t + 4td_t} \end{aligned}$$

$$\begin{aligned}
&\leq \prod_{t=1}^k \left(1 + s^t n_t \mathbf{1}_{\{t:\text{even}\}} + 2t n_t s^{2t} + s^{2t} \sum_{\ell < t} \ell n_\ell + s^{4t} t n_{2t} \mathbf{1}_{\{2t \leq k\}} \right)^{n_t} \\
&\leq \prod_{t=1}^k \left(1 + s^t n_t \mathbf{1}_{\{t:\text{even}\}} + 2s^{2t} \sum_{\ell \leq t} \ell n_\ell + s^{4t} t n_{2t} \mathbf{1}_{\{2t \leq k\}} \right)^{n_t},
\end{aligned}$$

completing the proof of Theorem 4.

6. Conclusion and open questions. In this paper, we formulate the general problem of testing network correlation and characterize the statistical detection limit. For both Gaussian-weighted complete graphs and dense Erdős–Rényi graphs, we determine the sharp threshold at which the asymptotic optimal testing error probability jumps from 0 to 1. For sparse Erdős–Rényi graphs, we determine the threshold within a constant factor. The proof of the impossibility results relies on a delicate application of the truncated second moment method, and in particular, leverages the pseudoforest structure of subcritical Erdős–Rényi graphs in the sparse setting. We conclude the paper with a few important open questions.

1. In a companion paper [27], we show that a polynomial-time test based on counting trees achieves strong detection when the average degree $np \geq n^{-o(1)}$ and the correlation $\rho \geq c$ for an explicit constant c . In particular, this result combined with our negative results in Theorem 2 imply that the detection limit is attainable in polynomial-time up to a constant factor in the sparse regime when $np = \Theta(1)$. However, achieving the optimal detection threshold in polynomial time remains largely open.

2. It is of interest to study the detection limit under general weight distributions. Our proof techniques are likely to work beyond the Gaussian Wigner and Erdős–Rényi graphs model. For example, for general distributions P and Q , as shown in the proof of Proposition 1, the second moment is determined by the eigenvalues of the kernel operator defined by the likelihood ratio $L(x, y) = \frac{P(x, y)}{Q(x, y)}$. Another interesting direction is testing correlations between hypergraphs.

3. Another important open problem is to determine the sharp threshold for detection in the sparse Erdős–Rényi graphs with $p = n^{-\Omega(1)}$. In particular, to improve our positive result, one may need to analyze a more powerful test statistic beyond QAP. For the negative direction, one needs to consider the case where the intersection graph $A \wedge B^\pi$ is supercritical and a more sophisticated conditioning beyond the pseudoforest structure may be required.

Acknowledgments. The authors thank Christopher Moore for simplifying the proof of Proposition 1. J. Xu would like to thank Tselil Schramm for helpful discussions on the hypothesis testing problem at the early stage of the project.

Funding. Y. Wu is supported in part by the NSF Grant CCF-1527105, an NSF CAREER award CCF-1651588, and an Alfred Sloan fellowship.

J. Xu is supported by the NSF Grants CCF-1850743, CCF-1856424, and IIS-1932630.

S. H. Yu is supported by the NSF Grant CCF-1856424.

SUPPLEMENTARY MATERIAL

Supplementary material for “Testing correlation of unlabeled random graphs” (DOI: 10.1214/22-AAP1786SUPP; .pdf). The supplement collects several technical proofs postponed due to space constraints and auxiliary facts on concentration inequalities and random permutations.

REFERENCES

- [1] ARIAS-CASTRO, E. and VERZELEN, N. (2014). Community detection in dense random networks. *Ann. Statist.* **42** 940–969. MR3210992 <https://doi.org/10.1214/14-AOS1208>
- [2] BALISTER, P., BOLLOBÁS, B., SAHASRABUDHE, J. and VEREMYEV, A. (2019). Dense subgraphs in random graphs. *Discrete Appl. Math.* **260** 66–74. MR3944609 <https://doi.org/10.1016/j.dam.2019.01.032>
- [3] BANKS, J., MOORE, C., NEEMAN, J. and NETRAPALLI, P. (2016). Information-theoretic thresholds for community detection in sparse networks. In *Conference on Learning Theory* 383–416.
- [4] BARAK, B., CHOU, C.-N., LEI, Z., SCHRAMM, T. and SHENG, Y. (2019). (Nearly) Efficient algorithms for the graph matching problem on correlated random graphs. In *Advances in Neural Information Processing Systems* 9186–9194.
- [5] BAYATI, M., GLEICH, D. F., SABERI, A. and WANG, Y. (2013). Message-passing algorithms for sparse network alignment. *ACM Trans. Knowl. Discov. Data* **7** 1–31.
- [6] BERG, A. C., BERG, T. L. and MALIK, J. (2005). Shape matching and object recognition using low distortion correspondences. In *2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)* **1** 26–33. IEEE, San Diego, CA, USA.
- [7] BUTUCEA, C. and INGSTER, Y. I. (2013). Detection of a sparse submatrix of a high-dimensional noisy matrix. *Bernoulli* **19** 2652–2688. MR3160567 <https://doi.org/10.3150/12-BEJ470>
- [8] CONTE, D., FOGGIA, P., SANSONE, C. and VENTO, M. (2004). Thirty years of graph matching in pattern recognition. *Int. J. Pattern Recognit. Artif. Intell.* **18** 265–298.
- [9] COUR, T., SRINIVASAN, P. and SHI, J. (2007). Balanced graph matching. In *Advances in Neural Information Processing Systems* 313–320.
- [10] CULLINA, D. and KIYAVASH, N. (2016). Improved achievability and converse bounds for Erdős–Rényi graph matching. *ACM SIGMETRICS Perform. Eval. Rev.* **44** 63–72.
- [11] CULLINA, D. and KIYAVASH, N. (2017). Exact alignment recovery for correlated Erdős–Rényi graphs. Preprint. Available at [arXiv:1711.06783](https://arxiv.org/abs/1711.06783).
- [12] CULLINA, D., KIYAVASH, N., MITTAL, P. and POOR, H. V. (2019). Partial recovery of Erdős–Rényi graph alignment via k-core alignment. *Proc. ACM Meas. Anal. Comput. Syst.* **3** 1–21.
- [13] DAI, O. E., CULLINA, D., KIYAVASH, N. and GROSSGLAUSER, M. (2019). Analysis of a canonical labelling algorithm for the alignment of correlated Erdős–Rényi graphs. *Proc. ACM Meas. Anal. Comput. Syst.* **3** 1–25.
- [14] DING, J., MA, Z., WU, Y. and XU, J. (2021). Efficient random graph matching via degree profiles. *Probab. Theory Related Fields* **179** 29–115. MR4221654 <https://doi.org/10.1007/s00440-020-00997-4>
- [15] FAN, Z., MAO, C., WU, Y. and XU, J. (2019). Spectral Graph Matching and Regularized Quadratic Relaxations I: The Gaussian Model. Preprint. Available at [arXiv:1907.08880](https://arxiv.org/abs/1907.08880).
- [16] FLAJOLET, P. and SEDGEWICK, R. (2009). *Analytic Combinatorics*. Cambridge University Press, Cambridge.
- [17] FRIEZE, A. and KAROŃSKI, M. (2016). *Introduction to Random Graphs*. Cambridge Univ. Press, Cambridge. MR3675279 <https://doi.org/10.1017/CBO9781316339831>
- [18] GANASSALI, L., LELARGE, M. and MASSOULIÉ, L. (2022). Spectral alignment of correlated Gaussian matrices. *Adv. in Appl. Probab.* **54** 279–310. MR4397868 <https://doi.org/10.1017/apr.2021.31>
- [19] GANASSALI, L. and MASSOULIÉ, L. (2020). From tree matching to sparse graph alignment. Preprint. Available at [arXiv:2002.01258](https://arxiv.org/abs/2002.01258).
- [20] HAGHIGHI, A. D., NG, A. Y. and MANNING, C. D. (2005). Robust textual inference via graph matching. In *Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing* 387–394. Association for Computational Linguistics, Vancouver, BC, Canada.
- [21] HALL, G. and MASSOULIÉ, L. (2020). Partial recovery in the graph alignment problem. Preprint. Available at [arXiv:2007.00533](https://arxiv.org/abs/2007.00533).
- [22] JANSON, S., ŁUCZAK, T. and RUCINSKI, A. (2000). *Random Graphs*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York. MR1782847 <https://doi.org/10.1002/9781118032718>
- [23] KIBBLE, W. F. (1945). An extension of a theorem of Mehler's on Hermite polynomials. *Proc. Camb. Philos. Soc.* **41** 12–15. MR0012728 <https://doi.org/10.1017/s0305004100022313>
- [24] LIU, Z. Y. (2012). Graph matching: A new concave relaxation function and algorithm. *Acta Automat. Sinica* **38** 725–731. MR3013473 <https://doi.org/10.3724/SP.J.1004.2012.00725>
- [25] LIVI, L. and RIZZI, A. (2013). The graph matching problem. *PAA Pattern Anal. Appl.* **16** 253–283. MR3084902 <https://doi.org/10.1007/s10044-012-0284-8>
- [26] MAKARYCHEV, K., MANOKARAN, R. and SVIRIDENKO, M. (2010). Maximum quadratic assignment problem: Reduction from maximum label cover and LP-based approximation algorithm. In *Automata, Languages and Programming. Part I. Lecture Notes in Computer Science* **6198** 594–604. Springer, Berlin. MR2734616 https://doi.org/10.1007/978-3-642-14165-2_50

- [27] MAO, C., WU, Y., XU, J. and YU, S. H. (2020). Counting trees and testing correlation of unlabeled random graphs. Preprint.
- [28] MOSSEL, E., NEEMAN, J. and SLY, A. (2015). Reconstruction and estimation in the planted partition model. *Probab. Theory Related Fields* **162** 431–461. MR3383334 <https://doi.org/10.1007/s00440-014-0576-6>
- [29] MOSSEL, E. and XU, J. (2019). Seeded graph matching via large neighborhood statistics. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms* 1005–1014. SIAM, Philadelphia, PA. MR3909531 <https://doi.org/10.1137/1.9781611975482.62>
- [30] NARAYANAN, A. and SHMATIKOV, V. (2008). Robust de-anonymization of large sparse datasets. In *2008 IEEE Symposium on Security and Privacy (sp 2008)* 111–125. IEEE, Oakland, CA, USA.
- [31] NARAYANAN, A. and SHMATIKOV, V. (2009). De-anonymizing social networks. In *2009 30th IEEE Symposium on Security and Privacy* 173–187. IEEE, Oakland, CA, USA.
- [32] OTTER, R. (1948). The number of trees. *Ann. of Math.* (2) **49** 583–599. MR0025715 <https://doi.org/10.2307/1969046>
- [33] PARDALOS, P. M., RENDL, F. and WOLKOWICZ, H. (1994). The quadratic assignment problem: A survey and recent developments. In *Quadratic Assignment and Related Problems (New Brunswick, NJ, 1993)*. *DIMACS Ser. Discrete Math. Theoret. Comput. Sci.* **16** 1–42. Amer. Math. Soc., Providence, RI. MR1290345 <https://doi.org/10.1090/dimacs/016/01>
- [34] PEDARSAANI, P. and GROSSGLAUSER, M. (2011). On the privacy of anonymized networks. In *Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* 1235–1243.
- [35] RÁCZ, M. Z. and SRIDHAR, A. (2022). Correlated randomly growing graphs. *Ann. Appl. Probab.* **32** 1058–1111. MR4414701 <https://doi.org/10.1214/21-aap1703>
- [36] REEVES, G., XU, J. and ZADIK, I. (2020). The all-or-nothing phenomenon in sparse linear regression. *Math. Stat. Learn.* **3** 259–313. MR4362040 <https://doi.org/10.4171/msl/22>
- [37] SINGH, R., XU, J. and BERGER, B. (2008). Global alignment of multiple protein interaction networks with application to functional orthology detection. *Proc. Natl. Acad. Sci. USA* **105** 12763–12768.
- [38] TSYBAKOV, A. B. (2009). *Introduction to Nonparametric Estimation. Springer Series in Statistics*. Springer, New York. MR2724359 <https://doi.org/10.1007/b13794>
- [39] VERZELEN, N. and ARIAS-CASTRO, E. (2015). Community detection in sparse random networks. *Ann. Appl. Probab.* **25** 3465–3510. MR3404642 <https://doi.org/10.1214/14-AAP1080>
- [40] VOGELSTEIN, J. T., CONROY, J. M., PODRAZIK, L. J., KRATZER, S. G., HARLEY, E. T., FISHKIND, D. E., VOGELSTEIN, R. J. and PRIEBE, C. E. (2011). Large (brain) graph matching via fast approximate quadratic programming. Preprint. Available at [arXiv:1112.5507](https://arxiv.org/abs/1112.5507).
- [41] WU, Y., XU, J. and YU, S. H. (2022). Settling the sharp reconstruction thresholds of random graph matching. *IEEE Trans. Inf. Theory* **68** 5391–5417. MR4476403
- [42] WU, Y., XU, J. and YU, S. H. (2023). Supplement to “Testing correlation of unlabeled random graphs.” <https://doi.org/10.1214/22-AAP1786SUPP>