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ABSTRACT

We propose an efficient algorithm for graph matching based on
similarity scores constructed from counting a certain family of
weighted trees rooted at each vertex. For two Erdés—Rényi graphs
G(n,q) whose edges are correlated through a latent vertex cor-
respondence, we show that this algorithm correctly matches all
but a vanishing fraction of the vertices with high probability, pro-
vided that nqg — oo and the edge correlation coefficient p satisfies
p? > a ~ 0.338, where a is Otter’s tree-counting constant. More-
over, this almost exact matching can be made exact under an extra
condition that is information-theoretically necessary. This is the
first polynomial-time graph matching algorithm that succeeds at an
explicit constant correlation and applies to both sparse and dense
graphs. In comparison, previous methods either require p = 1-0(1)
or are restricted to sparse graphs.

The crux of the algorithm is a carefully curated family of rooted
trees called chandeliers, which allows effective extraction of the
graph correlation from the counts of the same tree while suppress-
ing the undesirable correlation between those of different trees.
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1 INTRODUCTION

Graph matching (also known as network alignment) refers to the
problem of finding the bijection between the vertex sets of the two
graphs that maximizes the total number of common edges. When
the two graphs are exactly isomorphic to each other, this reduces to
the classical graph isomorphism problem, for which the best known
algorithm runs in quasi-polynomial time [5]. In general, graph
matching is an instance of the quadratic assignment problem [10],
which is known to be NP-hard to solve or even approximate [29].

Motivated by real-world applications (such as social network
de-anonymization [36] and computational biology [43]) as well as
the need to understand the average-case computational complexity,
a recent line of work is devoted to the study of theory and algo-
rithms for graph matching under statistical models, by assuming
the two graphs are randomly generated with correlated edges under
a hidden vertex correspondence. A canonical model is the following
correlated Erd6s—Rényi graph model [39].

Definition 1 (Correlated Erd6s-Rényi graph model). Let 7 denote
a latent permutation on [n] = {1,...,n}. We generate two random
graphs on the common vertex set [n] with adjacency matrices A
and B such that (Ajj, By (;)x(j)) are iid. pairs of Bernoulli random
variables with mean g € [0, 1] and correlation coefficient p for
1<i< j<n Wewrite (A B) ~ G(n,q,p).

Given (A, B) ~ G(n,q, p), our goal is to recover the latent vertex
correspondence . The information-theoretic thresholds for both
exact and partial recovery have been derived [12, 13, 17, 22, 25, 45]
and various efficient matching algorithms have been developed
with performance guarantees [16, 18-21, 23, 30, 31]. Despite these
exciting progresses, most existing efficient algorithms require the
two graphs to be almost perfectly correlated; as such, the problem
of polynomial-time recovery with a constant correlation remains
largely unresolved except for sufficiently sparse graphs. Specifically,
if the correlation p is an (unspecified) constant sufficiently close to
1, exact recovery is achievable in polynomial time for graphs whose

1

average degrees satisfy (1 +¢)logn < nq < n®elben [31], while
partial recovery is achievable for sparse graphs with ng = O(1)
[21, 23]. For dense graphs, the best known result for polynomial-
time recovery requires p > 1 — (loglog(n)) € for some constant
C > 0 [30]. The current paper significantly advances the state of
the art by establishing the following results.
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Theorem. Assume that0 < ¢ < 1/2 and
p? > a~0.338,

where

K
s log(number of unlabeled trees with K edges)
is Otter’s tree-counting constant [38]. Given a pair of correlated
Erdés-Rényi graphs (A, B) ~ G(n, q, p), the following holds:

o (Exact recovery)If p > 0 and nq(q+p(1—¢q)) = (1+¢€)logn
for any constant € > 0,! there is a polynomial-time algorithm
that recovers 7 exactly with high probability.

o (Almost exact recovery) If nq = w(1), there is a polynomial-
time algorithm that outputs a subset I € [n] and a map
# : I — [n] such that # = x|; and |I| = (1 — o(1))n with
high probability.

o (Partial recovery) For any constant § € (0, 1), there is a
constant C(p, ) > 0 depending only on p and § such that
if ng > C(p, d), the above I and 7 satisfy that 7 = 7|; with
high probability and E[|I|] > (1 - §)n.

The above theorem identifies an explicit threshold p? > a that
allows polynomial-time graph matching for both sparse and dense
graphs. In certain regimes, the condition for exact recovery in
this result is in fact optimal, matching the information-theoretic
threshold identified in [13, 45] (see Remark 2 and Figure 2 for
a detailed discussion). Here we further assume p > 0 for exact
recovery as the current seeded matching algorithms for boosting
from almost exact to exact recovery require a positive correlation.

In passing, we remark that after the initial posting of the present
paper, [24] proves that a different algorithm proposed earlier in [23,
40] achieves partial recovery (correctly matching Q(n) vertices
with o(n) errors with high probability) under the same condition
of p > +/a. Their algorithm relies on the tree structure of local
neighborhoods and thus is restricted to sparse graphs with nq =
O(1). Moreover, their results do not provide exact or almost exact
recovery.

1.1 Key Challenges and Algorithmic
Innovations

A principled approach to graph matching is the following three-step
procedure:

(1) Signature embedding: Associate to each vertex i in A a signa-
ture s; and to each vertex j in B a signature ¢;.

(2) Similarity scoring: Compute the similarity score ®;; based on
s; and t; using a certain similarity measure on the signature
space.

(3) Linear assignment: Solve max-weight bipartite matching
with weights ®;; either exactly or approximately (e.g., greedy
algorithm).

In this way, we reduce the problem from the NP-hard quadratic
assignment to the tractable linear assignment. Clearly, the key to
this approach is the construction of the similarity scores.

The condition nq(q + p(1 — q)) > (1 + €) log n is information-theoretically neces-
sary, for otherwise the intersection graph between A and B (under the vertex corre-
spondence ) contains isolated vertices with high probability and exact recovery is
impossible.
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Many existing algorithms for graph matching largely follow this
paradigm using similarity scores based on neighborhood statistics
[8,15, 16, 18, 30], spectral methods [20, 43, 44], or convex relaxations
[1, 28, 47]. In terms of theoretical guarantees, these methods either
require extremely high correlation or are tailored to sparse graphs.
Note that two p-correlated Erdés—-Rényi graphs differ by ©(1 — p)
fraction of edges. Thus, to succeed at a constant p bounded away
from 1, the similarity scores need to be robust to perturbing a con-
stant fraction of edges. All existing algorithms [21, 23, 31] achieving
this goal crucially exploit the tree structure of local neighborhoods
and are thus restricted to sparse graphs. On the other hand, algo-
rithms that apply to both sparse and dense graphs [18, 20, 30] so
far can only tolerate a vanishing fraction of edge perturbation and
thus all require p = 1 — o(1).

The major algorithmic innovation of this work is a new construc-
tion based on subgraph counts. Specifically, the signature assigned
to a node i is a vector indexed by a family of non-isomorphic sub-
graphs, where each entry records the total number of subgraphs
rooted at i that appear in the graph weighted by the centered ad-
jacency matrix, known as the signed graph count [9] (cf. (1) and
(2) for the formal definition). The similarity score for each pair of
vertices is the weighted inner product between their signatures.
The key to executing this strategy is a carefully curated family of
trees called chandeliers, which, as we explain next, allows one to
extract the graph correlation from the counts of the same tree while
suppressing the undesirable correlation between those of different
trees. This leads to a robust construction of signatures that can
withstand perturbing a constant fraction of edges, without relying
on the locally tree-like property that limits the previous methods
to sparse graphs.

Counting subgraphs is a popular method for network analysis in
both theory [9, 35] and practice [2, 34, 42]. We refer to [32, Sec. 2.4]
for a comprehensive overview of hypothesis testing and estimation
based on subgraph counting for networks with latent structures.
Notably, most of these previous works focus on counting cycles.
However, here in order to succeed at a constant p, we need to count
a sufficiently rich class of subgraphs (whose cardinality grows at
least exponentially with the number of edges)? and cycles clearly
fall short of this basic requirement. A much richer family of strictly
balanced, asymmetric subgraphs is considered in [6], where the
edge density of the subgraphs is carefully chosen so that typically
they co-occur in both graphs at most once. Hence, by searching
for such rare subgraphs, dubbed “black swans”, one can match the
corresponding vertices. Although this method succeeds even for
vanishing correlation p > (log n)~°() it has a quasi-polynomial
time complexity n®U08 1) dye to the exhaustive search of subgraphs
of size ©(log n). Moreover, the construction of this special family of
subgraphs requires the average degree nq to fall into a very specific
range of [n‘S", n1/153] U [n2/3, n'=€] for some sequence of positive
quantities 6,, = 0(1) and an arbitrarily small constant € > 0, and, in
particular, it does not accommodate relatively sparse graphs such
as nq = O(logn).

2A high-level explanation is as follows. For a single subgraph H with N edges, the
correlation between the subgraph counts of H rooted at vertex i across A and B - the
signal, is smaller than their variances by a multiplicative factor of p™. Therefore, to
pick up the signal, we need to further average over a family H of such subgraphs so
that | H|p*N — oo (cf. (25) for a more detailed explanation).
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As opposed to relying on rare subgraphs, our approach is to count
a family of unlabeled rooted trees with size N = ©(log n), which
are abundant even in very sparse graphs. Moreover, by leveraging
the method of color coding [3, 4, 26], such trees can be counted ap-
proximately but sufficiently accurately in polynomial time. While
centering the adjacency matrices and counting signed trees are
helpful, there still remains excessive correlation among different
trees counts which is hard to control - this is the key difficulty in
analyzing signatures based on subgraph counts. To resolve this chal-
lenge, we propose to count a special family 7~ of unlabeled rooted
trees, which we call chandeliers; see (1) for the formal definition.
As discussed in Section 2.2, the chandelier structure plays a crucial
role in curbing the undesired correlation between different tree
counts. Moreover, even though chandeliers only occupy a vanish-
ing fraction of all trees, by choosing the parameters appropriately,
we can ensure that |77 = (1/a + 0(1))N, which grows almost at
the same rate as the entire family of trees.

A similar idea of counting signed but unrooted trees has been
applied in [32] for the graph correlation detection problem, i.e., test-
ing whether the two graphs are independent Erd6s—Rényi graphs
or p-correlated through a latent vertex matching chosen uniformly
at random. It is shown that the two hypotheses can be distinguished
with high probability in polynomial time at the same threshold of
p? > a. However, unlike the present paper, averaging over the
random permutation dramatically simplifies the analysis of correla-
tions between different tree counts. As a result, it suffices to simply
count all trees as opposed to a carefully constructed collection of
special trees. We refer to the last two paragraphs in Section 2.2 for
a detailed comparison.

1.2 Notation

Given a graph H, let V(H) denote its vertex set and E(H) denote its
edge set. Leto(H) = |V(H)|and e(H) = |E(H)|. We call e(H)—v(H)
the excess of the graph H. We denote by K, the complete graph
with vertex set [n] and edge set (['21]) 2 {{u,0} :u,0 € [n], u # 0}.
An empty graph is denoted as 0, if it does not contain any vertex
or edge. A rooted graph is a graph in which one vertex has been
distinguished as the root. An isomorphism between two rooted
graphs H and G is a bijection between the vertex sets that preserves
both edges and the root, namely, f : V(H) — V(G) such that the
root of H is mapped to that of G and any two vertices u and v are
adjacent in H if and only if f(u) and f(v) are adjacent in G. An
automorphism of a rooted graph is an isomorphism to itself. Let
aut(H) be the number of automorphisms of H. For a rooted tree T
and a vertex a € V(T), let (T), denote the subtree of T consisting
of all descendants of a and we set (T), =0 ifa ¢ V(T).

For two real numbers x and y, we let x V y = max{x,y} and
x Ay £ min{x, y}. We use standard asymptotic notation: for two
positive sequences {x, } and {y, }, we write x, = O(yn) or x, < Yn,
if x, < Cyjy, for an absolute constant C and for all n; x, = Q(y,) or
Xn 2 Yn, if yp = O(xpn); xp = O(yp) or x, < yp, if x, = O(y,) and
Xn = Q(yn); xn = 0(yn) or yn = w(xp), if xp/yn — 0asn — oo.

1.3 Organization

The rest of the paper is organized as follows. In Section 2.1, we
first introduce the similarity scores between vertices of the two
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graphs based on counting signed chandeliers, and then state our
main results on the recovery of the latent vertex correspondence
for correlated Erdés—Rényi graphs. In Section 2.2, we explain the
rationale for focusing on the class of chandeliers. Section 3 provides
a statistical analysis of the similarity scores, proving our results on
partial and almost exact recovery stated in Theorem 1. In partic-
ular, Propositions 2 and 3 are the key ingredients controlling the
variance of the similarity scores. In Section 4, we use the method
of color coding to approximate the proposed similarity scores in
polynomial time, and show that the same statistical guarantees
continue to hold for the approximated scores, thereby proving The-
orem 2. Finally, in Section 5, we demonstrate how to upgrade an
almost exact matching to an exact matching, establishing Theo-
rem 3. Appendix A consists of auxiliary results, and Appendix B
discusses a data-driven way to choose a threshold parameter in our
algorithm. Due to space constraints, we omit the proofs of Proposi-
tion 2-Proposition 6, which can be found in the full version of this
paper [33] https://arxiv.org/abs/2209.12313.

2 MAIN RESULTS AND DISCUSSIONS

2.1 Similarity Scores and Statistical Guarantees

We start with some preliminary definitions before specializing to
chandeliers. For any weighted adjacency matrix M, node i € [n],
and rooted graph H, define the weighted subgraph count

Wig (M) 2 Z Mg, where Mg = H M.,
s(i)=H e€E(S)
and S(i) denotes a subgraph of K, rooted at i. (Whenever the
context is clear, we also abbreviate S(i) as S.) Note that when M is
the adjacency matrix A, W; g reduces to the usual subgraph count,
i.e., the number of subgraphs rooted at i in M that are isomorphic
to H. When M is a centered adjacency matrix A £ A — g, we call
W; g a signed subgraph count following [9]. For example (with
solid vertex as the root), W, H)(Z) =di—(n—1)gand W M(Z) =
(gl) —(n-2)diq + ("gl)qz, where d; is the degree of i in A.
Next, given a family H of non-isomorphic rooted graphs H, the
subgraph count signature of a node i is defined as the vector

W (M) £ (Wort (M) pregy - (@)

Algorithm 1 below describes our proposed method for graph match-
ing based on subgraph count signatures.

At this point Algorithm 1 is a “meta algorithm” and the key to

its application is to carefully choose this collection of subgraphs

H. Ideally, we would like <I>;.7 to be maximized at j = 7(i), at least

(1)

on average. To this end, we require H € H to be uniquely rooted,
under which we have E[Cpg.(] o 1¢,(;)=j) (see Proposition 1).
Definition 2 (Uniquely rooted graph). We say that a graph H
rooted at i is uniquely rooted, if H(i) is non-isomorphic to H(v)
for any vertex v # i in V(H).

However, the uniquely rooted property is far from enough. In
order for the signature <I>g.{ to distinguish whether j = 7 (i) or not,
we need to ensure that the fluctuation of CID?J'.{ does not overwhelm
3Note that in (3) the coefficient aut(H) accounts for the symmetry of H and compen-

sates for the fact that the number of copies of H in the complete graph K,, is inversely
proportional to aut(H). This simplifies the first moment calculation in Proposition 1.
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Algorithm 1 Graph Matching by Counting Signed Graphs

1: Input: Adjacency matrices A and B on n vertices, a family H
of non-isomorphic rooted graphs, and a threshold 7 > 0.

: Output: A mapping 7 : I — [n].

: For each pair of node i in A and node j in B, compute their
similarity score as the weighted® inner product between their
subgraph count signatures:

(w/' @, w/'®)

2 Z aut(H) Wi g (A) Wj g (B),
HeH

A

®3)

where A = A — g and B = B — q are the centered adjacency
matrices.

: For each i € [n], if there exists a unique j € [n] such that
(D;]j'.{ > 1, let 7(i) = j and include i in set I.

Figure 1: A chandelier with L = 3, M = 2, K = 4, rooted at
the solid vertex. The wires are shown in red, and the bulbs
in blue. In this case R = 1 since each bulb has no non-trivial
automorphism (as rooted graphs).

the mean E[CDZT{] for all j € [n]. In particular, we need Var[(I)iqj{]

to be much smaller than (E[CD;};[])Z. This turns out to be extremely
challenging to show and calls for a rather delicate choice of H. To
this end, we construct a special family of trees 7, which we call
chandeliers (see Figure 1 for an illustration).

Definition 3 (Chandelier). An (L, M, K, R)-chandelier is a rooted
tree with L branches, each of which consists of a path with M edges
(which we call an M-wire) followed by a rooted tree with K edges
(which we call a K-bulb); the K-bulbs are non-isomorphic to each
other and each of them has at most R automorphisms.

For any chandelier H, let K(H) denote its set of bulbs. Since all
bulbs are non-isomorphic to each other, we have

aut(H) = rl aut(8B),
BeK(H)

©

which is a special case of the classical recursive formula for the
number of automorphisms of rooted trees [27]. Moreover, when
L > 2, the root of H is the unique vertex incident to L branches
each having M + K edges. As a result, each chandelier is uniquely
rooted.
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Let 7~ denote the family of non-isomorphic (L, M, K, R)- chande-

liers. Then
1= () ©)

where J = J (K, R) denotes the collection of unlabeled rooted
trees having K edges and at most R automorphisms. Counting
unlabeled trees with a prescribed number of automorphisms has
been well studied in the literature:

e All trees: As mentioned earlier in Section 1, a classical result
in enumerative combinatorics is that the total number of
unlabeled trees with K edges satisfies as K — oo [38, 41]

T (K)| = [T (K, 00)] = (@ +0(1))7%,

where a ~ 0.338 is Otter’s constant.

o Typical trees: The recent result [37] implies that the majority
0(K)

(6)

of the trees have e automorphisms.? In other words, for
some absolute constant C,

|7 (K, exp(CK))| = (a +0(1))7¥. 7

It turns out that to bound the fluctuation of the similarity score it
is more advantageous if the bulbs do not have too much symmetry.
Thanks to (7) and in view of (4)-(5), by choosing R = exp(CK) we
can ensure that |77 = (& + 0(1)) N has maximal growth while
keeping aut(H) for each H € 7 relatively small.

In the rest of the paper, we will apply the similarity score ®;; =
<I>l.7j— in (3) to the collection 7~ of chandeliers with carefully chosen
parameters. Crucially, by exploiting the structure of chandeliers,
we show:

e For true pairs j = (i),

E[®ir(i)] =1 Var(®iz(sy) = o(y°),

where
. 2NN (n—1)! 2
4 =qg(l—q).
u=|T(po) —N-DI " =q(1-q) ®)
e For fake pairs j # n(i),
i
E[q)l]] =0, Var((Dij) =O(F)-

This immediately implies that by running a greedy matching with
weights ®;; (or simply thresholding ®;;), we can match all but a
vanishing fraction of vertices correctly with high probability. This
is made precise by the following theorem.

Throughout this paper, we assume without loss of generality®
that ¢ < 1/2.

Theorem 1 (Partial and almost exact recovery). There exist absolute
constants Cy, . ..,Cq > 0 such that the following holds. Suppose

©)

p2 >a+e€,

“Indeed, (7) is an immediate corollary of the following asymptotic normality result in
K
[37, Theorem 2]: \/LF (logaut(Hg) — pK) ===, N (0, 6?), where Hy is a uniform
random unlabeled tree with K edges (known as the Pélya tree of order K + 1), and
11~ 0.137 and 0% % 0.197 are absolute constants.
SIf q > 1/2, we can consider the complement graphs of A and B, which are correlated
Erd6s-Rényi graphs with parameter (n,1 — g, p). In addition, it is not hard to see
that the similarity scores ®;; remain unchanged.
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where ¢ is an arbitrarily small constant. Choose K, L, M,R € N such
that N = (K + M)L is even®,

Cy

C3K
L==, >
€

log(nq)’
Fix any constant 0 < ¢ < 1 and let u be given in (8). Let 7 : I —
[n] denote the output of Algorithm 1 applied to the collection T~ of
(L, M, K, R)-chandeliers and threshold t = cy. Then & = n|j with
probability 1 — o(1). Moreover,
o Ifng = w(1), then |I| = (1 — 0(1))n with probability 1 — o(1).
e For any constant § € (0,1), there exists a positive constant
C(e,8) depending only on € and &, such that if nq > C(e, ),
then E [|I|] = (1 -J)n.

K=Cylogn, M R =exp (C4K) . (10)

Remark 1 (Adapting to unknown parameters). Note that the
choice of M and 7 in (10) assumes the knowledge of g and p. The
edge probability g can be easily estimated by the empirical graph
density of A and B. Moreover, the threshold 7 can be specified in a
data-driven manner (cf. Appendix B).

From a computational perspective, naive evaluation of W; g (A)
by exhaustive search for each H with N edges takes n®WN) time
which is super-polynomial when N = w(1). To resolve this compu-
tational issue, in Section 4, we give a polynomial-time algorithm
(Algorithm 2) that computes an approximation @; j for ®;; using
the strategy of color coding as done in [32]. The following result
shows that the approximated similarity score D; j enjoys the same
statistical guarantee under the same condition (9) as Theorem 1.

Theorem 2. Theorem 1 continues to hold with 5,'1' in place of ®;;.
Moreover, {51-1-}1-’1-6[,,] can be computed in O(n©) for some constant
C = C(e) depending only on e.

Theorem 2 shows that our matching algorithm achieves the
almost exact recovery in polynomial time when ng = w(1) and
p? > a+e. In comparison, the almost exact recovery is information-
theoretically possible if and only if ngp = w(1), when p > 0 and
g =n"12"20) [14, 45].

Moreover, under an extra condition that is information- theoret-
ically necessary, we can upgrade the almost exact recovery to exact
recovery in polynomial time. The main idea is to use the partial
matching 7|; correctly identified by Algorithm 1 as seeds and apply
a seeded matching algorithm (which is similar to percolation-based
matching in [6, 46]) to extend it to a full matching. For this purpose
we assume p > 0 as the current seeded matching algorithm requires
positive correlation.

Theorem 3 (Exact recovery). Suppose
ng(g+p(1—q)) > (1+€e)logn, p=+vVa+e (11)

for some arbitrarily small constant €. Then a seeded matching algo-
rithm (see Algorithm 3 in Section 5) with input 7t outputs T = 7 in
O(n®q?) time with probability 1 — o(1).

Remark 2 (Comparison to the exact recovery threshold). It is in-
structive to compare the performance guarantee (11) of our polyno-
mial-time algorithm with the information-theoretic threshold of
®For simplicity, we assume N is even so that y > 0 even when p < 0. To lighten the

notation, we do not explicitly round each parameter in (10) to integers as this only
changes constant factors; see (26) for a more general condition.
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exact recovery derived in [45] for positive correlation, that is,

p2(1+6)(2\/10ﬂ+10ﬂ). (12)
n nq
p
1
| easy
@ et
Vo impossible
0 —+— :
0 1 L 0 A
Ve

Figure 2: The phase diagram for exact recovery in the loga-
rithmic degree regime, where nqg = Alogn for a fixed con-
stant A > 0. The impossible and easy regime are given
by p < min{1,1/A} and p > max{+/a, 1/1}, respectively. No
polynomial-time algorithm is known to achieve exact recov-
ery in the red regime.

Assuming ng = Alogn for a fixed constant A, (11) simplifies to
p > max{1/A, va}, while (12) is reduced to p > 1/A; see Figure 2
for an illustration. Observe that when A < 1/+/a, the condition
(11) for exact recovery matches (12) and hence our polynomial-
time matching algorithm is information-theoretically optimal. If
A > 1/+/a, there exists a gap, between (11) and (12), depicted as the
red regime in Figure 2. It is an open problem whether exact recovery
is attainable in polynomial time in the red regime when p < +a.
So far the only rigorous evidence for hardness is that detection
(and hence recovery) is computationally hard in the low-degree
polynomial framework’ when p < 1/polylog(n) [32].

2.2 On the Choice of Chandeliers

The key to the success of our matching algorithm is to leverage
the correlation of subgraph counts in the two graphs A and B
as much as possible, while suppressing the undesired correlation
between different subgraph counts. In this subsection, we explain
why restricting to the special family of chandeliers is crucial, as well
as some basic guidelines on the choice of its parameters. Assume
for convenience that 7 = id.

First of all, we require the expected similarity score E[®;;] to be
zero except for i = j. As discussed in the previous subsection, this
is guaranteed by the uniquely rooted property of each chandelier in
7. Further, to distinguish a true pair (i, i) from fake pairs (i, j), we

7Specifically, it is shown in [32] that any test statistic that is a degree-polylog(n)
polynomial of (A, B) fails to detect correlation p = 1/polylog(n).
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need Var(®;;) to be much smaller than E[®;] 2 for any pair (i, j).
More precisely, in order to apply a union bound over all fake pairs,
we need Var(®;;)/E [®;;]1% = o(1/n®) for all i # j. Later in (25),
we will see that even if all the tree counts were uncorrelated, the
variance would always be lower bounded by Var(®;;)/E [®:]% =
Q|77 1p~2N). It follows that our class of chandeliers 7~ needs to
satisfy

7] = w(n?p~2N). (13)

By choosing the parameters appropriately, we can ensure that |7
grows as (& + 0(1)) ™V, almost at the same rate as the entire set of
unlabelled rooted trees. Therefore, whenever p? > a, (13) holds by
choosing N = O(logn).

To further see the significance of chandeliers on the correlations
between subgraph counts, let us expand out the variance of ®;;:

Var[®;;] = Z aut(H)aut(I)-
H,IleT

Cov (Wit ()W, 1 (B), Wit ()W, 1(B)
= Z aut(H)aut(I)

H1IeT $1(i),82(j)=H T (i), T (j)=I

Cov (A, Bs,. Ar,Br, ) (14)

Here, S1 and T are labeled subgraphs of K, isomorphic to chan-
deliers H and I respectively and both rooted at i, and similarly
for Sy and Ty rooted at j. It turns out that, thanks to centering,
Cov (Zsl §52, ZTI ETZ) = O unless every edge in the union graph U =
S1UT1USoUT, appears at least twice in the 4-tuple (S1, T1, So, T2). Fur-
thermore, each covariance in (14) is upper bounded by 64N g~2N +e(U)
(cf. [33, eq(45)]). To proceed, we need to enumerate all possible 4-
tuples (S1, T1, S2, T2) according to the union graph U. Note that the
number of different vertex labelings of U (excluding vertices i and j)
is simply upper bound by n?(U)=1-14i} However, there are many
configurations for the four chandeliers (S1, T1, S2, T2) to generate
the same unlabeled graph U, which may lead to excessive correla-
tion. The chandelier structure is designed specifically to limit the
possible overlapping patterns and reduce the correlations.

To convey some intuitions, let us focus on a true pair (i, i) and
consider the simple case where U is a tree and every edge in U
appears exactly twice in the 4-tuple. In this case, e(U) = 2N and
v(U) = 2N + 1. Moreover, U is a chandelier with 2L branches,
each of which belongs to exactly two out of the four chandeliers
(81, T, S2, T2). For example, in Figure 3(a), we show two branches of
U, one comes from Sy, Sy and the other comes from Tj, T». Using this
specific structure, we can precisely enumerate all possible 4-tuples
that generate such a union graph U and bound their contributions
to the variance.

Moving from this simple case (referred to as the baseline) to
more general cases, the following three observations are crucial for
bounding the total variance (although the proof does not exactly
follow this classification):

o Ifbulbs from different branches overlap (Figure 3(b)), this will
create cycles and hence increase the excess e(U) —v(U), gain-
ing extra factors of 1/n in the variance bound (14) compared
to the contribution of the baseline. As a result, although the
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(© (@

Figure 3: Examples of overlapping patterns of two branches
from, say, S; N S and 71 N T;, shown in red/blue and
black/orange respectively. The solid vertex is the root i. (a):
The two branches overlap only at the root i. (b): The two
wires are disjoint and the two dangling bulbs intersect cre-
ating cycle(s). (c): The two wires completely overlap and the
bulbs can intersect into an arbitrary tree. (d): The two wires
overlap in the beginning before branching out and the bulbs
are disjoint.

structure of U is difficult to track, a crude enumeration based
on e(U) and v(U) suffices. Next we assume U is a tree.

o If two wires completely overlap (Figure 3(c)), both e(U)
and v(U) are reduced by M and hence we gain a factor of
(nq)™™ in the variance bound. On the other hand, the two
bulbs can intersect to form an arbitrary tree which has at
most exp(O(K)) possibilities up to isomorphism. To ensure
(nq)™™ dominates exp(O(K)), we need M 2 K/log(ng).

o If two wires first intersect then branch out (Figure 3(d)), the
attached bulbs must be disjoint (otherwise a cycle will ensue),
so that each bulb appears in exactly two out of (Si, T1, Sz, T2).
It turns out that the worst case occurs when the two wires
share a single edge, for which there are at most L? possible
ways (since each chandelier has L wires). On the other hand,
we gain a factor of (ng) ™! in the variance bound (14) (cf. Re-
mark 3). Thus to ensure L? is dominated by ng~!, we need
L =o(+/nq).

In all, we see that it is critical for chandeliers to be a “thin”
tree with only a few long wires, especially when the graphs get
sparser. To further reduce the symmetry, we require the bulbs in
each chandelier H are all non-isomorphic so that aut(H) is given
by (4), namely aut(H) = [[gey(m) aut($), and each aut(B) is
required to be at most R = exp(O(K)).
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The method of counting signed trees has been applied to the
detection problem in the previous work [32]. The goal therein is to
decide whether two Erdés-Rényi random graphs are independent
or correlated using the test statistic

fAB) = " aut(H) Wy (A) Wi (B),
HeT”

(15)

where the weighted subgraph count Wiy (W) is similarly defined
as (1) for unrooted H. Compared to (3), there are three major dis-
tinctions: First, the trees in (15) are not rooted and aut(-) is for
unrooted graphs. Second, trees in 7 only have © (log n/loglog n)
edges, instead of ©(log n) edges required in this paper. This is be-
cause for detection, one only needs to achieve a vanishing error,
instead of a specific 0(1/n?) error probability for recovery in the
current work. Third (and most importantly), 7’ contains all trees
without special structure, while here we choose 7~ to be a family
of special trees called chandeliers, which, as explained earlier, is
crucial for reducing the correlation between different signed tree
counts.

In terms of analysis, for the detection problem in [32] the latent
permutation is chosen uniformly at random, so one can average the
second moment calculation over the random permutation which
drastically simplifies the analysis of the tree counting statistic. In
contrast, for the recovery problem in the present paper, we need to
condition on the realization of the latent permutation. As such, the
second moment calculation here is much more challenging combina-
torially and involves delicate enumeration procedures that revolve

around the chandelier construction. In addition, since the trees in
logn
loglogn
quantities can be bounded very crudely (e.g., aut(H) < o(H)!); for
the current paper since the trees have ©(log n) edges such simple

analysis does not suffice.

[32] are much smaller with only ©( ) edges, so that many

3 STATISTICAL ANALYSIS OF SIMILARITY
SCORES

Throughout the analysis, without loss of generality, we assume
s = id. First, we compute the first moment of the similarity scores
<I>£{ for a general collection H of subgraphs.

Proposition 1. Let H be a family of unlabeled uniquely rooted
graphs with N edges and V + 1 vertices. For any i, j € [n], we have

2o« o) 252

=V o=} (16)

where 6% = q(1-q). Moreover, if V2 = o(n), then we haveE [@:}]{]
(1+0())|H| (po?)N nV.
Proor. For a rooted graph H with N edges and V + 1 vertices,

the number of copies of H in the complete graph K, that are rooted
ati € [n] is

(v
aut(H) ’

sub, (H) = sub(H, K,) = (17)

where recall that aut(H) denotes the number of automorphisms of
H. For any weighted adjacency matrix M and any subgraph S of
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K, recall that Mg = []ccp(s) Me as in (1). Then,

e[ W @wWn®)]= 3
S(H)=HT(j)=H
(@)

B [4sBr |

E [ZSES]
S(i)=H,S(j)=H

(b) N

2 (po?) " subp()1(imyy.  (19)
where (a) is because E [ZSET] = 0 unless S = T (as unrooted
graphs); (b) is because S(i) = H and S(j) = H imply that i = j,
thanks to the unique-rootedness of H. By (3),

2, aut(BE[Wy (AW, 5 (B)]
HeH

|¢ﬂ(paﬂN(”;1)vn{hﬂ.

In view of ("‘;I)V! = %, we obtain the desired (16). Finally,

v _ v
since (1 - %) < % < (1 - %) and V = o(y/n), we
(n—-1)!

m = (1 + o(l))nV.

E[o/f]

have O

Next, we bound the variance of the similarity scores ®;; = CDZ
where 7 is the collection of (K, L, M, R)-chandeliers, for both true
pairs i = j and fake pairs i # j. In the remainder of the paper, let §

denote a universal constant such that

1T (K)| < X,

Such a f (not to be confused with Otter’s constant «) exists thanks
to (6).

VK > 1. (19)

Proposition 2 (True pairs). Suppose g < %, L>2,and

11R*(2N)3(11p)2(K+M)
n

1412
pZ(K+M)|j|

1 1
<-, <7
2 2

4 4M+4K
RM (115)" M
nq

Then, for any i € [n], we have

1+2L2
p?ng

IN

1 1
=, <. 20
5 5 (20)

L2 L2

Var [®;;] N
ping  p2K+M)| ||

E[®;]?

(21)

Proposition 3 (Fake pairs). Suppose g < % L > 2, and
2 4(K+M)
R (119) "5
nq

4L+3L2LA(4K+2)(11ﬁ)8(K+M)R2(2N+1)3 <

:o( )

The next remark shows that the results in Propositions 2 and
3 are essentially optimal, by identifying which configurations of
(81, T1, S2, T2) in (14) contribute predominantly to the variance.

<

5

DN | =

o ()

[\

Then, for any i # j, we have

1
|77p?N

Var [CI),'J']
E [®;]?

(23)
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Remark 3. The upper bound (21) for true pairs is almost tight. In
fact, when N2 < n,¢=o0(1) and p > 0,
Var [®;;] )

. of
E [®:]

For the first term in this lower bound, fix any H,I € 7 and consider
the special case where Sy = S, = H, Ty = T, = I, where S and
Ti only intersect on one edge that connects to i (see Figure 3(d)).
Then, we can show that Cov (Zsl ESZ’ ZTI ]_BTZ) = Q((poz)ZN g h.
There are Q(L%suby,, (H)suby, (I)n~ ') number of (S1, Ti, S, Tz) that
satisfies the above condition. Combining this with (14) and applying
Proposition 1, we obtain
Var [®;;] o 1
E[®;]* |7712 (paz)ZN n2N

> aut(H)aut(I)suby (H)subn (1) (poz)ZN 1%(ng)~!

HIeT
LZ
-o )
nq

where the last equality holds because aut(H)sub, (H) = Q((n) by
(17) and N? < n.

For the second term in (24), suppose the chandeliers H and I
only share one common bulb 8B (i.e., |K(H) N K(I)| = 1). Consider
(81, Th, S2, T2) such that (i) S; (resp. T1) completely overlaps with Sy
(resp. Tz) except for B and its attached wire; (ii) S1 (resp. S2) only
overlaps with Tj (resp. T2) on B and its attached wire. This corre-
sponds to a baseline case as described in Section 2.2. Then, we can

show Cov (ZSIESZ,ZEETZ) > (pO'Z)ZN p_Z(M+K), and there are
Q(subp (H)subp (I)) number of (S, T1, S2, T2) satisfying the above
conditions (i) and (ii). Therefore, combining this with (14) and
Proposition 1 yields

Var ;] S 1
E[®ul® |72 (po?)?N n2N

L2 L2

ng " KM | ] @4

H,leT

2N
(PUZ) P~ M e nna =1y

_ 2HJIeT YK (H)NK(D)|=1} L2
- |7-|2p2(M+K) ~ pZ(K+M)|J| :
where the last step holds because there are L(I‘ZI) ( Il“ﬂ) number of

pairs of H and I that only share a single bulb.

The upper bound (23) for fake pairs is sharp. In fact, if N> < n,
q <1/2,and p > 0, for any collection H of uniquely rooted trees
(not just chandeliers) and any fake pair i # j, we have

Var[q)’?j{] Q( ! ) (25)
E[cpg.f]z‘ [HIp?N |

To see this, first note that for any Sy, T1, S2, T where S1(i), S2(j) =
H and Ty (i), b(j) = I with H,I € H,

Cov (Wi,H (AW g (B), Wi 1(AW; 1 (E))

= B [Win (O)W;u B)Wii (AW (B 2 0,

Z aut(H)aut(I)suby, (H)suby (I)
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where the first equality applies (18) for uniquely rooted trees, and
the last inequality holds because E [7151 ESZZ& Egz] > 0 whenever

p = 0 (cf. (43) in Lemma 1, Appendix A). Second, consider the
special case where H = I and S1 = Tj, S = T, S1 and Sy are vertex-
disjoint (i.e., just focus on the diagonal terms in the expansion of the
variance (14) and ignore the possible correlations between counts
of distinct trees in H), we get

Cov (Wi (W11 (B), Wi (A)W; 1 (B))

>

S1(1)=T(i)=H S;(j)=T(j)=H
1 {S1 and S, are vertex-disjoint} Cov (AS1 BSz > AT1 BTz )
4N

=0 Z 1 {S; and S; are vertex-disjoint}

Si(i)=H S (j)=H

-0 (U4Nn2N /autZ(H)) .
Therefore,

Var [CDZI]{] > Z aut(H)?
HeH

Cov (Wi,H (AW, g (B), Wi g (Z)I’Vj,H(E))

> Q (l?—(|cr4Nn2N) .
Combining the above with Proposition 1 yields (25).

3.1 Proof of Theorem 1

We aim to prove Theorem 1 under the assumption (9), that is, p? >
a + €, and the following more general condition than (10):

)

p
c1logn () M log =
L< ANceyng, ——F—— < =< ——r,
loglogn " V" log(ng) = K 2log #
1
KL > i ngn, K+ M <cglogn, R=exp(csK), (26)
log %

for some absolute constants cj,...,c6 > 0. Indeed, the specific
choice of K, L, M, R in (10) satisfies (26) when nqg > C(e) for a
sufficiently large constant C(¢) that only depends on e.

Next, we verify that (26) with appropriately chosen (c, ..., ¢6)
ensures that the condition (20) in Proposition 2 and the condition
(22) in Proposition 3 are both satisfied for all sufficiently large n. To
start, we note that

2

log 2 2(K+M) /K 2
Mo a L £ (27)
K 2 log # o4 a

Moreover, since R = exp(csK), by choosing cs to be an appropriate
absolute constant and applying (7), we have that for all K large
enough,

|T| > (a(1+c)) 7K, (28)
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where ¢o > 0 is an arbitrarily small constant. Combining the last
two displayed equation gives that

K K/4
pz(K+M)|j| > (%) > (%2) / R (29)
where the last inequality holds by choosing ¢co = p?/a — 1 >
€/a.Since L < lcolgll;o%gr; and KL > IOE(IEE/Z), > clcskl)zg(;;iz) . We
deduce from (29) that
pPEDIT | 2 (logm /) 2 w(17), (30)

where the last inequality holds by choosing c1, ¢3 so that ¢3/c; > 8.
Assuming that K + M cllloi, and R =
oglogn
exp(csK), by choosing ¢y to be a sufficiently small constant and
noting that N = (K + M)L, we deduce that
11R*(2N)3(11p)2(K+M)
n

Assuming that M/K > c3/log(ng), by choosing ¢, to be a suffi-
ciently large constant, we get that

<

<

cslogn, L

1
< -,
2

nq
Finally, assuming that L < c¢+/ng and p? > a, by choosing cs to be
a sufficiently small constant, we conclude that
1+2L% 1
p?ng 2
completing the verification of (20).

1

2

<

logn_"y1 < yer Thus
loglogn’® = : >

under the assumptions that K + M < c4logn, and R = exp(c5K),
by choosing c1, ¢4 to be sufficiently small constants, we get that

For (22), under the assumption L < ¢;

LB 2LA(AK+2) (11 8)8(K+M) R2 (9N 4 1)3 < g

hence the desired(22).
Now we are ready to prove Theorem 1 by applying Propositions
1 and 3. Define
F={i:|®;—pl>0-c)p} d>{i: P <7}, (31)
in view of 7 = cpu. Applying Proposition 1, Proposition 3, and
Chebyshev’s inequality, we get that for any i # j,

P{®ij > 7} = P{®;; ~E ;] > cE [@u]}

Var [y ] =o( ! ) (32)
T B [0i]° [T 1p?N )
Note that
T 1p?N = (|j|)p2N - (@)LPZL(K+M)
L “\L
L 2 KL/4
> (%) (%) > /4=t = o (n?), (33)

where the second inequality holds due to (29); the last inequality

holds due to the assumptions that L < ¢; logn/loglogn and KL >

c3log n/log(p?/a); the last equality holds by choosing c3/4—c1 > 2.
Hence, applying union bound together with (32) yields that

P{3i+je[n]:Q;>r1}=0(1). (34)
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It follows that with probability at least 1 — 0(1), ®;; < 7 for all
i # j € [n], which, by our construction of I and 7, further implies
further implies I O [n] \ F and & = x|;.
By Chebyshev’s inequality and our choice of 7 = ¢E [®;;] > 0,
for any i € [n],
P{I®ii —pl > (1= c)p} = P{|Qii —E [®ii] | > (1 - 0)E [Pii]}
Var [®;;] R
T (1-0)E [0;]?
Applying Proposition 2 yields that
2 L2
— .
ng  p2KEM)| |

5

y=0 (35)

It follows that E [|F|] < yn. For any constant § € (0, 1), we can
choose the constant C(e, §) large enough, so that when ng > C(, §),
the assumption L < c¢6+/nq holds for a sufficiently small constant
ce and consequently y < 6. Thus, E[|I|] =n—-E[|F|] = (1 -9)n.

If ng = w(1), then by choosing ¢s = 0(1) we get y = o(1).
Therefore, by Markov’s inequality,

P{|F| > vyn} <+ =o(1).
It follows that with probability at least 1 — o(1), |F| < +fyn and
hence |I| > (1 = +/y)n = (1-o0(1))n.

4 APPROXIMATED SIMILARITY SCORES BY
COLOR CODING

In this section, following [32], we provide a polynomial-time algo-
rithm to approximately compute the similarity scores {®;;}; je[n]

in (3) when 7™ is the family of chandeliers® of size O(log n), using
the idea of color coding [2, 3].

Approximate signed rooted subgraph count. Let H be a rooted
connected graph with N + 1 vertices. For each i € [n], we first
approximately count the signed graphs rooted at i that are isomor-
phic to H. Specifically, given a weighted adjacency matrix M on
[n], we generate a random coloring y : [n] — [N + 1] that assigns
a color to each vertex of M from the color set [N +1] independently
and uniformly at random. Given any V C [n], let x,(V) indicate
that (V) is colorful, i.e., p(x) # p(y) for any distinct x,y € V. In
particular, if [V| = N + 1, then x, (V) = 1 with probability

. (N+D)!
r& —(N TN (36)
Define
XgMp) 2 > uVE) [ Mw. 67

S(i)=H (u,0)€E(S)

Then E [X,-,H(M, p)] = rW; g (M), where W; g (M) is defined in (1).
Hence, X; i (M, p1)/r is an unbiased estimator of W; g (M).

When H is a tree, the color coding together with the recur-
sive tree structure enables us to use dynamic programming to
count colorful trees and compute X; (M, p1) efficiently. This is
summarized as [32, Algorithm 2] for unrooted trees and the same
algorithm with minor adjustments also works for rooted trees.
First, since H is already a rooted tree, the step of assigning an ar-
bitrary vertex of H as its root is not needed and thus the rooted

81n fact, the algorithm does not rely on the chandelier structure and works for any
trees.
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tree Ty constructed is exactly H itself. Second, as an intermedi-
ate step, [32, Algorithm 2] computes Y (i, Ty, [N + 1], p), which
is the same as aut(H)X; g (M, ). Hence, we can simply output
autIWY(i, Ty, [N +1], p) as the rooted tree count X; i (M, p).

Finally, we generate independent random colorings p1, ..., jit
and average over X; g (M, pim)’s to better approximate W; (M),
where we set

t=[1/r].

Approximate similarity scores. To approximate ®;; = @5 in (3),
we apply the above idea to each chandelier H € 7. Generate 2t ran-
dom colorings {,ua}flz1 and {va}ﬁZ=1 which are independent copies
of p that map [n] to [N + 1]. Define

¢
Z aut(H) (% ZXLH(Z’ Fa)
a=1

HeT

B L
l]_rz

1< -
(; ZXLH(B, va)) .
a=1 (38)

Then E [5,7 | A, B] = @;j. Moreover, the following result bounds
the approximation error under the same conditions as those in
Propositions 2 and 3 for the second moment calculation.

Proposition 4. For anyi € [n], if (20) holds,

Var|®;; — i = O( L + L’ ) ; (39)
E [®;i]° p*ng  p2KEM)| g
foranyi # j, if (22) holds,
Var[®;; — ;5
ar| ij - l]] =O( 12N) . (40)
E[®i] 1T"1p

Finally, we show that the approximate similarity scores ®; j can
be computed efficiently using Algorithm 2.

Algorithm 2 Approximate similarity scores via color coding

Input: Centered adjacency matrices A and B and integers

K,L,M,N,R.

. Apply the algorithm for generating rooted trees in [7, Sec. 5]
to list all non-isomorphic rooted trees with K edges, compute
aut(H) for each rooted tree using the automorphism algorithm
for trees in [11, Sec. 2], and return J as the subset of rooted
trees whose number of automorphisms is at most R.

: Generate (K, L, M, R)-chandeliers using J to obtain 7~ per Def-
inition 3.

. Generate i.i.d. random colorings {4} _, and {v4}’_, mapping
[n] to [N +1].

. foreacha=1,---,tdo

For each H € 7, compute {X;q (A j1a)}ie [n] and

Xju (B, Va)}je[n) Via [32, Algorithm 2] with adjustments de-

scribed after (37).

: end for

: Output: {5”}1-,]-6[”] according to (38).

1:

Proposition 5. Algorithm 2 computes {Eij},-!je [n] intimeO (n2(3ea)N).

Furthermore, when nq > 2, under the choice of K,L,M,R € N as
per (10), the time complexity is O(n®/€), where € is from (10) and c is
an absolute constant.
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Proor oF THEOREM 2. Note that
Var[@ij] = Var[@ij — ®;;] + Var[®;;] + 2Cov (5,7 - CI)ij,CI)ij)
= Var[®;; — @;;] + Var[®;;], (41)
where the last equality holds because E [5, jlA, B] = &;; and so
Cov (®i) - @y, ;j) =B [E [(@y; - ®i))I4. B @] = 0.

Under the assumption of Theorem 1, both (20) and (22) hold.
Since E [Cbij] =E [CD,-j], applying Proposition 4 yields

~of )

Var[aij]
E [Eii] :

L2 L2
ping " PP ]

~0( =)

foralli # j. In other words, Propositions 2— 3 and hence Theorem 1

Var[®;;]
E [®]°

for all i and

1
|T71p2N

continue to hold with ®; ;j in place of ®;;. The time complexity
follows from Proposition 5. O

5 SEEDED GRAPH MATCHING

Recall that with high probability Algorithm 1 applied to the class 7~
of chandeliers finds a set I with |I| = n—o(n) and recovers the latent
permutation 7 on I. In this section, we develop a seeded graph
matching subroutine (Algorithm 3) that matches the remaining
vertices, thereby achieving exact recovery. Since the seed set I
depends on graphs A and B, we need to show that Algorithm 3
succeeds even if the seed set I is chosen adversarially as long as
1| = (1= o(1))n.

Given I’ C [n] and an injection 7’ : I’ — [n], for any vertex i
in A and vertex j in B, denote by N (i, j) the number of common
neighbors of i and j under the vertex correspondence 7’, namely,
the number of vertex u € I’ such that u is a neighbor of i in A and
7’ (u) is a neighbor of j in B.

Algorithm 3 Seeded graph matching

1:
2:
3:

Input: A and B, a mapping 7 : I — [n], and y.
Let J=Iand 7 = 7.
while there exists i ¢ J and j ¢ 7(J) such that Nz(i, j) >
y(n—2)g* do
Add ito J and let 7(i) = j.
: end while
: Output: 7.

Algorithm 3 keeps adding vertices as new seeds once we are
confident that they are true pairs based on the current seed set,
in a similar fashion as the percolation graph matching proposed
in [46]. It is a simplified version of [6, Algorithm 3.22], since our
initial seeds are guaranteed to be error-free (thanks to Theorem 1)
and so there is no need to clean up any mismatch. This allows us
to show our Algorithm 3 succeeds under the information-theoretic
necessary condition of nq(q + p(1 — q)) = (1 + €) log n, whereas
their algorithm requires nq(q+p(1—q)) > log€ n for some constant
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C > 1. Another similar algorithm in prior work is [31, Algorithm 4],
which however requires nq < v/n/log n.
The following proposition gives sufficient conditions for our

seeded algorithm to achieve exact recovery. Let
h(x) =xlogx —x+1 (42)

for x > 0, which is a convex function with the minimum value 0
achieved at x = 1.

Proposition 6. Fix an arbitrarily small constant € > 0. Suppose
A,B~ G(n,q,p) withq < % nq(q+p(1-q)) = (1+¢€)logn, and
p > €. Let i = 7(A, B) denote a mapping:I — [n] such that # = x|y
and |I| = (1 —€/16) n. Let y denote the unique solution in (1, +o0) to
h(y) = S8 Then with probability at least 1 — o(1), Algorithm 3

with inputs # and y outputs 7 = 1 in O(n3¢?) time.

(n-2)q*"

Proor oF THEOREM 3. Theorem 1 ensures that, with probability
1—o0(1), Algorithm 1 returns a mapping 7 : I — [n] in time 0(n%)
such that 7 = x|y and I > (1 — €/16)n. Furthermore, Proposition 6
implies that, with probability 1 — 0(1), Algorithm 3 outputs 7 = x
in O(n®q?) time. Hence, Theorem 3 follows. O
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A AUXILIARY RESULTS

The following lemma computes the cross-moments of A, and
]_B,T(u) 7(v) from the centered adjacency matrices.

Lemma 1 ([32, Lemma 5]). Let (A, B) ~ G(n,q, p). Assume q < %
Forany0 < t,m<2with2 <f{+m <4,

pl{i:mzl}
p(1-2q)

Vq(1-q)
q(1-q)+p(1-2q)*
q(1-q)

t+m=2
—t—m—~t Fm —

E[O- ¢ mAuan'(u)n'(v)] = t+m=3 (43)

t+m=4

Moreover,

E [a_f_mzivgzl(u)n(v)”

1 1

—Lipem=3r + —1ipim=ar . (44)
q {t+m=3} q {t+m=4}

Lo
< |plHtE=m =0 pm=p) +

B A DATA-DRIVEN CHOICE OF THE
THRESHOLD

In this section, we describe a data-driven approach to choose thresh-
old 7 in Algorithm 1 without the knowledge of q and p. For each
i € [n], let (i) denote one of the maximizer of ®;; over all
Jj € [n]. Let k denote the corresponding node such that &y ()
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is the median of {®;y ;) : i € [n]}. Set ¢ = %‘Dkx//(ky We claim
that %cy <7< %(2 — ¢)p for any constant 0 < ¢ < 1 with prob-
ability 1 — 0(1) when nq = w(1) and with probability 1 — 36 for
any constant § € (0,1) when nq > C(e, §). Hence by Theorem 1,
lI] = (1 — 0(1))n with probability 1 — 0(1) in the former case and
E[|I]] = (1-38)(1—-38)n = (1 — 49) in the latter case.

It remains to show the claim, which reduces to proving cu <
@y (k) < (2 = c)p. Without loss of generality, we assume 7 = id.
Let

J {i € [n] :i€argmax®;; and cy < ;5 < (2—c)y} .
J

Recall that F = {i : |®;; — | > (1 — ¢)u} as defined in (31). By (34),
with probability at least 1 — 0(1), ®;; < cu for all i # j and hence
J = [n]\F. Moreover, we have E [|F|] < yn, where y is given in (35).
By Markov’s inequality, P {|F| > n/3} < 3y. Note that y = o(1) if
nq = w(1), and y < § for any constant § € (0, 1) if nqg > C(e, 9).
Hence, we have |J| > 2n/3 with probability 1 — o(1) if nqg = w(1),
and with probability 1 — 36 if nqg > C(e, §). Henceforth assume
IJI 2 2n/3.If gy (k) > (2 — c)p, then there are at least n/2 nodes
i with ®;,(;y > (2 — ¢)u, contradicting |J| = 2n/3. Analogous
argument holds for the case of @gy k) < cp. Thus, we must have
cp < Ppyr) < (2-o)p
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