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We study the problem of detecting the edge correlation between two ran-
dom graphs with n unlabeled nodes. This is formalized as a hypothesis testing
problem, where under the null hypothesis, the two graphs are independently
generated; under the alternative, the two graphs are edge-correlated under
some latent node correspondence, but have the same marginal distributions
as the null. For both Gaussian-weighted complete graphs and dense Erdős–
Rényi graphs (with edge probability n−o(1)), we determine the sharp thresh-
old at which the optimal testing error probability exhibits a phase transition
from zero to one as n → ∞. For sparse Erdős–Rényi graphs with edge prob-
ability n−�(1), we determine the threshold within a constant factor.

The proof of the impossibility results is an application of the conditional
second-moment method, where we bound the truncated second moment of
the likelihood ratio by carefully conditioning on the typical behavior of the
intersection graph (consisting of edges in both observed graphs) and taking
into account the cycle structure of the induced random permutation on the
edges. Notably, in the sparse regime, this is accomplished by leveraging the
pseudoforest structure of subcritical Erdős–Rényi graphs and a careful enu-
meration of subpseudoforests that can be assembled from short orbits of the
edge permutation.

1. Introduction. Understanding and quantifying the correlation between datasets are
among the most fundamental tasks in statistics. In many modern applications, the obser-
vations may not be in the familiar form of vectors but rather graphs. Furthermore, the node
labels may be absent or scrambled, in which case one needs to decide the similarity be-
tween these unlabeled graphs on the sheer basis of their topological structures. Equiva-
lently, it amounts to determining whether there exists a node correspondence under which
the (weighted) edges of the two graphs are correlated. This problem arises naturally in a wide
range of fields:

• In social network analysis, one is interested in deciding whether two friendship networks
on different social platforms share structural similarities, where the node labels are fre-
quently anonymized due to privacy considerations [30, 31].

• In computer vision, 3-D shapes are commonly represented by geometric graphs, where
nodes are subregions and edges encode the adjacency relationships between different re-
gions. A key building block for pattern recognition and image processing is to determine
whether two graphs correspond of the same object that undergoes different rotations or
deformations (changes in pose or topology) [6, 9].

• In computational biology, an important task is to assess the correlation of two biological
networks in two different species so as to enrich one dataset using the other [37, 40].

• In natural language processing, the so-called ontology alignment problem refers to uncov-
ering the correlation between two knowledge graphs that are in either different languages
[20] or different domains (e.g., Library of Congress versus Wikipedia [5]).
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Inspired by the hypothesis testing model proposed by Barak et al. [4], we formulate a gen-
eral problem of testing network correlation as follows. Let G = ([n],W) denote a weighted
undirected graph on the node set [n] � {1, . . . , n} with weighted adjacency matrix W , where
Wii = 0 and for any 1 ≤ i < j ≤ n, Wij = 1 (or the edge weight) if i and j are adjacent and
Wij = 0 otherwise. Recall that two weighted graphs G = ([n],W) and H = ([n],W ′) are iso-

morphic and denoted by G ∼= H if there exists a permutation (called a graph isomorphism)
π on [n] such that Wij = W ′

π(i)π(j) for all i, j . Given a weighted graph G, its isomorphism

class G is the equivalence class G = {H : H ∼= G}. We refer to an isomorphism class as an
unlabeled graph and G as the unlabeled version of G.

PROBLEM 1 (Testing correlation of unlabeled graphs). Let G1 = ([n],W) and G2 =
([n],W ′) be two weighted random graphs, where the edge weights {(Wij ,W

′
ij ) : 1 ≤ i < j ≤

n} are i.i.d. pairs of random variables, and Wij and W ′
ij have the same marginal distribution.

Under the null hypothesis H0, Wij and W ′
ij are independent; under the alternative hypothesis

H1, Wij and W ′
ij are correlated. Given the unlabeled versions of G1 and G2, that is, their

isomorphism classes G1 = {G : G ∼= G1} and G2 = {G : G ∼= G2}, the goal is to test H0
versus H1.

Note that were the node labels of G1 and G2 observed, one could stack all the edge weights
as a vector and reduce the problem to simply testing the correlation of two random vectors.
However, when the node labels are unobserved, the inherent correlation between G1 and G2
is obscured by the latent node correspondence, making the testing problem significantly more
challenging. Indeed, since the observed graphs are unlabeled, the test needs to rely on graph

invariants (i.e., graph properties that are invariant under graph isomorphisms), such as sub-
graphs counts (e.g., the number of edges and triangles) and spectral information (e.g., eigen-
values of adjacency matrices or Laplacians).

In this work, we focus on the following two special cases of particular interests:

• (Gaussian Wigner model). Suppose that under H1, each pair of edges weights Wij and
W ′

ij are jointly normal with zero mean, unit variance and correlation coefficient ρ ∈ [0,1];
under H0, Wij and W ′

ij are independent standard normals. Note that marginally W , W ′ are
two Gaussian Wigner random matrices under both H0 and H1. The correlated Gaussian
Wigner model is proposed in [14] as a prototypical model for random graph matching and
further studied in [15, 18].

• (Erdős–Rényi random graph). Let G(n,p) denote the Erdős–Rényi random graph model
with edge probability p ∈ [0,1]. Consider the edge sampling process that generates a chil-
dren graph from a given parent graph by keeping each edge independently with probability
s ∈ [0,1]. Suppose that under H1, G1 and G2 are independently subsampled from a com-
mon parent graph G ∼ G(n,p); under H0, G1 and G2 are independently subsampled from
two independent parent graphs G,G′ ∼ G(n,p), respectively. See Figure 1 for an illustra-
tion.

Note that G1 and G2 are both instances of G(n,ps) that are independent under H0
and correlated under H1. This specific model of correlated Erdős–Rényi random graphs is
initially proposed by [34] and has been widely used for studying the problem of matching
random graphs [4, 10–14, 19, 21, 24, 29].

We further focus on the following two natural types of testing guarantees.

DEFINITION 1 (Strong and weak detection). Let Q and P denote the probability measure
under H0 and H1, respectively. We say a test statistic T (G1,G2) with threshold τ achieves:
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FIG. 1. Example of testing correlation of two Erdős–Rényi random graphs. The task is to test the underlying

hypothesis (H0 or H1) based on the two unlabeled graphs in panel (b).

• strong detection if the sum of type I and type II error converges to 0 as n → ∞, that is,

lim
n→∞

[
P
(
T (G1,G2) < τ

)
+Q

(
T (G1,G2) ≥ τ

)]
= 0;(1)

• weak detection, if the sum of type I and type II error is bounded away from 1 as n → ∞,
that is,

lim sup
n→∞

[
P
(
T (G1,G2) < τ

)
+Q

(
T (G1,G2) ≥ τ

)]
< 1.(2)

Note that strong detection requires the test statistic to determine with high probability
whether (G1,G2) is drawn from Q or P , while weak detection only aims at strictly outper-
forming random guessing. It is well known that the minimal sum of type I and type II error
is 1 − TV(P,Q), achieved by the likelihood ratio test, where TV(P,Q) = 1

2

∫
|dP − dQ|

denotes the total variation distance between P and Q. Thus strong and weak detection are
equivalent to limn→∞ TV(P,Q) = 1 and lim infn→∞ TV(P,Q) > 0, respectively.

Recent work [4] developed a polynomial-time test based on counting certain subgraphs
that correctly distinguishes between H0 and H1 with probability at least 0.9, provided that the
edge subsampling probability s = �(1) and the average degree satisfies certain conditions;
however, the fundamental limit of detection remains elusive. The main objective of this paper
is to obtain tight necessary and sufficient conditions for strong and weak detection.
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1.1. Main results.

THEOREM 1 (Gaussian Wigner model). If

ρ2 ≥
4 logn

n − 1
,(3)

then TV(P,Q) = 1 + o(1). Conversely, if

ρ2 ≤
(4 − ε) logn

n
(4)

for any constant ε > 0, then TV(P,Q) = o(1).

THEOREM 2 (Erdős–Rényi graphs). If

s2 ≥
2 logn

(n − 1)p(log 1
p

− 1 + p)
,(5)

then TV(P,Q) = 1 − o(1).
Conversely, assume that p is bounded away from 1.

• (Dense regime): If p = n−o(1) and

s2 ≤
(2 − ε) logn

np(log 1
p

− 1 + p)
(6)

for any constant ε > 0, then TV(P,Q) = o(1).
• (Sparse regime): If p = n−�(1) and

s2 ≤
1 − ω(n−1/3)

np
∧ c0(7)

for some universal constant c0 (c0 = 0.01 works), then TV(P,Q) = 1−�(1). In addition,
if (7) holds and s = o(1), then TV(P,Q) = o(1).

For the Gaussian Wigner model, Theorem 1 shows that the fundamental limit of detection

in terms of the limiting value of nρ2

logn
exhibits a sharp threshold at 4, above which strong

detection is possible and below which weak detection is impossible, a phenomenon known
as the “all-or-nothing” phase transition [36]. In the Erdős–Rényi model, for dense parent
graphs with p = n−o(1) and bounded away from 1, Theorem 2 shows that a similar sharp

threshold for nps2(log(1/p)−1+p)
logn

exists at 2. Curiously, the function p 
→ p(log 1
p

− 1 + p) is

not monotone and uniquely maximized at p∗ ≈ 0.203, the solution to the equation log 1
p

=
2(1 − p). This shows the counterintuitive fact that the parent graph with edge density p∗ is
the “easiest” for detection as it requires the lowest sampling probability s; nevertheless, such
nonmonotonicity in the detection threshold can be anticipated by noting that in the extreme
cases of p = 0 and p = 1, the observed two graphs are always independent and the two
hypotheses are identical.

For sparse parent graphs with p = n−�(1), the picture is less clear:

• Unbounded average degree np = ω(1): For simplicity, assume that p = n−α+o(1) for some
constant α ∈ (0,1]. Theorem 2 implies that strong detection is possible if lim infnps2 > 2

α

and weak detection is impossible if lim supnps2 < 1; these two conditions differ by a
constant factor.
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• Bounded average degree np = 	(1): For simplicity, assume that p = d/n for some con-
stant d > 0. Theorem 2 shows that strong detection is possible if s2 > 2

d
and impossible if

s2 < c0 ∧ 1
d

.

For both cases, it is an open problem to determine the sharp threshold for detection (or the
existence thereof).

REMARK 1 (Simple test for weak detection). In the nontrivial case of p = ω(1/n2) and
p bounded away from 1, as long as the sampling problem s is any constant, weak detection
can be achieved in linear time by simply comparing the number of edges of the two observed
graphs. Intuitively, their difference behaves like a centered Gaussian with slightly different
scale parameters under the two hypotheses which can then be distinguished nontrivially (see
Section 7.1 of the Supplementary Material [42] for a rigorous justification). In view of the
negative result for weak detection in Theorem 2, we conclude that for parent graph with
bounded average degree np = O(1), weak detection is possible if and only if s = �(1).

As discussed in the next subsection, the testing procedure used to achieve strong detec-
tion in both Theorem 1 and Theorem 2 involves a combinatorial optimization that is in-
tractable in the worst case. Thus it is of interest to compare the optimal threshold to the
performance of existing computationally efficient algorithms. These methods are based on
subgraph counts that extend the simple idea of counting edges in Remark 1. For Erdős–
Rényi graphs, the polynomial-time test in [4], Theorem 2.2, (based on counting certain
probabilistically constructed subgraphs) correctly distinguishes between H0 and H1 with
probability at least 0.9, provided that the edge subsampling probability s = �(1) and
nps ∈ [nε, n1/153] ∪ [n2/3, n1−ε] for some small constant ε > 0. This performance guar-
antee is highly suboptimal compared to s2 = �(

logn
np log(1/p)

) given by Theorem 2. In a
companion paper [27], we propose a polynomial-time algorithm based on counting trees

that achieves strong detection, provided that np ≥ n−o(1) and ρ2 � s2(1−p)2

(1−ps)2 > 1
β

where

β � limk→∞[t (k)]1/k ≈ 2.956 and t (k) is the number of unlabeled trees with k vertices [32].
Achieving the optimal threshold with polynomial-time tests remains an open problem.

1.2. Test statistic and proof techniques. To introduce our testing procedure and the anal-
ysis, we first reformulate the testing problem given in Problem 1 in a more convenient form.
Due to the exchangeability of the (i.i.d.) edge weights, observing the unlabeled version is
equivalent to observing its randomly relabeled version. Indeed, let π1 and π2 be two inde-
pendent random permutations uniformly drawn from the set Sn of all permutations on [n].
Consider the relabeled version of G1 = ([n],W) with weighted adjacency matrix A, where
Aij = Wπ1(i)π1(j); similarly, let B correspond to the relabeled version of G2 = ([n],W ′) with
Bij = W ′

π2(i)π2(j). It is clear that observing the unlabeled graphs G1 and G2 is equivalent to

observing the labeled graphs A and B . Since π−1
2 ◦π1 is also a uniform random permutation,

we arrive at the following formulation that is equivalent to Problem 1.

PROBLEM 2 (Reformulation of Problem 1). Let A and B denote the weighted adjacency
matrices of two weighted graphs on the vertex set [n], both consisting of i.i.d. edge weights.
Under H0, A and B are independent; under H1, conditional on a latent permutation π drawn
uniformly at random from Sn, {(Aij ,Bπ(i)π(j)) : 1 ≤ i < j ≤ n} are i.i.d. and each pair Aij

and Bπ(i)π(j) are correlated. Upon observing A and B , the goal is to test H0 versus H1.
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Note that under H1, the latent random permutation π represents the hidden node corre-
spondence under which A and B are correlated. For this reason, we refer to H1 as the planted

model and H0 as the null model. The likelihood ratio is given by

P(A,B)

Q(A,B)
=

1

n!
∑

π∈Sn

P(A,B | π)

Q(A,B)
,(8)

which is the optimal test statistic but difficult to analyze due to the averaging over all n!
permutations. Instead, we consider the generalized likelihood ratio by replacing the average
with the maximum:

max
π∈Sn

P(A,B|π)

Q(A,B)
.(9)

As shown later in Section 2, for both the Gaussian Wigner and the Erdős–Rényi graph model,
(9) is equivalent to

T (A,B) � max
π∈Sn

Tπ , where Tπ �
∑

i<j

AijBπ(i),π(j),(10)

which amounts to computing the maximal edge correlation over all possible node correspon-
dences between A and B . As desired, the test statistic T (A,B) is invariant to the relabeling
of both A and B and can be applied to their unlabeled versions. The combinatorial optimiza-
tion problem (10) is an instance of the quadratic assignment problem [33], which is known
to be NP-hard to solve or to approximate within a growing factor [26].

To show the test statistic T (A,B) achieves detection, first observe that in the planted
model with hidden permutation π , T (A,B) is trivially bounded from below by

∑
i<j Aij ×

Bπ(i)π(j), which can be further shown to exceed some threshold τ with high probability
by concentration inequalities. For the null model, we use a simple first moment argument
(union bound) to show that Q(T (A,B) ≥ τ) = o(1). Together we conclude that T (A,B)

with threshold τ achieves strong detection and TV(P,Q) = 1 − o(1).
Next we provide an overview of the impossibility proof, which constitutes the bulk of the

paper. To this end, we bound the second moment of the likelihood ratio. It is well known that1

EQ

[(
P(A,B)

Q(A,B)

)2]
= O(1) =⇒ TV

(
P(A,B),Q(A,B)

)
≤ 1 − �(1)(11)

EQ

[(
P(A,B)

Q(A,B)

)2]
= 1 + o(1) =⇒ TV

(
P(A,B),Q(A,B)

)
= o(1),(12)

which correspond to the impossibility of strong and weak detection, respectively.
To compute the second moment, we introduce an independent copy π̃ of the latent permu-

tation π and express the squared likelihood ratio as
(
P(A,B)

Q(A,B)

)2
= Eπ̃⊥⊥π

[∏

i<j

Xij

]
, where Xij �

P(Aij ,Bπ(i)π(j))P (Aij ,Bπ̃(i)π̃(j))

Q(Aij ,Bπ(i)π(j))Q(Aij ,Bπ̃(i)π̃(j))
,

where for any (i, j) ∈ [
(
n

2

)
], Q denotes the joint density function of Aij and Bij under Q,

and P denotes the joint density function of Aij and Bπ(i)π(j) under P given its latent permu-
tation π . Fixing π and π̃ , we then decompose this as a product over independent randomness
indexed by the so-called edge orbits. Specifically, the permutation σ � π−1 ◦ π̃ on the node
set naturally induces a permutation σE on the edge set of the complete graph by permuting

1Indeed, (11) follows from, e.g., [38], Lemma 2.6 and 2.7, and (12) is by Cauchy–Schwarz inequality.
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the end points. Denoting by O the collection of edge orbits (orbit in the cycle decomposition
of the edge permutation σE), we show that

(
P(A,B)

Q(A,B)

)2
= Eπ̃⊥⊥π

[ ∏

O∈O
XO

]
, XO �

∏

(i,j)∈O

Xij ,

where XO ’s are mutually independent under Q conditioned on π and π̃ .
Then, we take expectation E(A,B)∼Q on the right-hand side and interchange the two ex-

pectations. For both the Gaussian and Erdős–Rényi models, this calculation can be explic-
itly carried out by evaluating the trace of certain operators. In particular, this computation
shows the following dichotomy: the second moment is 1+o(1) when ρ2 ≤ (2−ε) logn

n
, but un-

bounded when ρ2 ≥ (2+ε) logn
n

, where ρ is the correlation coefficient in the Gaussian case and

ρ = s(1−p)
1−ps

in the Erdős–Rényi case. Compared with Theorems 1 and 2, we see that directly
applying the second-moment method fails to capture the sharp threshold: The impossibility
condition ρ2 ≤ (2−ε) logn

n
is suboptimal by a multiplicative factor of 2 in the Gaussian case

and by an unbounded factor in the Erdős–Rényi case when p = o(1).
It turns out that the second moment is mostly influenced by those short edge orbits of

length k = O(logn) for which
∏

|O|=k XO has a large expectation (see Section 3.3 for a
detailed explanation). Fortunately, the atypically large magnitude of

∏
|O|=k XO can be at-

tributed to certain rare events associated with the intersection graph (edges that are included
in both A and Bπ = (Bπ(i)π(j))), which is distributed as G(n,ps2) under the planted model
P . This observation prompts us to apply the conditional second moment method, which trun-
cates the squared likelihood ratio on an appropriately chosen global event that has high prob-
ability under P . Specifically:

• In the dense case (including Gaussian model and dense Erdős–Rényi graphs), the dominat-
ing contribution comes from fixed points (k = 1) which can be regulated by conditioning
on the edge density of large induced subgraphs of the intersection graph. Note that for
Erdős–Rényi graphs, even though the density of small induced subgraphs (e.g., induced
by 	(logn) vertices) can deviate significantly from their expectations [2], fortunately we
only need to consider sufficiently large subgraphs here.

• For sparse Erdős–Rényi graphs, the argument is much more involved and combinatorial, as
one needs to control the contribution of not only fixed points, but all edge orbits of length
O(logn). Crucially, the major contribution is due to those edge orbits that are subgraphs
of the intersection graph. Under the impossibility condition of Theorem 2, the intersection
graph G(n,ps2) is subcritical and a pseudoforest (each component having at most one
cycle) with high probability. This global structure significantly limits the co-occurrence
of edge orbits in the intersection graph. We thus truncate the squared likelihood ratio on
the global event that the intersection graph is a pseudoforest. To compute the conditional
second moment, we first study the graph structure of edge orbits, then reduce the problem
to enumerating pseudoforests that are disjoint union of edge orbits and bounding their
generating functions, and finally average over the cycle lengths of the random permutation
σ . This is the most challenging part of the paper.

1.3. Connection to the literature. This work joins an emerging line of research which
examines inference problems on networks from statistical and computational perspectives.
We discuss some particularly relevant work below.

Random graph matching. Given a pair of graphs, the problem of graph matching (or net-
work alignment) refers to finding a node correspondence that maximizes the edge correlation
[8, 25], which amounts to solving the QAP in (10). Due to the worst-case intractability of
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TABLE 1
Thresholds for various recovery criteria in the correlated Erdős–Rényi graph model when p = o(1)

Performance metric Positive result Negative result

Exact recovery nps2 ≥ logn + ω(1) & p = O(log−3(n)) [11] nps2 ≤ logn − ω(1) [10]

Almost exact recovery nps2 = ω(1) & p ≤ n−�(1) [12] nps2 = O(1) [12]

Partial recovery nps ∈ (1, λ0] & s ∈ (s0,1] [19] nps2 log 1
p = o(1) [21]

Detection (This paper) nps2 log 1
p ≥ (2 + ε) logn p = n−o(1) &

nps2 log 1
p ≤ (2 − ε) logn,

or p = n−�(1) &

s2 ≤ 1−ω(n−1/3)
np ∧ 0.01

the QAP, there is a recent surge of interest in the average-case analysis of matching two
correlated random graphs [4, 10–14, 19, 21, 24, 29], where the goal is to reconstruct the hid-
den node correspondence between the two graphs accurately with high probability. To this
end, the correlated Erdős–Rényi graph model (the alternative hypothesis H1 in Problem 2)
has been used as a popular model, for which the solution to the QAP (10) is the maximal
likelihood estimator. It is shown in [11] that exact recovery of the hidden node correspon-
dence with high probability is information-theoretically possible if nps2 − logn → +∞ and
p = O(log−3(n)), and impossible if nps2 − logn = O(1). In contrast, the state of the art
of polynomial-time algorithms achieve the exact recovery only when np = poly(logn) and
1 − s = 1/poly(logn) [14, 15, 24].

Recent work [12] initiated the study of almost exact recovery, that is, to obtain a match-
ing (possibly imperfect) of size n − o(n) that is contained in the true matching with high
probability. It shows that the almost exact recovery is information-theoretically possible if
nps2 = ω(1) and p ≤ n−�(1), and impossible if nps2 = O(1). Another work [19] considers
a weaker objective of partial recovery, that is, to output a matching that contains 	(n) cor-
rectly matched vertex pairs with high probability. It is shown that the partial recovery can be
attained in polynomial time by a neighborhood tree matching algorithm in the sparse graph
regime where nps ∈ (1, λ0] for some constant λ0 close to 1 and s ∈ (s0,1] for some constant
s0 close to 1. More recently, the partial recovery is shown to be information-theoretically im-
possible if nps2 log 1

p
= o(1) when p = o(1) [21]. For ease of comparison, we summarize the

different thresholds under various performance metrics in Table 1 in the Erdős–Rényi model.
In contrast to the aforementioned work focusing on recovering the latent matching, this

work studies the hypothesis testing aspect of graph matching, which, nevertheless, has direct
consequences on the recovery problem. As an application of the truncated second moment
calculation, in a companion paper [41] we resolve the sharp threshold of recovery by char-
acterizing the asymptotic mutual information I (A,B;π). In particular, we show that in the
dense regime with p = n−o(1), the sharp threshold of recovery exactly matches the detection
threshold above which almost exact recovery is possible and below which partial recovery
is impossible, thereby closing the gap in Table 1. In the sparse regime with p = n−�(1),
we show that the information-theoretic threshold for partial recovery is at nps2 � 1, which
coincides with the detection threshold up to a constant factor.

Detection problems in networks. There is a recent flurry of work using the first and second-
moment methods to study hypothesis testing problems on networks with latent structures
such as community detection under stochastic block models [1, 3, 28, 39]. Notably, a condi-
tional second moment argument was applied by Arias–Castro and Verzelen in [1] and [39]
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to study the problem of detecting the presence of a planted community in dense and sparse
Erdős–Rényi graphs, respectively. Similar to our work, for dense graphs, they condition on
the edge density of induced subgraphs (see also the earlier work [7] for the Gaussian model);
for sparse graphs, they condition on the planted community being a forest and bound the
truncated second-moment by enumerating subforests using Cayley’s formula. However, the
crucial difference is that in our setting simply enumerating the pseudoforests is inadequate for
proving Theorem 2. Instead, we need to take into account the cycle structure of permutations
and enumerate orbit pseudoforests, that is, pseudoforests assembled from edge orbits (see the
discussion before Theorem 4 in Section 5 for details). By separately accounting for orbits of
different lengths and their graph properties, we are able to obtain a much finer control on the
generating function of orbit pseudoforests that allows the conditional second moment to be
bounded after averaging over the random permutation. This proof technique is of particular
interest, and likely to be useful for other detection problems regarding permutations.

Finally, we mention that the recent work [35] studied a related correlation detection prob-
lem, where the observed two graphs are either independent, or correlated randomly growing
graphs (which grow together until time t∗ and grow independently afterwards according to ei-
ther uniform and preferential attachment models). Sufficient conditions are obtained for both
weak detection and strong detection as t∗ → ∞. However, the problem setup, main results
and proof techniques are very different from the current paper.

1.4. Notation and paper organization. For any n ∈ N, let [n] = {1,2, . . . , n} and Sn de-
note the set of all permutations on [n]. For a given graph G, let V (G) denote its vertex set
and E(G) its edge set. For two graphs on [n] with (weighted) adjacency matrices A and B ,
their intersection graph is a graph on [n] with (weighted) adjacency matrix A ∧ B , where

(13) (A ∧ B)ij � AijBπ(i)π(j);

in the unweighted case, the edge set of A ∧ B is the intersection of those of A and B . Given
a permutation π ∈ Sn, let Bπ = (Bπ(i)π(j)) denote the relabeled version of B according to
π . For any S ⊂ [n], define eA(S) �

∑
i<j∈S Aij as the total edge weights in the subgraph

induced by S.
For any a, b ∈ R, let a ∧ b = min{a, b} and a ∨ b = max{a, b}. Given any n,m ∈ N, let

lcm(n,m) denote the least common multiple of n and m. Given any n,m ∈ N, and some
nonnegative integers {ki}mi=1 such that

∑m
i=1 ki = n, let

( n
k1,k2,...,km

)
= n!

k1!k2!···km! be a multino-
mial coefficient. We use standard asymptotic notation: for two positive sequences {an} and
{bn}, we write an = O(bn) or an � bn, if an ≤ Cbn for some an absolute constant C and for
all n; an = �(bn) or an � bn, if bn = O(an); an = 	(bn) or an � bn, if an = O(bn) and
an = �(bn); an = o(bn) or bn = ω(an), if an/bn → 0 as n → ∞.

The rest of the paper is organized as follows. In Section 2 we prove the positive result of
strong detection for both the Gaussian Wigner model and Erdős–Rényi random graphs. To
lay the groundwork for the conditional second moment method, in Section 3 we present the
unconditional second moment calculation and discuss the key reasons for its looseness. Sec-
tion 4 presents the conditional second-moment proof for weak detection in the dense regime.
Due to their similarity, the proof for the Gaussian Wigner model is given in Section 4.1
and the (more technical) proof for dense Erdős–Rényi graphs is given in Section 7.3 of the
Supplementary Material [42]. Section 5 provides the impossibility proofs of both strong and
weak detection for sparse Erdős–Rényi random graphs. Several other technical proofs are
also relegated to Section 7 and Section 8 of the Supplementary Material [42]. Some useful
concentration inequalities and facts about random permutations are collected in the Supple-
mentary Material for readers’ convenience.
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2. First moment method for detection. In this section we prove the positive parts of
Theorems 1 and 2 by analyzing the test statistic (9). Recall from Section 1.2 the reformulated
Problem 2 with observations A and B , whose distributions are specified as follows

• Gaussian Wigner model:

H0 : (Aij ,Bij )
iid∼N

(( 0
0

)
,
( 1 0

0 1

))
,(14)

H1 : (Aij ,Bπ(i)π(j))
iid∼N

(( 0
0

)
,
( 1 ρ

ρ 1

))
conditional on π ∼ Uniform(Sn).(15)

• Erdős–Rényi random graph:

H0 : (Aij ,Bij )
iid∼ Bern(ps) ⊗ Bern(ps),(16)

H1 : (Aij ,Bπ(i)π(j))
iid∼ pair of correlated Bern(ps) conditional on π ∼ Uniform(Sn),

where Aij ∼ Bern(ps) and Bπ(i)π(j) ∼

⎧
⎪⎨
⎪⎩

Bern(s) if Aij = 1,

Bern
(

ps(1 − s)

1 − ps

)
if Aij = 0.

(17)

Then we get

P(A,B|π)

Q(A,B)
=

∏

1≤i<j≤n

L(Aij ,Bπ(i)π(j)),(18)

where

L(Aij ,Bπ(i)π(j))�
P(Aij ,Bπ(i)π(j))

Q(Aij ,Bπ(i)π(j))
.(19)

For the Gaussian Wigner model, we have

(20) L(a, b) =
1√

1 − ρ2
exp

(−ρ2(b2 + a2) + 2ρab

2(1 − ρ2)

)
.

For the Erdős–Rényi graph model, we have

L(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

p
a = 1, b = 1,

1 − s

1 − ps
a = 1, b = 0 or a = 0, b = 1,

1 − 2ps + ps2

(1 − ps)2 a = 0, b = 0.

(21)

Then, it yields that the generalized likelihood ratio test (9) is equivalent to

max
π∈Sn

P(A,B|π)

Q(A,B)
⇐⇒ max

π∈Sn

∑

i<j

AijBπ(i)π(j)(22)

for both the Gaussian Wigner model and Erdős–Rényi random graphs. In particular, for the
Erdős–Rényi graphs model, this follows from

L(Aij ,Bπ(i)π(j)) =
(

L(1,1)L(0,0)

L(0,1)L(1,0)

)AijBπ(i)π(j)
(

L(1,0)

L(0,0)

)Aij
(

L(0,1)

L(0,0)

) Bπ(i)π(j)

L(0,0) ,

and the fact that L(1,1)L(0,0)
L(0,1)L(1,0)

≥ 1.
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2.1. Proof of Theorem 1: Positive part. Throughout the proof, denote m =
(n
2

)
for brevity.

Without loss of generality, we assume that (3) holds with equality, that is, ρ2 = 2n logn
m

; oth-
erwise, one can apply the test to (A′,B ′) where A′ = cos(θ)A + sin(θ)Z, B ′ = cos(θ)B +
sin(θ)Z with an appropriately chosen θ , and Z is standard normal and independent of (A,B).
Define

(23) τ = ρm − an,

where an is some sequence to be chosen satisfying an = ω(n) and an = O(n3/2).
We first analyze the error event under the alternative hypothesis (15). Let π denote the

latent permutation such that (Aij ,Bπ(i)π(j)) are i.i.d. pairs of standard normals with corre-
lation coefficient ρ. Applying the Hanson–Wright inequality (see Lemma 10 in Section 9 of
the Supplementary Material [42]) with M = Im to Tπ =

∑
1≤i<j≤n AijBπ(i)π(j), we get that

P(Tπ ≤ τ) = P(Tπ ≤ ρm − an) ≤ e−can + e−ca2
n/m,

for some universal constant c. Since by definition T ≥ Tπ , it follows that P(T ≤ τ) = o(1).
To analyze the error event under the null hypothesis (14), in which case for each π ∈ Sn,

(Aij ,Bπ(i)π(j)) are i.i.d. pairs of independent standard normals. Note that for X,Y
iid∼N (0,1)

and any λ ∈ (−1,1), we have

E
[
exp(λXY)

]
= E

[
exp

(
λ2Y 2

2

)]
=

1
√

1 − λ2
.(24)

Then by the Chernoff bound, for any λ ∈ (0,1),

Q(Tπ ≥ τ) = Q
(
exp(λTπ ) ≥ exp(λτ)

)
≤ exp

{
−

m

2
log

(
1 − λ2)− λτ

}
.

Choosing λ = τ
m

, which satisfies 0 < λ = o(1) in view of (3) and (23), we have Q(Tπ ≥ τ) ≤

e− τ2
2m

+O(τ 4/m3). Finally by the union bound and Stirling approximation that n! ≤ enn+ 1
2 e−n,

Q(T ≥ τ) ≤ n!e− τ2
2m

+O(τ 4/m3) = o(1), provided that ρ2m
2 − ρan − O(ρ4m) − n log n

e
−

logn
2 → +∞. This is ensured by the assumption that ρ2 = 2n logn

m
and the choice of an = n1.1.

2.2. Proof of Theorem 2: Positive part. Throughout the proof, denote m =
(n
2

)
for brevity.

Without loss of generality, we assume that (5) holds with equality, that is,

mps2
(

log
1

p
− 1 + p

)
= n logn ;(25)

otherwise, one can apply the test to (A′,B ′) where A′ (B ′) are edge-subsampled from A (B)
with an appropriately chosen subsampling probability s′. It follows from (25) that p ≥ 1/n

and mps2 = �(n). Define

(26) τ = mps2(1 − δn),

where 0 < δn < 1 is some sequence to be chosen satisfying δn = ω(1/

√
mps2).

We first analyze the error event under the alternative hypothesis (17). Let π denote the

latent permutation such that (AijBπ(i)π(j))
iid∼ Bern(ps2). Then Tπ ∼ Binom(m,ps2). Ap-

plying the Chernoff bound (see equation (118) in Section 9 of the Supplementary Mate-
rial [42]), P(Tπ ≤ τ) ≤ exp(−δ2

nmps2/2) = o(1). Since by definition T ≥ Tπ , it follow that
P(T ≤ τ) = o(1).
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Next, we analyze the error event under the null hypothesis (16), in which case for each

π ∈ Sn, (AijBπ(i)π(j))
iid∼ Bern(p2s2) and thus Tπ ∼ Binom(m,p2s2). Using the multiplica-

tive Chernoff bound for Binomial distributions (see equation (117) in Section 9 of the Sup-
plementary Material [42]) we obtain that

Q(Tπ ≥ τ) ≤ exp
(
−τ log

τ

eμ
− μ

)

= exp
(
−mps2(1 − δn) log

1 − δn

ep
− mp2s2

)

≤ exp
(
−mps2

(
log

1

p
− 1 + p

)
+ mps2δn log

1

p

)
,

where μ = mp2s2, and the last inequality holds due to (1 − δn) log 1−δn

e
≥ −1.

Then by applying union bound and Stirling approximation that n! ≤ enn+ 1
2 e−n, we have

that

Q(T ≥ τ) ≤ e exp
(
−mps2

(
log

1

p
− 1 + p

)
+ mps2δn log

1

p
+ n log

n

e
+

1

2
logn

)

= e exp
((

mps2)0.6 log
1

p
− n +

1

2
logn

)
= o(1),

where the first equality holds by the assumption mps2(log 1
p

− 1 +p) = n logn and choosing

δn = 1/(mps2)0.4; the last equality holds by the claim that (mps2)0.6 log 1
p

= o(n). To finish
the proof, it suffices to verify the claim, which is done separately in the following two cases.

Suppose 1 − p = �(1). Thus, in view of assumption (25), we get that mps2 =
O(n logn/ log(1/p)). It follows that (mps2)0.6 log(1/p) ≤ O((n logn)0.6 log0.4(1/p)) =
o(n), where the last equality holds due to p ≥ 1/n.

Suppose 1 − p = o(1). As log(1/p) − 1 + p ≥ (1 − p)2/2, it follows from assump-
tion (25) that (1 − p)2 = �(logn/n). Furthermore, log(1/p) ≤ 1−p

p
. Thus by assump-

tion (25), (mps2)0.6 log 1
p

≤ O((n logn)0.6(1 − p)−0.2) = O(n0.7 log0.5 n) = o(n).

3. Unconditional second moment method and obstructions. In this section, we apply
the unconditional second moment method to derive impossibility conditions for detection.
As mentioned in Section 1.2 (and described in detail in Section 3.3), these conditions do not
match the positive results in Section 2, due to the obstructions presented by the short edge
orbits. To overcome these difficulties, in Sections 4 and 5, we apply the conditional second
moment method by building upon the second moment computation in this section. We start
by introducing some preliminary definitions associated with permutations.

3.1. Node permutation, edge permutation and cycle decomposition. Let σ ∈ Sn be a per-
mutation on [n]. For each element a ∈ [n], its orbit is a cycle (a0, . . . , ak−1) for some k ≤ n,
where ai = σ i(a), i = 0, . . . , k − 1 and σ(ak−1) = a. Each permutation can be decomposed
as disjoint orbits. For example, consider the permutation σ ∈ S8 that swaps 1 with 2, swaps
3 with 4, and cyclically shifts 5678. Then σ consists of three orbits represented in canonical
notation as σ = (12)(34)(5678).

Consider the complete graph Kn with vertex set [n]. Each permutation σ ∈ Sn naturally
induces a permutation σE on the edge set of Kn, the set

([n]
2

)
of all unordered pairs, according

to

(27) σE
(
(i, j)

)
�
(
σ(i), σ (j)

)
.
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We refer to σ and σE as node permutation and edge permutation, whose orbits are referred
to as node orbits and edge orbits, respectively. For each edge (i, j), let Oij denotes its or-
bit under σE. As a concrete example, consider again the permutation σ = (12)(34)(5678).
Then O12 = {(1,2)} and O34 = {(3,4)} are 1-edge orbits (fixed point of σE) and O56 =
{(5,6), (6,7), (7,8), (8,5)} is a 4-edge orbit. (See Table 2 in Section 5.1 for more examples.)

The cycle structure of the edge permutation is determined by that of the node permutation.
Let nk (resp. Nk) denote the number of k-node (resp. k-edge) orbits in σ (resp. σ E). For
example,

(28) N1 =
(
n1
2

)
+ n2, N2 =

(
n2
2

)
× 2 + n1n2 + n4.

This is due to the following reasoning.

• Consider a 1-edge orbit given by {(i, j)}. Since (i, j) is unordered, it follows that either
both i, j are fixed points of σ or i, j form a 2-node orbit of σ . Thus, N1 =

(n1
2

)
+ n2.

• Consider a 2-edge orbit given by {(i, j), (σ (i), σ (j))}. Then there are three cases: (a) i, j

belong to two different 2-node orbits; (b) i is a fixed point and j lies in a 2-node orbit; (c)
i, j belong to a common 4-node orbit of the form (i ∗j∗). Thus N2 =

(n2
2

)
×2+n1n2 +n4.

3.2. Second moment calculation. Recall the second-moment method described in Sec-
tion 1.2. When P is a mixture distribution, the calculation of the second moment can proceed
as follows. Note that the likelihood ratio is P(A,B)

Q(A,B)
= Eπ [P(A,B|π)

Q(A,B)
], where π is a random per-

mutation uniformly distributed over Sn. Introducing an independent copy π̃ of π and noting
that B has the same marginal distribution under both P and Q, the squared likelihood ratio
can be expressed as

(
P(A,B)

Q(A,B)

)2
= Eπ̃⊥⊥π

[
P(A,B|π)

Q(A,B)

P(A,B|π̃)

Q(A,B)

]
(19)= Eπ̃⊥⊥π

[∏

i<j

Xij

]
,(29)

where π ⊥⊥ π̃ denotes that π and π̃ are independent, and

Xij � L(Aij ,Bπ(i)π(j))L(Aij ,Bπ̃(i)π̃(j)).(30)

Interchanging the expectations yields

EQ

[(
P(A,B)

Q(A,B)

)2]
= Eπ̃⊥⊥π

[
E(A,B)∼Q

[∏

i<j

Xij

]]
.(31)

Fixing π and π̃ , we first compute the inner expectation in (31). Observe that Xij may not
be independent across different pairs of (i, j). For example, suppose (i1, j1) �= (i2, j2) and
(π(i1),π(j1)) = (π̃(i2), π̃(j2)), then Bπ(i1),π(j1) = Bπ̃(i2),π̃(j2) and Xi1j1 is not independent
of Xi2j2 . In order to decompose

∏
i<j Xij as a product over independent randomness, we use

the notion of cycle decomposition introduced in Section 3.1. Define

(32) σ � π−1 ◦ π̃ ,

which is also uniformly distributed on Sn. Let σE denote the edge permutation induced by σ

as in (27), that is, σE(i, j) = (σ (i), σ (j)). For each edge orbit O of σ E, define

XO �
∏

(i,j)∈O

Xij =
∏

(i,j)∈O

L(Aij ,Bπ(i)π(j))L(Aij ,Bπ̃(i)π̃(j)).(33)

Importantly, observe that XO is a function of (Aij ,Bπ(i)π(j))(i,j)∈O . Indeed, since (π̃(i),

π̃(j)) = π(σ(i), σ (j)), or equivalently in terms of edge permutation, π̃E = πE ◦ σE, and O

is an orbit of σE, we have {Bπ(i)π(j)}(i,j)∈O = {Bπ̃(i)π̃(j)}(i,j)∈O .
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Let O denote the collection of all edge orbits of σ . Since edge orbits are disjoint, we have
∏

i<j

Xij =
∏

O∈O
XO .(34)

Since {Aij }i<j and {Bij }i<j are i.i.d . under Q, we conclude {XO}O∈O are mutually inde-
pendent under Q. Therefore, by (31),

EQ

[(
P(A,B)

Q(A,B)

)2]
= Eπ⊥⊥π̃

[ ∏

O∈O
E(A,B)∼Q[XO]

]
.(35)

Recall that, for the Gaussian Wigner model, ρ denotes the correlation coefficient of edge
weights in the planted model P . For the Erdős–Rényi graph model, the correlation parameter
in the planted model P is defined as

(36) ρ �
Cov(Aij ,Bπ(i)π(j))√

Var (Aij )
√

Var (Bπ(i)π(j))
=

s(1 − p)

1 − ps
.

PROPOSITION 1. Fixing π and π̃ , for any edge orbit O of σ = π−1 ◦ π̃ , we have:

• for Gaussian Wigner models,

E(A,B)∼Q[XO] =
1

1 − ρ2|O| ,(37)

• for Erdős–Rényi random graphs,

E(A,B)∼Q[XO] = 1 + ρ2|O| .(38)

PROOF. Recall from (19) that L(x, y) = P(x,y)
Q(x,y)

= P(x,y)
Q(x)Q(y)

. This kernel defines an oper-
ator as follows: for any square-integrable function f under Q,

(39) (Lf )(x) � EY∼Q

[
L(x,Y )f (Y )

]
= E(X,Y )∼P

[
f (Y ) | X = x

]
.

In addition, L2 = L ◦ L is given by L2(x, y) = EZ∼Q[L(x,Z)L(Z,y)] and Lk is simi-
larly defined. For both the Gaussian and Bernoulli model, we have L(x, y) = L(y, x) and
hence L is self-adjoint. Furthermore, since

∫∫
L(x, y)2Q(dx)Q(dy) < ∞, L is Hilbert–

Schmidt. Thus L is diagonazable with eigenvalues λi ’s and the trace of L is given by
tr(L) = EY∼Q[L(Y,Y )] =

∑
λi .

Let k = |O|. To simplify the notation, let ai ’s and bi ’s be independent sequences of i.i.d.
random variables drawn from Q. Since O is an edge orbit of σE, we have {Bπ(i)π(j)}(i,j)∈O =
{Bπ̃(i)π̃(j)}(i,j)∈O and (π̃(i), π̃(j)) = π(σ(i), σ (j)). By (33),

EA,B∼Q[XO] = EA,B∼Q

[ ∏

(i,j)∈O

L(Aij ,Bπ(i)π(j))L(Aij ,Bπ̃(i)π̃(j))

]

= E

[
k∏

�=1

L(a�, b�)L(a�, b(�+1) mod k)

]

= E

[
k∏

�=1

L2(b�, b(�+1) mod k)

]

= tr
(
L2k)=

∑
λ2k

i .



TESTING CORRELATION OF UNLABELED RANDOM GRAPHS 2533

For the Gaussian Wigner model, L(x, y) given in (20) is known as Mehler’s kernel and
can be diagonalized by Hermite polynomials as

L(x, y) =
∞∑

i=0

ρi

i!
Hi(x)Hi(y),

where EY∼N (0,1)[Hi(Y )Hj (Y )] = i!1{i=j} [23]. It follow that the eigenvalues of operator L

are given by λi = ρi for i ≥ 0 and thus tr(L2k) =
∑∞

i=0 ρ2ki = 1
1−ρ2k .

For Erdős–Rényi graphs,

(Lf )(x) =
∑

y∈{0,1}

P(x, y)

Q(x)Q(y)
f (y)Q(y) =

1

Q(x)

∑

y∈{0,1}
P(x, y)f (y).

Thus the eigenvalues of L are given by the eigenvalues of the following 2 × 2 row-stochastic
matrix M with rows and columns indexed by {0,1} and M(x,y) = P(x,y)

Q(x)
. Explicitly, by (21)

we have

M =

⎛
⎝

1 − ps(2 − s)

1 − ps

ps(1 − s)

1 − ps
1 − s s

⎞
⎠ .

The eigenvalues of M are 1 and ρ = s(1−p)
1−ps

, so tr(L2k) = 1 + ρ2k . �

In view of Propositions 1, E(A,B)∼Q[XO] decreases when the orbit length |O| increases.
Let nk denote the total number of k-node orbits in the cycle decomposition of node permu-
tation σ , and let Nk denote the total number of k-edge orbits in the cycle decomposition of
edge permutation σE, for k ∈ N. For the Gaussian Wigner model, by (35) and (37), we get

EQ

[(
P(A,B)

Q(A,B)

)2]
= Eπ⊥⊥π̃

[ ∏

O∈O

(
1

1 − ρ2|O|

)]
= Eπ⊥⊥π̃

[ (n
2)∏

k=1

(
1

1 − ρ2k

)Nk
]
.(40)

For the Erdős–Rényi graphs, by (35) and (38), we get

EQ

[(
P(A,B)

Q(A,B)

)2]
= Eπ⊥⊥π̃

[ ∏

O∈O

(
1 + ρ2|O|)

]
= Eπ⊥⊥π̃

[ (n
2)∏

k=1

(
1 + ρ2k)Nk

]
.(41)

Let us assume

n2ρ6 = o(1),(42)

which is ensured by (4) for Gaussian model in Theorem 1 or (6) for dense Erdős–Rényi model
with p = n−o(1) in Theorem 2.

For the Gaussian model, consider the orbits of length k ≥ 3. Since
∑(n

2)
k=3 Nk ≤

(n
2

)
, we have

(n
2)∏

k=3

(
1

1 − ρ2k

)Nk

≤
(

1

1 − ρ6

)(n
2)

=
(

1 +
ρ6

1 − ρ6

)(n
2)

≤ exp
(

n2ρ6

2(1 − ρ6)

)
= 1 + o(1),

(43)

where the last equality holds due to (42). Moreover, for 1-orbits and 2-orbits,
(

1

1 − ρ2

)N1
(

1

1 − ρ4

)N2

≤
(

1 +
ρ2

1 − ρ2

)N1
(

1 +
(

ρ2

1 − ρ2

)2)N2

≤ exp
(

ρ2

1 − ρ2 N1 +
(

ρ2

1 − ρ2

)2
N2

)
.
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Therefore,

EQ

[(
P(A,B)

Q(A,B)

)2]
≤
(
1 + o(1)

)
Eπ⊥⊥π̃

[
exp

(
ρ2

1 − ρ2 N1 +
(

ρ2

1 − ρ2

)2
N2

)]
.(44)

For Erdős–Rényi graphs, analogously, for the orbits of length k ≥ 3,

(n
2)∏

k=3

(
1 + ρ2k)Nk ≤

(
1 + ρ6)(n

2) ≤ exp
(

n2ρ6

2

)
= 1 + o(1),(45)

where the last equality holds due to (42). For 1-orbits and 2-orbits, (1 + ρ2)N1(1 + ρ4)N2 ≤
exp(ρ2N1 + ρ4N2). Therefore,

EQ

[(
P(A,B)

Q(A,B)

)2]
≤
(
1 + o(1)

)
Eπ⊥⊥π̃

[
exp

(
ρ2N1 + ρ4N2

)]
.(46)

Next, we bound the contribution of N1 and N2 to the second moment for both models
using the following proposition. The proof, based on Poisson approximation, is deferred to
Section 7.2 of the Supplementary Material [42].

PROPOSITION 2. Assume μ,ν, τ ≥ 0 such that τ 2 = o( 1
n
), and μb + ν + 2 − logb ≤ 0

for some 1 ≤ b ≤ n such that b = ω(1).

• If a = ω(1) and ν ≤ log(a) − 3,

Eπ⊥⊥π̃

[
exp

(
μn2

1 + νn1 + τn2 + τ 2N2
)
1{a≤n1≤b}

]
= o(1).(47)

• If a = 0 and ν = o(1),

Eπ⊥⊥π̃

[
exp

(
μn2

1 + νn1 + τn2 + τ 2N2
)
1{a≤n1≤b}

]
≤ 1 + o(1).(48)

In particular, if 0 ≤ τ ≤ 2(logn−2)
n

, then

Eπ⊥⊥π̃

[
exp

(
τN1 + τ 2N2

)]
= 1 + o(1).(49)

Finally, we arrive at a sufficient condition for bounded second moment, which turns out to
be essentially necessary as we will see shortly in Section 3.3.

THEOREM 3 (Impossibility condition by unconditional second moment method). Fix any

constant ε > 0. If

ρ2 ≤
(2 − ε) logn

n
,(50)

then for both Gaussian Wigner and Erdős–Rényi graphs, EQ[(P(A,B)
Q(A,B)

)2] = 1 + o(1), which

further implies that TV(P,Q) = o(1), the impossibility of weak detection.

PROOF. Note that (50) implies (42). Thus, by combining (44) or (46) with (49) in Propo-
sition 2, we get EQ[(P(A,B)

Q(A,B)
)2] = 1 + o(1), which yields TV(P,Q) = o(1) in view of (12).

�
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3.3. Obstruction from short orbits. The impossibility condition in Theorem 3 is not
optimal. In the Gaussian case, (50) differs by a factor of 2 from the positive result of
ρ2 ≥ (4+ε) logn

n
in Theorem 1. For Erdős–Rényi graphs the suboptimality is more severe: The-

orem 2 shows that if nps2(log 1
p

−1+p) ≥ (2+ ε) logn, then strong detection is possible. In

the regime of p = o(1), since ρ = (1+o(1))s, this translates to the condition ρ2 ≥ (2+ε) logn

np log 1
p

,

which differs from (50) by an unbounded factor. This is the limitation of the second mo-
ment method, as the condition ρ2 ≤ (2−ε) logn

n
is actually tight for the second moment to be

bounded. When ρ2 ≥ (2+ε) logn
n

, the second moment diverges because of certain rare events
associated with short orbits in σ = π−1 ◦ π̃ . Below we describe the lower bound on the sec-
ond moment due to short orbits, which motivates the conditional second moment arguments
in Sections 4 and 5 that eventually overcome these obstructions.

Specifically, in view of (29) and (34), for both Gaussian and Erdős–Rényi models, the
squared likelihood ratio factorizes into products over the edge orbits of σ :

(
P(A,B)

Q(A,B)

)2
= Eπ⊥⊥π̃

[ ∏

O∈O
XO

]
,

where XO is defined in (33). Since both π and π̃ are uniform random permutations, so is
σ = π−1 ◦ π̃ . For each divisor k of n, consider the rare event that σ decomposes into (n/k)

disjoint k-node orbits (i.e., nk = n/k and all the other nj ’s are zero), which occurs with
probability 1

(n/k)!kn/k ≥ n−n/k . These short node orbits create an abundance of short edge

orbits, as each pair of distinct k-node orbits can form k different k-edge orbits.2 Thus, the
following lower bound on the second moment ensues

E(A,B)∼Q

[(
P(A,B)

Q(A,B)

)2]
= Eπ⊥⊥π̃

[ ∏

O∈O
EQ[XO]

]

(a)
≥ E

[(
1 + ρ2k)(nk

2 )k]≥ n−n/k(1 + ρ2k)(n/k
2 )k

= exp
(
−

n

k
logn +

(
n/k

2

)
k log

(
1 + ρ2k)

)
,(51)

where (a) holds because EQ[XO] ≥ 1 + ρ2k for each k-edge orbit O in both Gaussian ((37))
and Erdős–Rényi models ((38)).

Consequently, for any k = o(n),

ρ2k ≥
(2 + ε) logn

n
=⇒ EQ

[(
P(A,B)

Q(A,B)

)2]
→ ∞.

In particular, the strongest obstruction comes from k = 1 (fixed points):

ρ2 ≥
(2 + ε) logn

n
=⇒ EQ

[(
P(A,B)

Q(A,B)

)2]
→ ∞.

In this case, the culprit is the rare event of π “colliding” with π̃ (σ = id), which holds with
probability 1/n! but has an excessive contribution of (1 + ρ2)(

n
2) to the second moment.

In conclusion, the second moment is susceptible to the influence of short edge orbits,
for which

∏
|O|=k XO for small k has a large expectation. Fortunately, it turns out that the

2For example, (12) and (34) can form two edge orbits O13 and O14 of length 2; these edge orbits will be
referred to as Type-M; see Section 5.1 for a full classification of edge orbits.
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atypically large magnitude of
∏

|O|=k XO can be attributed to certain rare events associated
with the intersection graph A∧Bπ under the planted model P . This motivates us to condition
on some appropriate high-probability event under P , so that the excessively large magnitude
of
∏

|O|=k XO is truncated. As we will see in Section 4, in the dense regime (including the
Gaussian Wigner model and dense Erdős–Rényi graphs), it suffices to consider k = 1 and
regulate

∏
|O|=1 XO by conditioning on the edge density for all sufficiently large induced

subgraphs of A ∧ Bπ under P . In contrast, in the sparse regime, we need to consider all edge
orbits up to length k = 	(logn) for which more sophisticated techniques are called for, as
we will see in Section 5.

4. Conditional second moment method: Dense regime. In this section, we improve
Theorem 3 by applying the conditional second moment method. The proof of the sharp
threshold for the Gaussian model is given in full details in Section 4.1. The proof for dense
Erdős–Rényi graphs uses similar ideas but is technically more involved and hence deferred to
Section 7.3 of the Supplementary Material [42]. We start by describing the general program
of conditional second moment method. Note that sometimes certain rare events under P can
cause the second moment to explode, while TV(P,Q) remains bounded away from one. To
circumvent such catastrophic events, we can compute the second moment conditioned on
events that are typical under P . More precisely, given an event E such that P(E) = 1 + o(1),
define the planted model conditional on E :

P ′(A,B,π)�
P(A,B,π)1{(A,B,π)∈E}

P(E)
=
(
1 + o(1)

)
P(A,B,π)1{(A,B,π)∈E},

the last equality holds because P(E) = 1 + o(1). Then the likelihood ratio between the con-
ditioned planted model P ′ and the null model Q is given by

P ′(A,B)

Q(A,B)
=
∫
P ′(A,B,π)dπ

Q(A,B)
=
(
1 + o(1)

) ∫ P(π)P(A,B | π)1{(A,B,π)∈E}
Q(A,B)

dπ

=
(
1 + o(1)

)
Eπ

[
P(A,B | π)

Q(A,B)
1{(A,B,π)∈E}

]
.

By the same reasoning that led to (35), the conditional second moment is given by

EQ

[(
P ′(A,B)

Q(A,B)

)2]
=
(
1 + o(1)

)
Eπ⊥⊥π̃

[
EQ

[
P(A,B | π)

Q(A,B)

P(A,B | π̃)

Q(A,B)

× 1{(A,B,π)∈E}1{(A,B,π̃)∈E}

]]

=
(
1 + o(1)

)
Eπ⊥⊥π̃

[
EQ

[ ∏

O∈O
XO1{(A,B,π)∈E}1{(A,B,π̃)∈E}

]]
,

(52)

where the last equality follows from the decomposition (34) over edge orbits O ∈ O of σ =
π−1 ◦ π̃ . Compared to the unconditional second moment in (29), the extra indicators in (52)
will be useful for ruling out those rare events causing the second moment to blow up.

We caution the reader that, crucially, the conditioning event E must be measurable with
respect to the observed and the latent variables (A,B,π). Thus we cannot rule out the rare
event that π is close to its independent copy π̃ so that σ = π−1 ◦ π̃ induces a proliferation of
short edge orbits. Instead, as we will see, by truncating certain rare events associated with the
intersection graph A ∧ Bπ , the excessively large magnitude of

∏
|O|=k XO can be regulated

for small k.
By the data processing inequality of total variation, we have

TV
(
P(A,B),P ′(A,B)

)
≤ TV

(
P(A,B,π),P ′(A,B,π)

)
= P

(
(A,B,π) /∈ E

)
= o(1).
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Combining this with the second moment bound (11)–(12) and applying the triangle inequal-
ity, we arrive at the following conditions for nondetection:

EQ

[(
P ′(A,B)

Q(A,B)

)2]
= O(1) =⇒ TV

(
P(A,B),Q(A,B)

)
≤ 1 − �(1),(53)

EQ

[(
P ′(A,B)

Q(A,B)

)2]
= 1 + o(1) =⇒ TV

(
P(A,B),Q(A,B)

)
= o(1).(54)

4.1. Sharp threshold for the Gaussian model. In this section, we improve over the impos-
sibility condition ρ2 ≤ (2−ε) logn

n
established in Theorem 3, showing that if ρ2 ≤ (4−ε) logn

n
,

then weak detection is impossible. This completes the impossibility proof of Theorem 2 for
the Gaussian model.

Before the rigorous analysis, we first explain the main intuition. Let F denote the set of
fixed points of σ = π−1 ◦ π̃ , so that |F | = n1. Let

O1 =
(
F

2

)
,

which is a subset of fixed points of the edge permutation (cf. (28)). As argued in Section 3.3,
the unconditional second moment blows up when ρ2 ≥ (2+ε) logn

n
due to the obstruction of

fixed points of σ , or more precisely, an atypically large magnitude of
∏

O∈O1
XO . By (20)

and (30),
∏

O∈O1

XO =
∏

i<j∈F

Xij

=
(
1 − ρ2)−(

n1
2 ) exp

{
1

1 − ρ2

(
−ρ2

∑

i<j∈F

(
A2

ij + B2
π(i)π(j)

)

+ 2ρ
∑

i<j∈F

AijBπ(i)π(j)

)}
.

(55)

Recall that for any S ⊂ [n], eA∧Bπ (S) =
∑

i<j∈S AijBπ(i)π(j) as defined in (13). To trun-
cate

∏
i<j∈F Xij , one natural idea is to condition on the typical value of eA∧Bπ (F ) under the

planted model P when |F | = n1 is large. More specifically, for each S ⊂ [n], define

ES �

⎧
⎨
⎩(A,B,π) :

∑

i<j∈S

A2
ij ≥

(
|S|
2

)
− Cn3/2,

∑

i<j∈S

B2
π(i)π(j) ≥

(
|S|
2

)
− Cn3/2,

eA∧Bπ (S) ≤ ρ

(
|S|
2

)
+ Cn3/2

}
,

where C is an absolute constant. We will condition on the event

(56) E �
⋂

S⊂[n]:|S|≥n/2

ES,

which will be shown to hold with high probability under the planted model P . Note that here
in order to truncate

∏
i<j∈F Xij , E is defined as the intersection of ES over all subsets S with

|S| ≥ n/2, so that it implies EF when |F | ≥ n/2. The reason that we cannot condition on EF

directly is because the set of fixed points F depends on σ = π−1 ◦ π̃ rather than π alone, and
thus is not measurable with respect to (A,B,π).

Let

(57) ζ = ρ

(
n1
2

)
+ Cn3/2.
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When n1 ≥ n/2, we have ζ = ρ

(
n1
2

)
(1+o(1)). Furthermore, on the event E , it follows from

(55) and ρ = o(1) that

EQ

[ ∏

i<j∈F

Xij 1E

]
≤ exp

{
−
(
1 + o(1)

)
ρ2
(
n1
2

)}
EQ

[
exp

{
2ρ

1 − ρ2 eA∧Bπ (F )

}
1{eA∧Bπ (F )≤ζ }

]

≤ exp
{

1 + o(1)

2
ρ2
(
n1
2

)}
,

where the last inequality is by evaluating the truncated MGF of eA∧Bπ (F ) (see (59) be-
low). Note that without the truncation eA∧Bπ (F ) ≤ ζ , we recover the unconditional bound
EQ[

∏
i<j∈F Xij ] = exp{(1 + o(1))ρ2(n1

2

)
}. Thus, the conditional bound improves over the

unconditional one by a multiplicative factor of 2 in the exponent.
Finally, to ensure the second moment after conditioning is 1 + o(1), analogous to (51), in

the extreme case of n1 = n, we need to ensure

1

n!
exp

{
1 + o(1)

2
ρ2
(
n

2

)}
= exp

{
−
(
1 + o(1)

)
n logn +

1 + o(1)

4
ρ2n2

}
= o(1),

which corresponds precisely to the desired condition ρ2 ≤ (4−ε) logn
n

.
Next, we proceed to the rigorous proof. As the impossibility of weak detection when ρ2 ≤

logn
n

has already been shown in Theorem 3, henceforth we only need to focus on

logn

n
≤ ρ2 ≤

(4 − ε) logn

n
.

The following lemma proves that E holds with high probability under the planted model P .

LEMMA 1. It holds that P((A,B,π) ∈ E) ≥ 1 − e−�(n).

PROOF. Fix an integer n/2 ≤ k ≤ n and let m =
(k
2

)
. Let t = c(

√
m log(1/δ)+ log(1/δ)),

for a universal constant c and a parameter δ to be specified later.
Fix a subset S ⊂ [n] with |S| = k. Using the Hanson–Wright inequality given in Lemma

10 in Section 9 of the Supplementary Material [42]. with probability at least 1 − 3δ,
∑

i<j∈S

A2
ij ≥ m − t,

∑

i<j∈S

B2
π(i)π(j) ≥ m − t,

eA∧Bπ (S) =
∑

i<j∈S

AijBπ(i)π(j) ≤ ρm + t.
(58)

Now there are
(n
k

)
different choices of S ⊂ [n] with |S| = k. Thus by choosing 1/δ = 2k

(n
k

)

and applying the union bound, we get that with probability at least 1 − 3
∑n

k=n/2 2−k = 1 −
e−�(n), (58) holds uniformly for all S ⊂ [n] with |S| = k and all n/2 ≤ k ≤ n. By definition
and the fact that k ≥ n/2, 1/δ ≤ 2k( en

k
)k ≤ (4e)k , and thus t ≤ c(

√
mk log(4e)+ k log(4e)) =

O(n3/2). �

Now let us compute the conditional second moment. By Lemma 1, it follows from (52)
that

EQ

[(
P ′(A,B)

Q(A,B)

)2]
=
(
1 + o(1)

)
Eπ⊥⊥π̃

[
EQ

[ ∏

O∈O
XO1{(A,B,π)∈E}1{(A,B,π̃)∈E}

]]
.

To proceed further, we fix π , π̃ and separately consider the following two cases.
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Case 1: n1 ≤ n/2. In this case, we simply drop the indicators and use the unconditional
second moment:

EQ

[ ∏

O∈O
XO1{(A,B,π)∈E}1{(A,B,π̃)∈E}

]
≤ EQ

[ ∏

O∈O
XO

]
=

∏

O∈O

1

1 − ρ2|O| ,

where the last equality follows from (37).
Case 2: n1 > n/2. In this case,

EQ

[ ∏

O∈O
XO1{(A,B,π)∈E}1{(A,B,π̃)∈E}

]
(a)
≤ EQ

[ ∏

O∈O
XO1{(A,B,π)∈EF }

]

(b)= EQ

[ ∏

O∈O1

XO1{(A,B,π)∈EF }

] ∏

O /∈O1

EQ[XO]

(c)= EQ

[ ∏

i<j∈F

Xij 1{(A,B,π)∈EF }

] ∏

O /∈O1

1

1 − ρ2|O| ,

where (a) is due to the definition (56), E ⊂ EF when n1 ≥ n/2; (b) holds because XO

is a function of (Aij ,Bπ(i)π(j))(i,j)∈O that are independent across different O ∈ O, and
1{(A,B,π)∈EF } only depends on {(Aij ,Bπ(i)π(j))(i,j)∈O : O ∈ O1}; (c) follows from (37).

On the event EF , we have

∑

i<j∈F

A2
ij ≥

(
1 + o(1)

)(n1
2

)
,

∑

i<j∈F

B2
π(i)π(j) ≥

(
1 + o(1)

)(n1
2

)
,

eA∧Bπ (F ) ≤
(
1 + o(1)

)
ρ

(
n1
2

)
,

where we used the fact that n3/2 = o(ρn2
1) in view of assumption ρ2 ≥ logn

n
and n1 > n/2.

It follows from (55) that

EQ

[ ∏

i<j∈F

Xij 1{(A,B,π)∈EF }

]

=
(
1 − ρ2)−(

n1
2 )
EQ

[
exp

{
1

1 − ρ2

(
−ρ2

∑

i<j∈F

(
A2

ij + B2
π(i)π(j)

)
+ 2ρeA∧Bπ (F )

)}

× 1{(A,B,π)∈EF }

]

≤
(
1 − ρ2)−(

n1
2 ) exp

{
−

(2 + o(1))ρ2

1 − ρ2

(
n1
2

)}

×EQ

[
exp

{
2ρeA∧Bπ (F )

1 − ρ2

}
1{eA∧Bπ (F )≤ζ }

]
,

where eA∧Bπ (F ) =
∑

i<j∈F AijBπ(i)π(j) and ζ = ρ
(n1

2

)
(1 + o(1)).
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Let β = 2ρ

1−ρ2 . Then for any λ ∈ [0,1],

EQ

[
exp

{
2ρeA∧Bπ (F )

1 − ρ2

}
1{eA∧Bπ (F )≤ζ }

]

≤ EQ

[
exp

{
β
(
λeA∧Bπ (F ) + (1 − λ)ζ

)}]

= exp
{
β(1 − λ)ζ −

1

2

(
n1
2

)
log

(
1 − β2λ2)

}
,

(59)

where the equality uses the MGF expression in (24). Choosing3 λ = (1 − ρ2)/2 in (59), we
obtain

exp
{
β(1 − λ)ζ −

1

2

(
n1
2

)
log

(
1 − β2λ2)

}
= exp

{
(β − ρ)ζ −

1

2

(
n1
2

)
log

(
1 − ρ2)

}
.

Combining the last three displayed equations yields that

EQ

[ ∏

i<j∈F

Xij 1{(A,B,π)∈EF }

]

≤ exp

{
−

2ρ2(1 + o(1))

1 − ρ2

(
n1
2

)
+ (β − ρ)ζ −

3

2

(
n1
2

)
log

(
1 − ρ2)

}

= exp

{
(1 + o(1))ρ2

2

(
n1
2

)}
≤ exp

{
(1 + o(1))ρ2n2

1

4

}
,

where the equality holds under the assumption that ρ = o(1) so that log(1 − ρ2) = −(1 +
o(1))ρ2.

Combining the two cases yields that

EQ

[(
P ′(A,B)

Q(A,B)

)2]
≤
(
1 + o(1)

)
E

[ ∏

O∈O

1

1 − ρ2|O| 1{n1≤n/2}

]

+
(
1 + o(1)

)
E

[ ∏

O /∈O1

1

1 − ρ2|O| exp
{
(1 + o(1))ρ2n2

1

4

}
1{n1>n/2}

]
.

Let τ = ρ2

1−ρ2 . Note that

∏

O /∈O1

1

1 − ρ2|O| =
(

1

1 − ρ2

)n2 ∏

k≥2

(
1

1 − ρ2k

)Nk

=
(
1 + o(1)

)( 1

1 − ρ2

)n2
(

1

1 − ρ4

)N2

≤
(
1 + o(1)

)
exp

(
τn2 + τ 2N2

)
,

where the first equality follows from (28), the second equality holds by (43) under the as-
sumption ρ2 ≤ (4 − ε) logn/n, and the last inequality holds because 1

1−ρ2 = 1 + τ ≤ exp(τ )

and 1
1−ρ4 ≤ 1 + τ 2 ≤ exp(τ 2). Similarly,

∏

O∈O1

1

1 − ρ2|O| =
(

1

1 − ρ2

)(
n1
2 )

≤ exp
(
τn2

1/2
)
.

3This choice is motivated by choosing λ to minimize −βλζ + 1
2
(n1

2
)
β2λ2, the first-order approximation of the

exponent in (59), leading to λ∗ = ζ/[
(n1

2
)
β] = (1 + o(1))(1 − ρ2)/2.



TESTING CORRELATION OF UNLABELED RANDOM GRAPHS 2541

Hence,

EQ

[(
P ′(A,B)

Q(A,B)

)2]
≤
(
1 + o(1)

)
E
[
exp

(
τ
(
n2

1/2 + n2
)
+ τ 2N2

)
1{n1≤n/2}

]

+
(
1 + o(1)

)
E

[
exp

(
τn2 + τ 2N2

)
exp

{
(1 + o(1))ρ2n2

1

4

}
1{n1>n/2}

]
.

We upper bound the two terms separately. To bound the first term, we apply (48) in Propo-

sition 2 with μ = τ/2, ν = 0, a = 0 and b = n/2. Recall that τ = ρ2

1−ρ2 . By assumption

ρ2 ≤ (4 − ε) logn/n, we have τ 2 = o( 1
n
) and μb + 2 − logb = ρ2n

4(1−ρ2)
+ 2 − log(n/2) ≤ 0

for all sufficiently large n. Thus it follows from (48) in Proposition 2 that

E
[
exp

(
τ
(
n2

1/2 + n2
)
+ τ 2N2

)
1{n1≤n/2}

]
≤ 1 + o(1).

To bound the second term, we apply (47) in Proposition 2 with μ = (1+o(1))ρ2

4 , ν = 0, a =
n
2 and b = n. Recall that τ = ρ2

1−ρ2 . By assumption nρ2 ≤ (4 − ε) logn, we have τ 2 = o( 1
n
)

and μb + ν + 2 − logb = (1+o(1))ρ2n
4 + 2 − logn ≤ 0 for sufficiently large n. Thus it follows

from (47) in Proposition 2 that

E

[
exp

(
τn2 + τ 2N2

)
exp

{
(1 + o(1))ρ2n2

1

4

}
1{n1>n/2}

]
= o(1).

Combining the upper bounds for the two terms, we conclude that EQ[(P
′(A,B)

Q(A,B)
)2] = 1 +

o(1) under the assumption that ρ2 ≤ (4 − ε) logn/n. Thus TV(P,Q) = o(1) in view of (54).

5. Conditional second moment method: Sparse regime. We focus on the Erdős–Rényi
model in the sparse regime of p = n−�(1). The impossibility condition previously obtained
in Theorem 3 by the unconditional second moment simplifies to s2 ≤ (2 − ε)

logn
n

. In this
section, we significantly improve this result by showing that if

s2 ≤
1 − ω(n−1/3)

np
∧ 0.01,(60)

then strong detection is impossible. Moreover, if both s = o(1) and (60) hold, then weak
detection is impossible.

Analogous to the proof for the dense case in Section 4 (see also Section 7.3 of the Supple-
mentary Material [42]), we will apply the conditional second moment method. However, the
argument in the sparse case is much more sophisticated for the following reason. In the dense
regime (both the Gaussian and Erdős–Rényi graph with p = n−o(1)), we have shown that the
main contribution to the second moment is due to fixed points of σ = π−1 ◦ π̃ , which can be
regulated by conditioning on the edge density of large induced subgraphs in the intersection
graph. For sparse Erdős–Rényi graphs with p = n−�(1), we need to control the contribution
of not just fixed points, but all edge orbits of length up to k = 	(logn). Indeed, as argued
in Section 3.3, the unconditional second moment blows up when ρ2k ≥ (2+ε) logn

n
due to

the obstructions from the k-edge orbits, or more precisely, an atypically large magnitude of∏
|O|=k XO . Note that ρ = s(1−p)

1−ps
= (1 + o(1))s in the sparse case. Therefore, to show the

desired condition (60), we need to regulate
∏

|O|=k XO beyond k = 1 by proper conditioning.
In fact, for p = 	(1/n), since (60) reduces to ρ ≤ 0.1, it is necessary to control all k up to
	(logn).

To this end, the crucial observation is as follows. We call a given edge orbit O of σ =
π−1 ◦ π̃ complete if it is a subgraph of the intersection graph A∧Bπ , that is, O ⊂ E(A∧Bπ ).
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For each complete orbit O , we have Aij = Bπ(i)π(j) = Bπ̃(i)π̃(j) = 1 for all (i, j) ∈ O and
hence, by (21) and (30), Xij = L(1,1)2 = 1/p2, so that XO attains its maximal possible
value, namely

(61) XO =
(

1

p

)2|O|
, ∀O ⊂ E

(
A ∧ Bπ ).

For incomplete orbits, it is not hard to show (see Proposition 4 below) that

EQ

[
XO | O �⊂ A ∧ Bπ ]≤ 1.

Hence, the key is to control the contribution of complete edge orbits O that are subgraphs
of A ∧ Bπ . Crucially, under the assumption of Theorem 2 in the sparse regime, nps2 is suf-
ficiently small so that A ∧ Bπ is subcritical and a pseudoforest (each component having at
most one cycle) with high probability under the planted model P . This global structure sig-
nificantly limits the possible configurations of complete edge orbits, since many patterns of
co-occurrence of edge orbits in A ∧ Bπ are forbidden. Motivated by this observation, we
truncate the likelihood ratio by conditioning on the global event that A ∧ Bπ is a pseudofor-
est. Finally, in order to show the conditional second moment is bounded under the desired
condition (60), we carefully control the co-occurrence of edge orbits in A ∧ Bπ under the
pseudoforest constraint, which involves a delicate enumeration of pseudoforests that can be
assembled from edge orbits.

Next, let us proceed to the rigorous analysis. Define

E �
{
(A,B,π) : A ∧ Bπ is a pseudoforest

}
.

Note that A ∧ Bπ ∼ G(n,ps2) under the planted model P . The following result shows that
in the subcritical case A ∧ Bπ is a pseudoforest.

LEMMA 2 ([17], Lemma 2.10). If nps2 ≤ 1 − ω(n−1/3), then P((A,B,π) ∈ E) → 1 −
o( 1

n3 ) as n → ∞.

Recall from (29) and (34) in Section 3.2 the following representation of the squared like-
lihood ratio

(62)
(
P(A,B)

Q(A,B)

)2
= Eπ⊥⊥π̃

[ ∏

O∈O
XO

]
,

where for each edge orbit O of σ = π−1 ◦ π̃ ,

XO =
∏

ij∈O

Xij , Xij = L(Aij ,Bπ(i)π(j))L(Aij ,Bπ̃(i)π̃(j)),

with L(·, ·) is defined in (21). In order to decompose (62) further, let us introduce the follow-
ing key definitions. Recall from Section 3.1 that Oi denotes the node-orbit of i (under the
node permutation σ ) and Oij denotes the edge-orbit of (i, j) (under the edge permutation
σE). Fix some k to be specified later.

• Define Ok as the set of edge orbits of length at most k that are formed by node orbits with
length at most k, that is,

Ok =
{
Oij : |Oi | ≤ k, |Oj | ≤ k, |Oij | ≤ k,1 ≤ i < j ≤ n

}
.

• Define Jk as the set of edge orbits O ∈Ok that are subgraphs of A ∧ Bπ , that is,

Jk =
{
O ∈Ok : Aij = 1,Bπ(i)π(j) = 1,∀(i, j) ∈ O

}

=
{
O ∈Ok : Aij = 1,Bπ̃(i)π̃(j) = 1,∀(i, j) ∈ O

}
,

where the second equality holds because {Bπ(i)π(j)}(i,j)∈O = {Bπ̃(i)π̃(j)}(i,j)∈O .



TESTING CORRELATION OF UNLABELED RANDOM GRAPHS 2543

• Define

(63) Hk =
⋃

O∈Jk

O.

Note that while Ok depends only on the random permutation σ = π−1 ◦ π̃ , both Jk and Hk

depend in addition on the random graph A ∧ Bπ .
As will be discussed at length in Section 5.1, each edge orbit can be viewed as a subgraph

of the complete graph Kn. Different edge orbits are by definition edge disjoint, and the union
of all edge orbits is the edge set of Kn. We shall call a graph an orbit graph if it is union of
edge orbits. Importantly, by definition, the orbit graph Hk is a subgraph of A ∧ Bπ .

To compute the conditional second moment, by Lemma 2, it follows from (52) that

EQ

[(
P ′(A,B)

Q(A,B)

)2]
=
(
1 + o(1)

)
Eπ⊥⊥π̃

[
EQ

[ ∏

O∈O
XO1{(A,B,π)∈E}1{(A,B,π̃)∈E}

]]

≤
(
1 + o(1)

)
Eπ⊥⊥π̃

[
EQ

[ ∏

O∈O
XO1{Hk is a pseudoforest}

]]
,

(64)

where the last inequality holds because on the event that A ∧ Bπ is a pseudoforest, its sub-
graph Hk is also one.

To further upper bound the right-hand side of (64), we decompose the product over edge
orbits into three terms:

∏

O∈O
XO =

∏

O /∈Ok

XO ×
∏

O∈Ok\Jk

XO ×
∏

O∈Jk

XO

which correspond to the contributions of long orbits, short incomplete orbits (that are not
subgraphs of A∧Bπ ) and short complete orbits (that are subgraphs), respectively. As shown
earlier in (61), for each complete edge orbit O , we have XO = (1/p)2|O|. Therefore in view
of (63), the collective contribution of short complete orbits are

(65)
∏

O∈Jk

XO =
(

1

p

)2e(Hk)

.

Thus, fixing σ = π−1 ◦ π̃ , we have

EQ

[ ∏

O∈O
XO1{Hk is a pseudoforest}

]

= EQ

[ ∏

O /∈Ok

XO

]
EQ

[ ∏

O∈Ok

XO1{Hk is a pseudoforest}

]
(66)

= EQ

[ ∏

O /∈Ok

XO

]
EJk

[(
1

p

)2e(Hk)

1{Hk is a pseudoforest}EQ

[ ∏

O∈Ok\Jk

XO |Jk

]]
,

where the first equality holds because {XO}O∈O are mutually independent and Jk ⊂ Ok , so
that {XO}O∈O\Ok

is independent of {XO}O∈Ok
and the event that Hk is a pseudoforest; the

second equality holds because Hk is measurable with respect to Jk .
The contributions of long orbits and incomplete orbits can be readily bounded as follows,

whose proofs are deferred to Sections 8.1 and 8.2 of the Supplementary Material [42].

PROPOSITION 3 (Long orbits). Fix any σ = π−1 ◦ π̃ . For any k ∈ N,

EQ

[ ∏

O∈O\Ok

XO

]
≤
(
1 + ρk) n2

k .
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PROPOSITION 4 (Incomplete orbits). Fix any σ = π−1 ◦ π̃ . If p ≤ 1/2 and s ≤ 1/2, then

EQ

[ ∏

O∈Ok\Jk

XO |Jk

]
≤ 1.

Applying Proposition 3 and Proposition 4 to (66), we get that for any σ = π−1 ◦ π̃ ,

(67) EQ

[ ∏

O∈O
XO1{Hk is a pseudoforest}

]
≤
(
1 + ρk) n2

k EJk

[(
1

p

)2e(Hk)

1{Hk is a pseudoforest}

]
.

It remains to further upper bound the RHS of (67). Let Hk denote the set of all orbit
graphs that consist of edge orbits in Ok and are pseudoforests—we call such graphs orbit

pseudoforests. As such Hk depends only on σ but not the graph A and B . Therefore,

(68)

EJk

[(
1

p

)2e(Hk)

1{Hk is a pseudoforest}

]
=

∑

H∈Hk

Q(Hk = H)

(
1

p

)2e(H)

1{H is a pseudoforest}

≤
∑

H∈Hk

s2e(H),

where the last step holds because

Q(Hk = H) ≤ Q
(
Aij = 1,Bπ(i)π(j) = 1,∀(i, j) ∈ E(H)

)
= (ps)2e(H).

In view of (68), to further upper bound the second moment, it boils down to bounding the
the generating function of the class Hk of orbit pseudoforests. This is done in the following
theorem in terms of the cycle type of σ . The proof involves a delicate enumeration of orbit
pseudoforests, which constitutes the most crucial part of the analysis. We note that if we
ignore the orbit structure and treat Hk as arbitrary pseudoforests, the resulting bound will be
too crude to be useful.

THEOREM 4 (Generating function of orbit pseudoforests). For any k ∈ N, σ = π−1 ◦ π̃ ,
and any s ∈ [0,1],

(69)
∑

H∈Hk

s2e(H) ≤
k∏

m=1

(
1 + smnm1{m:even} + 2s2m

m∑

�=1

�n� + s4mmn2m1{2m≤k}

)nm

,

where nm is the number of m-node orbits in σ = π−1 ◦ π̃ for 1 ≤ m ≤ k.

Combining (64), (67), (68) and (69), we get that

(70)

EQ

[(
P ′(A,B)

Q(A,B)

)2]

≤
(
1 + o(1)

)(
1 + ρk) n2

k Eπ⊥⊥π̃

[
k∏

m=1

(
1 + smnm1{m:even}

+ 2s2m
∑

�≤m

�n� + s4mmn2m1{2m≤k}

)nm
]
,

which is further bounded by the next result.
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PROPOSITION 5. Suppose k(log k)4 = o(n). If s ≤ 0.1,

(71) Eπ⊥⊥π̃

[
k∏

m=1

(
1 + smnm1{m:even} + 2s2m

∑

�≤m

�n� + s4mmn2m1{2m≤k}

)nm
]

= O(1).

Furthermore, if s = o(1),

(72) Eπ⊥⊥π̃

[
k∏

�=m

(
1 + smnm1{m:even} + 2s2m

∑

�≤m

�n� + s4mmn2m1{2m≤k}

)nm
]

= 1 + o(1).

The proof of Proposition 5 is involved and deferred to Section 8.3 of the Supplementary
Material [42]. To provide some concrete ideas, the following simple calculation shows that
s = o(1) is necessary for (72) to hold. Indeed, consider k = 1 for which the LHS reduces to
E[(1 + 2s2n1)

n1]. By Poisson approximation (see Section 10 of the Supplementary Material
[42]), replacing n1 by Poi(1) yields

E
[(

1 + 2s2n1
)n1
]
≈ e−1

∞∑

a=0

(
1 + 2s2a

)a 1

a!
≥ e−1

∞∑

a=0

(
1 + 2s2)a 1

a!
= e2s2

,

which is 1 + o(1) if and only if s = o(1). To evaluate the full expectation in (72), note that
even if we use Poisson approximation to replace nm’s by independent Poissons, the terms
inside the product over [k] are still dependent. To this end, we carefully partition the product
into disjoint parts, and recursively peeling off the expectation backwards.

We are now ready to complete the proof of Theorem 2 in the sparse case.

PROOF OF THEOREM 2: IMPOSSIBILITY RESULT IN SPARSE REGIME. Let k = 3 logn.

If s ≤ 1
2 , then n2sk

k
= o(1) and thus

(
1 + ρk) n2

k ≤ exp
(

n2ρk

k

)
≤ exp

(
n2sk

k

)
= 1 + o(1).

Note that k(log k)4 = o(n). Combining (70) with (71) and (72) yields that EQ[(P
′(A,B)

Q(A,B)
)2] =

O(1) for s ≤ 0.1 and EQ[(P
′(A,B)

Q(A,B)
)2] = 1 + o(1) for s = o(1), which completes the proof in

view of (53) and (54). �

The remainder of this section is organized as follows. To prepare for the proof of Theo-
rem 4, we study the graph structure and the classification of edge orbits in Section 5.1. An
equivalent representation of orbit graphs as backbone graphs is given in Section 5.2 to aid
the enumeration argument. As a warm-up, we first enumerate orbit forests (orbit graphs that
are forests) and bound their generating function in Section 5.3. The more challenging case of
orbit pseudoforests is tackled in Section 5.4, completing the proof of Theorem 4. Section 8
of the Supplementary Material [42] contains the proofs of Propositions 3–5.

5.1. Classification of edge orbits. To prove Theorem 4, we are interested in orbit graphs
consisting of short edge orbits, and the main task lies in enumerating those that are pseudo-
forests. To this end, we need to understand the graph structure of edge orbits.

Throughout this subsection, fix a node permutation σ . For a given edge (i, j), its edge
orbit can be viewed as a graph with vertex set Oi ∪ Oj and edge set Oij . Let |Oi | = � and
|Oj | = m. Each edge orbit can be classified into the following four categories (see Table 2
for a concrete example).
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TABLE 2
Edge orbits corresponding to the node permutation σ = (12)(34)(5678). When representing an edge orbit in

cycle notation, each edge (i, j) is abbreviated as ij . As a convention, nodes in each node orbit are vertically

aligned and arranged in the order of the permutation σ . For edge orbits, type M are in green, type B in red, type

C in blue and type S in black

Type Edge orbit Orbit graph

M (13,24)

(14,23)

B (15,26,17,28)

(16,27,18,25)

(35,46,37,48)

(36,47,38,45)

C (56,67,78,85)

S (12)

(34)

(57,68)

Type M (Matching): i and j belong to different node orbits of the same length. In this case,
|Oij | = m and Oij is a perfect matching. We call such Oij an Mm edge orbit (or a match-

ing). Furthermore, for two distinct node orbits O and O ′ of length m, the total number of
possible Mm edge orbit is m.
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Type B (Bridge): i and j belong to different node orbits of different lengths. Without loss
of generality, assume that the orbit of i is shorter than that of j , that is, � < m. In this
case, let M = lcm(�,m). Then |Oij | = M and Oij consists of �m

M
vertex-disjoint copies

of the complete bipartite graphs KM/�,M/m. We call such edge orbit a Bm,� edge orbit (or
a bridge). Furthermore, for two node orbits O and O ′ with |O| = � < |O ′| = m, the total
number of possible bridges is �m

M
.

Of special interest is the case where � is a divisor of m and the orbit is �K1,m
�

(i.e., � copies
of m

�
-stars). These are the only bridges that are cycle-free; otherwise the bridge contains a

component with at least two cycles. This observation is useful for the enumeration argu-
ment in Sections 5.3 and 5.4 under constraints on the number of cycles.

Type C (Cycle): i and j belong to the same node orbit of length m and j �= σm/2(i). In this
case, |Oij | = m and Oij is an m-cycle. We call such Oij a Cm edge orbit (or a cycle), and
there are a total number �m−1

2 � of them for the same node orbit.
Type S (Split): i and j belong to the same node orbit (of even length m) and j = σm/2(i).

In this case, |Oij | = m/2 and Oij is a perfect matching. We call such Oij an Sm edge orbit
(or a split). Clearly, for each node orbit of even length, there is a unique way for it to split
into an Sm edge orbit.

In summary, matchings and bridges are edge orbits formed by two distinct node orbits, which
are bipartite graphs with vertex sets Oi and Oj . Cycles and splits are edge orbits formed by
a single node orbit Oi , which can either form a full cycle or split into a perfect matching.

5.2. Orbit graph and backbone graph. Every orbit graph H can be equivalently and
succinctly represented as a backbone graph � defined as follows.

DEFINITION 2 (Backbone graph). Given an orbit graph H , its backbone graph is an
undirected labeled multigraph, whose nodes and edges (referred to as giant nodes and giant

edges) correspond to node orbits and edge orbits in H , respectively. Each giant node carries
a binary label (represented as shaded or nonshaded) indicating whether the node orbit forms
a Type S edge orbit (split) or not. Each giant edge carries a label (an integer) encoding the
specific realization of the edge orbit. Specially:

• A Type S edge orbit (split) is represented by a shaded giant node.
• A Type Cm edge orbit (cycle) is represented by a self-loop, whose edge label takes values

in [�m−1
2 �].

• A Type Mm edge orbit (matching) is represented by a giant edge between two m-node
orbits, with edge label taking values in [m].

• A Type Bm,� edge orbit (bridge) is represented by a giant edge between a �-node orbit and
a m-node orbit (� < m), with edge label taking values in [ �m

lcm(�,m)
].

See Figure 2 for an example of an orbit graph and its corresponding backbone graph. As
a convention, for the backbone graph, the labeled giant edges representing Type M, Type B

and Type C edge orbits are colored green, red and blue, respectively. Each shaded giant node
represents a Type S edge orbit. For convenience, the number inside each giant node represents
the length of its corresponding node orbit.

Recall that Hk denotes the collection of orbit pseudoforests consisting of edge orbits of
length at most k formed by node orbits of size at most k. To enumerate H ∈ Hk , it is equiv-
alent to enumerating the corresponding backbone graph �. To facilitate the enumeration, we
introduce the following definitions:

• Let Sm denote the set of giant nodes corresponding to m-node orbits.
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FIG. 2. Example of an orbit graph and its corresponding backbone graph for σ = (12)(34)(5678). The labels

of giant edges are determined based on the enumeration of edge orbits in Table 2. For instance, the two green

giant edges correspond to the two Type M (perfect matchings) between node orbits (12) and (34), and the red

giant edge corresponds to the Type B edge orbits (bridge) between node orbits (34) and (5678).

• Let �m = �[Sm] denote the subgraph of � induced by node set Sm for 1 ≤ m ≤ k. Let
�m,� = �[Sm, S�] denote the (bipartite) subgraph of � induced by edges between Sm and
S�, for 1 ≤ � < m ≤ k. Each giant edge in �m,� corresponds to a Bm,� edge orbit (bridge).

• A connected component of �m is called plain if it contains no split and is not incident to
any bridge in

⋃
�<m �m,�.

Following [22], page 112, we define the excess of a graph G, denoted by ex(G), as its
number of edges minus its number of nodes. Given a connected component C in �m, let HC

denote the orbit graph consisting of edge orbits (including splits, matchings and cycles) in C,
as well as bridges in

⋃
�<m �m,� that are incident to C. The following two operations can be

recursively applied to C to increase ex(HC):

(O1) Adding one split in C increases ex(HC) by m/2;
(O2) Adding one Bm,� bridge (� < m) to C increases ex(HC) by at least lcm(�,m) − �.

In addition, we need the following fact about the excess of an orbit graph:

LEMMA 3. For any connected component C in �m, ex(HC) ≥ −m, where the equality

holds if and only if C is a plain tree component in �m.

PROOF. Given a connected component C in �m, let a and b denote the total number
of giant edges and giant nodes in C, respectively. If C is a plain tree component, we have
a + 1 = b. Since each giant edge in �m represents an m-edge orbit, and each giant node
represent an m-node orbit, we have ex(HC) = am − bm = −m. By (O1), (O2), and the fact
that adding one self-loop in C increases ex(HC) by m, we have ex(HC) ≥ −m, where the
equality holds if and only if C does not contain any split or self-loop and is not incident to
any bridge in

⋃
�<m Bm,� that is, C is a plain tree component in �m. �

As we will see next, the pseudoforest (forest) constraint of H restricts the possible con-
figurations of �m and forbids certain operations on its components (which would otherwise
generate too many cycles).

5.3. Warm-up: Generating function of orbit forests. Fix σ = π−1 ◦ π̃ and recall that
nm denotes the number of m-node orbits in σ . Our enumeration scheme crucially exploits
the classification of edge orbits and orbit graphs in Section 5.1 and the representation of orbit
graphs as backbone graphs introduced in Section 5.2. As a warm-up, in this section we bound
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FIG. 3. Examples of backbone graphs violating (T4), whose corresponding orbit graphs contain cycles.

the generating function of orbit forests, which is much simpler than orbit pseudoforests. Re-
stricting the summation to the set Fk of orbit forests, a strict subset of Hk , we show the
following improved version of (69):

∑

H∈Fk

s2e(H) ≤
∏

1≤m≤k

(
1 + sm1{m:even} + s2m

∑

�≤m

�n�

)nm

.(73)

When the orbit graph H is a forest, its corresponding backbone graph � must satisfy the
following four conditions:

(T1) For each 1 ≤ m ≤ k, �m is a forest with simple edges (of multiplicity 1);
(T2) For each 1 ≤ � < m ≤ k, �m,� is empty unless � is a divisor of m;
(T3) There is no self-loop;
(T4) For each 1 ≤ m ≤ k, each component of �m either contains at most 1 split or is

incident to at most 1 bridge in
⋃

�<m �m,�, but not both.

Otherwise, H contains at least one cycle. Indeed, (T1)–(T3) can be readily verified based
on the classification of edge orbits and orbit graphs in Section 5.1. Suppose the condition in
(T4) does not hold. Then by (O1), (O2) and Lemma 3, there exists a component C in �m such
that ex(HC) ≥ 0, contradicting H being a forest. See Figure 3 for an illustration of forbidden
patterns that violate (T4) for m = 4 and � = 2.

Next, we describe an algorithm for generating all possible backbone graphs � that sat-
isfy the aforementioned conditions (T1)–(T4). Given a sequence of integers (a,b, c) =
(am, bm, cm)1≤m≤k with bm = 0 for odd m, we construct � in Algorithm 1.

We claim that any orbit forest can be generated by Algorithm 1. To verify this claim for-
mally, let H be an orbit forest and � denote the its corresponding backbone graph in Defini-
tion 2, which, for 1 ≤ m ≤ k, contains:

• am matchings corresponding to Type Mm edge orbits;

Algorithm 1 Forest enumeration algorithm
1: for each t = 1, . . . , k do

2: Step 1: Matching stage. Construct a rooted forest �t with nt giant nodes and at

giant edges; Attach a label from [t] to each giant edge;
3: Step 2: Splitting stage. Choose bt components from nt − at tree components of �t ,

and within each chosen component, add a split to the root;
4: Step 3: Bridging stage. Choose ct out of the remaining nt −at −bt tree components

of �t , and for each chosen component, add a bridge connecting its root to a giant node in
�� for some � < t that is a divisor of t . Attach a label from [�] to the added bridge.

5: end for
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• bm splits corresponding to Type Sm edge orbits;
• cm bridges corresponding to Type Bm,� edge orbits for some � < m that is a divisor of m.

For each �m, we arbitrarily choose the root for each plain tree component, and specify the
root in each nonplain tree component as the unique giant node that either splits or is incident
to a bridge in

⋃
�<m �m,�. Then clearly Steps 1–3 can realize any configuration of matchings,

splits and bridges in �, thanks to the properties (T1)-(T4).
Note that the total number of edges in the corresponding orbit forest H is determined by

the input parameter (a,b, c) as

k∑

m=1

[
m(am + cm) + mbm/2

]
.

To enumerate the orbit forests, it suffices to count all possible output backbone graphs � of
Algorithm 1 as follows. For t = 1, . . . , k:

1. It is well known that the total number of rooted forests on n vertices with a edges is

(74)
(
n − 1

a

)
na

(see e.g., [16], II.18, p. 128). Moreover, each giant edge added in Step 1 has t possible labels.
Therefore, the total number of rooted backbone graphs �t is at most

(
nt − 1

at

)
(tnt )

at ≤
(
nt

at

)
(tnt )

at .(75)

2. The total number of ways of placing bt splits is at most
(
nt − at

bt

)
.(76)

3. The total number of ways of placing ct bridges is at most
(
nt − at − bt

ct

)(∑

�<t

�n�

)ct

.(77)

Note that we could further restrict the summation over � to divisors of t and get a tighter
upper bound, but this is not needed for the main results.

Combining (75), (76) and (77), we get that the total number of output backbone graphs �

with input parameter (a,b, c) is at most

∏

1≤t≤k

1{bt=0 for odd t}

(
nt

at , bt , ct

)
(tnt )

at

(∑

�<t

�n�

)ct

.(78)

Then the desired (73) readily follows from

∑

H∈Fk

s2e(H) ≤
∑

a,b,c

∏

1≤t≤k

1{bt=0 for odd t}

(
nt

at , bt , ct

)
(tnt )

at

(∑

�<t

�n�

)ct

s2tat+tbt+2tct

≤
∏

1≤t≤k

(
1 + st1{t :even} + s2t

∑

�≤t

�n�

)nt

.
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5.4. Proof of Theorem 4: Generating function of orbit pseudoforests. Fix σ = π−1 ◦
π̃ and recall nm denotes the number of m-node orbits in σ . In this section we bound the
generating function (68) of orbit pseudoforests H ∈ Hk and prove Theorem 4. Recall that
each orbit graph H can be equivalently represented as a backbone graph � as in Definition 2.
In addition, we need the following vocabularies: For 1 ≤ m ≤ k and each u ∈ Sm, let C(u)

denote the connected component in �m containing u.
Similar to the reasoning in Section 5.3, when H is a pseudoforest, its backbone graph �

must satisfy the following properties:

(P1) For each 1 ≤ m ≤ k, �m is a pseudoforest (with self-loops and parallel edges counted
as cycles);

(P2) For each 1 ≤ � < m ≤ k, �m,� is empty unless � is a divisor of m.
(P3) Each unicyclic component of �m is plain.
(P4) A tree component in �m contains at most two splits.
(P5) Let (u, v) ∈ �m,�1 and (u′, v′) ∈ �m,�2 be two bridges with �1, �2 < m, such that u

and u′ belong to the same tree component in �m. Then m must be even and �1 = �2 = m/2.
(P6) Let (u, v) ∈ �m,� be a bridge with � < m such that u belongs to a tree component

that contains a split in �m. Then m must be even and � = m/2. Furthermore, v must belong
to a plain tree component in �m/2.

(P7) For each (u, v) and (u′, v′) that satisfy either (P5) or (P6) where v �= v′, the ending
points v and v′ must belong to distinct plain tree components in �m/2.

Otherwise, H contains a component with at least two cycles, violating the pseudoforest con-
straint. See Figure 4–Figure 6 for illustrations of forbidden patterns that violate (P4)–(P7).

Properties (P1)–(P7) are justified by the following arguments:

• Paralleling conditions (T1) and (T2) for the forest constraint, (P1) and (P2) follow from
the classification of edge orbits and orbit graphs in Section 5.1;

• Suppose (P3) does not hold. Since the excess of the corresponding orbit graph of a plain
unicyclic component in �m is 0, by (O1) and (O2), there exists a unicyclic component
component C in �m such that ex(HC) > 0, contradicting H being a pseudo-forest;

• Suppose (P4) does not hold. Then by (O1) and Lemma 3, there exists a tree component
component C in �m such that ex(HC) > 0, contradicting H being a pseudo-forest;

• Suppose (P5) does not hold. Then by (O2) and Lemma 3, there exists a tree component
component C in �m such that ex(HC) > 0, contradicting H being a pseudo-forest;

• To prove (P6), let G1 denote the orbit graph of C(u) consisting of edge orbits (including
splits, matchings, and cycles). Let G2 denote the orbit graph of C(v) consisting of edge or-
bits (including splits, matchings, and cycles) in C(v), as well as bridges in

⋃
�<m/2 �m/2,�

FIG. 4. Examples of backbone graphs violating (P4) and (P5), shown in (a) and (b), respectively, and the

corresponding orbit graphs.
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FIG. 5. Examples of backbone graphs violating (P6) and the corresponding orbit graphs.

that are incident to C(v). Let Gnew denote the edge-disjoint union of G1, G2, and the edge
orbit corresponding to the bridge (u, v). Since C(u) contains a split, by (O1) and Lemma 3,
ex(G1) ≥ −m/2. Then we have

ex(Gnew) = ex(G1) + ex(G2) + m ≥ ex(G2) + m/2 ≥ 0,

where the last inequality is met with equality if and only if C(v) is a plain tree component
in �m/2 by Lemma 3. Hence, (P6) follows.

• To prove (P7), let C = C(u) ∪ C(u′). Let G1 denote the orbit graph of C consisting of
edge orbits (including splits, matchings and cycles), as well as bridges in

⋃
�<m �m,� ex-

cept for (u, v) and (u′, v′) that are incident to C. If C(u) = C(u′), then ex(G1) ≥ −m

by Lemma 3. If C(u) �= C(u′), then G1 is an edge-disjoint union of H1 and H ′
1, where

FIG. 6. Examples of backbone graphs violating (P7) and the corresponding orbit graphs.
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H1 (resp. H ′
1) is the orbit graph of C(u) (resp. C(u′)) consisting of edge orbits (includ-

ing splits, matchings and cycles) in C(u) (resp. C(u′)), as well as bridges in
⋃

�<m �m,�

except for (u, v) (resp. (u′, v′)) that are incident to C(u) (resp. C(u′)). By assumption,
together with (O1), (O2) and Lemma 3, ex(H1) ≥ −m/2 and ex(H ′

1) ≥ −m/2 and thus
ex(G1) ≥ ex(H1) + ex(H2) ≥ −m.

Let C′ = C(v)∪C(v′). Note that by (P5) and (P6), both C(v) and C(v′) are components
in �m/2. Let G2 denote the orbit graph of C′ consisting of edge orbits (including splits,
matchings and cycles) in C′, as well as bridges in

⋃
�<m/2 �m/2,� that are incident to C′.

Let Gnew denote the edge-disjoint union of G1, G2, and the edge obits corresponding to
the two bridges (u, v) and (u′, v′). Then,

ex(Gnew) ≥ ex(G1) + ex(G2) + 2m ≥ −m + ex(G2) + 2m = ex(G2) + m.

By assumption, Gnew is a pseudo-forest and thus ex(Gnew) ≤ 0. It follows that ex(G2) ≤
−m and hence v and v′ must be in distinct plain tree components in �m/2 by Lemma 3.

The implication of (P4)-(P7) is the following. For each m ∈ [k], define

E(m)�
⋃

�<m

E(�m,�)

consisting of all bridges between m-node orbits and shorter orbits. Then E(m) can be divided
into two sets of bridges as follows. For each u ∈ Sm, recall that C(u) denotes the connected
component in �m containing u. A bridge is denoted by a giant edge (u, v) ∈ �m,� with � < m,
where u ∈ Sm in the longer orbit is called the starting point and v ∈ S� in the shorter orbit is
called the ending point. Define

Esingle(m) �
{
(u, v) ∈ E(�) : u ∈ Sm, v ∈

⋃

�<m

S�,

C(u) contains no split and is not incident to any bridge in
⋃

�<m

�m,� other than (u, v)
}

(79)

Edouble(m) �
{
(u, v) ∈ E(�) : u ∈ Sm, v ∈ Sm/2,

C(u) contains a split or is incident to some bridge in
⋃

�<m

�m,� other than (u, v)
}
.

(80)

By Properties (P6)–(P7), we have E(m) = Esingle(m) ∪ Edouble(m). Moreover:

• For each (u, v), (u′, v′) ∈ Esingle(m), the starting points u and u′ belong to separate tree
components in �m, that is, C(u) and C(u′) are distinct tree components in �m. Further-
more, C(u) (resp. C(u′)) contains no split and is not incident to any bridge other than
(u, v) (resp. (u′, v′)). (This is just repeating the definition.)

• For each (u, v), (u′, v′) ∈ Edouble(m), the ending points v and v′ belong to separate plain
tree components in �m/2, by (P7).

The above observation suggests that to specify the bridges in Esingle(m), one can use the
forward construction by first choosing their starting points from separate components of �m

then choosing the ending points from shorter orbits
⋃

�<m S� in an unconstrained way; to
specify the bridges in Edouble(m), one can use the backward construction by first choosing
their ending points from separate components of �m/2 then choosing the starting points from
Sm in an unconstrained way. This separate account of bridges is useful in the enumeration
scheme which we describe next.
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Algorithm 2 Pseudoforest enumeration algorithm
1: for each t = 1, . . . , k do

2: Step 1: Matching stage. Construct a rooted pseudoforest �t with nt giant nodes and
at giant edges (allowing self-loops and multiple edges). Attach a label from [t] to each
giant edge and a label from [� t−1

2 �] to each self-loop;
3: Step 2: Splitting stage. Choose bt components from nt − at tree components of �t ,

and within each chosen component, choose a node: if the node chosen is the same as the
root, add a split to the root; otherwise, add two splits, one at the root and the other one at
the chosen node;

4: Step 3: Forward bridging stage. Choose ct out of the remaining nt − at − bt tree
components of �t , and for each chosen component, add a bridge connecting its root to a
giant node in �� for some � < t that is a divisor of t . Attach a label from [�] to the added
bridge.

5: Step 4: Backward bridging stage. Choose dt from the remaining nt − at − bt − ct

tree components of of �t . For each chosen component, add a bridge by connecting its
root to a giant node in �2t . Attach a label from [t] to the added bridge.

6: end for

Next, we describe an algorithm for generating all possible backbone graphs � that satisfy
the properties (P1)–(P7). Given a sequence of integers (a,b, c,d) = (at , bt , ct , dt )1≤t≤k with
bt = 0 for odd t and dt = 0 if 2t > k, we construct � in Algorithm 2.

We note that an output graph of Algorithm 2 is not necessarily a pseudoforest; nevertheless
any orbit pseudoforest can be generated by Algorithm 2, which is what we need for upper
bounding the generating function of orbit pseudoforests,

∑
H∈Hk

s2e(H). To verify this claim
formally, let H be an orbit pseudoforest and let � denote its backbone graph as in Definition 2,
where for 1 ≤ m ≤ k there are:

• am giant edges (including self-loops) corresponding to either Type Mm or Cm edge orbits;
• bm components that contain splits corresponding to Type Sm edge orbits;
• cm giant edges corresponding to Type Bm,� edge orbits for some � < m that is a divisor of

m;
• dm giant edges corresponding to Type Bm,2m edge orbits.

For each �m where 1 ≤ m ≤ k, we arbitrarily choose the root for each plain tree component,
and specify the root in each nonplain tree component as the giant node that either splits or
is incident to a bridge in Esingle(m) ∪ Edouble(2m) (when there are two giant nodes that split
in a tree component, we choose any one of them as the root; otherwise, the choice of the
root is unique). Then it is clear that Steps 1 and 2 can realize any configuration of splits and
matchings in �, thanks to Properties (P1)–(P4). Finally, note that bridges in Esingle(m) are
added by Step 3 (forward bridging) at iteration t = m with cm = |Esingle(m)|, and bridges
in Edouble(m) are added by Step 4 (backward bridging) at iteration t = m/2 with dm/2 =
|Edouble(m)|.

Next we bound the generating function
∑

H∈Hk
s2e(H) from above. We first state an auxil-

iary lemma, which extends the well-known formula (74) for enumerating rooted forests.

LEMMA 4. The number of rooted pseudoforests on n nodes with a edges (allowing self-

loops and multiple edges) is at most

(81)
(
n

a

)
(2n)a.
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PROOF. To see this, let m denote the number of cycles (including self-loops and parallel
edges). Then the number of connected components is n − a + m. To enumerate all such
rooted pseudoforests, we first enumerate all rooted forests on n vertices with a − m edges,
then choose m roots out of n − a + m roots, and finally add one edge to each chosen root to
form a cycle within its corresponding component. Each added edge can either be a self-loop
at the root or connect the root to some other node, so there are at most n different choices
of the added edge. Therefore, the total number of rooted pseudoforests on n vertices with a

edges is at most
a∑

m=0

(
n

a − m

)
na−m

(
n − a + m

m

)
nm = na

a∑

m=0

(
n

a − m

)(
n − a + m

m

)

︸ ︷︷ ︸
2a(n

a)

=
(
n

a

)
(2n)a.

�

Now we can enumerate all possible output backbone graphs � of Algorithm 2 as follows.
For t = 1, . . . , k:

1. Note that �t constructed in Step 1 is a rooted pseudoforest with nt giant nodes and
at giant edges. Moreover, each giant edge added in Step 1 carries at most t possible labels.
Hence, the total number of all possible rooted pseudoforests �t constructed in Step 1 is at
most:

(
nt

at

)
(2tnt )

at .(82)

2. The total number of different ways of splitting is at most
(
nt − at

bt

)
n

bt
t .(83)

3. The total number of different ways of forward bridging is at most:
(
nt − at − bt

ct

)(∑

�<t

�n�

)ct

.(84)

4. The total number of different ways of backward bridging is at most:
(
nt − at − bt − ct

dt

)
(tn2t )

dt .(85)

Combining (82), (83), (84) and (85), we conclude that the total number of possible output
backbone graphs � with input parameter (a,b, c,d) is at most

k∏

t=1

1{bt=0 for odd t}1{dt=0 if 2t>k}

(
nt

at , bt , ct , dt

)
(2tnt )

at n
bt
t

(∑

�<t

�n�

)ct

(tn2t )
dt .

Note that for each output backbone graph, the total number of edges in the corresponding
orbit graph H satisfies

e(H) ≥
k∑

t=1

t (at + bt/2 + ct + 2dt ).

Combining the above two displays, we obtain

∑

H∈Hk

s2e(H) ≤
∑

a,b,c,d

k∏

t=1

1{bt=0 for odd t}1{dt=0 if 2t>k}

(
nt

at , bt , ct , dt

)

× (2tnt )
at n

bt
t

(∑

�<t

�n�

)ct

(tn2t )
dt × s2tat+tbt+2tdt+4tdt
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≤
k∏

t=1

(
1 + stnt1{t :even} + 2tnts

2t + s2t
∑

�<t

�n� + s4t tn2t1{2t≤k}

)nt

≤
k∏

t=1

(
1 + stnt1{t :even} + 2s2t

∑

�≤t

�n� + s4t tn2t1{2t≤k}

)nt

,

completing the proof of Theorem 4.

6. Conclusion and open questions. In this paper, we formulate the general problem of
testing network correlation and characterize the statistical detection limit. For both Gaussian-
weighted complete graphs and dense Erdős–Rényi graphs, we determine the sharp thresh-
old at which the asymptotic optimal testing error probability jumps from 0 to 1. For sparse
Erdős–Rényi graphs, we determine the threshold within a constant factor. The proof of the
impossibility results relies on a delicate application of the truncated second moment method,
and in particular, leverages the pseudoforest structure of subcritical Erdős–Rényi graphs in
the sparse setting. We conclude the paper with a few important open questions.

1. In a companion paper [27], we show that a polynomial-time test based on counting
trees achieves strong detection when the average degree np ≥ n−o(1) and the correlation ρ ≥ c

for an explicit constant c. In particular, this result combined with our negative results in The-
orem 2 imply that the detection limit is attainable in polynomial-time up to a constant factor
in the sparse regime when np = 	(1). However, achieving the optimal detection threshold in
polynomial time remains largely open.

2. It is of interest to study the detection limit under general weight distributions. Our
proof techniques are likely to work beyond the Gaussian Wigner and Erdős–Rényi graphs
model. For example, for general distributions P and Q, as shown in the proof of Proposi-
tion 1, the second moment is determined by the eigenvalues of the kernel operator defined
by the likelihood ratio L(x, y) = P(x,y)

Q(x,y)
. Another interesting direction is testing correlations

between hypergraphs.
3. Another important open problem is to determine the sharp threshold for detection

in the sparse Erdős–Rényi graphs with p = n−�(1). In particular, to improve our positive
result, one may need to analyze a more powerful test statistic beyond QAP. For the negative
direction, one needs to consider the case where the intersection graph A∧Bπ is supercritical
and a more sophisticated conditioning beyond the pseudoforest structure may be required.
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permutations.
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