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We study the problem of detecting the edge correlation between two ran-
dom graphs with n unlabeled nodes. This is formalized as a hypothesis testing
problem, where under the null hypothesis, the two graphs are independently
generated; under the alternative, the two graphs are edge-correlated under
some latent node correspondence, but have the same marginal distributions
as the null. For both Gaussian-weighted complete graphs and dense Erd&s—
Rényi graphs (with edge probability n~°W), we determine the sharp thresh-
old at which the optimal testing error probability exhibits a phase transition
from zero to one as n — 00. For sparse Erd6s—Rényi graphs with edge prob-
ability n~( we determine the threshold within a constant factor.

The proof of the impossibility results is an application of the conditional
second-moment method, where we bound the truncated second moment of
the likelihood ratio by carefully conditioning on the typical behavior of the
intersection graph (consisting of edges in both observed graphs) and taking
into account the cycle structure of the induced random permutation on the
edges. Notably, in the sparse regime, this is accomplished by leveraging the
pseudoforest structure of subcritical Erd6s—Rényi graphs and a careful enu-
meration of subpseudoforests that can be assembled from short orbits of the
edge permutation.

1. Introduction. Understanding and quantifying the correlation between datasets are

among the most fundamental tasks in statistics. In many modern applications, the obser-
vations may not be in the familiar form of vectors but rather graphs. Furthermore, the node
labels may be absent or scrambled, in which case one needs to decide the similarity be-
tween these unlabeled graphs on the sheer basis of their topological structures. Equiva-
lently, it amounts to determining whether there exists a node correspondence under which
the (weighted) edges of the two graphs are correlated. This problem arises naturally in a wide
range of fields:

In social network analysis, one is interested in deciding whether two friendship networks
on different social platforms share structural similarities, where the node labels are fre-
quently anonymized due to privacy considerations [30, 31].

In computer vision, 3-D shapes are commonly represented by geometric graphs, where
nodes are subregions and edges encode the adjacency relationships between different re-
gions. A key building block for pattern recognition and image processing is to determine
whether two graphs correspond of the same object that undergoes different rotations or
deformations (changes in pose or topology) [6, 9].

In computational biology, an important task is to assess the correlation of two biological
networks in two different species so as to enrich one dataset using the other [37, 40].

In natural language processing, the so-called ontology alignment problem refers to uncov-
ering the correlation between two knowledge graphs that are in either different languages
[20] or different domains (e.g., Library of Congress versus Wikipedia [5]).
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Inspired by the hypothesis testing model proposed by Barak et al. [4], we formulate a gen-
eral problem of testing network correlation as follows. Let G = ([n], W) denote a weighted
undirected graph on the node set [n] £ {1, ..., n} with weighted adjacency matrix W, where
Wii =0and forany 1 <i < j <n, W;; =1 (or the edge weight) if i and j are adjacent and
W;; = 0 otherwise. Recall that two weighted graphs G = ([n], W) and H = ([n], W') are iso-
morphic and denoted by G = H if there exists a permutation (called a graph isomorphism)
7 on [n] such that W;; = W/ i) () for all i, j. Given a weighted graph G, its isomorphism

T
class G is the equivalence class G ={H : H = G}. We refer to an isomorphism class as an
unlabeled graph and G as the unlabeled version of G.

PROBLEM 1 (Testing correlation of unlabeled graphs). Let G| = ([n], W) and G, =
([n], W') be two weighted random graphs, where the edge weights {(W;;, Wl-’j) l<i<j<
n} are i.i.d. pairs of random variables, and W;; and Wl.’j have the same marginal distribution.
Under the null hypothesis Ho, W;; and Wif ; are independent; under the alternative hypothesis
Hi, W;j and Wl.’j are correlated. Given the unlabeled versions of G and G5, that is, their

isomorphism classes G| = {G : G = G} and G, = {G : G = G}, the goal is to test H
versus Hj.

Note that were the node labels of G| and G; observed, one could stack all the edge weights
as a vector and reduce the problem to simply testing the correlation of two random vectors.
However, when the node labels are unobserved, the inherent correlation between G| and G,
is obscured by the latent node correspondence, making the testing problem significantly more
challenging. Indeed, since the observed graphs are unlabeled, the test needs to rely on graph
invariants (i.e., graph properties that are invariant under graph isomorphisms), such as sub-
graphs counts (e.g., the number of edges and triangles) and spectral information (e.g., eigen-
values of adjacency matrices or Laplacians).

In this work, we focus on the following two special cases of particular interests:

o (Gaussian Wigner model). Suppose that under H, each pair of edges weights W;; and
Wi/j are jointly normal with zero mean, unit variance and correlation coefficient p € [0, 1];
under Ho, W;; and Wl-’j are independent standard normals. Note that marginally W, W' are
two Gaussian Wigner random matrices under both Hg and H;. The correlated Gaussian
Wigner model is proposed in [14] as a prototypical model for random graph matching and
further studied in [15, 18].

e (Erdés—Rényi random graph). Let G(n, p) denote the Erd6s—Rényi random graph model
with edge probability p € [0, 1]. Consider the edge sampling process that generates a chil-
dren graph from a given parent graph by keeping each edge independently with probability
s € [0, 1]. Suppose that under 1, G| and G are independently subsampled from a com-
mon parent graph G ~ G(n, p); under Ho, G and G, are independently subsampled from
two independent parent graphs G, G’ ~ G(n, p), respectively. See Figure 1 for an illustra-
tion.

Note that G| and G, are both instances of G(n, ps) that are independent under H
and correlated under ;. This specific model of correlated Erd6s—Rényi random graphs is
initially proposed by [34] and has been widely used for studying the problem of matching
random graphs [4, 10-14, 19, 21, 24, 29].

We further focus on the following two natural types of testing guarantees.

DEFINITION I (Strong and weak detection). Let Q and P denote the probability measure
under Ho and H, respectively. We say a test statistic 7 (G1, G2) with threshold t achieves:
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(a) Two labeled graphs G1 and G2 are subsampled from a common parent
graph according to the correlated Erdés-Rényi graph model with n = 20,
p=0.1, and s = 0.8 under H;, where blue edges are edges sampled from
the parent graph, and red, dashed edges are edges deleted from the parent
graph.

© o

o %o

(b) Two observed graphs G and G are the unlabeled versions of G and
G2, respectively.

FI1G. 1. Example of testing correlation of two Erdds—Rényi random graphs. The task is to test the underlying
hypothesis (Hq or Hy) based on the two unlabeled graphs in panel (b).

e strong detection if the sum of type I and type II error converges to 0 as n — oo, that is,
(D nlgrlgo[P(T(él,az) <1)+ 9Q(T(G1,G2) > 1)]=0;

e weak detection, if the sum of type I and type II error is bounded away from 1 as n — oo,
that is,
) limsup[P(T(G1,G2) <)+ Q(T(G1,Ga) > 1)] < 1.

n—oo

Note that strong detection requires the test statistic to determine with high probability
whether (G1, G») is drawn from Q or P, while weak detection only aims at strictly outper-
forming random guessing. It is well known that the minimal sum of type I and type II error
is 1 — TV(P, Q), achieved by the likelihood ratio test, where TV(P, Q) = % [1dP —dQ|
denotes the total variation distance between P and Q. Thus strong and weak detection are
equivalent to lim,_, .o TV(P, Q) = 1 and liminf,,_, ,c TV(P, Q) > 0, respectively.

Recent work [4] developed a polynomial-time test based on counting certain subgraphs
that correctly distinguishes between H( and H; with probability at least 0.9, provided that the
edge subsampling probability s = (1) and the average degree satisfies certain conditions;
however, the fundamental limit of detection remains elusive. The main objective of this paper
is to obtain tight necessary and sufficient conditions for strong and weak detection.
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1.1. Main results.

THEOREM 1 (Gaussian Wigner model). If

3) p? > 2logn

then TV(P, Q) =1+ o(1). Conversely, if
,02 < 4 —e€)logn

n—1"

4
n
for any constant € > 0, then TV(P, Q) = o(1).
THEOREM 2 (Erdés—Rényi graphs). If
5) 2 2logn

~(n=Dp(og; —1+p)’

then TV(P, Q) =1—o(1).
Conversely, assume that p is bounded away from 1.

e (Dense regime): If p =n"°W and
2—¢€)l
2 < ( 16) ogn
np(log; —14+p)

for any constant € > 0, then TV(P, Q) = o(1).
o (Sparse regime): If p =n~%" and

(6)

_ -1/3
5 < l1—whn ) A
np
for some universal constant co (co = 0.01 works), then TV (P, Q) =1 — Q(1). In addition,
if (7) holds and s = o(1), then TV(P, Q) = o(1).

(7) N co

For the Gaussian Wigner model, Theorem 1 shows that the fundamental limit of detection
in terms of the limiting value of ]’g‘g’i exhibits a sharp threshold at 4, above which strong
detection is possible and below which weak detection is impossible, a phenomenon known
as the “all-or-nothing” phase transition [36]. In the Erd6s—Rényi model, for dense parent

graphs with p = n~°") and bounded away from 1, Theorem 2 shows that a similar sharp

2 - . . . .
threshold for “22 (IOgl(Olg/ L )=14P) exists at 2. Curiously, the function p > p(log% —1+4+p)is

not monotone and uniquely maximized at p, =~ 0.203, the solution to the equation log % =
2(1 — p). This shows the counterintuitive fact that the parent graph with edge density p, is
the “easiest” for detection as it requires the lowest sampling probability s; nevertheless, such
nonmonotonicity in the detection threshold can be anticipated by noting that in the extreme
cases of p =0 and p = 1, the observed two graphs are always independent and the two
hypotheses are identical.

For sparse parent graphs with p =n~%(  the picture is less clear:

e Unbounded average degree np = w(1): For simplicity, assume that p = n=*+t°(D for some

constant « € (0, 1]. Theorem 2 implies that strong detection is possible if liminfnps® > %
and weak detection is impossible if limsupnps? < 1; these two conditions differ by a
constant factor.
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e Bounded average degree np = ®(1): For simplicity, assume that p = d/n for some con-
stant d > 0. Theorem 2 shows that strong detection is possible if 52 > % and impossible if
S2 <Cco N é

For both cases, it is an open problem to determine the sharp threshold for detection (or the

existence thereof).

REMARK 1 (Simple test for weak detection). In the nontrivial case of p = w(1/ n?) and
p bounded away from 1, as long as the sampling problem s is any constant, weak detection
can be achieved in linear time by simply comparing the number of edges of the two observed
graphs. Intuitively, their difference behaves like a centered Gaussian with slightly different
scale parameters under the two hypotheses which can then be distinguished nontrivially (see
Section 7.1 of the Supplementary Material [42] for a rigorous justification). In view of the
negative result for weak detection in Theorem 2, we conclude that for parent graph with
bounded average degree np = O (1), weak detection is possible if and only if s = Q(1).

As discussed in the next subsection, the testing procedure used to achieve strong detec-
tion in both Theorem 1 and Theorem 2 involves a combinatorial optimization that is in-
tractable in the worst case. Thus it is of interest to compare the optimal threshold to the
performance of existing computationally efficient algorithms. These methods are based on
subgraph counts that extend the simple idea of counting edges in Remark 1. For Erds—
Rényi graphs, the polynomial-time test in [4], Theorem 2.2, (based on counting certain
probabilistically constructed subgraphs) correctly distinguishes between Ho and H; with
probability at least 0.9, provided that the edge subsampling probability s = €2(1) and
nps € [n€, n'/1531 U 0?3, n' €] for some small constant € > 0. This performance guar-
antee is highly suboptimal compared to s2 = Q(~——%€"__) given by Theorem 2. In a

nplog(1/p)
companion paper [27], we propose a polynomial-time algorithm based on counting trees

: : - —o(1) 28 s2A=p? _ 1
that achieves strong detection, provided that np > n and p” = Tpo? ~ B where

B 2 limy_ ool (k)]Y/* 2 2.956 and 7 (k) is the number of unlabeled trees with k vertices [32].
Achieving the optimal threshold with polynomial-time tests remains an open problem.

1.2. Test statistic and proof techniques. To introduce our testing procedure and the anal-
ysis, we first reformulate the testing problem given in Problem 1 in a more convenient form.
Due to the exchangeability of the (i.i.d.) edge weights, observing the unlabeled version is
equivalent to observing its randomly relabeled version. Indeed, let 71 and 7> be two inde-
pendent random permutations uniformly drawn from the set S, of all permutations on [r].
Consider the relabeled version of G| = ([rn], W) with weighted adjacency matrix A, where
Ajj = Wx i)z (j); similarly, let B correspond to the relabeled version of G = ([n], W’) with
Bij = Wayiymaiy-
observing the labeled graphs A and B. Since 7, U'o 771 is also a uniform random permutation,
we arrive at the following formulation that is equivalent to Problem 1.

It is clear that observing the unlabeled graphs G| and G is equivalent to

PROBLEM 2 (Reformulation of Problem 1). Let A and B denote the weighted adjacency
matrices of two weighted graphs on the vertex set [n], both consisting of i.i.d. edge weights.
Under Hy, A and B are independent; under 71, conditional on a latent permutation 7 drawn
uniformly at random from S, {(A;j, Br(i)=(j)) : 1 <i < j <n} are i.i.d. and each pair A;;
and By (j)z(j) are correlated. Upon observing A and B, the goal is to test Ho versus H.
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Note that under #, the latent random permutation 7 represents the hidden node corre-
spondence under which A and B are correlated. For this reason, we refer to H as the planted
model and H as the null model. The likelihood ratio is given by
) P(A.B) 1  P(A.B|n)

Q(A,B) n! ‘=X Q(A,B)

which is the optimal test statistic but difficult to analyze due to the averaging over all n!
permutations. Instead, we consider the generalized likelihood ratio by replacing the average
with the maximum:

P(A, B|r
9) max g
TeS, Q(A, B)
As shown later in Section 2, for both the Gaussian Wigner and the Erd6s—Rényi graph model,
(9) is equivalent to

(10) T(A,B) £ max T, where Tx £ Aij Br(i)x())»

TeS, oy
which amounts to computing the maximal edge correlation over all possible node correspon-
dences between A and B. As desired, the test statistic 7 (A, B) is invariant to the relabeling
of both A and B and can be applied to their unlabeled versions. The combinatorial optimiza-
tion problem (10) is an instance of the quadratic assignment problem [33], which is known
to be NP-hard to solve or to approximate within a growing factor [26].

To show the test statistic 7 (A, B) achieves detection, first observe that in the planted
model with hidden permutation 7, 7 (A, B) is trivially bounded from below by >_; _; A;; x
By (iyz(j)» which can be further shown to exceed some threshold T with high probability
by concentration inequalities. For the null model, we use a simple first moment argument
(union bound) to show that Q(7 (A, B) > t) = o(1). Together we conclude that 7 (A, B)
with threshold t achieves strong detection and TV(P, Q) =1 — o(1).

Next we provide an overview of the impossibility proof, which constitutes the bulk of the
paper. To this end, we bound the second moment of the likelihood ratio. It is well known that'

2
(11) EQ[(%)}ZO(D — TV(P(A,B),Q(A,B)) <1—2(1)

2
(12) EQ[(%) } =1+0(1) = TV(P(A,B), Q(A, B)) =o(l),

which correspond to the impossibility of strong and weak detection, respectively.
To compute the second moment, we introduce an independent copy 7 of the latent permu-
tation 7 and express the squared likelihood ratio as

P(A, B)\? P(Aij, Buiyn(j)) P(Aij, Biiyi (i
( ( )) ZEJ?J_LJT[H Xiji|, where Xij 2 ( ij ﬂ(z)n(])) ( ij n(z)n(}))’
Q(A, B) Q(Aij, Bz (j)) Q(Aij, Bzi)z(j))

i<j

where for any (i, j) € [(;)]’ O denotes the joint density function of A;; and B;; under Q,

and P denotes the joint density function of A;; and By (;)x(;) under P given its latent permu-
tation 7. Fixing 7w and 77, we then decompose this as a product over independent randomness
indexed by the so-called edge orbits. Specifically, the permutation o = 7! o # on the node
set naturally induces a permutation oF on the edge set of the complete graph by permuting

!ndeed, (11) follows from, e.g., [38], Lemma 2.6 and 2.7, and (12) is by Cauchy—Schwarz inequality.
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the end points. Denoting by O the collection of edge orbits (orbit in the cycle decomposition
of the edge permutation o'F), we show that

2
N L
’ 0€0 (i,j)e0
where X o’s are mutually independent under Q conditioned on 7 and 7.

Then, we take expectation E(4 p)~g on the right-hand side and interchange the two ex-
pectations. For both the Gaussian and Erdés—Rényi models, this calculation can be explic-
itly carried out by evaluating the trace of certain operators. In particular, this computation
shows the following dichotomy: the second moment is 1+ o(1) when p? < m, but un-

bounded when p? > Qﬁ% , where p is the correlation coefficient in the Gaussian case and

o= % in the Erd6s—Rényi case. Compared with Theorems 1 and 2, we see that directly

applying the second-moment method fails to capture the sharp threshold: The impossibility
condition p? < % is suboptimal by a multiplicative factor of 2 in the Gaussian case
and by an unbounded factor in the Erd6s—Rényi case when p = o(1).

It turns out that the second moment is mostly influenced by those short edge orbits of
length k = O(logn) for which [];p)=x X0 has a large expectation (see Section 3.3 for a
detailed explanation). Fortunately, the atypically large magnitude of []jp—x Xo can be at-
tributed to certain rare events associated with the intersection graph (edges that are included
in both A and B™ = (By(j)x(j))), Which is distributed as G(n, psz) under the planted model
‘P. This observation prompts us to apply the conditional second moment method, which trun-
cates the squared likelihood ratio on an appropriately chosen global event that has high prob-
ability under P. Specifically:

e In the dense case (including Gaussian model and dense Erd6s—Rényi graphs), the dominat-
ing contribution comes from fixed points (k = 1) which can be regulated by conditioning
on the edge density of large induced subgraphs of the intersection graph. Note that for
Erd6s—Rényi graphs, even though the density of small induced subgraphs (e.g., induced
by ®(logn) vertices) can deviate significantly from their expectations [2], fortunately we
only need to consider sufficiently large subgraphs here.

e For sparse Erd6s—Rényi graphs, the argument is much more involved and combinatorial, as
one needs to control the contribution of not only fixed points, but all edge orbits of length
O (logn). Crucially, the major contribution is due to those edge orbits that are subgraphs
of the intersection graph. Under the impossibility condition of Theorem 2, the intersection
graph G(n, ps?) is subcritical and a pseudoforest (each component having at most one
cycle) with high probability. This global structure significantly limits the co-occurrence
of edge orbits in the intersection graph. We thus truncate the squared likelihood ratio on
the global event that the intersection graph is a pseudoforest. To compute the conditional
second moment, we first study the graph structure of edge orbits, then reduce the problem
to enumerating pseudoforests that are disjoint union of edge orbits and bounding their
generating functions, and finally average over the cycle lengths of the random permutation
o . This is the most challenging part of the paper.

1.3. Connection to the literature. This work joins an emerging line of research which
examines inference problems on networks from statistical and computational perspectives.
We discuss some particularly relevant work below.

Random graph matching. Given a pair of graphs, the problem of graph matching (or net-
work alignment) refers to finding a node correspondence that maximizes the edge correlation
[8, 25], which amounts to solving the QAP in (10). Due to the worst-case intractability of
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TABLE 1
Thresholds for various recovery criteria in the correlated Erdds—Rényi graph model when p = o(1)

Performance metric Positive result Negative result
Exact recovery nps2 >logn+w(l) & p= 0(log_3(n)) [11] nps2 <logn —w(1) [10]
Almost exact recovery nps2 =w(l)&p< n—M 12 nps2 =0(1)[12]
Partial recovery nps € (1, 0] & s € (sg, 11[19] nps? log% =o(1) [21]
Detection (This paper) nps? log % >(2+4¢€)logn p=n"D g

nps2 log % <(2—¢€)logn,
or p= njls/i(l) &
s? < 120l A 0.01

the QAP, there is a recent surge of interest in the average-case analysis of matching two
correlated random graphs [4, 10-14, 19, 21, 24, 29], where the goal is to reconstruct the hid-
den node correspondence between the two graphs accurately with high probability. To this
end, the correlated Erd6s—Rényi graph model (the alternative hypothesis 7| in Problem 2)
has been used as a popular model, for which the solution to the QAP (10) is the maximal
likelihood estimator. It is shown in [11] that exact recovery of the hidden node correspon-
dence with high probability is information-theoretically possible if nps> — logn — +o0o and
p = O(log—>3(n)), and impossible if nps> — logn = O(1). In contrast, the state of the art
of polynomial-time algorithms achieve the exact recovery only when np = poly(logn) and
1 —s=1/poly(logn) [14, 15, 24].

Recent work [12] initiated the study of almost exact recovery, that is, to obtain a match-
ing (possibly imperfect) of size n — o(n) that is contained in the true matching with high
probability. It shows that the almost exact recovery is information-theoretically possible if
nps2 =w(l)and p < n~ W and impossible if nps2 = O0(1). Another work [19] considers
a weaker objective of partial recovery, that is, to output a matching that contains ®(n) cor-
rectly matched vertex pairs with high probability. It is shown that the partial recovery can be
attained in polynomial time by a neighborhood tree matching algorithm in the sparse graph
regime where nps € (1, Ag] for some constant Ag close to 1 and s € (sg, 1] for some constant
so close to 1. More recently, the partial recovery is shown to be information-theoretically im-
possible if nps? log % = o0(1) when p = o(1) [21]. For ease of comparison, we summarize the
different thresholds under various performance metrics in Table 1 in the Erd6s—Rényi model.

In contrast to the aforementioned work focusing on recovering the latent matching, this
work studies the hypothesis testing aspect of graph matching, which, nevertheless, has direct
consequences on the recovery problem. As an application of the truncated second moment
calculation, in a companion paper [41] we resolve the sharp threshold of recovery by char-
acterizing the asymptotic mutual information 7 (A, B; ). In particular, we show that in the
dense regime with p =n~°") the sharp threshold of recovery exactly matches the detection
threshold above which almost exact recovery is possible and below which partial recovery
is impossible, thereby closing the gap in Table 1. In the sparse regime with p = n=(1,
we show that the information-theoretic threshold for partial recovery is at nps® < 1, which
coincides with the detection threshold up to a constant factor.

Detection problems in networks. There is a recent flurry of work using the first and second-
moment methods to study hypothesis testing problems on networks with latent structures
such as community detection under stochastic block models [1, 3, 28, 39]. Notably, a condi-
tional second moment argument was applied by Arias—Castro and Verzelen in [1] and [39]
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to study the problem of detecting the presence of a planted community in dense and sparse
Erdés—Rényi graphs, respectively. Similar to our work, for dense graphs, they condition on
the edge density of induced subgraphs (see also the earlier work [7] for the Gaussian model);
for sparse graphs, they condition on the planted community being a forest and bound the
truncated second-moment by enumerating subforests using Cayley’s formula. However, the
crucial difference is that in our setting simply enumerating the pseudoforests is inadequate for
proving Theorem 2. Instead, we need to take into account the cycle structure of permutations
and enumerate orbit pseudoforests, that is, pseudoforests assembled from edge orbits (see the
discussion before Theorem 4 in Section 5 for details). By separately accounting for orbits of
different lengths and their graph properties, we are able to obtain a much finer control on the
generating function of orbit pseudoforests that allows the conditional second moment to be
bounded after averaging over the random permutation. This proof technique is of particular
interest, and likely to be useful for other detection problems regarding permutations.

Finally, we mention that the recent work [35] studied a related correlation detection prob-
lem, where the observed two graphs are either independent, or correlated randomly growing
graphs (which grow together until time ¢, and grow independently afterwards according to ei-
ther uniform and preferential attachment models). Sufficient conditions are obtained for both
weak detection and strong detection as t, — co. However, the problem setup, main results
and proof techniques are very different from the current paper.

1.4. Notation and paper organization. Forany n € N, let [n] ={1,2,...,n} and S, de-
note the set of all permutations on [r]. For a given graph G, let V(G) denote its vertex set
and E(G) its edge set. For two graphs on [n] with (weighted) adjacency matrices A and B,
their intersection graph is a graph on [n] with (weighted) adjacency matrix A A B, where

(13) (AA B)ij £ AijBriya(j):

in the unweighted case, the edge set of A A B is the intersection of those of A and B. Given
a permutation 7w € Sy, let B™ = (B () (j)) denote the relabeled version of B according to
m. For any S C [n], define e4(S) £ Y i<jes Aij as the total edge weights in the subgraph
induced by S.

For any a,b € R, let a A b = min{a, b} and a vV b = max{a, b}. Given any n,m € N, let
Iem(n, m) denote the least common multiple of n and m. Given any n,m € N, and some
nonnegative integers {k;}jL, such that 33 k; =n,let (; , " )= W’km, be a multino-
mial coefficient. We use standard asymptotic notation: for two positive sequences {a,} and
{b,}, we write a, = O(b,) or a, < b,, if a, < Cb, for some an absolute constant C and for

~

all n; a, = Q(by) or a, 2 by, if b, = O(a,); a, = O(by) or a, < by, if a, = O(b,) and
an = Q(by); ay = o(by) or b, =w(ay),if a, /b, — 0asn — oo.

The rest of the paper is organized as follows. In Section 2 we prove the positive result of
strong detection for both the Gaussian Wigner model and Erdés—Rényi random graphs. To
lay the groundwork for the conditional second moment method, in Section 3 we present the
unconditional second moment calculation and discuss the key reasons for its looseness. Sec-
tion 4 presents the conditional second-moment proof for weak detection in the dense regime.
Due to their similarity, the proof for the Gaussian Wigner model is given in Section 4.1
and the (more technical) proof for dense Erd6s—Rényi graphs is given in Section 7.3 of the
Supplementary Material [42]. Section 5 provides the impossibility proofs of both strong and
weak detection for sparse Erd6s—Rényi random graphs. Several other technical proofs are
also relegated to Section 7 and Section 8 of the Supplementary Material [42]. Some useful
concentration inequalities and facts about random permutations are collected in the Supple-
mentary Material for readers’ convenience.
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2. First moment method for detection. In this section we prove the positive parts of
Theorems 1 and 2 by analyzing the test statistic (9). Recall from Section 1.2 the reformulated
Problem 2 with observations A and B, whose distributions are specified as follows

e Gaussian Wigner model:

iid
(14) Ho: (Aij, Bi~N((3): (1))
(15) Hi: (Aij, Bﬂ(i)n(j))iiﬁlj\[((g), (; ‘1’)) conditional on 7 ~ Uniform(S,,).

e Erd6s—Rényi random graph:
(16)  Ho: (Ayj., Bij)~ Ben(ps) ® Bem(ps).

Hi: (Aij, Briyn( j))ifi\c/1 pair of correlated Bern(ps) conditional on 7 ~ Uniform(S,,),

17 Bern(s) ifA;j =1,
where A;j ~Bern(ps) and By i)z (j) ~ Bem(ps(l — s)) if A =0,
1—ps
Then we get
P(A, Blr)
(18) ———— =[] LA, Bxi)r(j):
Q(A, B) |<i<j<n
where
P(A;;, Byiye(i))
(19) L(Aij, Ba(in(j)) = i _r0xl)

O(Aij, Br(iyn(j))

For the Gaussian Wigner model, we have

(20) L(a,b) =

—p2(b* +a®) + 2pab>

1
s (=

For the Erd6s—Rényi graph model, we have

1

— a=1,b=1,
21 Laby=]—° 1.b=0 0.b=1

= a=1, = ora =2=u, =1,

@1 @h=11=p

1-2

LTEPS DS 0 b=0.

(1—ps)?
Then, it yields that the generalized likelihood ratio test (9) is equivalent to
P(A, B|m)

(22) mx s — o= ; Aij Bx(iyn(j)

for both the Gaussian Wigner model and Erd6s—Rényi random graphs. In particular, for the
Erd6s—Rényi graphs model, this follows from

L(1,1)L(0, 0))AijBn(i)n(j)(L(],O))Aij<L(0, 1)) Bﬂ(i)ﬂ(j)L(O 0
LO,1HL(,0) L(0,0) L(0,0) T

L(1,1)L(0,0)
LODLIT0) = 1-

L(Aij, Bzi)r(j)) = (

and the fact that
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2.1. Proof of Theorem 1: Positive part. Throughout the proof, denote m = (5) for brevity.

__2nlogn

Without loss of generality, we assume that (3) holds with equality, that is, p> = = oth-
erwise, one can apply the test to (A’, B") where A’ = cos(0)A + sin(0)Z, B’ = cos(9)B +
sin(f) Z with an appropriately chosen 8, and Z is standard normal and independent of (A, B).
Define

(23) T =pm —ay,

where a,, is some sequence to be chosen satisfying a,, = w(n) and a, = 0 (n3'?).

We first analyze the error event under the alternative hypothesis (15). Let = denote the
latent permutation such that (A;;, Bx(i)=(;)) are i.i.d. pairs of standard normals with corre-
lation coefficient p. Applying the Hanson—Wright inequality (see Lemma 10 in Section 9 of
the Supplementary Material [42]) with M = I, to T = ;< - j<n AijBr(yr(j), we get that

P(Ts <0 = P(T < pm — a) < =¥ ¢/,

for some universal constant c¢. Since by definition 7 > 7, it follows that P(7T < 1) = o(1).
To analyze the error event under the null hypothesis (14), in which case for each & € S,,,

(Aij, Bx(i)=(j)) are 1.i.d. pairs of independent standard normals. Note that for X, Yi’ig/\/ O, 1)
and any A € (—1, 1), we have

(24) Elexp(AXY)] = E[exp(?)} = ﬁ

Then by the Chernoff bound, for any A € (0, 1),

O(Tx > 1) = Q(exp(ATy) > exp(r1)) < exp{—g log(1 — Az) — At}.

Choosing A = %, which satisfies 0 < A = o(1) in view of (3) and (23), we have O(7; > 1) <

2

e~ TOtmh) Finally by the union bound and Stirling approximation that n! < en”+%e_”,
2 2

AT >1) < nle= O md) _ o(1), provided that &= — pa, — O(p*m) — nlog? —

logn 1.1

2"1% and the choice of a, =n'!.

5— — +00. This is ensured by the assumption that p? =
2.2. Proof of Theorem 2: Positive part. Throughout the proof, denote m = (5) for brevity.
Without loss of generality, we assume that (5) holds with equality, that is,

1
(25) mpsz(log— -1+ p) =nlogn;
p

otherwise, one can apply the test to (A’, B’) where A’ (B’) are edge-subsampled from A (B)
with an appropriately chosen subsampling probability s’. It follows from (25) that p > 1/n
and mps2 = Q(n). Define

(26) T =mps*(1—=34,),

where 0 < 8, < 1 is some sequence to be chosen satisfying §, = w(1/,/mps?).
We first analyze the error event under the alternative hypothesis (17). Let w denote the

latent permutation such that (A,-jBn(,-),,(j))iiﬂjBern(psz). Then 7, ~ Binom(m, psz). Ap-
plying the Chernoff bound (see equation (118) in Section 9 of the Supplementary Mate-
rial [42]), P(Tr < 7) <exp(—82mps?/2) = o(1). Since by definition 7 > 7T, it follow that

P(T <t)=0(1).
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Next, we analyze the error event under the null hypothesis (16), in which case for each

m €Sy, (Ajj Bn(,-)ﬂ(j))iigBern(pzsz) and thus 75 ~ Binom(m, p%s?). Using the multiplica-
tive Chernoff bound for Binomial distributions (see equation (117) in Section 9 of the Sup-
plementary Material [42]) we obtain that

QT >1) < CXP(—‘L’]og i — M)

= exp(—mpsz(l — &p) log — mp2s2>

n
ep
2 1 2 1

<exp|—mps“(log——14 p ) +mps=5,log— |,
p p

where 1 = mp?s?, and the last inequality holds due to (1 — 8,) log % >—1.

Then by applying union bound and Stirling approximation that n! < en’”’%e_”, we have
that

1 1 1
AT =1)< eexp(—mps2 <log ——1+ p) + mps>8,log — + nlog " + 2 logn)
p p e

1 1
= eexp((mpsz)o‘6 log— —n+ 3 10gn> =o(1),
p

where the first equality holds by the assumption mps?(log % — 1+ p) =nlogn and choosing
8n = 1/(mps?)04; the last equality holds by the claim that (mps?)°- log% = o(n). To finish
the proof, it suffices to verify the claim, which is done separately in the following two cases.

Suppose 1 — p = Q(1). Thus, in view of assumption (25), we get that mps? =
O(nlogn/log(1/p)). Tt follows that (mps?)*Clog(1/p) < O((nlogn)®®log®*(1/p)) =
o(n), where the last equality holds due to p > 1/n.

Suppose 1 — p = o(1). As log(1/p) — 1 4+ p > (1 — p)?/2, it follows from assump-
tion (25) that (1 — p)?> = Q(logn/n). Furthermore, log(1/p) < I_Tp. Thus by assump-

tion (25), (mps>)°-° log% < 0((nlogn)?®(1 — p)=22) = 0(n*710g% n) = 0(n).

3. Unconditional second moment method and obstructions. In this section, we apply
the unconditional second moment method to derive impossibility conditions for detection.
As mentioned in Section 1.2 (and described in detail in Section 3.3), these conditions do not
match the positive results in Section 2, due to the obstructions presented by the short edge
orbits. To overcome these difficulties, in Sections 4 and 5, we apply the conditional second
moment method by building upon the second moment computation in this section. We start
by introducing some preliminary definitions associated with permutations.

3.1. Node permutation, edge permutation and cycle decomposition. Let o € S, be a per-
mutation on [n]. For each element a € [n], its orbit is a cycle (ao, ..., ar—1) for some k < n,
where a; =o' (a),i =0, ...,k — 1 and o (ax—1) = a. Each permutation can be decomposed
as disjoint orbits. For example, consider the permutation o € Sy that swaps 1 with 2, swaps
3 with 4, and cyclically shifts 5678. Then o consists of three orbits represented in canonical
notation as o = (12)(34)(5678).

Consider the complete graph K, with vertex set [n]. Each permutation o € S,, naturally
induces a permutation o'F on the edge set of K,, the set (['21]) of all unordered pairs, according
to

(27) o®((i. ) £ (o). 0())).
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We refer to o and o as node permutation and edge permutation, whose orbits are referred
to as node orbits and edge orbits, respectively. For each edge (i, j), let O;; denotes its or-
bit under o E. As a concrete example, consider again the permutation o = (12)(34)(5678).
Then O = {(1,2)} and O34 = {(3,4)} are 1-edge orbits (fixed point of oF) and 05 =
{(5,6),(6,7),(7,8), (8,5)} is a 4-edge orbit. (See Table 2 in Section 5.1 for more examples.)

The cycle structure of the edge permutation is determined by that of the node permutation.
Let ny (resp. Ni) denote the number of k-node (resp. k-edge) orbits in o (resp. oF). For
example,

(28) N = (7121) + na, Ny = (”22) x 2+ niny + ny.

This is due to the following reasoning.

e Consider a 1-edge orbit given by {(i, j)}. Since (i, j) is unordered, it follows that either
both i, j are fixed points of o or i, j form a 2-node orbit of o'. Thus, N1 = (")) + na.

e Consider a 2-edge orbit given by {(i, j), (0 (i), 0 (j))}. Then there are three cases: (a) i, j
belong to two different 2-node orbits; (b) i is a fixed point and j lies in a 2-node orbit; (c)
i, j belong to a common 4-node orbit of the form (i * jx). Thus Ny = ("22) X2+niny+ng.

3.2. Second moment calculation. Recall the second-moment method described in Sec-
tion 1.2. When P is a mixture distribution, the calculation of the second moment can proceed
as follows. Note that the likelihood ratio is ggg:g; =E, [PQ(? AI? l‘g ) ], where 7 is a random per-
mutation uniformly distributed over S,,. Introducing an independent copy 7 of 7 and noting
that B has the same marginal distribution under both P and Q, the squared likelihood ratio

can be expressed as

7%&3»2 F%Aanxmbqam [ }
2 L)) —Brug g TT x4,
29) (Q(A,B) Ur| 9. B) O(A,B) | [1 X

i<j

where 7 L 77 denotes that 7 and 7 are independent, and

(30) Xij = L(Aij, Briyz(j)) L(Aij, Bz ()7 (j))-
Interchanging the expectations yields
P(A, B)\?
N T )]
o) O(A. B) 7l | LA, B)~0 111 ij

Fixing 7 and 7, we first compute the inner expectation in (31). Observe that X;; may not
be independent across different pairs of (i, j). For example, suppose (i1, j1) # (i2, j») and
(@), 7 (j1) = (@ (i2), T (j2)), then By (i) x(j)) = Bz (in),7(j») and X;, j; is not independent
of X, j,. In order to decompose [[; . ; X;; as a product over independent randomness, we use
the notion of cycle decomposition introduced in Section 3.1. Define

(32) c2n oz,
which is also uniformly distributed on S,. Let o€ denote the edge permutation induced by o
as in (27), that is, o E (i, Jj)=1(o(),o0(j)). For each edge orbit O of o, define
(33) Xo = l_[ Xij= H L(Aij, Bxiyn(j))L(Aij, Bz )z (j))-
(i,))€0 @,))e0

Importantly, observe that X ¢ is a function of (A;;, Br(i)z(j))i,j)co- Indeed, since (7 (i),
7(j)) =n(o(i),o(j)), or equivalently in terms of edge permutation, #E=nFo0oF, and O
is an orbit of O‘E, we have {Bn(i)n(j)}(i,j)eo = {Bﬁ(,‘)ﬁ(/‘)}(i,_/)eo.
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Let O denote the collection of all edge orbits of o. Since edge orbits are disjoint, we have
(34) [1xi= 1] Xo-
i<j 0eO

Since {A;j}i<; and {B;;};; are i.i.d. under Q, we conclude {Xo}oco are mutually inde-
pendent under Q. Therefore, by (31),

) | =] |
35 E —_— =E; 15 E ~olX .
(3) Q[(Q(A,B) L OUO .5~elXol

Recall that, for the Gaussian Wigner model, p denotes the correlation coefficient of edge
weights in the planted model P. For the Erd6s—Rényi graph model, the correlation parameter
in the planted model P is defined as
(36) bl Cov(Aij, Briyn(j)) _ s(1— P).

JVar (Aip) Var Brye(p) 1 P8

1

PROPOSITION 1. Fixing & and 7, for any edge orbit O of 0 =~ o7, we have:

o for Gaussian Wigner models,

1
(37) IE':(A,B)~Q[X0] = 1_7,02|0| s
o for Erdds—Rényi random graphs,
(38) E.p~olXol =1+ p*°!.

PROOF. Recall from (19) that L(x, y) = gg § ; = QI(Jx(;ch()y) This kernel defines an oper-

ator as follows: for any square-integrable function f under Q,

(39) (Lf)@) 2 Ey~o[L(x, V) f(1)] = Ex.yy~p[f(¥) | X =x].

In addition, L2 = L o L is given by L?(x,y) = Ez-gl[L(x, Z)L(Z,y)] and L is simi-
larly defined. For both the Gaussian and Bernoulli model, we have L(x,y) = L(y, x) and
hence L is self-adjoint. Furthermore, since [/ L(x, y)zQ(dx)Q(dy) < 00, L is Hilbert—
Schmidt. Thus L is diagonazable with eigenvalues A;’s and the trace of L is given by
tr(L) = EYNQ[L(Y, I=> A

Let k = |O]. To simplify the notation, let g;’s and b;’s be independent sequences of i.i.d.
random variables drawn from Q. Since O is an edge orbit of oF, we have { By iz (i, jreo =

{Bz )7 (j) i, jyeo and (7T (i), T (j)) = (o (i), 0(j)). By (33),

Ea B~0olXo]l= EA,B~Q[ [1 L(Aij. Bziyr(j) L(Aij, Bﬁ(i)ﬁ(j))]
(i,j))e0

k
= E[n L(ag, bz)L(ClZ, b(@—f—l) mod k):|
=1

k
= E|:l_[ Lz(bg, b(£+1) mod k):|

=1

=tr(L*) =Y A
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For the Gaussian Wigner model, L(x, y) given in (20) is known as Mehler’s kernel and
can be diagonalized by Hermite polynomials as

L(X’Y)ZZ%Hi(X)Hi(}’),

where Ey .o, 1)[H (Y)H;(Y)] =i'l;—jy [23]. It follow that the eigenvalues of operator L

are given by A; = p’ for i > 0 and thus tr(L?*) = Faily p2ki = 1+p2k'
For Erdés—Rényi graphs,
P(x,y)
(Lf)(x) = — MO = P(x,y) f(y).
ye{%} 00 O )yezm}
Thus the eigenvalues of L are given by the eigenvalues of the followmg 2 x 2 row-stochastic
matrix M with rows and columns indexed by {0, 1} and M (x, y) = 0 (x)) Explicitly, by (21)
we have
1—ps@2—s) ps(l—ys)
M = 1— ps 1— ps .
1—s s

The eigenvalues of M are 1 and p = Sfl:pfz), sotr(L?)y=14p%. O

In view of Propositions 1, E4,g)~o[X o] decreases when the orbit length |O| increases.
Let nj denote the total number of k-node orbits in the cycle decomposition of node permu-
tation o, and let Ny denote the total number of k-edge orbits in the cycle decomposition of
edge permutation o°F, for k € N. For the Gaussian Wigner model, by (35) and (37), we get

()
P(A’B) 2 _ - 1 i B 2 1 N
@0 EQ[(Q(A,B))}‘E”“[OUO<1—/)ZIOI)}‘E”“”_,El(l—p%) }
For the Erd6s—Rényi graphs, by (35) and (38), we get
()
P(A, B)ﬂ [ 200) ] 2% zvk}
41 E —— | |=Eruz 1+ =Eruz 1+ .
41) Q[(Q(A’B) in OE[O( P | =Exv _kljl( )

Let us assume
(42) n*p®=o(1),

which is ensured by (4) for Gaussian model in Theorem 1 or (6) for dense Erd6s—Rényi model
with p =n~°" in Theorem 2.

For the Gaussian model, consider the orbits of length k > 3. Since Zki)3 Ni < (5), we have

2)

N N NG
g(l—pz") S(1—/<>6) =<1+1—p6)

2.6
<exp( —L_ )= 1401,
2(1—p%)

where the last equality holds due to (42). Moreover, for 1-orbits and 2-orbits,

1 N 1 Ny p2 Ny ,02 2\ N»
2 4 = 1+ 2 1+ 2
1—p 1—p 1—p 1—p
2 2 2
P P
< N — | N2 ).
_eXp(l—p2 1+(1—p2) 2)

(43)
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Therefore,
aam) ool 25 (+25) )]
44 E _— <(1 D)E;uz% ——N Ny .
(44) Q[(Q(A’B) < (14 0(1))Ex 1% |exp =2 1+ )
For Erdés—Rényi graphs, analogously, for the orbits of length k > 3,
2)

N s "2,06
(45) [T +p%)™ < (14 p9® < exp(T) =1+o(1),
k=3

where the last equality holds due to (42). For 1-orbits and 2-orbits, (1 + PN+ phHM2 <
exp(p2N1 + p4N2). Therefore,

P(A, B)
Q(A, B)
Next, we bound the contribution of Ny and N, to the second moment for both models

using the following proposition. The proof, based on Poisson approximation, is deferred to
Section 7.2 of the Supplementary Material [42].

2
(46) EQ[( ) } < (1+0(1))Ezuz[exp(0®*Ni + p*N2)].

PROPOSITION 2. Assume , v, T > 0 such that 2= o(%), and ub+v+2—1loghb <0
for some 1 < b <n such that b= w(1).

e [fa=w(l)and v <log(a) — 3,
47) Er1z[exp(unt + vy + tna + 2 No)ljg<n, <] = o(1).

e [fa=0andv =o0(1),

(48) Ey 1z [exp(uni + vag + tny 4+ t>No)ljg<n,<py] < 1 +o(1).
In particular, if 0 < 1 < M, then
(49) Er1z[exp(t N1 4 t2N2)] =14 o(1).

Finally, we arrive at a sufficient condition for bounded second moment, which turns out to
be essentially necessary as we will see shortly in Section 3.3.

THEOREM 3 (Impossibility condition by unconditional second moment method). Fix any
constant € > 0. If

,02 < (2—e)logn,
n

(50)

then for both Gaussian Wigner and Erdds—Rényi graphs, EQ[(ggﬁ’gg)z] =1+ o(1), which

further implies that TV (P, Q) = o(1), the impossibility of weak detection.

PROOF. Note that (50) implies (42). Thus, by combining (44) or (46) with (49) in Propo-

sition 2, we get EQ[(ggﬁ’gg)Z] =1+ o(1), which yields TV(P, Q) = o(1) in view of (12).
O
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3.3. Obstruction from short orbits. The impossibility condition in Theorem 3 is not
optimal. In the Gaussian case, (50) differs by a factor of 2 from the positive result of

P> > w in Theorem 1. For Erd6s—Rényi graphs the suboptimality is more severe: The-

orem 2 shows that if nps?(log % — 14 p) = (24 ¢€) logn, then strong detection is possible. In

the regime of p = o(1), since p = (1 + 0(1))s, this translates to the condition p2 > %,
P

which differs from (50) by an unbounded factor. This is the limitation of the second mo-

ment method, as the condition p? < % is actually tight for the second moment to be

bounded. When p? > W, the second moment diverges because of certain rare events

associated with short orbits in & = 7! o 7. Below we describe the lower bound on the sec-

ond moment due to short orbits, which motivates the conditional second moment arguments
in Sections 4 and 5 that eventually overcome these obstructions.

Specifically, in view of (29) and (34), for both Gaussian and Erd6s—Rényi models, the
squared likelihood ratio factorizes into products over the edge orbits of o':

P(A, B) )2
(7 :EnJ_Lﬁ[ I1 Xo},

Q(A, B) oo
where X ¢ is defined in (33). Since both 7 and 7 are uniform random permutations, so is
o =~ o #%. For each divisor k of n, consider the rare event that o decomposes into (k)
disjoint k-node orbits (i.e., ny = n/k and all the other n;’s are zero), which occurs with
probability W > n~"/*_ These short node orbits create an abundance of short edge
orbits, as each pair of distinct k-node orbits can form k different k-edge orbits.> Thus, the
following lower bound on the second moment ensues

P(A, B)\?
Sunel (gia ) | =] [1 atvol]

(?]E[(l 4+ o2y (k] 5 ymn/k(g +p2k)(”§")k

(51) =exp <—% logn + (nék) klog(1+ ka)) ,

where (a) holds because Eg[Xp] > 1 + ,02k for each k-edge orbit O in both Gaussian ((37))
and Erdés—Rényi models ((38)).
Consequently, for any k = o(n),

2+¢€)logn P(A, B)\?
= = e (Ga) |
e — \oap)]|7™
In particular, the strongest obstruction comes from k = 1 (fixed points):
2
2o 2+¢€)logn 4 [(P(A,B)) }
=T — loam) 7™

In this case, the culprit is the rare event of 7 “colliding” with 7 (¢ = id), which holds with
probability 1/n! but has an excessive contribution of (1 + ,02)(;) to the second moment.

In conclusion, the second moment is susceptible to the influence of short edge orbits,
for which []|p=x Xo for small k has a large expectation. Fortunately, it turns out that the

2For example, (12) and (34) can form two edge orbits O3 and Oj4 of length 2; these edge orbits will be
referred to as Type-M; see Section 5.1 for a full classification of edge orbits.
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atypically large magnitude of [ [, X0 can be attributed to certain rare events associated
with the intersection graph A A B under the planted model P. This motivates us to condition
on some appropriate high-probability event under P, so that the excessively large magnitude
of []jp)=« X0 is truncated. As we will see in Section 4, in the dense regime (including the
Gaussian Wigner model and dense Erd6s—Rényi graphs), it suffices to consider k = 1 and
regulate []jp|=; Xo by conditioning on the edge density for all sufficiently large induced
subgraphs of A A B™ under P. In contrast, in the sparse regime, we need to consider all edge
orbits up to length k£ = ®(logn) for which more sophisticated techniques are called for, as
we will see in Section 5.

4. Conditional second moment method: Dense regime. In this section, we improve
Theorem 3 by applying the conditional second moment method. The proof of the sharp
threshold for the Gaussian model is given in full details in Section 4.1. The proof for dense
Erd6s—Rényi graphs uses similar ideas but is technically more involved and hence deferred to
Section 7.3 of the Supplementary Material [42]. We start by describing the general program
of conditional second moment method. Note that sometimes certain rare events under P can
cause the second moment to explode, while TV (P, Q) remains bounded away from one. To
circumvent such catastrophic events, we can compute the second moment conditioned on
events that are typical under P. More precisely, given an event £ such that P(£) =1+ o(1),
define the planted model conditional on £:

PA, B 2 DT )(IQ;A*B*”’E‘” — (14 0()P(A, B. )14 5.mes).

the last equality holds because P(£) = 1 4+ o(1). Then the likelihood ratio between the con-
ditioned planted model P’ and the null model Q is given by

P'(A, B) _ f'P/(A, B,m)dr _ P@)P(A, B |7T)1{(A,B,7T)e€}
OA.B) QA B) =(1+o) QA B) an
P(A,B | )

—(+ 0(1))En[ S

By the same reasoning that led to (35), the conditional second moment is given by

P'(A, B)\* _ B P(A,B|m)P(A,B|%)
ol ( Q(A,B)) =1+ o) 2o O(A.B) O(A.B)

1{(A,B,yr)e£}i|-

(52) X 1[(A,B,n)e€}1{(A,B,ﬁ)e€}:|:|

=(1+o0(1))Ezruz [EQ[ 1_[ Xo1{(A,B,n)eS}l{(A,B,ﬁ)eg}ﬂ,
0eO

where the last equality follows from the decomposition (34) over edge orbits O € O of 0 =
7! o . Compared to the unconditional second moment in (29), the extra indicators in (52)
will be useful for ruling out those rare events causing the second moment to blow up.

We caution the reader that, crucially, the conditioning event £ must be measurable with
respect to the observed and the latent variables (A, B, ). Thus we cannot rule out the rare
event that 77 is close to its independent copy 7 so that o = 7! o 7 induces a proliferation of
short edge orbits. Instead, as we will see, by truncating certain rare events associated with the
intersection graph A A B”, the excessively large magnitude of [[;p—x X o can be regulated
for small k.

By the data processing inequality of total variation, we have

TV(P(A, B), P'(A, B)) <TV(P(A, B,7), P'(A,B,7)) =P((A, B,) ¢ £) = o(1).
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Combining this with the second moment bound (11)—(12) and applying the triangle inequal-
ity, we arrive at the following conditions for nondetection:

P'(A,B)\* _
(53) %[(m) ]_0(1) = TV(P(A, B),Q(A, B)) <1—Q(1),

P'(A,B)\*] _ )
m) ]—“0“) —  TV(P(4, B), Q(4, B)) = o(1),

(54) EQ[(
4.1. Sharp threshold for the Gaussian model. In this section, we improve over the impos-
sibility condition p? < M established in Theorem 3, showing that if p? < w
then weak detection is 1mp0s51ble This completes the impossibility proof of Theorem 2 for
the Gaussian model.
Before the rigorous analysis, we first explain the main intuition. Let F denote the set of
fixed points of 0 = 71 o %, so that |F|=ni.Let

o= (%),

which is a subset of fixed points of the edge permutation (cf. (28)). As argued in Section 3.3,
the unconditional second moment blows up when p2 > @ due to the obstruction of
fixed points of o, or more precisely, an atypically large magnitude of [[pcp, Xo. By (20)

>

and (30),
[T xo= T Xy
0e0y i<jeF
=(1-p3) Dex 3 (A} + B e
(55) = 4 —p? . T (j)
i<je
+2p ) AijBna)n(j))}-
i<jeF

Recall that for any S C [n], eanp= (S) = Zi<jeS A;jBr(iyn(j) as defined in (13). To trun-
cate [ [, - jeF Xj, one natural idea is to condition on the typical value of e, g~ (F') under the
planted model P when | F| = n is large. More specifically, for each S C [n], define

. N S|
Es 2 {(A, B.m): Y A= ( 5 ) 3" Bl inih = ( 5 ) —cn’l?,

i<jeS$ i<jeS

eans(S) < p ('g') + cn3/2} ,
where C is an absolute constant. We will condition on the event
(56) es2 N &,
SC[n]:|S|=n/2

which will be shown to hold with high probability under the planted model P. Note that here
in order to truncate [[; _ jcr Xij, € is defined as the intersection of Eg over all subsets S with
|S| > n/2, so that it implies £ when |F| > n/2. The reason that we cannot condition on Ef
directly is because the set of fixed points F depends on o = 7 ~! o 7 rather than 7 alone, and
thus is not measurable with respect to (A, B, ).

Let

57) C=p (”21) Lo,
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Whenn; >n/2, wehave = p (n21> (14 o0(1)). Furthermore, on the event &, it follows from
(55) and p = o(1) that

2
EQ[ 1_[ Xijlg] fexp{—(l +0(1)),02 <n21>}EQ|:eXp{1 _ppzeAAB”(F)}I{EAABﬂ(F)SC}]

i<jeF
1+0(1) 2 (N1
sen| 5 ()]

where the last inequality is by evaluating the truncated MGF of eg p7 (F) (see (59) be-
low). Note that without the truncation esAp= (F) < ¢, we recover the unconditional bound
Eol[Ti<jer Xijl = exp{(1 + 0(1)),02(”2')}. Thus, the conditional bound improves over the
unconditional one by a multiplicative factor of 2 in the exponent.

Finally, to ensure the second moment after conditioning is 1 4+ o(1), analogous to (51), in
the extreme case of n| = n, we need to ensure

1 1+o(l) ,(n
nt P 2 P2

=expl — o(l))nlogn 14,0” =o(1),
) =eof-t om0,

which corresponds precisely to the desired condition p? < w.
Next, we proceed to the rigorous proof. As the impossibility of weak detection when p? <
10% has already been shown in Theorem 3, henceforth we only need to focus on
logn << 4 - e)logn‘

<p
n n

The following lemma proves that £ holds with high probability under the planted model P.
LEMMA 1. It holds that P((A, B, ) € ) > 1 — e~ %),

PROOF. Fix anintegern/2 <k <n andletm = (g) Lett = c(/mlog(1/8) +1og(1/6)),
for a universal constant ¢ and a parameter § to be specified later.

Fix a subset S C [n] with |S| = k. Using the Hanson—Wright inequality given in Lemma
10 in Section 9 of the Supplementary Material [42]. with probability at least 1 — 34,

2 2
i<jes i<jeS
(58)
eanr(S) = Z AijBriyn(j) < pm +t.
i<jeS

Now there are () different choices of S C [n] with |S| = k. Thus by choosing 1/8 =2*(})
and applying the union bound, we get that with probability at least 1 —3Y"}_, 2 27k =1-
e~ (58) holds uniformly for all § C [n] with |S| =k and all n/2 < k < n. By definition
and the fact that k > n/2, 1/8 < 2K(9)F < (4e)¥, and thus 1 < c(/mkTog(4e) + k log(de)) =
om¥?. O

Now let us compute the conditional second moment. By Lemma 1, it follows from (52)
that

P’ (A, B)\?
EQ[(m) } =(14+o0(1)Eruz [EQ[OEIO XO1{(A,B,n)eg}1{(A,B,ﬁ)e5}ﬂ-

To proceed further, we fix 7, 7 and separately consider the following two cases.



TESTING CORRELATION OF UNLABELED RANDOM GRAPHS 2539

Case I: n1 <n/2. In this case, we simply drop the indicators and use the unconditional
second moment:

1
EQ[ H XO1{(A,B,n)e£}1{(A,B,ﬁ)e£}:| EEQ[ H Xo} = 1_[ T 200
0e0 0e0 oco ' — P
where the last equality follows from (37).
Case 2: n1 > n/2. In this case,
(a) i
EQ[ H XO1{(A,B,n)e€}1{(A,B,r~r)e€}i| < Eg 1_[ XOI{(A,B,n)ESF}]
0eO -0€0
® [
=Eo H Xol{(A,B,n)egF}] 1_[ Eol[Xo]
~0e0 0¢0,
©m [ 1
=Eo H Xijlya,B,n)eer) n T_ 200
LiZjeF ogo, " P

where (a) is due to the definition (56), £ C £F when ny > n/2; (b) holds because Xo
is a function of (A;j, Br(i)z(j))(,j)eo that are independent across different O € O, and
1{(a,B,n)eer) only depends on {(A;j, Bx(i)x(j)) i, j)c0 : O € O1}; (c) follows from (37).

On the event £, we have

> ah=(1+om) ().

i<jeF

Y Bl = (L+0(D) <r121> :

i<jeF
eannr(F) = (1+00)o (5 ).

lo

32 = o(pn%) in view of assumption /02 > % and ny > n/2.

where we used the fact that n
It follows from (55) that

EQ[ I1 Xiﬂ{(ABn)e&}}
i<jeF

—(M 1
= (1 — ,02) (Z)EQ[CXP{ 1 p2 <—,02 Z (AIZJ + B72r(l)7r(])) + ZpeA/\Bn (F))}

- i<jeF

X 1{<A,B,n)eeF}]
_ 2 4+ 0(1)) p>
< (1= Dexp i_( : i(p)z),o <n21>}

2peanpr (F)
x Eg|exp 1_7/02 Lieanpm (F)<t} |-

where eanp (F) =Y _ jep AijBr(iyn(jy and ¢ = p(}) (1 + o(1)).
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Let B = 13’;2. Then for any A € [0, 1],

2 a7 (F)
Eo [eXp{peA_inz}l{eAABﬂ (F)SC}:|
59) < Bafexp(B(heansr (F) + (1~ t)]]
1
=exp {1 e = 3 (15 ) rox1 - £222)]

where the equality uses the MGF expression in (24). Choosing3 A=(1-— p2) /2 in (59), we
obtain

1 (n 1 /n
eXp {'8(1 — M) — 5 <21> log(1 — ,32)\2)} = exp {(,3 —pP)§ — 5 (Zl)log(l — pz)} )
Combining the last three displayed equations yields that

EQ[ I1 Xijl{(A,Bsﬂ)egF}}

i<jel

20%(1 1 3
sexp{—pi_;:z()) <n21>+(ﬁ—p)§—§<n21>10g(1—pz)}

_Jatene® (1+0(1)p2n}
L I T O [ I E—

where the equality holds under the assumption that p = o(1) so that log(1 — p?) = —(1 +

o(1))p.
Combining the two cases yields that

=l (G ) =0+ o] T e

0e0

1 (14 o0(1)p*n}
+(1 +0(1))E[ [1 1 — ,20] exp{ 4 1 }1{n1>n/2}]-
0¢0, P

2
Lett = - Note that

1 ( 1 )nzl_[( 1 )Nk 1 \™ 1 \M

e ) =0ren(=5) ()

040 1— p2|0\ 1 —,02 2 1— p2k 1 —,02 1— p4

< (l+o(1))exp(tn2 + erz),

where the first equality follows from (28), the second equality holds by (43) under the as-

sumption p% < (4 — €)logn/n, and the last inequality holds because ﬁ =147 <exp(r)

and # <l+4+1%< exp(tz). Similarly,

1 1\
I1 1= o201 — (1 _ pz) <exp(tni/2).

OEO]

3This choice is motivated by choosing A to minimize —SA¢ + %("21) B2A2, the first-order approximation of the
exponent in (59), leading to A* = ;/[("21),3] =1+ o)1= p?)/2.
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Hence,

P'(A, B)\?
EQ[(m) } < (14 o(1))E[exp(z (17 /2 + n2) + T N2) L, <n/2)]
(1+ o(1))p*n? } ]
— 1,502y |-
We upper bound the two terms separately. To bound the first term, we apply (48) in Propo-

+(1+ 0(1))E[exp(tn2 + T2N2) exp{

sition 2 with u =t/2, v =0, a =0 and b = n/2. Recall that T = 151202' By assumption

p? < (4 —€)logn/n, we have 7% = 0(%) and ub +2 —logh = ﬁ +2—1log(n/2) <0
for all sufficiently large n. Thus it follows from (48) in Proposition 2 that

Elexp(c(n}/2 +n2) + > N2)1jny <nyzy] < 1+ 0(1).

,v=0,a=

. .. . _ (1+o0(1))p?
To bound the second term, we apply (47) in Proposition 2 with u = =~

5 and b = n. Recall that T = lfj)z' By assumption np? < (4 — €)logn, we have 72 = 0(%)

and ub+v+2—logh= w + 2 —logn <0 for sufficiently large n. Thus it follows
from (47) in Proposition 2 that

(1+o(1)p*n?
E[exp(rnz + erz) exp{ fl }1{n1>n/2}j| =o(l).

Combining the upper bounds for the two terms, we conclude that EQ[(Z((Q’II;)))Z] =1+
o(1) under the assumption that p> < (4 — €) logn/n. Thus TV(P, Q) = o(1) in view of (54).

5. Conditional second moment method: Sparse regime. We focus on the Erd6s—Rényi
model in the sparse regime of p = n~%(). The impossibility condition previously obtained
in Theorem 3 by the unconditional second moment simplifies to s> < (2 — e)k)f". In this
section, we significantly improve this result by showing that if

-1/3
(60) 2z o,
np
then strong detection is impossible. Moreover, if both s = o(1) and (60) hold, then weak
detection is impossible.

Analogous to the proof for the dense case in Section 4 (see also Section 7.3 of the Supple-
mentary Material [42]), we will apply the conditional second moment method. However, the
argument in the sparse case is much more sophisticated for the following reason. In the dense
regime (both the Gaussian and Erd6s—Rényi graph with p = n=°(1), we have shown that the
main contribution to the second moment is due to fixed points of o = 7 ~! 0 7, which can be
regulated by conditioning on the edge density of large induced subgraphs in the intersection
graph. For sparse Erd6s—Rényi graphs with p =n~%( we need to control the contribution
of not just fixed points, but all edge orbits of length up to k = ®(logn). Indeed, as argued
in Section 3.3, the unconditional second moment blows up when p2k > % due to
the obstructions from the k-edge orbits, or more precisely, an atypically large magnitude of
]—[‘0|=k Xo. Note that p = Sfl_;’s’) = (1 4+ o(1))s in the sparse case. Therefore, to show the
desired condition (60), we need to regulate [] o= X o beyond k = 1 by proper conditioning.
In fact, for p = ®(1/n), since (60) reduces to p < 0.1, it is necessary to control all k up to
O (logn).

To this end, the crucial observation is as follows. We call a given edge orbit O of o =

7w~V o complete if it is a subgraph of the intersection graph A A B, thatis, O C E(A A B™).
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For each complete orbit O, we have A;; = By (i)z(j) = Bz@)z(j) = 1 for all (i, j) € O and
hence, by (21) and (30), X;; = L(1, D2 = 1/p2, so that X attains its maximal possible
value, namely

1

20|
61) Xo = (_> . VO CE(AABT).
p

For incomplete orbits, it is not hard to show (see Proposition 4 below) that
Eo[Xo 1O ¢ ANB™]<1.

Hence, the key is to control the contribution of complete edge orbits O that are subgraphs
of A A B”. Crucially, under the assumption of Theorem 2 in the sparse regime, nps? is suf-
ficiently small so that A A B” is subcritical and a pseudoforest (each component having at
most one cycle) with high probability under the planted model P. This global structure sig-
nificantly limits the possible configurations of complete edge orbits, since many patterns of
co-occurrence of edge orbits in A A B" are forbidden. Motivated by this observation, we
truncate the likelihood ratio by conditioning on the global event that A A B” is a pseudofor-
est. Finally, in order to show the conditional second moment is bounded under the desired
condition (60), we carefully control the co-occurrence of edge orbits in A A B” under the
pseudoforest constraint, which involves a delicate enumeration of pseudoforests that can be
assembled from edge orbits.
Next, let us proceed to the rigorous analysis. Define

E={(A,B,m): A A B” is a pseudoforest}.

Note that A A B™ ~ G(n, ps?) under the planted model P. The following result shows that
in the subcritical case A A B” is a pseudoforest.

LEMMA 2 ([17], Lemma 2.10). Ifnps®> <1 —aw(®n~'/3), then P(A,B, 7)€ E) — 1 —
o(n%) asn — oo.

Recall from (29) and (34) in Section 3.2 the following representation of the squared like-
lihood ratio

62 PABN g, 5] TT %o,
(2 (2a® wa| 11 Xo

where for each edge orbit O of o = 7 1lo%,

Xo = ]_[ Xij,  Xij = L(Aij, Bxi)n () L(Aij, Bz (i)#(j))
ijeoO
with L(-, -) is defined in (21). In order to decompose (62) further, let us introduce the follow-
ing key definitions. Recall from Section 3.1 that O; denotes the node-orbit of i (under the

node permutation o) and O;; denotes the edge-orbit of (7, j) (under the edge permutation
oF). Fix some k to be specified later.

e Define O as the set of edge orbits of length at most k that are formed by node orbits with
length at most k, that is,

Or=1{0ij:10i| <k,10j| <k,|0jj| <k,1 <i < j<n}.
e Define [J; as the set of edge orbits O € Oy that are subgraphs of A A B, that is,
Tk ={0 € Or: Ajj =1, Briiyn(j) = 1,V(i, j) € O}
={0 € Or: Ajj =1, Bz(hz(j) = 1, V(, j) € O},

where the second equality holds because { B )= (j)} i, j)eo = {Bz )7 ()}, j)e0-
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e Define

(63) H= ] o.
OeJi

Note that while Oy depends only on the random permutation ¢ = 7! o #, both J; and Hj
depend in addition on the random graph A A B”.

As will be discussed at length in Section 5.1, each edge orbit can be viewed as a subgraph
of the complete graph K,,. Different edge orbits are by definition edge disjoint, and the union
of all edge orbits is the edge set of K,,. We shall call a graph an orbit graph if it is union of
edge orbits. Importantly, by definition, the orbit graph Hy, is a subgraph of A A B”.

To compute the conditional second moment, by Lemma 2, it follows from (52) that

P'(A, B)\?>
EQ[(m) ] =(14o0())E; 5 |:EQ |:Ol;[0XO1{(A,B,n)eé’}l{(A,B,ﬁ)eE}]:|

(64)
=< (1 + 0(1))E7TJ_L7? [EQ[ 1_[ Xo l{Hk is apseudoforest}j|j| ,
0eO

where the last inequality holds because on the event that A A B” is a pseudoforest, its sub-
graph Hj is also one.
To further upper bound the right-hand side of (64), we decompose the product over edge

orbits into three terms:

HXOZHXOX 1_[ XOXI_[XO

0e0 0¢0x 0€O\Ji 0eJk
which correspond to the contributions of long orbits, short incomplete orbits (that are not
subgraphs of A A B™) and short complete orbits (that are subgraphs), respectively. As shown
earlier in (61), for each complete edge orbit O, we have X o = (1/p)?!°!. Therefore in view
of (63), the collective contribution of short complete orbits are

1\ 2e(Hk)
(65) [Mxo=(5) -

Oci p

1

Thus, fixing 0 =7~ o 7, we have

EQ |: H Xo l{Hk isa pseudoforest}]

0eO
(66) = EQ[ 1_[ X01|EQ|: l_[ Xo l{Hk is apseudoforest}:|
0¢Oy [0)@)*
1\ 2e(Hy)
:EQ[ 1_[ X0:|Ejk|:<_) l{Hk is apseudoforest}EQ[ 1_[ XO|$<]]’
0¢0y p 0€O\ Tk

where the first equality holds because {X ¢ }pco are mutually independent and J;, C O, so
that {Xo}oeo\o, 1s independent of {Xp}oco, and the event that Hy is a pseudoforest; the
second equality holds because Hj, is measurable with respect to Jy.

The contributions of long orbits and incomplete orbits can be readily bounded as follows,
whose proofs are deferred to Sections 8.1 and 8.2 of the Supplementary Material [42].

PROPOSITION 3 (Long orbits). Fixanyo =n"'o#. Foranyk € N,

EQ[ 1l Xo] < (1+97.

0e0\0,
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PROPOSITION 4 (Incomplete orbits). Fixanyo =nx "' of. If p<1/2ands <1/2, then

Bo| 1 Xol|=t.

0cO\Jk

Applying Proposition 3 and Proposition 4 to (66), we get that for any 0 =771 o 7,

2 1\ 2¢(Hr)
(67) ]EQ|: 1_[ XO 1{Hk isapseudoforest}:| =< (1 + ,Ok) k Ejk [(;) 1{Hk isapseudoforest}]-
0e0

It remains to further upper bound the RHS of (67). Let H; denote the set of all orbit
graphs that consist of edge orbits in Oy and are pseudoforests—we call such graphs orbit
pseudoforests. As such Hy depends only on o but not the graph A and B. Therefore,

1\ 2¢(HR) 1\ 2¢tH)
Ez7, |:(_) Lig isa pseudoforest}] = Z Q(Hy = H) <_> 1{# is a pseudoforest)
(68) p HeHy p

< Z g2e(H)

HeHy

where the last step holds because
Q(Hy = H) < Q(Aij = L, Bx(yn(j) = 1.V(i, ) € E(H)) = (ps)*™.

In view of (68), to further upper bound the second moment, it boils down to bounding the
the generating function of the class Hj of orbit pseudoforests. This is done in the following
theorem in terms of the cycle type of o. The proof involves a delicate enumeration of orbit
pseudoforests, which constitutes the most crucial part of the analysis. We note that if we
ignore the orbit structure and treat Hy as arbitrary pseudoforests, the resulting bound will be
too crude to be useful.

THEOREM 4 (Generating function of orbit pseudoforests). ForanykeN,oc =n"' o7,

and any s € [0, 1],
k m nm
(69) > 2 < I (1 + 5" Lmseven) + 257" > tng+ S4mmn2m1{2m§k}> ,
HeHy m=1 =1

where ny, is the number of m-node orbits in o = 7 1o 7 for1 <m <k.

Combining (64), (67), (68) and (69), we get that
P'(A, B)>2}
E A7)
Q[( Q(A, B)

k
(70) = (1 +0(1))(1 +,0k)kE7tJ_L7?|:l—[ <1 +Smnm1{m:even}

m=1

nm
+ 2S2m Z Ing + s4mmn2m1{2m5k}> i|,

L<m

which is further bounded by the next result.
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PROPOSITION 5.  Suppose k(logk)* = o(n). If s <0.1,

k Nm
l_[ (1 + 5" nm meeveny + 25%M Z fng + s4mmn2m1{2m5k}> :| =0(1).

m=1 <m

(71) Emﬁ[

Furthermore, if s = o(1),

k o
(72) Eruz [ I1 (1 + 5" i Lceven) + 257" D ng + s4mmn2m1{2m§k}) ] =1+o0(1).
l=m L<m

The proof of Proposition 5 is involved and deferred to Section 8.3 of the Supplementary
Material [42]. To provide some concrete ideas, the following simple calculation shows that
s = o(1) is necessary for (72) to hold. Indeed, consider k = 1 for which the LHS reduces to
E[(1 4+ 2s2n)™]. By Poisson approximation (see Section 10 of the Supplementary Material
[42]), replacing n1 by Poi(1) yields

. 1 . 1 2
E[(1+ 2s2n1)"'] e Zo(l + 2s2a)aa > e} Zo(l + 2s2)aa =¥,
a= a=

which is 1 4+ o(1) if and only if s = o(1). To evaluate the full expectation in (72), note that
even if we use Poisson approximation to replace n,,’s by independent Poissons, the terms
inside the product over [k] are still dependent. To this end, we carefully partition the product
into disjoint parts, and recursively peeling off the expectation backwards.

We are now ready to complete the proof of Theorem 2 in the sparse case.

PROOF OF THEOREM 2: IMPOSSIBILITY RESULT IN SPARSE REGIME. Let k =3logn.
2.k
Ifs < %, then 2~ = o(1) and thus

2 2k 2 k
(1 +,0k)7 < exp(n k,o ) < exp(%) =14o0(1).

Note that k(log k)* = o(n). Combining (70) with (71) and (72) yields that EQ[(Z}Q; 2=

O(1) for s <0.1 and Eg[(54:2)2] = 1+ o(1) for s = o(1), which completes the proof in
view of (53) and (54). O

The remainder of this section is organized as follows. To prepare for the proof of Theo-
rem 4, we study the graph structure and the classification of edge orbits in Section 5.1. An
equivalent representation of orbit graphs as backbone graphs is given in Section 5.2 to aid
the enumeration argument. As a warm-up, we first enumerate orbit forests (orbit graphs that
are forests) and bound their generating function in Section 5.3. The more challenging case of
orbit pseudoforests is tackled in Section 5.4, completing the proof of Theorem 4. Section 8
of the Supplementary Material [42] contains the proofs of Propositions 3-5.

5.1. Classification of edge orbits. To prove Theorem 4, we are interested in orbit graphs
consisting of short edge orbits, and the main task lies in enumerating those that are pseudo-
forests. To this end, we need to understand the graph structure of edge orbits.

Throughout this subsection, fix a node permutation o. For a given edge (i, j), its edge
orbit can be viewed as a graph with vertex set O; U O; and edge set O;;. Let |O;| = £ and
|O;j| = m. Each edge orbit can be classified into the following four categories (see Table 2
for a concrete example).
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TABLE 2
Edge orbits corresponding to the node permutation o = (12)(34)(5678). When representing an edge orbit in
cycle notation, each edge (i, j) is abbreviated as i j. As a convention, nodes in each node orbit are vertically
aligned and arranged in the order of the permutation o . For edge orbits, type M are in green, type B in red, type
C in blue and type S in black

Type Edge orbit Orbit graph
M (13,24) lo——o03
20——o04
(14,23) 1 3
s
B (15,26,17,28) 5
1 6
2 7
8
(16,27,18,25) 5
1 6
2 7
8
(35,46,37,48) 5
3 6
4 7
8
(36,47,38,45) 5
3 6
4 7
8
Cc (56,67,78,85) 5
6
7@
8
S (12) 1
]
(34) 3
J
(57,68) 5
6
7
8

Type M (Matching): i and j belong to different node orbits of the same length. In this case,
|O;j| =m and O;; is a perfect matching. We call such O;; an M,, edge orbit (or a match-
ing). Furthermore, for two distinct node orbits O and O’ of length m, the total number of
possible M,,, edge orbit is m.
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Type B (Bridge): i and j belong to different node orbits of different lengths. Without loss

of generality, assume that the orbit of i is shorter than that of j, that is, £ < m. In this
case, let M =lcm(¢, m). Then |O;j| = M and O;; consists of %" vertex-disjoint copies
of the complete bipartite graphs K /¢, p/m- We call such edge orbit a By, ¢ edge orbit (or
a bridge). Furthermore, for two node orbits O and O’ with |O| = ¢ < |O’| = m, the total
number of possible bridges is ZA’/’;
Of special interest is the case where £ is a divisor of m and the orbitis £K m (i.e., £ copies
of 77 -stars). These are the only bridges that are cycle-free; otherwise the bridge contains a
component with at least two cycles. This observation is useful for the enumeration argu-
ment in Sections 5.3 and 5.4 under constraints on the number of cycles.

Type C (Cycle): i and j belong to the same node orbit of length m and j # o”/?(i). In this
case, |0;j| =m and O;; is an m-cycle. We call such O;; a C,, edge orbit (or a cycle), and
there are a total number | "7 L| of them for the same node orbit.

Type S (Split): i and j belong to the same node orbit (of even length m) and j = o™2(i).
In this case, |O;j| =m/2 and O;; is a perfect matching. We call such O;; an S,,, edge orbit
(or a split). Clearly, for each node orbit of even length, there is a unique way for it to split
into an S, edge orbit.

In summary, matchings and bridges are edge orbits formed by two distinct node orbits, which
are bipartite graphs with vertex sets O; and O;. Cycles and splits are edge orbits formed by
a single node orbit O;, which can either form a full cycle or split into a perfect matching.

5.2. Orbit graph and backbone graph. Every orbit graph H can be equivalently and
succinctly represented as a backbone graph I' defined as follows.

DEFINITION 2 (Backbone graph). Given an orbit graph H, its backbone graph is an
undirected labeled multigraph, whose nodes and edges (referred to as giant nodes and giant
edges) correspond to node orbits and edge orbits in H, respectively. Each giant node carries
a binary label (represented as shaded or nonshaded) indicating whether the node orbit forms
a Type S edge orbit (split) or not. Each giant edge carries a label (an integer) encoding the
specific realization of the edge orbit. Specially:

e A Type S edge orbit (split) is represented by a shaded giant node.
e A Type C edge orbit (cycle) is represented by a self-loop, whose edge label takes values

in [[25 1.

o A Type M,, edge orbit (matching) is represented by a giant edge between two m-node

orbits, with edge label taking values in [m].

e A Type B,, ¢ edge orbit (bridge) is represented by a giant edge between a £-node orbit and

a m-node orbit (¢ < m), with edge label taking values in [ 77— Cnﬁ’? -

See Figure 2 for an example of an orbit graph and its corresponding backbone graph. As
a convention, for the backbone graph, the labeled giant edges representing Type M, Type B
and Type C edge orbits are colored green, red and blue, respectively. Each shaded giant node
represents a Type S edge orbit. For convenience, the number inside each giant node represents
the length of its corresponding node orbit.

Recall that H; denotes the collection of orbit pseudoforests consisting of edge orbits of
length at most k formed by node orbits of size at most k. To enumerate H € Hy, it is equiv-
alent to enumerating the corresponding backbone graph I'. To facilitate the enumeration, we
introduce the following definitions:

e Let S, denote the set of giant nodes corresponding to m-node orbits.
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(12) (34) (5678)

(a) Orbit graph H. (b) Backbone graph IT.

FI1G. 2. Example of an orbit graph and its corresponding backbone graph for o = (12)(34)(5678). The labels
of giant edges are determined based on the enumeration of edge orbits in Table 2. For instance, the two green
giant edges correspond to the two Type M (perfect matchings) between node orbits (12) and (34), and the red
giant edge corresponds to the Type B edge orbits (bridge) between node orbits (34) and (5678).

e Let I, =I'[S,;] denote the subgraph of I' induced by node set S;,, for 1 <m < k. Let
I'ye = T[S, Se] denote the (bipartite) subgraph of I' induced by edges between S,,, and
Se, for 1 <€ <m < k. Each giant edge in I';, ¢ corresponds to a B, ¢ edge orbit (bridge).

e A connected component of I', is called plain if it contains no split and is not incident to
any bridge in (J,_,, T'm.¢.

Following [22], page 112, we define the excess of a graph G, denoted by ex(G), as its
number of edges minus its number of nodes. Given a connected component C in I'y,, let Hc
denote the orbit graph consisting of edge orbits (including splits, matchings and cycles) in C,
as well as bridges in (Jy_,, ', ¢ that are incident to C. The following two operations can be
recursively applied to C to increase ex(Hc):

(0O1) Adding one split in C increases ex(Hc) by m/2;
(02) Adding one By, ¢ bridge (¢ < m) to C increases ex(Hc) by at least lem(¢, m) — £.

In addition, we need the following fact about the excess of an orbit graph:

LEMMA 3. For any connected component C in I'y,, ex(Hc) = —m, where the equality
holds if and only if C is a plain tree component in I'y,.

PROOF. Given a connected component C in I',,, let a and b denote the total number
of giant edges and giant nodes in C, respectively. If C is a plain tree component, we have
a + 1 =b. Since each giant edge in I';, represents an m-edge orbit, and each giant node
represent an m-node orbit, we have ex(Hc) = am — bm = —m. By (O1), (02), and the fact
that adding one self-loop in C increases ex(Hc) by m, we have ex(Hc) > —m, where the
equality holds if and only if C does not contain any split or self-loop and is not incident to
any bridge in | J,_,, Bn.¢ thatis, C is a plain tree component in I',. [J

As we will see next, the pseudoforest (forest) constraint of H restricts the possible con-
figurations of I';,, and forbids certain operations on its components (which would otherwise
generate too many cycles).

5.3. Warm-up: Generating function of orbit forests. Fix 0 = 7! o ¥ and recall that
ny,, denotes the number of m-node orbits in o. Our enumeration scheme crucially exploits
the classification of edge orbits and orbit graphs in Section 5.1 and the representation of orbit
graphs as backbone graphs introduced in Section 5.2. As a warm-up, in this section we bound
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== B5 =

== O——©

(a) A component in I'y is (b) A component in I'4 con- (c) A component in I'4 con-
incident to 2 bridges in tains 2 splits. tains 1 split and is incident
Iyo0. to 1 bridge in I'y 5.

FI1G. 3. Examples of backbone graphs violating (T4), whose corresponding orbit graphs contain cycles.

the generating function of orbit forests, which is much simpler than orbit pseudoforests. Re-
stricting the summation to the set Jj of orbit forests, a strict subset of H;, we show the
following improved version of (69):

nm
(73) Z SZe(H) < 1_[ (1 +Sm1{m:even} +52m Z Kné) .

HeF; 1<m<k <m

When the orbit graph H is a forest, its corresponding backbone graph I' must satisfy the
following four conditions:

(T1) Foreach 1 <m <k, I'), is a forest with simple edges (of multiplicity 1);

(T2) Foreach 1 <{ <m <k, I'y, ¢ is empty unless £ is a divisor of m;

(T3) There is no self-loop;

(T4) For each 1 <m < k, each component of I';, either contains at most 1 split or is
incident to at most 1 bridge in ,_,, ['n.¢, but not both.

Otherwise, H contains at least one cycle. Indeed, (T1)—(T3) can be readily verified based
on the classification of edge orbits and orbit graphs in Section 5.1. Suppose the condition in
(T4) does not hold. Then by (O1), (02) and Lemma 3, there exists a component C in I';;, such
that ex(Hc) > 0, contradicting H being a forest. See Figure 3 for an illustration of forbidden
patterns that violate (T4) form =4 and ¢ = 2.

Next, we describe an algorithm for generating all possible backbone graphs I' that sat-
isfy the aforementioned conditions (T1)—(T4). Given a sequence of integers (a,b,c) =
(@m, b, cm)1<m<k Wwith b, =0 for odd m, we construct I" in Algorithm 1.

We claim that any orbit forest can be generated by Algorithm 1. To verify this claim for-
mally, let H be an orbit forest and I" denote the its corresponding backbone graph in Defini-
tion 2, which, for 1 <m < k, contains:

e a,, matchings corresponding to Type M,, edge orbits;

Algorithm 1 Forest enumeration algorithm

1: foreachr =1, ...,k do

2: Step 1: Matching stage. Construct a rooted forest I'; with n; giant nodes and a;
giant edges; Attach a label from [¢] to each giant edge;

3: Step 2: Splitting stage. Choose b; components from n; — a; tree components of I';,
and within each chosen component, add a split to the root;

4: Step 3: Bridging stage. Choose ¢; out of the remaining n; — a; — b; tree components

of I';, and for each chosen component, add a bridge connecting its root to a giant node in
[y for some £ < ¢ that is a divisor of ¢. Attach a label from [£] to the added bridge.
5: end for
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e b, splits corresponding to Type S, edge orbits;
e ¢, bridges corresponding to Type B,, ; edge orbits for some ¢ < m that is a divisor of m.

For each I';,, we arbitrarily choose the root for each plain tree component, and specify the
root in each nonplain tree component as the unique giant node that either splits or is incident
to a bridge in J,,,, ' ¢. Then clearly Steps 1-3 can realize any configuration of matchings,
splits and bridges in I', thanks to the properties (T1)-(T4).

Note that the total number of edges in the corresponding orbit forest H is determined by
the input parameter (a, b, ¢) as

k
Z [m(am +cm) + mbm/z]-
m=1

To enumerate the orbit forests, it suffices to count all possible output backbone graphs I'" of
Algorithm 1 as follows. Fort =1, ..., k:

1. It is well known that the total number of rooted forests on n vertices with a edges is

(74) (” . 1) nd

(seee.g., [16], I1.18, p. 128). Moreover, each giant edge added in Step 1 has ¢ possible labels.
Therefore, the total number of rooted backbone graphs I'; is at most

7s) ("o ) o= (20) amye

2. The total number of ways of placing b; splits is at most

ng —dad
(76) <tb, f).

3. The total number of ways of placing ¢, bridges is at most
ng —da; — b[ G
(77) ( ct > <Z Eng) .
<t

Note that we could further restrict the summation over £ to divisors of ¢ and get a tighter
upper bound, but this is not needed for the main results.

Combining (75), (76) and (77), we get that the total number of output backbone graphs I"
with input parameter (a, b, ¢) is at most

n ¢
(78) [T Liei=0for odd ) (az, bi, Ct) (tny)" (Z Ene) -
1<t<k i<t
Then the desired (73) readily follows from

n ce
Z SQE(H) = Z 1_[ l{b;=0 for odd 1} (at bi Ct) (tnt)at (Z E”E) S2ta,+th,+2tc,

HeF a,b,c1<r<k <t

ny
= 1_[ (1+s11{t:even}+sztzgnﬁ> .

1<t<k (<t
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5.4. Proof of Theorem 4: Generating function of orbit pseudoforests. Fix o =77 o

7 and recall n,, denotes the number of m-node orbits in o. In this section we bound the
generating function (68) of orbit pseudoforests H € H; and prove Theorem 4. Recall that
each orbit graph H can be equivalently represented as a backbone graph I' as in Definition 2.
In addition, we need the following vocabularies: For 1 <m < k and each u € §,,, let C(«)
denote the connected component in I';, containing u.

Similar to the reasoning in Section 5.3, when H is a pseudoforest, its backbone graph I'
must satisfy the following properties:

(P1) Foreach 1 <m <k, I';, is a pseudoforest (with self-loops and parallel edges counted
as cycles);

(P2) Foreach 1 <f¢ <m <k, 'y, ¢ is empty unless £ is a divisor of m.

(P3) Each unicyclic component of I', is plain.

(P4) A tree component in I';, contains at most two splits.

(P5) Let (u,v) € Ty, and (u', V) € Ty ¢, be two bridges with £1, ¢ < m, such that u
and u’ belong to the same tree component in I',. Then m must be even and £; = €, = m/2.

(P6) Let (u,v) € I'y; ¢ be a bridge with £ < m such that # belongs to a tree component
that contains a split in I';,. Then m must be even and £ = m /2. Furthermore, v must belong
to a plain tree component in I'; /3.

(P7) For each (u, v) and (u’, v') that satisfy either (P5) or (P6) where v # v’, the ending
points v and v" must belong to distinct plain tree components in Iy, 2.

Otherwise, H contains a component with at least two cycles, violating the pseudoforest con-
straint. See Figure 4—Figure 6 for illustrations of forbidden patterns that violate (P4)—(P7).
Properties (P1)-(P7) are justified by the following arguments:

e Paralleling conditions (T1) and (T2) for the forest constraint, (P1) and (P2) follow from
the classification of edge orbits and orbit graphs in Section 5.1;

e Suppose (P3) does not hold. Since the excess of the corresponding orbit graph of a plain
unicyclic component in I'y, is 0, by (O1) and (O2), there exists a unicyclic component
component C in I, such that ex(Hc) > 0, contradicting H being a pseudo-forest;

e Suppose (P4) does not hold. Then by (O1) and Lemma 3, there exists a tree component
component C in I';, such that ex(H¢) > 0, contradicting H being a pseudo-forest;

e Suppose (P5) does not hold. Then by (02) and Lemma 3, there exists a tree component
component C in I, such that ex(Hc) > 0, contradicting H being a pseudo-forest;

e To prove (P6), let G| denote the orbit graph of C(u) consisting of edge orbits (including
splits, matchings, and cycles). Let G denote the orbit graph of C (v) consisting of edge or-
bits (including splits, matchings, and cycles) in C(v), as well as bridges in g2 T'm/2.¢

O—O— ORORON0

(a) A component in I'4 contains 3 splits. (b) A component in 'y is incident to
a bridge (u,v) € I'y; and a bridge
(ul, 1}/) € F4’2.

FI1G. 4. Examples of backbone graphs violating (P4) and (P5), shown in (a) and (b), respectively, and the
corresponding orbit graphs.
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O

(a) A component in I'4 con-
tains 1 splits and is incident
to 1 bridge (u,v) € 'y 1.

Y. WU, J. XUAND S. H. YU

O

v

(b) A component in I'4 con-
tains 1 split and is incident
to 1 bridge (u,v) € T'y2
where v is in a nonplain
component in I'y that is in-
cident to 1 bridge in I'g 1.

T
O—C—0—®

v u

(c) A component in I'4 con-
tains 1 split and is incident
to 1 bridge (u,v) € T'42
where v is in a nonplain
component in I'g that con-
tains a split.

FI1G. 5. Examples of backbone graphs violating (P6) and the corresponding orbit graphs.

that are incident to C(v). Let Gpew denote the edge-disjoint union of G, G, and the edge
orbit corresponding to the bridge (u, v). Since C (u) contains a split, by (O1) and Lemma 3,
ex(G1) = —m/2. Then we have

eX(Grew) = ex(G1) +ex(G2) +m = ex(G2) +m/2 = 0,
where the last inequality is met with equality if and only if C(v) is a plain tree component
in I';;, /2 by Lemma 3. Hence, (P6) follows.
To prove (P7), let C = C(u) U C(u’). Let G| denote the orbit graph of C consisting of
edge orbits (including splits, matchings and cycles), as well as bridges in | J,_,, I'n.¢ €x-
cept for (u,v) and (u’,v’) that are incident to C. If C(u) = C(u’), then ex(G|) > —m
by Lemma 3. If C(u) # C(u’), then G is an edge-disjoint union of H; and Hl/ , Where

s
s

(@) (u,v) and (u,v’) satisfy (P5), while
v is in a nonplain component in I'y that
contains a split.

() (u,v) and (u,?’) satisfy (P5), while v
and v’ are in the same component in I'y.

(b) (u,v) and (u,v’) satisfy (P5), while v is
in a nonplain component that is incident to a
bridge in I'g 1

S

(d) (u,v) satisfies (P5), (u/,v") satisfies (P6),
while v and v’ are in the same component in
Ta.

FI1G. 6. Examples of backbone graphs violating (P7) and the corresponding orbit graphs.
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Hy (resp. Hl/ ) is the orbit graph of C(u) (resp. C(u’)) consisting of edge orbits (includ-
ing splits, matchings and cycles) in C(u) (resp. C(u")), as well as bridges in |J,;_,, Tm.¢
except for (u,v) (resp. (u’,v’)) that are incident to C(u) (resp. C(u’)). By assumption,
together with (O1), (O2) and Lemma 3, ex(H;) > —m/2 and ex(Hl’) > —m/2 and thus
ex(G1) > ex(Hy) + ex(Hy) = —m.

Let C’ = C(v) UC(v'). Note that by (P5) and (P6), both C(v) and C (v”) are components
in 'y, /2. Let G2 denote the orbit graph of C’ consisting of edge orbits (including splits,
matchings and cycles) in C’, as well as bridges in Uy, /2 ['m/2.¢ that are incident to C”.
Let Gew denote the edge-disjoint union of G, G2, and the edge obits corresponding to
the two bridges (u, v) and (u’, v"). Then,

eX(Gpew) > ex(G1) +ex(Gp) +2m > —m + ex(G3) +2m = ex(Gy) + m.

By assumption, Gpey is a pseudo-forest and thus ex(Gpew) < 0. It follows that ex(G,) <
—m and hence v and v" must be in distinct plain tree components in I',, /> by Lemma 3.

The implication of (P4)-(P7) is the following. For each m € [k], define
Em) £ () E(Tm0)

L<m
consisting of all bridges between m-node orbits and shorter orbits. Then £ (m) can be divided
into two sets of bridges as follows. For each u € §,,, recall that C(u) denotes the connected
component in I', containing u. A bridge is denoted by a giant edge (1, v) € I'y, ¢ with £ <m,
where u € S, in the longer orbit is called the starting point and v € Sy in the shorter orbit is
called the ending point. Define

Esingle (M) £ {(”a veET):uesS,, ve U Se,

L<m

(79) C(u) contains no split and is not incident to any bridge in

U I').¢ other than (u, v)}

l<m
Egouble (M) £ {(u,v) € E(T) 1t € Sy, v € Sp)2,

(80) C (u) contains a split or is incident to some bridge in

U 'y, ¢ other than (u, v)}.

L<m

By Properties (P6)—(P7), we have £ (m) = Egingle (m) U Eqouble (). Moreover:

e For each (u,v), (u’, v') € Esingle(m), the starting points u and u’ belong to separate tree
components in Iy, that is, C(u) and C(u’) are distinct tree components in I',,. Further-
more, C(u) (resp. C(u’)) contains no split and is not incident to any bridge other than
(u, v) (resp. (u’,v')). (This is just repeating the definition.)

e For each (u, v), (u’, V') € Egouble (M), the ending points v and v’ belong to separate plain
tree components in I', 2, by (P7).

The above observation suggests that to specify the bridges in Eingle(m), one can use the
Jforward construction by first choosing their starting points from separate components of I';,
then choosing the ending points from shorter orbits | J,_,, S¢ in an unconstrained way; to
specify the bridges in Egouble (1), one can use the backward construction by first choosing
their ending points from separate components of I', > then choosing the starting points from
S, in an unconstrained way. This separate account of bridges is useful in the enumeration
scheme which we describe next.
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Algorithm 2 Pseudoforest enumeration algorithm

1: foreachtr=1,...,k do

2: Step 1: Matching stage. Construct a rooted pseudoforest I'; with n; giant nodes and
a; giant edges (allowing self-loops and multiple edges). Attach a label from [¢] to each
giant edge and a label from [L%J] to each self-loop;

3: Step 2: Splitting stage. Choose b; components from n; — a; tree components of 'y,
and within each chosen component, choose a node: if the node chosen is the same as the
root, add a split to the root; otherwise, add two splits, one at the root and the other one at
the chosen node;

4: Step 3: Forward bridging stage. Choose ¢; out of the remaining n; — a; — b; tree
components of I';, and for each chosen component, add a bridge connecting its root to a
giant node in I', for some £ < ¢ that is a divisor of ¢. Attach a label from [¢] to the added
bridge.

5: Step 4: Backward bridging stage. Choose d; from the remaining n; — a; — by — ¢;
tree components of of I';. For each chosen component, add a bridge by connecting its
root to a giant node in ['y;. Attach a label from [¢] to the added bridge.

6: end for

Next, we describe an algorithm for generating all possible backbone graphs I' that satisfy
the properties (P1)—(P7). Given a sequence of integers (a, b, ¢, d) = (a;, b, ¢;, di) 1<t <k With
b; =0 for odd ¢ and d; = 0 if 2t > k, we construct I in Algorithm 2.

We note that an output graph of Algorithm 2 is not necessarily a pseudoforest; nevertheless
any orbit pseudoforest can be generated by Algorithm 2, which is what we need for upper
bounding the generating function of orbit pseudoforests, > yeyy, s2¢(H) To verify this claim
formally, let H be an orbit pseudoforest and let I" denote its backbone graph as in Definition 2,
where for 1 < m < k there are:

e a,, giant edges (including self-loops) corresponding to either Type M,, or C,, edge orbits;

e b, components that contain splits corresponding to Type S,, edge orbits;

e ¢, giant edges corresponding to Type B, ¢ edge orbits for some £ < m that is a divisor of
m;

e d,, giant edges corresponding to Type By, 2,, edge orbits.

For each I';, where 1 <m < k, we arbitrarily choose the root for each plain tree component,
and specify the root in each nonplain tree component as the giant node that either splits or
is incident to a bridge in Esingle (M) U Egounle (2m) (when there are two giant nodes that split
in a tree component, we choose any one of them as the root; otherwise, the choice of the
root is unique). Then it is clear that Steps 1 and 2 can realize any configuration of splits and
matchings in I', thanks to Properties (P1)—(P4). Finally, note that bridges in Esingle (m) are
added by Step 3 (forward bridging) at iteration t = m with ¢;; = |Esingle(m)], and bridges
in Egouble(m) are added by Step 4 (backward bridging) at iteration t = m/2 with d,, /2 =
|Edouble ().

Next we bound the generating function »_ ¢y, s2¢(H) from above. We first state an auxil-
iary lemma, which extends the well-known formula (74) for enumerating rooted forests.

LEMMA 4. The number of rooted pseudoforests on n nodes with a edges (allowing self-
loops and multiple edges) is at most

(81) (Z) 2n)°.
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PROOF. To see this, let m denote the number of cycles (including self-loops and parallel
edges). Then the number of connected components is n — a + m. To enumerate all such
rooted pseudoforests, we first enumerate all rooted forests on n vertices with a — m edges,
then choose m roots out of n — a 4+ m roots, and finally add one edge to each chosen root to
form a cycle within its corresponding component. Each added edge can either be a self-loop
at the root or connect the root to some other node, so there are at most n different choices
of the added edge. Therefore, the total number of rooted pseudoforests on n vertices with a
edges is at most

2“: (afm>na—m (n—jszrm)nm:nané(aizm) (fl—;l1+m>:(z>(2n)a.

m=0

2 () O

Now we can enumerate all possible output backbone graphs I' of Algorithm 2 as follows.
Fort=1,...,k:

1. Note that I'; constructed in Step 1 is a rooted pseudoforest with n; giant nodes and
a; giant edges. Moreover, each giant edge added in Step 1 carries at most ¢ possible labels.
Hence, the total number of all possible rooted pseudoforests I'; constructed in Step 1 is at
most:

(82) (Z;) (2tn,)%.

2. The total number of different ways of splitting is at most

ng—a ;
(83) (tb, f>nf.

3. The total number of different ways of forward bridging is at most:

(84) ("’ _ZZ _bf) (Zm) g

l<t
4. The total number of different ways of backward bridging is at most:

ng—a; —by—c¢;

(85) ( d ) (tna).

Combining (82), (83), (84) and (85), we conclude that the total number of possible output
backbone graphs I with input parameter (a, b, ¢, d) is at most

k Ct
n b,
1_[l{b,:Oforoddt}l{d,:Oif2t>k} (at b, tC, dt) Qtn)% n; (wa) (tno)®.

=1 <t

Note that for each output backbone graph, the total number of edges in the corresponding
orbit graph H satisfies

k
e(H) =Y 1(ar + b1 /24 c; +2dy).

=1
Combining the above two displays, we obtain

k
2e(H ny
E s2e(H) < E l_[1{b,=0foroddr}l{d,=01f2t>k}( b d)
atv 1K) Cl‘v t
HeHy a,b,c,dr=1

Ct
% Q2tng)"n? (ZE”‘f) (tnoy) e x s2arHbi2ds+did,
<t
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k n
< 1_[ (1 + Stntl{,;even} + 2tn,s2’ + SZZ Zﬂn( + s4ttn2[1{2,5k}>
=1

<t

t

k ny
< H(l + 5" 1{1:even) +2S2tzfne +s4ttn2t1{2t§k}> ,

=1

1<t

completing the proof of Theorem 4.

6. Conclusion and open questions. In this paper, we formulate the general problem of
testing network correlation and characterize the statistical detection limit. For both Gaussian-
weighted complete graphs and dense Erd6s—Rényi graphs, we determine the sharp thresh-
old at which the asymptotic optimal testing error probability jumps from O to 1. For sparse
Erd6s—Rényi graphs, we determine the threshold within a constant factor. The proof of the
impossibility results relies on a delicate application of the truncated second moment method,
and in particular, leverages the pseudoforest structure of subcritical Erd6s—Rényi graphs in
the sparse setting. We conclude the paper with a few important open questions.

1. In a companion paper [27], we show that a polynomial-time test based on counting
trees achieves strong detection when the average degree np > n~°) and the correlation p > ¢
for an explicit constant c. In particular, this result combined with our negative results in The-
orem 2 imply that the detection limit is attainable in polynomial-time up to a constant factor
in the sparse regime when np = ®(1). However, achieving the optimal detection threshold in
polynomial time remains largely open.

2. It is of interest to study the detection limit under general weight distributions. Our
proof techniques are likely to work beyond the Gaussian Wigner and Erd6s—Rényi graphs
model. For example, for general distributions P and Q, as shown in the proof of Proposi-
tion 1, the second moment is determined by the eigenvalues of the kernel operator defined
by the likelihood ratio L(x, y) = gg i ; Another interesting direction is testing correlations
between hypergraphs.

3. Another important open problem is to determine the sharp threshold for detection
in the sparse Erdés—Rényi graphs with p = n~%(_In particular, to improve our positive
result, one may need to analyze a more powerful test statistic beyond QAP. For the negative
direction, one needs to consider the case where the intersection graph A A B” is supercritical
and a more sophisticated conditioning beyond the pseudoforest structure may be required.
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