

STOC ’23, June 20–23, 2023, Orlando, FL, USA Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H. Yu

Theorem. Assume that 0 < @ f 1/2 and

d2 > U j 0.338,

where

U = lim
�³>

log(number of unlabeled trees with edges)
is Otter’s tree-counting constant [38]. Given a pair of correlated

Erdős–Rényi graphs (�, �) > G(=, @, d), the following holds:

" (Exact recovery) If d > 0 and =@(@ + d (12@)) g (1 + n) log=
for any constant n > 0,1 there is a polynomial-time algorithm

that recovers c exactly with high probability.

" (Almost exact recovery) If =@ = l (1), there is a polynomial-

time algorithm that outputs a subset � ¢ [=] and a map

ĉ : � ³ [=] such that ĉ = c |� and |� | = (1 2 > (1))= with

high probability.

" (Partial recovery) For any constant X * (0, 1), there is a

constant � (d, X) > 0 depending only on d and X such that

if =@ g � (d, X), the above � and ĉ satisfy that ĉ = c |� with
high probability and E[|� |] g (1 2 X)=.

The above theorem identi�es an explicit threshold d2 > U that

allows polynomial-time graph matching for both sparse and dense

graphs. In certain regimes, the condition for exact recovery in

this result is in fact optimal, matching the information-theoretic

threshold identi�ed in [13, 45] (see Remark 2 and Figure 2 for

a detailed discussion). Here we further assume d > 0 for exact

recovery as the current seeded matching algorithms for boosting

from almost exact to exact recovery require a positive correlation.

In passing, we remark that after the initial posting of the present

paper, [24] proves that a di�erent algorithm proposed earlier in [23,

40] achieves partial recovery (correctly matching ¬(=) vertices
with > (=) errors with high probability) under the same condition

of d >

:
U . Their algorithm relies on the tree structure of local

neighborhoods and thus is restricted to sparse graphs with =@ =

$ (1). Moreover, their results do not provide exact or almost exact

recovery.

1.1 Key Challenges and Algorithmic

Innovations

A principled approach to graphmatching is the following three-step

procedure:

(1) Signature embedding: Associate to each vertex 8 in � a signa-

ture B� and to each vertex 9 in � a signature C ! .

(2) Similarity scoring: Compute the similarity score ¨� ! based on

B� and C ! using a certain similarity measure on the signature

space.

(3) Linear assignment: Solve max-weight bipartite matching

withweights¨� ! either exactly or approximately (e.g., greedy

algorithm).

In this way, we reduce the problem from the NP-hard quadratic

assignment to the tractable linear assignment. Clearly, the key to

this approach is the construction of the similarity scores.

1The condition %' (' + � (1 2 ')) g (1 + �) log% is information-theoretically neces-
sary, for otherwise the intersection graph betweený and þ (under the vertex corre-
spondence ÿ) contains isolated vertices with high probability and exact recovery is
impossible.

Many existing algorithms for graph matching largely follow this

paradigm using similarity scores based on neighborhood statistics

[8, 15, 16, 18, 30], spectral methods [20, 43, 44], or convex relaxations

[1, 28, 47]. In terms of theoretical guarantees, these methods either

require extremely high correlation or are tailored to sparse graphs.

Note that two d-correlated Erdős–Rényi graphs di�er by �(1 2 d)
fraction of edges. Thus, to succeed at a constant d bounded away

from 1, the similarity scores need to be robust to perturbing a con-

stant fraction of edges. All existing algorithms [21, 23, 31] achieving

this goal crucially exploit the tree structure of local neighborhoods

and are thus restricted to sparse graphs. On the other hand, algo-

rithms that apply to both sparse and dense graphs [18, 20, 30] so

far can only tolerate a vanishing fraction of edge perturbation and

thus all require d = 1 2 > (1).
The major algorithmic innovation of this work is a new construc-

tion based on subgraph counts. Speci�cally, the signature assigned

to a node 8 is a vector indexed by a family of non-isomorphic sub-

graphs, where each entry records the total number of subgraphs

rooted at 8 that appear in the graph weighted by the centered ad-

jacency matrix, known as the signed graph count [9] (cf. (1) and

(2) for the formal de�nition). The similarity score for each pair of

vertices is the weighted inner product between their signatures.

The key to executing this strategy is a carefully curated family of

trees called chandeliers, which, as we explain next, allows one to

extract the graph correlation from the counts of the same tree while

suppressing the undesirable correlation between those of di�erent

trees. This leads to a robust construction of signatures that can

withstand perturbing a constant fraction of edges, without relying

on the locally tree-like property that limits the previous methods

to sparse graphs.

Counting subgraphs is a popular method for network analysis in

both theory [9, 35] and practice [2, 34, 42]. We refer to [32, Sec. 2.4]

for a comprehensive overview of hypothesis testing and estimation

based on subgraph counting for networks with latent structures.

Notably, most of these previous works focus on counting cycles.

However, here in order to succeed at a constant d , we need to count

a su�ciently rich class of subgraphs (whose cardinality grows at

least exponentially with the number of edges)2 and cycles clearly

fall short of this basic requirement. A much richer family of strictly

balanced, asymmetric subgraphs is considered in [6], where the

edge density of the subgraphs is carefully chosen so that typically

they co-occur in both graphs at most once. Hence, by searching

for such rare subgraphs, dubbed “black swans”, one can match the

corresponding vertices. Although this method succeeds even for

vanishing correlation d g (log=)2% (1) , it has a quasi-polynomial

time complexity=�(log%) due to the exhaustive search of subgraphs
of size�(log=). Moreover, the construction of this special family of

subgraphs requires the average degree =@ to fall into a very speci�c

range of [=�% , =1/153] * [=2/3, =12�] for some sequence of positive

quantities X% = > (1) and an arbitrarily small constant n > 0, and, in

particular, it does not accommodate relatively sparse graphs such

as =@ = $ (log=).

2A high-level explanation is as follows. For a single subgraph � with � edges, the
correlation between the subgraph counts of � rooted at vertex � acrossý and þ – the

signal, is smaller than their variances by a multiplicative factor of �� . Therefore, to
pick up the signal, we need to further average over a family H of such subgraphs so

that |H |�2� ³ > (cf. (25) for a more detailed explanation).

1346

Random Graph Matching at O�er’s Threshold via Counting Chandeliers STOC ’23, June 20–23, 2023, Orlando, FL, USA

As opposed to relying on rare subgraphs, our approach is to count

a family of unlabeled rooted trees with size # = �(log=), which
are abundant even in very sparse graphs. Moreover, by leveraging

the method of color coding [3, 4, 26], such trees can be counted ap-

proximately but su�ciently accurately in polynomial time. While

centering the adjacency matrices and counting signed trees are

helpful, there still remains excessive correlation among di�erent

trees counts which is hard to control – this is the key di�culty in

analyzing signatures based on subgraph counts. To resolve this chal-

lenge, we propose to count a special family T of unlabeled rooted

trees, which we call chandeliers; see (1) for the formal de�nition.

As discussed in Section 2.2, the chandelier structure plays a crucial

role in curbing the undesired correlation between di�erent tree

counts. Moreover, even though chandeliers only occupy a vanish-

ing fraction of all trees, by choosing the parameters appropriately,

we can ensure that |T | = (1/U + > (1))� , which grows almost at

the same rate as the entire family of trees.

A similar idea of counting signed but unrooted trees has been

applied in [32] for the graph correlation detection problem, i.e., test-

ing whether the two graphs are independent Erdős–Rényi graphs

or d-correlated through a latent vertex matching chosen uniformly

at random. It is shown that the two hypotheses can be distinguished

with high probability in polynomial time at the same threshold of

d2 > U . However, unlike the present paper, averaging over the

random permutation dramatically simpli�es the analysis of correla-

tions between di�erent tree counts. As a result, it su�ces to simply

count all trees as opposed to a carefully constructed collection of

special trees. We refer to the last two paragraphs in Section 2.2 for

a detailed comparison.

1.2 Notation

Given a graph� , let+ (�) denote its vertex set and � (�) denote its
edge set. Let E (�) = |+ (�) | and 4 (�) = |� (�) |. We call 4 (�)2E (�)
the excess of the graph � . We denote by K% the complete graph

with vertex set [=] and edge set
([%]
2

)
~ {{D, E} : D, E * [=], D b E}.

An empty graph is denoted as ', if it does not contain any vertex

or edge. A rooted graph is a graph in which one vertex has been

distinguished as the root. An isomorphism between two rooted

graphs� and� is a bijection between the vertex sets that preserves

both edges and the root, namely, 5 : + (�) ³ + (�) such that the

root of � is mapped to that of � and any two vertices D and E are

adjacent in � if and only if 5 (D) and 5 (E) are adjacent in � . An
automorphism of a rooted graph is an isomorphism to itself. Let

aut(�) be the number of automorphisms of � . For a rooted tree)

and a vertex 0 * + ()), let ())� denote the subtree of) consisting

of all descendants of 0 and we set ())� = ' if 0 + + ()).
For two real numbers G and ~, we let G (~ ~ max{G,~} and

G ' ~ ~ min{G,~}. We use standard asymptotic notation: for two

positive sequences {G%} and {~%}, we write G% = $ (~%) or G% r ~% ,
if G% f �~% for an absolute constant� and for all =; G% = ¬(~%) or
G% s ~% , if ~% = $ (G%); G% = �(~%) or G% o ~% , if G% = $ (~%) and
G% = ¬(~%); G% = > (~%) or ~% = l (G%), if G%/~% ³ 0 as = ³ >.

1.3 Organization

The rest of the paper is organized as follows. In Section 2.1, we

�rst introduce the similarity scores between vertices of the two

graphs based on counting signed chandeliers, and then state our

main results on the recovery of the latent vertex correspondence

for correlated Erdős–Rényi graphs. In Section 2.2, we explain the

rationale for focusing on the class of chandeliers. Section 3 provides

a statistical analysis of the similarity scores, proving our results on

partial and almost exact recovery stated in Theorem 1. In partic-

ular, Propositions 2 and 3 are the key ingredients controlling the

variance of the similarity scores. In Section 4, we use the method

of color coding to approximate the proposed similarity scores in

polynomial time, and show that the same statistical guarantees

continue to hold for the approximated scores, thereby proving The-

orem 2. Finally, in Section 5, we demonstrate how to upgrade an

almost exact matching to an exact matching, establishing Theo-

rem 3. Appendix A consists of auxiliary results, and Appendix B

discusses a data-driven way to choose a threshold parameter in our

algorithm. Due to space constraints, we omit the proofs of Proposi-

tion 2-Proposition 6, which can be found in the full version of this

paper [33] https://arxiv.org/abs/2209.12313.

2 MAIN RESULTS AND DISCUSSIONS

2.1 Similarity Scores and Statistical Guarantees

We start with some preliminary de�nitions before specializing to

chandeliers. For any weighted adjacency matrix " , node 8 * [=],
and rooted graph � , de�ne the weighted subgraph count

,�,� (") ~
∑

� (�)��
"� , where"� ~

∏

�*� (�)
"� , (1)

and ((8) denotes a subgraph of K% rooted at 8 . (Whenever the

context is clear, we also abbreviate ((8) as (.) Note that when" is

the adjacency matrix �,,�,� reduces to the usual subgraph count,

i.e., the number of subgraphs rooted at 8 in" that are isomorphic

to � . When " is a centered adjacency matrix � ~ � 2 @, we call
,�,� a signed subgraph count following [9]. For example (with

solid vertex as the root),,�, (�) = 3� 2 (=21)@ and,�, (�) =(��
2

)
2 (= 2 2)3�@ +

(%21
2

)
@2, where 3� is the degree of 8 in �.

Next, given a family H of non-isomorphic rooted graphs � , the

subgraph count signature of a node 8 is de�ned as the vector

, H
� (") ~

(
,�,� (")

)
� *H . (2)

Algorithm 1 below describes our proposed method for graph match-

ing based on subgraph count signatures.

At this point Algorithm 1 is a “meta algorithm” and the key to

its application is to carefully choose this collection of subgraphs

H . Ideally, we would like ¨H
� ! to be maximized at 9 = c (8), at least

on average. To this end, we require � * H to be uniquely rooted,

under which we have E[¨H
� !] ? 1{ÿ (�)=! } (see Proposition 1).

De�nition 2 (Uniquely rooted graph). We say that a graph �

rooted at 8 is uniquely rooted, if � (8) is non-isomorphic to � (E)
for any vertex E b 8 in + (�).

However, the uniquely rooted property is far from enough. In

order for the signature ¨H
� ! to distinguish whether 9 = c (8) or not,

we need to ensure that the �uctuation of ¨H
� ! does not overwhelm

3Note that in (3) the coe�cient aut(�) accounts for the symmetry of � and compen-
sates for the fact that the number of copies of� in the complete graph K% is inversely
proportional to aut(�) . This simpli�es the �rst moment calculation in Proposition 1.

1347

Random Graph Matching at O�er’s Threshold via Counting Chandeliers STOC ’23, June 20–23, 2023, Orlando, FL, USA

where n is an arbitrarily small constant. Choose , !,", ' * N such

that # = (+")! is even6,

! =
�1

n
, = �2 log=, " =

�3

log(=@) , ' = exp (�4) . (10)

Fix any constant 0 < 2 < 1 and let ` be given in (8). Let ĉ : � ³
[=] denote the output of Algorithm 1 applied to the collection T of

(!,", , ')-chandeliers and threshold g = 2`. Then ĉ = c |� with
probability 1 2 > (1). Moreover,

" If =@ = l (1), then |� | = (1 2 > (1))= with probability 1 2 > (1).
" For any constant X * (0, 1), there exists a positive constant

� (n, X) depending only on n and X , such that if =@ g � (n, X),
then E [|� |] g (1 2 X)=.

Remark 1 (Adapting to unknown parameters). Note that the

choice of" and g in (10) assumes the knowledge of @ and d . The

edge probability @ can be easily estimated by the empirical graph

density of � and �. Moreover, the threshold g can be speci�ed in a

data-driven manner (cf. Appendix B).

From a computational perspective, naïve evaluation of,�,� (�)
by exhaustive search for each � with # edges takes =�(�) time

which is super-polynomial when # = l (1). To resolve this compu-

tational issue, in Section 4, we give a polynomial-time algorithm

(Algorithm 2) that computes an approximation ˜̈� ! for ¨� ! using
the strategy of color coding as done in [32]. The following result

shows that the approximated similarity score ˜̈� ! enjoys the same

statistical guarantee under the same condition (9) as Theorem 1.

Theorem 2. Theorem 1 continues to hold with ˜̈� ! in place of ¨� ! .

Moreover, {˜̈� ! }�, !*[%] can be computed in $ (=ÿ) for some constant

� c � (n) depending only on n .

Theorem 2 shows that our matching algorithm achieves the

almost exact recovery in polynomial time when =@ = l (1) and
d2 g U +n . In comparison, the almost exact recovery is information-

theoretically possible if and only if =@d = l (1), when d > 0 and

@ = =21/22¬ (1) [14, 45].
Moreover, under an extra condition that is information- theoret-

ically necessary, we can upgrade the almost exact recovery to exact

recovery in polynomial time. The main idea is to use the partial

matching ĉ |� correctly identi�ed by Algorithm 1 as seeds and apply

a seeded matching algorithm (which is similar to percolation-based

matching in [6, 46]) to extend it to a full matching. For this purpose

we assume d > 0 as the current seeded matching algorithm requires

positive correlation.

Theorem 3 (Exact recovery). Suppose

=@ (@ + d (1 2 @)) g (1 + n) log=, d g
:
U + n (11)

for some arbitrarily small constant n . Then a seeded matching algo-

rithm (see Algorithm 3 in Section 5) with input ĉ outputs c̃ = c in

$ (=3@2) time with probability 1 2 > (1).

Remark 2 (Comparison to the exact recovery threshold). It is in-

structive to compare the performance guarantee (11) of our polyno-

mial-time algorithm with the information-theoretic threshold of

6For simplicity, we assume � is even so that
 g 0 even when � < 0. To lighten the
notation, we do not explicitly round each parameter in (10) to integers as this only
changes constant factors; see (26) for a more general condition.

exact recovery derived in [45] for positive correlation, that is,

d g (1 + n)
(
2

√
log=

=
+ log=

=@

)
. (12)

1 1:
�

10

:
U

1

0
0

?

impossible

easy

_

d

Figure 2: The phase diagram for exact recovery in the loga-

rithmic degree regime, where =@ = _ log= for a �xed con-

stant _ > 0. The impossible and easy regime are given

by d < min{1, 1/_} and d > max{:U, 1/_}, respectively. No
polynomial-time algorithm is known to achieve exact recov-

ery in the red regime.

Assuming =@ = _ log= for a �xed constant _, (11) simpli�es to

d > max{1/_,:U}, while (12) is reduced to d > 1/_; see Figure 2
for an illustration. Observe that when _ < 1/:U , the condition

(11) for exact recovery matches (12) and hence our polynomial-

time matching algorithm is information-theoretically optimal. If

_ > 1/:U , there exists a gap, between (11) and (12), depicted as the

red regime in Figure 2. It is an open problemwhether exact recovery

is attainable in polynomial time in the red regime when d <

:
U .

So far the only rigorous evidence for hardness is that detection

(and hence recovery) is computationally hard in the low-degree

polynomial framework7 when d f 1/polylog(=) [32].

2.2 On the Choice of Chandeliers

The key to the success of our matching algorithm is to leverage

the correlation of subgraph counts in the two graphs � and �

as much as possible, while suppressing the undesired correlation

between di�erent subgraph counts. In this subsection, we explain

why restricting to the special family of chandeliers is crucial, as well

as some basic guidelines on the choice of its parameters. Assume

for convenience that c = id.

First of all, we require the expected similarity score E[¨� !] to be
zero except for 8 = 9 . As discussed in the previous subsection, this

is guaranteed by the uniquely rooted property of each chandelier in

T . Further, to distinguish a true pair (8, 8) from fake pairs (8, 9), we
7Speci�cally, it is shown in [32] that any test statistic that is a degree-polylog(%)
polynomial of (ý, þ) fails to detect correlation � = 1/polylog(%) .

1349

Random Graph Matching at O�er’s Threshold via Counting Chandeliers STOC ’23, June 20–23, 2023, Orlando, FL, USA

The method of counting signed trees has been applied to the

detection problem in the previous work [32]. The goal therein is to

decide whether two Erdős–Rényi random graphs are independent

or correlated using the test statistic

5 (�, �) =
∑

� *T2
aut(�),� (�),� (�), (15)

where the weighted subgraph count,� (,) is similarly de�ned

as (1) for unrooted � . Compared to (3), there are three major dis-

tinctions: First, the trees in (15) are not rooted and aut(·) is for
unrooted graphs. Second, trees in T 2 only have � (log=/log log=)
edges, instead of �(log=) edges required in this paper. This is be-

cause for detection, one only needs to achieve a vanishing error,

instead of a speci�c > (1/=2) error probability for recovery in the

current work. Third (and most importantly), T 2 contains all trees
without special structure, while here we choose T to be a family

of special trees called chandeliers, which, as explained earlier, is

crucial for reducing the correlation between di�erent signed tree

counts.

In terms of analysis, for the detection problem in [32] the latent

permutation is chosen uniformly at random, so one can average the

second moment calculation over the random permutation which

drastically simpli�es the analysis of the tree counting statistic. In

contrast, for the recovery problem in the present paper, we need to

condition on the realization of the latent permutation. As such, the

secondmoment calculation here is muchmore challenging combina-

torially and involves delicate enumeration procedures that revolve

around the chandelier construction. In addition, since the trees in

[32] are much smaller with only �(log%
log log%

) edges, so that many

quantities can be bounded very crudely (e.g., aut(�) f E (�)!); for
the current paper since the trees have �(log=) edges such simple

analysis does not su�ce.

3 STATISTICAL ANALYSIS OF SIMILARITY

SCORES

Throughout the analysis, without loss of generality, we assume

c = id. First, we compute the �rst moment of the similarity scores

¨
H
� ! for a general collectionH of subgraphs.

Proposition 1. Let H be a family of unlabeled uniquely rooted

graphs with # edges and + + 1 vertices. For any 8, 9 * [=], we have

E

[
¨
H
� !

]
= |H |

(
df2

)� (= 2 1)!
(= 2+ 2 1)!1{�=! } , (16)

where f2 = @(12@). Moreover, if+ 2
= > (=), then we have E

[
¨
H
� !

]
=

(1 + > (1)) |H |
(
df2

)�
=� .

Proof. For a rooted graph � with # edges and + + 1 vertices,

the number of copies of� in the complete graphK% that are rooted

at 8 * [=] is

sub% (�) c sub(�,K%) =
(%21
�

)
+ !

aut(�) , (17)

where recall that aut(�) denotes the number of automorphisms of

� . For any weighted adjacency matrix " and any subgraph (of

K% , recall that"� =
∏
�*� (�) "� as in (1). Then,

E

[
,�,� (�),!,� (�)

]
=

∑

� (�)��

∑

� (!)��
E

[
����

]

(a)
=

∑

� (�)��,� (!)��
E

[
����

]

(b)
=

(
df2

)�
sub% (�)1{�=! } , (18)

where (a) is because E
[
����

]
= 0 unless (=) (as unrooted

graphs); (b) is because ((8) � � and ((9) � � imply that 8 = 9 ,

thanks to the unique-rootedness of � . By (3),

E[¨H
� !] =

∑

� *H
aut(�)E[,�,� (�),!,� (�)]

= |H |
(
df2

)� (
= 2 1

+

)
+ !1{�=! } .

In view of
(%21
�

)
+ ! =

(%21)!
(%2� 21)! , we obtain the desired (16). Finally,

since
(
1 2 �

%

)�
f (%21)!

(%2� 21)!%� f
(
1 2 1

%

)�
and + = > (

:
=), we

have
(%21)!

(%2� 21)! = (1 + > (1))=� . ¥

Next, we bound the variance of the similarity scores ¨� ! c ¨
T
� ! ,

where T is the collection of (, !,", ')-chandeliers, for both true

pairs 8 = 9 and fake pairs 8 b 9 . In the remainder of the paper, let V

denote a universal constant such that

|J () | f V� , " g 1. (19)

Such a V (not to be confused with Otter’s constant U) exists thanks

to (6).

Proposition 2 (True pairs). Suppose @ f 1
2 , ! g 2, and

14!2

d2(�+) |J |
f 1

2
,

11'4 (2#)3 (11V)2(�+)

=
f 1

2
,

'
4
	 (11V) 4	+4�

	

=@
f 1

2
,

1 + 2!2

d2=@
f 1

2
. (20)

Then, for any 8 * [=], we have

Var [¨��]
E [¨��]2

= $

(
!2

d2=@
+ !2

d2(�+) |J |

)
. (21)

Proposition 3 (Fake pairs). Suppose @ f 1
2 , ! g 2, and

'
2
	 (11V)

4(�+)
	

=@
f 1

2
,

4	+3!2	'(4�+2) (11V)8(�+)'2 (2# + 1)3 f =

2
. (22)

Then, for any 8 b 9 , we have

Var
[
¨� !

]

E [¨��]2
= $

(
1

|T |d2�

)
. (23)

The next remark shows that the results in Propositions 2 and

3 are essentially optimal, by identifying which con�gurations of

((1,)1, (2,)2) in (14) contribute predominantly to the variance.

1351

STOC ’23, June 20–23, 2023, Orlando, FL, USA Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H. Yu

Remark 3. The upper bound (21) for true pairs is almost tight. In

fact, when # 2 j =, @ = > (1) and d g 0,

Var [¨��]
E [¨��]2

g ¬

(
!2

=@
+ !2

d2(�+) |J |

)
. (24)

For the �rst term in this lower bound, �x any�, � * T and consider

the special case where (1 = (2 � � ,)1 =)2 � � , where (1 and

)1 only intersect on one edge that connects to 8 (see Figure 3(d)).

Then, we can show that Cov
(
��1��2 , ��1��2

)
= ¬(

(
df2

)2�
@21).

There are ¬(!2sub% (�)sub% (�)=21) number of ((1,)1, (2,)2) that
satis�es the above condition. Combining this with (14) and applying

Proposition 1, we obtain

Var [¨��]
E [¨��]2

s
1

|T |2
(
df2

)2�
=2�

∑

�,� *T
aut(�)aut(�)sub% (�)sub% (�)

(
df2

)2�
!2 (=@)21

= ¬

(
!2

=@

)
,

where the last equality holds because aut(�)sub% (�) = ¬(=�) by
(17) and # 2 j =.

For the second term in (24), suppose the chandeliers � and �

only share one common bulb B (i.e., |K(�) + K(�) | = 1). Consider

((1,)1, (2,)2) such that (i) (1 (resp.)1) completely overlaps with (2
(resp.)2) except for B and its attached wire; (ii) (1 (resp. (2) only

overlaps with)1 (resp.)2) on B and its attached wire. This corre-

sponds to a baseline case as described in Section 2.2. Then, we can

show Cov
(
��1��2 , ��1��2

)
g

(
df2

)2�
d22(+�) , and there are

¬(sub% (�)sub% (�)) number of ((1,)1, (2,)2) satisfying the above

conditions (i) and (ii). Therefore, combining this with (14) and

Proposition 1 yields

Var [¨��]
E [¨��]2

s
1

|T |2
(
df2

)2�
=2�

∑

�,� *T
aut(�)aut(�)sub% (�)sub% (�)

(
df2

)2�
d22(+�)

1{ |K (�)+K (�) |=1}

=

∑
�,� *T 1{ |K (�)+K (�) |=1}

|T |2d2(+�) s
!2

d2(�+) |J |
.

where the last step holds because there are !
(| J |
	

) (| J |
	21

)
number of

pairs of � and � that only share a single bulb.

The upper bound (23) for fake pairs is sharp. In fact, if # 2 j =,

@ f 1/2, and d g 0, for any collectionH of uniquely rooted trees

(not just chandeliers) and any fake pair 8 b 9 , we have

Var[¨H
� !]

E

[
¨
H
��

]2 g ¬

(
1

|H |d2�

)
. (25)

To see this, �rst note that for any (1,)1, (2,)2 where (1 (8), (2 (9) �
� and)1 (8),)2 (9) � � with �, � * H ,

Cov
(
,�,� (�),!,� (�) , ,�,� (�),!,� (�)

)

= E

[
,�,� (�),!,� (�),�,� (�),!,� (�)

]
g 0 ,

where the �rst equality applies (18) for uniquely rooted trees, and

the last inequality holds because E
[
��1��2��1��2

]
g 0 whenever

d g 0 (cf. (43) in Lemma 1, Appendix A). Second, consider the

special case where � = � and (1 =)1, (2 =)2, (1 and (2 are vertex-

disjoint (i.e., just focus on the diagonal terms in the expansion of the

variance (14) and ignore the possible correlations between counts

of distinct trees inH), we get

Cov
(
,�,� (�),!,� (�),,�,� (�),!,� (�)

)

g
∑

�1 (�)=�1 (�)��

∑

�2 (!)=�2 (!)��

1{�1 and �2 are vertex-disjoint}Cov
(
��1��2 , ��1��2

)

= f4�
∑

�1 (�)��

∑

�2 (!)��
1{�1 and �2 are vertex-disjoint}

= ¬

(
f4�=2� /aut2 (�)

)
.

Therefore,

Var
[
¨
H
� !

]
g

∑

� *H
aut(�)2

Cov
(
,�,� (�),!,� (�),,�,� (�),!,� (�)

)

g ¬

(
|H |f4�=2�

)
.

Combining the above with Proposition 1 yields (25).

3.1 Proof of Theorem 1

We aim to prove Theorem 1 under the assumption (9), that is, d2 g
U + n , and the following more general condition than (10):

! f 21 log=

log log=
' 26

:
=@,

22

log(=@) f "

f

log
�2

�

2 log 1
�2

,

 ! g 23 log=

log
�2

�

, +" f 24 log=, ' = exp(25), (26)

for some absolute constants 21, . . . , 26 > 0. Indeed, the speci�c

choice of , !,", ' in (10) satis�es (26) when =@ g � (n) for a
su�ciently large constant � (n) that only depends on n .

Next, we verify that (26) with appropriately chosen (21, . . . , 26)
ensures that the condition (20) in Proposition 2 and the condition

(22) in Proposition 3 are both satis�ed for all su�ciently large =. To

start, we note that

"

f

log
�2

�

2 log 1
�2

ñó d2(�+)/�

U
g

√
d2

U
. (27)

Moreover, since ' = exp(25), by choosing 25 to be an appropriate

absolute constant and applying (7), we have that for all large

enough,

|J | g (U (1 + 20))2� , (28)

1352

Random Graph Matching at O�er’s Threshold via Counting Chandeliers STOC ’23, June 20–23, 2023, Orlando, FL, USA

where 20 > 0 is an arbitrarily small constant. Combining the last

two displayed equation gives that

d2(�+) |J | g
(
d2(�+)/�

U (1 + 20)

)�
g

(
d2

U

)�/4
, (29)

where the last inequality holds by choosing 20 = d2/U 2 1 g
n/U . Since ! f �1 log%

log log%
and ! g �3 log%

log(�2/�) , g �3 log log%

�1 log(�2/�) . We

deduce from (29) that

d2(�+) |J | g (log=)�3/(4�1) g l (!2), (30)

where the last inequality holds by choosing 21, 23 so that 23/21 > 8.

Assuming that + " f 24 log=, ! f 21
log%

log log%
, and ' =

exp(25), by choosing 24 to be a su�ciently small constant and

noting that # = (+")!, we deduce that
11'4 (2#)3 (11V)2(�+)

=
f 1

2
.

Assuming that "/ g 22/log(=@), by choosing 22 to be a su�-

ciently large constant, we get that

'
4
	 (11V) 4	+4�

	

=@
f 1

2
.

Finally, assuming that ! f 26
:
=@ and d2 > U , by choosing 26 to be

a su�ciently small constant, we conclude that

1 + 2!2

d2=@
f 1

2

completing the veri�cation of (20).

For (22), under the assumption ! f 21
log%

log log%
, !	 f =�1 . Thus,

under the assumptions that +" f 24 log=, and ' = exp(25),
by choosing 21, 24 to be su�ciently small constants, we get that

4	+3!2	'(4�+2) (11V)8(�+)'2 (2# + 1)3 f =

2
,

hence the desired(22).

Now we are ready to prove Theorem 1 by applying Propositions

1 and 3. De�ne

� = {8 : |¨�� 2 ` | > (1 2 2)`} £ {8 : ¨�� < g} , (31)

in view of g = 2`. Applying Proposition 1, Proposition 3, and

Chebyshev’s inequality, we get that for any 8 b 9 ,

P
{
¨� ! g g

}
= P

{
¨� ! 2 E

[
¨� !

]
g 2E [¨��]

}

f
Var

[
¨� !

]

22E [¨��]2
= $

(
1

|T |d2�

)
. (32)

Note that

|T |d2� =

(
|J |
!

)
d2� g

(
|J |
!

)	
d2	 (�+)

g
(
1

!

)	 (
d2

U

)�	/4
g =�3/42�1 = l (=2) , (33)

where the second inequality holds due to (29); the last inequality

holds due to the assumptions that ! f 21 log=/log log= and ! g
23 log=/log(d2/U); the last equality holds by choosing 23/4221 > 2.

Hence, applying union bound together with (32) yields that

P
{
#8 b 9 * [=] : ¨� ! g g

}
= > (1) . (34)

It follows that with probability at least 1 2 > (1), ¨� ! < g for all

8 b 9 * [=], which, by our construction of � and ĉ , further implies

further implies � £ [=] \ � and ĉ = c |� .
By Chebyshev’s inequality and our choice of g = 2E [¨��] g 0,

for any 8 * [=],
P {|¨�� 2 ` | > (1 2 2)`} = P {|¨�� 2 E [¨��] | > (1 2 2)E [¨��]}

f Var [¨��]
(1 2 2)2E [¨��]2

~ W ,

Applying Proposition 2 yields that

W = $

(
!2

=@
+ !2

d2(�+) |J |

)
. (35)

It follows that E [|� |] f W=. For any constant X * (0, 1), we can
choose the constant� (n, X) large enough, so that when=@ g � (n, X),
the assumption ! f 26

:
=@ holds for a su�ciently small constant

26 and consequently W f X . Thus, E [|� |] = = 2 E [|� |] g (1 2 X)=.
If =@ = l (1), then by choosing 26 = > (1) we get W = > (1).

Therefore, by Markov’s inequality,

P
{
|� | g :

W=
}
f :

W = > (1) .
It follows that with probability at least 1 2 > (1), |� | f :

W= and

hence |� | g (1 2 :
W)= = (1 2 > (1))=.

4 APPROXIMATED SIMILARITY SCORES BY

COLOR CODING

In this section, following [32], we provide a polynomial-time algo-

rithm to approximately compute the similarity scores {¨� ! }�, !*[%]
in (3) when T is the family of chandeliers8 of size $ (log=), using
the idea of color coding [2, 3].

Approximate signed rooted subgraph count. Let � be a rooted

connected graph with # + 1 vertices. For each 8 * [=], we �rst

approximately count the signed graphs rooted at 8 that are isomor-

phic to � . Speci�cally, given a weighted adjacency matrix " on

[=], we generate a random coloring ` : [=] ³ [# + 1] that assigns
a color to each vertex of" from the color set [# +1] independently
and uniformly at random. Given any + ¢ [=], let j
 (+) indicate
that ` (+) is colorful, i.e., ` (G) b ` (~) for any distinct G,~ * + . In
particular, if |+ | = # + 1, then j
 (+) = 1 with probability

A ~
(# + 1)!

(# + 1)�+1 . (36)

De�ne

-�,� (", `) ~
∑

� (�)��
j
 (+ (())

∏

(+,-) *� (�)
"+- . (37)

Then E
[
-�,� (", `)

]
= A,�,� ("), where,�,� (") is de�ned in (1).

Hence, -�,� (", `)/A is an unbiased estimator of,�,� (").
When � is a tree, the color coding together with the recur-

sive tree structure enables us to use dynamic programming to

count colorful trees and compute -�,� (", `) e�ciently. This is

summarized as [32, Algorithm 2] for unrooted trees and the same

algorithm with minor adjustments also works for rooted trees.

First, since � is already a rooted tree, the step of assigning an ar-

bitrary vertex of � as its root is not needed and thus the rooted

8In fact, the algorithm does not rely on the chandelier structure and works for any
trees.

1353

STOC ’23, June 20–23, 2023, Orlando, FL, USA Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H. Yu

tree)� constructed is exactly � itself. Second, as an intermedi-

ate step, [32, Algorithm 2] computes . (8,)� , [# + 1], `), which
is the same as aut(�)-�,� (", `). Hence, we can simply output

1
aut(�). (8,)� , [# + 1], `) as the rooted tree count -�,� (", `).
Finally, we generate independent random colorings `1, . . . , `+

and average over -�,� (", `#)’s to better approximate,�,� ("),
where we set

C ~ +1/A, .

Approximate similarity scores. To approximate ¨� ! c ¨
T
� ! in (3),

we apply the above idea to each chandelier� * T . Generate 2C ran-

dom colorings {`�}+�=1 and {a�}+�=1 which are independent copies

of ` that map [=] to [# + 1]. De�ne

˜̈� ! ~
1

A2

∑

� *T
aut(�)

(
1

C

+∑

�=1

-�,� (�, `�)
) (

1

C

+∑

�=1

- !,� (�, a�)
)
.

(38)

Then E
[˜̈� ! | �, �

]
= ¨� ! . Moreover, the following result bounds

the approximation error under the same conditions as those in

Propositions 2 and 3 for the second moment calculation.

Proposition 4. For any 8 * [=], if (20) holds,
Var[˜̈�� 2 ¨��]
E [¨��]2

= $

(
!2

d2=@
+ !2

d2(�+) |J |

)
; (39)

for any 8 b 9 , if (22) holds,

Var[˜̈� ! 2 ¨� !]
E [¨��]2

= $

(
1

|T |d2�

)
. (40)

Finally, we show that the approximate similarity scores ˜̈� ! can
be computed e�ciently using Algorithm 2.

Algorithm 2 Approximate similarity scores via color coding

1: Input: Centered adjacency matrices � and � and integers

 , !,", #, '.

2: Apply the algorithm for generating rooted trees in [7, Sec. 5]

to list all non-isomorphic rooted trees with edges, compute

aut(�) for each rooted tree using the automorphism algorithm

for trees in [11, Sec. 2], and return J as the subset of rooted

trees whose number of automorphisms is at most '.

3: Generate (, !,", ')-chandeliers using J to obtain T per Def-

inition 3.

4: Generate i.i.d. random colorings {`�}+�=1 and {a�}
+
�=1 mapping

[=] to [# + 1].
5: for each 0 = 1, · · · , C do
6: For each � * T , compute {-�,� (�, `�)}�*[%] and

{- !,� (�, a�)} !*[%] via [32, Algorithm 2] with adjustments de-

scribed after (37).

7: end for

8: Output: {˜̈� ! }�, !*[%] according to (38).

Proposition 5. Algorithm 2 computes {˜̈� ! }�, !*[%] in time$
(
=2 (34U)�

)
.

Furthermore, when =@ g 2, under the choice of , !,", ' * N as

per (10), the time complexity is$ (=�/�), where n is from (10) and 2 is

an absolute constant.

Proof of Theorem 2. Note that

Var[˜̈� !] = Var[˜̈� ! 2 ¨� !] + Var[¨� !] + 2Cov
(
˜̈� ! 2 ¨� ! ,¨� !

)

= Var[˜̈� ! 2 ¨� !] + Var[¨� !] , (41)

where the last equality holds because E
[˜̈� ! |�, �

]
= ¨� ! and so

Cov
(
˜̈� ! 2 ¨� ! ,¨� !

)
= E

[
E

[
(˜̈� ! 2 ¨� !) |�, �

]
¨� !

]
= 0 .

Under the assumption of Theorem 1, both (20) and (22) hold.

Since E
[˜̈� !

]
= E

[
¨� !

]
, applying Proposition 4 yields

Var[˜̈��]
E

[˜̈��
]2 = $

(
!2

d2=@
+ !2

d2(�+) |J |

)
;

for all 8 and

Var[˜̈� !]

E
[˜̈��

]2 = $

(
1

|T |d2�

)
.

for all 8 b 9 . In other words, Propositions 2– 3 and hence Theorem 1

continue to hold with ˜̈� ! in place of ¨� ! . The time complexity

follows from Proposition 5. ¥

5 SEEDED GRAPH MATCHING

Recall that with high probability Algorithm 1 applied to the class T
of chandeliers �nds a set � with |� | = =2> (=) and recovers the latent
permutation c on � . In this section, we develop a seeded graph

matching subroutine (Algorithm 3) that matches the remaining

vertices, thereby achieving exact recovery. Since the seed set �

depends on graphs � and �, we need to show that Algorithm 3

succeeds even if the seed set � is chosen adversarially as long as

|� | = (1 2 > (1))=.
Given � 2 ¢ [=] and an injection c 2 : � 2 ³ [=], for any vertex 8

in � and vertex 9 in �, denote by Nÿ 2 (8, 9) the number of common

neighbors of 8 and 9 under the vertex correspondence c 2, namely,

the number of vertex D * � 2 such that D is a neighbor of 8 in � and

c 2 (D) is a neighbor of 9 in �.

Algorithm 3 Seeded graph matching

1: Input: � and �, a mapping ĉ : � ³ [=], and W .
2: Let � = � and c̃ = ĉ .

3: while there exists 8 + � and 9 + c̃ (�) such that Nÿ̃ (8, 9) g
W (= 2 2)@2 do

4: Add 8 to � and let c̃ (8) = 9 .

5: end while

6: Output: c̃ .

Algorithm 3 keeps adding vertices as new seeds once we are

con�dent that they are true pairs based on the current seed set,

in a similar fashion as the percolation graph matching proposed

in [46]. It is a simpli�ed version of [6, Algorithm 3.22], since our

initial seeds are guaranteed to be error-free (thanks to Theorem 1)

and so there is no need to clean up any mismatch. This allows us

to show our Algorithm 3 succeeds under the information-theoretic

necessary condition of =@(@ + d (1 2 @)) g (1 + n) log=, whereas
their algorithm requires=@(@+d (12@)) > logÿ = for some constant

1354

Random Graph Matching at O�er’s Threshold via Counting Chandeliers STOC ’23, June 20–23, 2023, Orlando, FL, USA

� > 1. Another similar algorithm in prior work is [31, Algorithm 4],

which however requires =@ f
:
=/log=.

The following proposition gives su�cient conditions for our

seeded algorithm to achieve exact recovery. Let

ℎ(G) = G logG 2 G + 1 (42)

for G > 0, which is a convex function with the minimum value 0

achieved at G = 1.

Proposition 6. Fix an arbitrarily small constant n > 0. Suppose

�, � > G(=, @, d) with @ f 1
2 , =@(@ + d (1 2 @)) g (1 + n) log=, and

d g n . Let ĉ c ĉ (�, �) denote a mapping: � ³ [=] such that ĉ = c |�
and |� | g (1 2 n/16) =. Let W denote the unique solution in (1, +>) to
ℎ(W) = 3 log%

(%22)'2 . Then with probability at least 1 2 > (1), Algorithm 3

with inputs ĉ and W outputs c̃ = c in $ (=3@2) time.

Proof of Theorem 3. Theorem 1 ensures that, with probability

12> (1), Algorithm 1 returns a mapping ĉ : � ³ [=] in time$ (=ÿ)
such that ĉ = c |� and � g (1 2 n/16)=. Furthermore, Proposition 6

implies that, with probability 1 2 > (1), Algorithm 3 outputs c̃ = c

in $ (=3@2) time. Hence, Theorem 3 follows. ¥

ACKNOWLEDGMENTS

C. Mao was supported in part by NSF Award DMS-2053333 and

NSF Award DMS-2210734. Y. Wu was supported in part by NSF

Award CCF-1900507, NSF CAREER Award CCF-1651588, and an

Alfred Sloan fellowship. J. Xu was supported in part by NSF Award

CCF-1856424 and NSF CAREER Award CCF-2144593. S. H. Yu was

supported by NSF Award CCF-1856424. The authors are grateful

for the hospitality and the support of the Simons Institute for the

Theory of Computing at the University of California, Berkeley,

where part of this work was carried out during the program on

“Computational Complexity of Statistical Inference” in Fall 2021.

A AUXILIARY RESULTS

The following lemma computes the cross-moments of �+- and

�ÿ (+)ÿ (-) from the centered adjacency matrices.

Lemma 1 ([32, Lemma 5]). Let (�, �) > G(=, @, d). Assume @ f 1
2 .

For any 0 f ℓ,< f 2 with 2 f ℓ +< f 4,

E

[
f232#�

3
+-�

#
ÿ (+)ÿ (-)

]
=




d1{3=#=1} ℓ +< = 2
� (122'):
' (12')

ℓ +< = 3

' (12')+� (122')2
' (12') ℓ +< = 4

. (43)

Moreover,���E
[
f232#�

3
+-�

#
ÿ (+)ÿ (-)

] ���

f |d |1{3=#=1}1{3+#=2} +
√

1

@
1{3+#=3} +

1

@
1{3+#=4} . (44)

B A DATA-DRIVEN CHOICE OF THE

THRESHOLD

In this section, we describe a data-driven approach to choose thresh-

old g in Algorithm 1 without the knowledge of @ and d . For each

8 * [=], let k (8) denote one of the maximizer of ¨� ! over all

9 * [=]. Let : denote the corresponding node such that ¨!� (!)

is the median of {¨�� (�) : 8 * [=]}. Set ĝ =
1
2¨!� (!) . We claim

that 1
22` f ĝ f 1

2 (2 2 2)` for any constant 0 < 2 < 1 with prob-

ability 1 2 > (1) when =@ = l (1) and with probability 1 2 3X for

any constant X * (0, 1) when =@ g � (n, X). Hence by Theorem 1,

|� | = (1 2 > (1))= with probability 1 2 > (1) in the former case and

E [|� |] g (1 2 3X) (1 2 X)= g (1 2 4X) in the latter case.

It remains to show the claim, which reduces to proving 2` f
¨!� (!) f (2 2 2)`. Without loss of generality, we assume c = id.

Let

� =

{
8 * [=] : 8 * argmax

!
¨� ! and 2` f ¨�� f (2 2 2)`

}
.

Recall that � = {8 : |¨�� 2 ` | > (1 2 2)`} as de�ned in (31). By (34),

with probability at least 1 2 > (1), ¨� ! < 2` for all 8 b 9 and hence

� = [=]\� . Moreover, we have E [|� |] f W=, where W is given in (35).

By Markov’s inequality, P {|� | g =/3} f 3W . Note that W = > (1) if
=@ = l (1), and W < X for any constant X * (0, 1) if =@ g � (n, X).
Hence, we have |� | g 2=/3 with probability 1 2 > (1) if =@ = l (1),
and with probability 1 2 3X if =@ g � (n, X). Henceforth assume

|� | g 2=/3. If ¨!� (!) > (2 2 2)`, then there are at least =/2 nodes
8 with ¨�� (�) > (2 2 2)`, contradicting |� | g 2=/3. Analogous
argument holds for the case of ¨!� (!) < 2`. Thus, we must have

2` f ¨!� (!) f (2 2 2)`.

REFERENCES
[1] Yonathan A�alo, Alexander Bronstein, and Ron Kimmel. 2015. On convex relax-

ation of graph isomorphism. Proceedings of the National Academy of Sciences 112,
10 (2015), 2942–2947. https://doi.org/10.1073/pnas.1401651112

[2] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and
S Cenk Sahinalp. 2008. Biomolecular network motif counting and discovery
by color coding. Bioinformatics 24, 13 (2008), i241–i249. https://doi.org/10.1093/
bioinformatics/btn163

[3] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. Journal of the
ACM (JACM) 42, 4 (1995), 844–856. https://doi.org/10.1145/210332.210337

[4] Vikraman Arvind and Venkatesh Raman. 2002. Approximation algorithms for
some parameterized counting problems. In International Symposium on Algo-
rithms and Computation. Springer, 453–464. https://doi.org/10.1007/3-540-36136-
7_40

[5] László Babai. 2016. Graph Isomorphism in Quasipolynomial Time [Extended
Abstract]. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory
of Computing (Cambridge, MA, USA) (STOC ’16). ACM, New York, NY, USA,
684–697. https://doi.org/10.1145/2897518.2897542

[6] Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm, and Yueqi Sheng. 2019.
(Nearly) E�cient Algorithms for the Graph Matching Problem on Correlated
RandomGraphs. InAdvances in Neural Information Processing Systems. 9186–9194.
https://doi.org/10.48550/arXiv.1805.02349

[7] Terry Beyer and Sandra Mitchell Hedetniemi. 1980. Constant time generation
of rooted trees. SIAM J. Comput. 9, 4 (1980), 706–712. https://doi.org/10.1137/
0209055

[8] Béla Bollobás. 1982. Distinguishing vertices of random graphs. North-Holland
Mathematics Studies 62 (1982), 33–49. https://doi.org/10.1016/S0304-0208(08)
73545-X

[9] Sébastien Bubeck, Jian Ding, Ronen Eldan, and Miklós Z Rácz. 2016. Testing for
high-dimensional geometry in random graphs. Random Structures & Algorithms
49, 3 (2016), 503–532. https://doi.org/10.1002/rsa.20633

[10] Rainer E Burkard, Eranda Cela, Panos M Pardalos, and Leonidas S Pitsoulis. 1998.
The quadratic assignment problem. In Handbook of combinatorial optimization.
Springer, 1713–1809. https://doi.org/10.1007/978-1-4613-0303-9_27

[11] Charles J Colbourn and Kellogg S Booth. 1981. Linear time automorphism
algorithms for trees, interval graphs, and planar graphs. SIAM J. Comput. 10, 1
(1981), 203–225. https://doi.org/10.1137/0210015

[12] Daniel Cullina and Negar Kiyavash. 2016. Improved achievability and converse
bounds for Erdos-Rényi graph matching. ACM SIGMETRICS performance evalua-
tion review 44, 1 (2016), 63–72. https://doi.org/10.1145/2964791.2901460

[13] Daniel Cullina and Negar Kiyavash. 2017. Exact alignment recovery for correlated
Erdős-Rényi graphs. arXiv 1711.06783 (2017). https://doi.org/10.48550/arXiv.
1711.06783

[14] Daniel Cullina, Negar Kiyavash, Prateek Mittal, and H Vincent Poor. 2019. Partial
Recovery of Erdős-Rényi Graph Alignment via !-Core Alignment. Proceedings

1355

STOC ’23, June 20–23, 2023, Orlando, FL, USA Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H. Yu

of the ACM on Measurement and Analysis of Computing Systems 3, 3 (2019), 1–21.
https://doi.org/10.1145/3366702

[15] Tomek Czajka and Gopal Pandurangan. 2008. Improved random graph isomor-
phism. Journal of Discrete Algorithms 6, 1 (2008), 85–92. https://doi.org/10.1016/
j.jda.2007.01.002

[16] Osman Emre Dai, Daniel Cullina, Negar Kiyavash, and Matthias Grossglauser.
2019. Analysis of a canonical labeling algorithm for the alignment of correlated
Erdos-Rényi graphs. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 3, 2 (2019), 1–25. https://doi.org/10.1145/3341617.3326151

[17] Jian Ding and Hang Du. 2022. Matching recovery threshold for correlated random
graphs. arXiv preprint arXiv:2205.14650 (2022). https://doi.org/10.48550/arXiv.
2205.14650

[18] Jian Ding, Zongming Ma, Yihong Wu, and Jiaming Xu. 2021. E�cient random
graph matching via degree pro�les. Probability Theory and Related Fields 179, 1
(2021), 29–115. https://doi.org/10.1007/s00440-020-00997-4

[19] Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. 2022. Spectral Graph
Matching and Regularized Quadratic Relaxations I Algorithm and Gaussian
Analysis. Foundations of Computational Mathematics (Jun 2022), 1–55. https:
//doi.org/10.1007/s10208-022-09570-y

[20] Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. 2022. Spectral Graph
Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and
Universality. Foundations of Computational Mathematics (Jun 2022), 1–51. https:
//doi.org/10.1007/s10208-022-09575-7

[21] Luca Ganassali and Laurent Massoulié. 2020. From tree matching to sparse
graph alignment. In Conference on Learning Theory. PMLR, 1633–1665. https:
//doi.org/10.48550/arXiv.2002.01258

[22] Luca Ganassali, Laurent Massoulié, and Marc Lelarge. 2021. Impossibility of
partial recovery in the graph alignment problem. In Conference on Learning
Theory. PMLR, 2080–2102. https://doi.org/10.48550/arXiv.2102.02685

[23] Luca Ganassali, Laurent Massoulié, andMarc Lelarge. 2022. Correlation Detection
in Trees for Planted Graph Alignment. In 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022). 74:1–74:8. https://doi.org/10.4230/LIPIcs.ITCS.
2022.74

[24] Luca Ganassali, Laurent Massoulié, and Guilhem Semerjian. 2022. Statistical
limits of correlation detection in trees. arXiv preprint arXiv:2209.13723 (2022).
https://doi.org/10.48550/arXiv.2209.13723

[25] Georgina Hall and Laurent Massoulié. 2022. Partial recovery in the graph align-
ment problem. Operations Research (2022). https://doi.org/10.1287/opre.2022.2355

[26] Samuel B Hopkins and David Steurer. 2017. E�cient Bayesian Estimation from
Few Samples: Community Detection and Related Problems. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE Computer
Society, Los Alamitos, CA, USA, 379–390. https://doi.org/10.1109/FOCS.2017.42

[27] Camille Jordan. 1869. Sur les assemblages de lignes. Journal für die reine und
angewandte Mathematik 70 (1869), 185–190. http://eudml.org/doc/148084

[28] Vince Lyzinski, Donniell Fishkind, Marcelo Fiori, Joshua Vogelstein, Carey Priebe,
and Guillermo Sapiro. 2016. Graph matching: Relax at your own risk. IEEE
Transactions on Pattern Analysis & Machine Intelligence 38, 1 (2016), 60–73. https:
//doi.org/10.1109/TPAMI.2015.2424894

[29] Konstantin Makarychev, Rajsekar Manokaran, and Maxim Sviridenko. 2010. Max-
imum quadratic assignment problem: Reduction from maximum label cover and
lp-based approximation algorithm. In International Colloquium on Automata,
Languages, and Programming. Springer, 594–604. https://doi.org/10.1007/978-3-
642-14165-2_50

[30] Cheng Mao, Mark Rudelson, and Konstantin Tikhomirov. 2021. Random Graph
Matching with Improved Noise Robustness. In Proceedings of Thirty Fourth Con-
ference on Learning Theory (Proceedings of Machine Learning Research, Vol. 134).
3296–3329. https://doi.org/10.48550/arXiv.2101.11783

[31] Cheng Mao, Mark Rudelson, and Konstantin Tikhomirov. 2023. Exact matching
of random graphs with constant correlation. Probability Theory and Related Fields
(2023), 1–63. https://doi.org/10.1007/s00440-022-01184-3

[32] Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H Yu. 2021. Testing network
correlation e�ciently via counting trees. arXiv preprint arXiv:2110.11816 (2021).
https://doi.org/10.48550/arXiv.2110.11816

[33] Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H Yu. 2022. Random
graph matching at Otter’s threshold via counting chandeliers. arXiv preprint
arXiv:2209.12313 (2022). https://doi.org/10.48550/arXiv.2209.12313

[34] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science 298, 5594 (2002), 824–827. https://doi.org/10.1126/science.298.5594.824

[35] ElchananMossel, Joe Neeman, and Allan Sly. 2015. Reconstruction and estimation
in the planted partition model. Probability Theory and Related Fields 162, 3 (2015),
431–461. https://doi.org/10.1007/s00440-014-0576-6

[36] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of
large sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE, 111–125. https://doi.org/10.1109/SP.2008.33

[37] Christo�er Olsson and Stephan Wagner. 2022. Automorphisms of random trees.
In 33rd International Conference on Probabilistic, Combinatorial and Asymptotic
Methods for the Analysis of Algorithms (AofA 2022). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.AofA.2022.16

[38] Richard Otter. 1948. The number of trees. Annals of Mathematics (1948), 583–599.
https://doi.org/10.2307/1969046

[39] Pedram Pedarsani and Matthias Grossglauser. 2011. On the privacy of
anonymized networks. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. 1235–1243. https://doi.org/
10.1145/2020408.2020596

[40] Giovanni Piccioli, Guilhem Semerjian, Gabriele Sicuro, and Lenka Zdeborová.
2022. Aligning random graphs with a sub-tree similarity message-passing al-
gorithm. Journal of Statistical Mechanics: Theory and Experiment 2022, 6 (2022),
063401. https://doi.org/10.1088/1742-5468/ac70d2

[41] George Pólya. 1937. Kombinatorische anzahlbestimmungen für gruppen, graphen
und chemische verbindungen. Acta mathematica 68 (1937), 145–254.

[42] Pedro Ribeiro, Pedro Paredes,Miguel EP Silva, David Aparicio, and Fernando Silva.
2021. A survey on subgraph counting: concepts, algorithms, and applications
to network motifs and graphlets. ACM Computing Surveys (CSUR) 54, 2 (2021),
1–36. https://doi.org/10.1145/3433652

[43] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple
protein interaction networks with application to functional orthology detection.
Proceedings of the National Academy of Sciences 105, 35 (2008), 12763–12768.
https://doi.org/10.1073/pnas.0806627105

[44] Shinji Umeyama. 1988. An eigendecomposition approach to weighted graph
matching problems. IEEE Transactions on Pattern Analysis andMachine Intelligence
10, 5 (1988), 695–703. https://doi.org/10.1109/34.6778

[45] YihongWu, Jiaming Xu, and Sophie H. Yu. 2022. Settling the sharp reconstruction
thresholds of random graph matching. IEEE Transactions on Information Theory
68, 8 (Apr 2022), 5391–5417. https://doi.org/10.1109/TIT.2022.3169005

[46] Lyudmila Yartseva and Matthias Grossglauser. 2013. On the performance of
percolation graph matching. In Proceedings of the �rst ACM conference on Online
social networks. 119–130. https://doi.org/10.1145/2512938.2512952

[47] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. 2008. A path following
algorithm for the graph matching problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence 31, 12 (2008), 2227–2242. https://doi.org/10.1109/TPAMI.
2008.245

Received 2022-11-07; accepted 2023-02-06

1356

	Abstract
	1 Introduction
	1.1 Key Challenges and Algorithmic Innovations
	1.2 Notation
	1.3 Organization

	2 Main results and discussions
	2.1 Similarity Scores and Statistical Guarantees
	2.2 On the Choice of Chandeliers

	3 Statistical analysis of similarity scores
	3.1 Proof of Theorem 1

	4 Approximated similarity scores by color coding
	5 Seeded graph matching
	A Auxiliary results
	B A data-driven choice of the threshold
	References

