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Theorem. Assume that 0 < @ f 1/2 and

d2 > U j 0.338,

where

U = lim
�³>

 

log(number of unlabeled trees with  edges)
is Otter’s tree-counting constant [38]. Given a pair of correlated

Erdős–Rényi graphs (�, �) > G(=, @, d), the following holds:

" (Exact recovery) If d > 0 and =@(@ + d (12@)) g (1 + n) log=
for any constant n > 0,1 there is a polynomial-time algorithm

that recovers c exactly with high probability.

" (Almost exact recovery) If =@ = l (1), there is a polynomial-

time algorithm that outputs a subset � ¢ [=] and a map

ĉ : � ³ [=] such that ĉ = c |� and |� | = (1 2 > (1))= with

high probability.

" (Partial recovery) For any constant X * (0, 1), there is a

constant � (d, X) > 0 depending only on d and X such that

if =@ g � (d, X), the above � and ĉ satisfy that ĉ = c |� with
high probability and E[|� |] g (1 2 X)=.

The above theorem identi�es an explicit threshold d2 > U that

allows polynomial-time graph matching for both sparse and dense

graphs. In certain regimes, the condition for exact recovery in

this result is in fact optimal, matching the information-theoretic

threshold identi�ed in [13, 45] (see Remark 2 and Figure 2 for

a detailed discussion). Here we further assume d > 0 for exact

recovery as the current seeded matching algorithms for boosting

from almost exact to exact recovery require a positive correlation.

In passing, we remark that after the initial posting of the present

paper, [24] proves that a di�erent algorithm proposed earlier in [23,

40] achieves partial recovery (correctly matching ¬(=) vertices
with > (=) errors with high probability) under the same condition

of d >

:
U . Their algorithm relies on the tree structure of local

neighborhoods and thus is restricted to sparse graphs with =@ =

$ (1). Moreover, their results do not provide exact or almost exact

recovery.

1.1 Key Challenges and Algorithmic

Innovations

A principled approach to graphmatching is the following three-step

procedure:

(1) Signature embedding: Associate to each vertex 8 in � a signa-

ture B� and to each vertex 9 in � a signature C ! .

(2) Similarity scoring: Compute the similarity score ¨� ! based on

B� and C ! using a certain similarity measure on the signature

space.

(3) Linear assignment: Solve max-weight bipartite matching

withweights¨� ! either exactly or approximately (e.g., greedy

algorithm).

In this way, we reduce the problem from the NP-hard quadratic

assignment to the tractable linear assignment. Clearly, the key to

this approach is the construction of the similarity scores.

1The condition %' (' + � (1 2 ') ) g (1 + � ) log% is information-theoretically neces-
sary, for otherwise the intersection graph betweený and þ (under the vertex corre-
spondence ÿ ) contains isolated vertices with high probability and exact recovery is
impossible.

Many existing algorithms for graph matching largely follow this

paradigm using similarity scores based on neighborhood statistics

[8, 15, 16, 18, 30], spectral methods [20, 43, 44], or convex relaxations

[1, 28, 47]. In terms of theoretical guarantees, these methods either

require extremely high correlation or are tailored to sparse graphs.

Note that two d-correlated Erdős–Rényi graphs di�er by �(1 2 d)
fraction of edges. Thus, to succeed at a constant d bounded away

from 1, the similarity scores need to be robust to perturbing a con-

stant fraction of edges. All existing algorithms [21, 23, 31] achieving

this goal crucially exploit the tree structure of local neighborhoods

and are thus restricted to sparse graphs. On the other hand, algo-

rithms that apply to both sparse and dense graphs [18, 20, 30] so

far can only tolerate a vanishing fraction of edge perturbation and

thus all require d = 1 2 > (1).
The major algorithmic innovation of this work is a new construc-

tion based on subgraph counts. Speci�cally, the signature assigned

to a node 8 is a vector indexed by a family of non-isomorphic sub-

graphs, where each entry records the total number of subgraphs

rooted at 8 that appear in the graph weighted by the centered ad-

jacency matrix, known as the signed graph count [9] (cf. (1) and

(2) for the formal de�nition). The similarity score for each pair of

vertices is the weighted inner product between their signatures.

The key to executing this strategy is a carefully curated family of

trees called chandeliers, which, as we explain next, allows one to

extract the graph correlation from the counts of the same tree while

suppressing the undesirable correlation between those of di�erent

trees. This leads to a robust construction of signatures that can

withstand perturbing a constant fraction of edges, without relying

on the locally tree-like property that limits the previous methods

to sparse graphs.

Counting subgraphs is a popular method for network analysis in

both theory [9, 35] and practice [2, 34, 42]. We refer to [32, Sec. 2.4]

for a comprehensive overview of hypothesis testing and estimation

based on subgraph counting for networks with latent structures.

Notably, most of these previous works focus on counting cycles.

However, here in order to succeed at a constant d , we need to count

a su�ciently rich class of subgraphs (whose cardinality grows at

least exponentially with the number of edges)2 and cycles clearly

fall short of this basic requirement. A much richer family of strictly

balanced, asymmetric subgraphs is considered in [6], where the

edge density of the subgraphs is carefully chosen so that typically

they co-occur in both graphs at most once. Hence, by searching

for such rare subgraphs, dubbed “black swans”, one can match the

corresponding vertices. Although this method succeeds even for

vanishing correlation d g (log=)2% (1) , it has a quasi-polynomial

time complexity=�(log%) due to the exhaustive search of subgraphs
of size�(log=). Moreover, the construction of this special family of

subgraphs requires the average degree =@ to fall into a very speci�c

range of [=�% , =1/153] * [=2/3, =12� ] for some sequence of positive

quantities X% = > (1) and an arbitrarily small constant n > 0, and, in

particular, it does not accommodate relatively sparse graphs such

as =@ = $ (log=).

2A high-level explanation is as follows. For a single subgraph � with � edges, the
correlation between the subgraph counts of � rooted at vertex � acrossý and þ – the

signal, is smaller than their variances by a multiplicative factor of �� . Therefore, to
pick up the signal, we need to further average over a family H of such subgraphs so

that |H |�2� ³ > (cf. (25) for a more detailed explanation).
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As opposed to relying on rare subgraphs, our approach is to count

a family of unlabeled rooted trees with size # = �(log=), which
are abundant even in very sparse graphs. Moreover, by leveraging

the method of color coding [3, 4, 26], such trees can be counted ap-

proximately but su�ciently accurately in polynomial time. While

centering the adjacency matrices and counting signed trees are

helpful, there still remains excessive correlation among di�erent

trees counts which is hard to control – this is the key di�culty in

analyzing signatures based on subgraph counts. To resolve this chal-

lenge, we propose to count a special family T of unlabeled rooted

trees, which we call chandeliers; see (1) for the formal de�nition.

As discussed in Section 2.2, the chandelier structure plays a crucial

role in curbing the undesired correlation between di�erent tree

counts. Moreover, even though chandeliers only occupy a vanish-

ing fraction of all trees, by choosing the parameters appropriately,

we can ensure that |T | = (1/U + > (1))� , which grows almost at

the same rate as the entire family of trees.

A similar idea of counting signed but unrooted trees has been

applied in [32] for the graph correlation detection problem, i.e., test-

ing whether the two graphs are independent Erdős–Rényi graphs

or d-correlated through a latent vertex matching chosen uniformly

at random. It is shown that the two hypotheses can be distinguished

with high probability in polynomial time at the same threshold of

d2 > U . However, unlike the present paper, averaging over the

random permutation dramatically simpli�es the analysis of correla-

tions between di�erent tree counts. As a result, it su�ces to simply

count all trees as opposed to a carefully constructed collection of

special trees. We refer to the last two paragraphs in Section 2.2 for

a detailed comparison.

1.2 Notation

Given a graph� , let+ (� ) denote its vertex set and � (� ) denote its
edge set. Let E (� ) = |+ (� ) | and 4 (� ) = |� (� ) |. We call 4 (� )2E (� )
the excess of the graph � . We denote by K% the complete graph

with vertex set [=] and edge set
([%]
2

)
~ {{D, E} : D, E * [=], D b E}.

An empty graph is denoted as ', if it does not contain any vertex

or edge. A rooted graph is a graph in which one vertex has been

distinguished as the root. An isomorphism between two rooted

graphs� and� is a bijection between the vertex sets that preserves

both edges and the root, namely, 5 : + (� ) ³ + (�) such that the

root of � is mapped to that of � and any two vertices D and E are

adjacent in � if and only if 5 (D) and 5 (E) are adjacent in � . An
automorphism of a rooted graph is an isomorphism to itself. Let

aut(� ) be the number of automorphisms of � . For a rooted tree )

and a vertex 0 * + () ), let () )� denote the subtree of ) consisting

of all descendants of 0 and we set () )� = ' if 0 + + () ).
For two real numbers G and ~, we let G ( ~ ~ max{G,~} and

G ' ~ ~ min{G,~}. We use standard asymptotic notation: for two

positive sequences {G%} and {~%}, we write G% = $ (~%) or G% r ~% ,
if G% f �~% for an absolute constant� and for all =; G% = ¬(~%) or
G% s ~% , if ~% = $ (G%); G% = �(~%) or G% o ~% , if G% = $ (~%) and
G% = ¬(~%); G% = > (~%) or ~% = l (G%), if G%/~% ³ 0 as = ³ >.

1.3 Organization

The rest of the paper is organized as follows. In Section 2.1, we

�rst introduce the similarity scores between vertices of the two

graphs based on counting signed chandeliers, and then state our

main results on the recovery of the latent vertex correspondence

for correlated Erdős–Rényi graphs. In Section 2.2, we explain the

rationale for focusing on the class of chandeliers. Section 3 provides

a statistical analysis of the similarity scores, proving our results on

partial and almost exact recovery stated in Theorem 1. In partic-

ular, Propositions 2 and 3 are the key ingredients controlling the

variance of the similarity scores. In Section 4, we use the method

of color coding to approximate the proposed similarity scores in

polynomial time, and show that the same statistical guarantees

continue to hold for the approximated scores, thereby proving The-

orem 2. Finally, in Section 5, we demonstrate how to upgrade an

almost exact matching to an exact matching, establishing Theo-

rem 3. Appendix A consists of auxiliary results, and Appendix B

discusses a data-driven way to choose a threshold parameter in our

algorithm. Due to space constraints, we omit the proofs of Proposi-

tion 2-Proposition 6, which can be found in the full version of this

paper [33] https://arxiv.org/abs/2209.12313.

2 MAIN RESULTS AND DISCUSSIONS

2.1 Similarity Scores and Statistical Guarantees

We start with some preliminary de�nitions before specializing to

chandeliers. For any weighted adjacency matrix " , node 8 * [=],
and rooted graph � , de�ne the weighted subgraph count

,�,� (") ~
∑

� (� )��
"� , where"� ~

∏

�*� (� )
"� , (1)

and ( (8) denotes a subgraph of K% rooted at 8 . (Whenever the

context is clear, we also abbreviate ( (8) as ( .) Note that when" is

the adjacency matrix �,,�,� reduces to the usual subgraph count,

i.e., the number of subgraphs rooted at 8 in" that are isomorphic

to � . When " is a centered adjacency matrix � ~ � 2 @, we call
,�,� a signed subgraph count following [9]. For example (with

solid vertex as the root),,�, (�) = 3� 2 (=21)@ and,�, (�) =(��
2

)
2 (= 2 2)3�@ +

(%21
2

)
@2, where 3� is the degree of 8 in �.

Next, given a family H of non-isomorphic rooted graphs � , the

subgraph count signature of a node 8 is de�ned as the vector

, H
� (") ~

(
,�,� (")

)
� *H . (2)

Algorithm 1 below describes our proposed method for graph match-

ing based on subgraph count signatures.

At this point Algorithm 1 is a “meta algorithm” and the key to

its application is to carefully choose this collection of subgraphs

H . Ideally, we would like ¨H
� ! to be maximized at 9 = c (8), at least

on average. To this end, we require � * H to be uniquely rooted,

under which we have E[¨H
� ! ] ? 1{ÿ (� )=! } (see Proposition 1).

De�nition 2 (Uniquely rooted graph). We say that a graph �

rooted at 8 is uniquely rooted, if � (8) is non-isomorphic to � (E)
for any vertex E b 8 in + (� ).

However, the uniquely rooted property is far from enough. In

order for the signature ¨H
� ! to distinguish whether 9 = c (8) or not,

we need to ensure that the �uctuation of ¨H
� ! does not overwhelm

3Note that in (3) the coe�cient aut(� ) accounts for the symmetry of � and compen-
sates for the fact that the number of copies of� in the complete graph K% is inversely
proportional to aut(� ) . This simpli�es the �rst moment calculation in Proposition 1.
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where n is an arbitrarily small constant. Choose  , !,", ' * N such

that # = ( +")! is even6,

! =
�1

n
,  = �2 log=, " =

�3 

log(=@) , ' = exp (�4 ) . (10)

Fix any constant 0 < 2 < 1 and let ` be given in (8). Let ĉ : � ³
[=] denote the output of Algorithm 1 applied to the collection T of

(!,",  , ')-chandeliers and threshold g = 2`. Then ĉ = c |� with
probability 1 2 > (1). Moreover,

" If =@ = l (1), then |� | = (1 2 > (1))= with probability 1 2 > (1).
" For any constant X * (0, 1), there exists a positive constant

� (n, X) depending only on n and X , such that if =@ g � (n, X),
then E [|� |] g (1 2 X)=.

Remark 1 (Adapting to unknown parameters). Note that the

choice of" and g in (10) assumes the knowledge of @ and d . The

edge probability @ can be easily estimated by the empirical graph

density of � and �. Moreover, the threshold g can be speci�ed in a

data-driven manner (cf. Appendix B).

From a computational perspective, naïve evaluation of,�,� (�)
by exhaustive search for each � with # edges takes =�(� ) time

which is super-polynomial when # = l (1). To resolve this compu-

tational issue, in Section 4, we give a polynomial-time algorithm

(Algorithm 2) that computes an approximation ˜̈� ! for ¨� ! using
the strategy of color coding as done in [32]. The following result

shows that the approximated similarity score ˜̈� ! enjoys the same

statistical guarantee under the same condition (9) as Theorem 1.

Theorem 2. Theorem 1 continues to hold with ˜̈� ! in place of ¨� ! .

Moreover, {˜̈� ! }�, !*[%] can be computed in $ (=ÿ ) for some constant

� c � (n) depending only on n .

Theorem 2 shows that our matching algorithm achieves the

almost exact recovery in polynomial time when =@ = l (1) and
d2 g U +n . In comparison, the almost exact recovery is information-

theoretically possible if and only if =@d = l (1), when d > 0 and

@ = =21/22¬ (1) [14, 45].
Moreover, under an extra condition that is information- theoret-

ically necessary, we can upgrade the almost exact recovery to exact

recovery in polynomial time. The main idea is to use the partial

matching ĉ |� correctly identi�ed by Algorithm 1 as seeds and apply

a seeded matching algorithm (which is similar to percolation-based

matching in [6, 46]) to extend it to a full matching. For this purpose

we assume d > 0 as the current seeded matching algorithm requires

positive correlation.

Theorem 3 (Exact recovery). Suppose

=@ (@ + d (1 2 @)) g (1 + n) log=, d g
:
U + n (11)

for some arbitrarily small constant n . Then a seeded matching algo-

rithm (see Algorithm 3 in Section 5) with input ĉ outputs c̃ = c in

$ (=3@2) time with probability 1 2 > (1).

Remark 2 (Comparison to the exact recovery threshold). It is in-

structive to compare the performance guarantee (11) of our polyno-

mial-time algorithm with the information-theoretic threshold of

6For simplicity, we assume � is even so that 
 g 0 even when � < 0. To lighten the
notation, we do not explicitly round each parameter in (10) to integers as this only
changes constant factors; see (26) for a more general condition.

exact recovery derived in [45] for positive correlation, that is,

d g (1 + n)
(
2

√
log=

=
+ log=

=@

)
. (12)

1 1:
�

10

:
U

1

0
0

?

impossible

easy

_

d

Figure 2: The phase diagram for exact recovery in the loga-

rithmic degree regime, where =@ = _ log= for a �xed con-

stant _ > 0. The impossible and easy regime are given

by d < min{1, 1/_} and d > max{:U, 1/_}, respectively. No
polynomial-time algorithm is known to achieve exact recov-

ery in the red regime.

Assuming =@ = _ log= for a �xed constant _, (11) simpli�es to

d > max{1/_,:U}, while (12) is reduced to d > 1/_; see Figure 2
for an illustration. Observe that when _ < 1/:U , the condition

(11) for exact recovery matches (12) and hence our polynomial-

time matching algorithm is information-theoretically optimal. If

_ > 1/:U , there exists a gap, between (11) and (12), depicted as the

red regime in Figure 2. It is an open problemwhether exact recovery

is attainable in polynomial time in the red regime when d <

:
U .

So far the only rigorous evidence for hardness is that detection

(and hence recovery) is computationally hard in the low-degree

polynomial framework7 when d f 1/polylog(=) [32].

2.2 On the Choice of Chandeliers

The key to the success of our matching algorithm is to leverage

the correlation of subgraph counts in the two graphs � and �

as much as possible, while suppressing the undesired correlation

between di�erent subgraph counts. In this subsection, we explain

why restricting to the special family of chandeliers is crucial, as well

as some basic guidelines on the choice of its parameters. Assume

for convenience that c = id.

First of all, we require the expected similarity score E[¨� ! ] to be
zero except for 8 = 9 . As discussed in the previous subsection, this

is guaranteed by the uniquely rooted property of each chandelier in

T . Further, to distinguish a true pair (8, 8) from fake pairs (8, 9), we
7Speci�cally, it is shown in [32] that any test statistic that is a degree-polylog(%)
polynomial of (ý, þ) fails to detect correlation � = 1/polylog(%) .
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The method of counting signed trees has been applied to the

detection problem in the previous work [32]. The goal therein is to

decide whether two Erdős–Rényi random graphs are independent

or correlated using the test statistic

5 (�, �) =
∑

� *T2
aut(� ),� (�),� (�), (15)

where the weighted subgraph count,� (, ) is similarly de�ned

as (1) for unrooted � . Compared to (3), there are three major dis-

tinctions: First, the trees in (15) are not rooted and aut(·) is for
unrooted graphs. Second, trees in T 2 only have � (log=/log log=)
edges, instead of �(log=) edges required in this paper. This is be-

cause for detection, one only needs to achieve a vanishing error,

instead of a speci�c > (1/=2) error probability for recovery in the

current work. Third (and most importantly), T 2 contains all trees
without special structure, while here we choose T to be a family

of special trees called chandeliers, which, as explained earlier, is

crucial for reducing the correlation between di�erent signed tree

counts.

In terms of analysis, for the detection problem in [32] the latent

permutation is chosen uniformly at random, so one can average the

second moment calculation over the random permutation which

drastically simpli�es the analysis of the tree counting statistic. In

contrast, for the recovery problem in the present paper, we need to

condition on the realization of the latent permutation. As such, the

secondmoment calculation here is muchmore challenging combina-

torially and involves delicate enumeration procedures that revolve

around the chandelier construction. In addition, since the trees in

[32] are much smaller with only �( log%
log log%

) edges, so that many

quantities can be bounded very crudely (e.g., aut(� ) f E (� )!); for
the current paper since the trees have �(log=) edges such simple

analysis does not su�ce.

3 STATISTICAL ANALYSIS OF SIMILARITY

SCORES

Throughout the analysis, without loss of generality, we assume

c = id. First, we compute the �rst moment of the similarity scores

¨
H
� ! for a general collectionH of subgraphs.

Proposition 1. Let H be a family of unlabeled uniquely rooted

graphs with # edges and + + 1 vertices. For any 8, 9 * [=], we have

E

[
¨
H
� !

]
= |H |

(
df2

)� (= 2 1)!
(= 2+ 2 1)!1{�=! } , (16)

where f2 = @(12@). Moreover, if+ 2
= > (=), then we have E

[
¨
H
� !

]
=

(1 + > (1)) |H |
(
df2

)�
=� .

Proof. For a rooted graph � with # edges and + + 1 vertices,

the number of copies of� in the complete graphK% that are rooted

at 8 * [=] is

sub% (� ) c sub(�,K%) =
(%21
�

)
+ !

aut(� ) , (17)

where recall that aut(� ) denotes the number of automorphisms of

� . For any weighted adjacency matrix " and any subgraph ( of

K% , recall that"� =
∏
�*� (� ) "� as in (1). Then,

E

[
,�,� (�),!,� (�)

]
=

∑

� (� )��

∑

� ( ! )��
E

[
����

]

(a)
=

∑

� (� )��,� ( ! )��
E

[
����

]

(b)
=

(
df2

)�
sub% (� )1{�=! } , (18)

where (a) is because E
[
����

]
= 0 unless ( = ) (as unrooted

graphs); (b) is because ( (8) � � and ( ( 9) � � imply that 8 = 9 ,

thanks to the unique-rootedness of � . By (3),

E[¨H
� ! ] =

∑

� *H
aut(� )E[,�,� (�),!,� (�)]

= |H |
(
df2

)� (
= 2 1

+

)
+ !1{�=! } .

In view of
(%21
�

)
+ ! =

(%21)!
(%2� 21)! , we obtain the desired (16). Finally,

since
(
1 2 �

%

)�
f (%21)!

(%2� 21)!%� f
(
1 2 1

%

)�
and + = > (

:
=), we

have
(%21)!

(%2� 21)! = (1 + > (1))=� . ¥

Next, we bound the variance of the similarity scores ¨� ! c ¨
T
� ! ,

where T is the collection of ( , !,", ')-chandeliers, for both true

pairs 8 = 9 and fake pairs 8 b 9 . In the remainder of the paper, let V

denote a universal constant such that

|J ( ) | f V� , " g 1. (19)

Such a V (not to be confused with Otter’s constant U) exists thanks

to (6).

Proposition 2 (True pairs). Suppose @ f 1
2 , ! g 2, and

14!2

d2(�+	 ) |J |
f 1

2
,

11'4 (2# )3 (11V)2(�+	 )

=
f 1

2
,

'
4
	 (11V) 4	+4�

	

=@
f 1

2
,

1 + 2!2

d2=@
f 1

2
. (20)

Then, for any 8 * [=], we have

Var [¨�� ]
E [¨�� ]2

= $

(
!2

d2=@
+ !2

d2(�+	 ) |J |

)
. (21)

Proposition 3 (Fake pairs). Suppose @ f 1
2 , ! g 2, and

'
2
	 (11V)

4(�+	 )
	

=@
f 1

2
,

4	+3!2	'(4�+2) (11V)8(�+	 )'2 (2# + 1)3 f =

2
. (22)

Then, for any 8 b 9 , we have

Var
[
¨� !

]

E [¨�� ]2
= $

(
1

|T |d2�

)
. (23)

The next remark shows that the results in Propositions 2 and

3 are essentially optimal, by identifying which con�gurations of

((1,)1, (2,)2) in (14) contribute predominantly to the variance.
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Remark 3. The upper bound (21) for true pairs is almost tight. In

fact, when # 2 j =, @ = > (1) and d g 0,

Var [¨�� ]
E [¨�� ]2

g ¬

(
!2

=@
+ !2

d2(�+	 ) |J |

)
. (24)

For the �rst term in this lower bound, �x any�, � * T and consider

the special case where (1 = (2 � � , )1 = )2 � � , where (1 and

)1 only intersect on one edge that connects to 8 (see Figure 3(d)).

Then, we can show that Cov
(
��1��2 , ��1��2

)
= ¬(

(
df2

)2�
@21).

There are ¬(!2sub% (� )sub% (� )=21) number of ((1,)1, (2,)2) that
satis�es the above condition. Combining this with (14) and applying

Proposition 1, we obtain

Var [¨�� ]
E [¨�� ]2

s
1

|T |2
(
df2

)2�
=2�

∑

�,� *T
aut(� )aut(� )sub% (� )sub% (� )

(
df2

)2�
!2 (=@)21

= ¬

(
!2

=@

)
,

where the last equality holds because aut(� )sub% (� ) = ¬(=� ) by
(17) and # 2 j =.

For the second term in (24), suppose the chandeliers � and �

only share one common bulb B (i.e., |K(� ) + K(� ) | = 1). Consider

((1,)1, (2,)2) such that (i) (1 (resp.)1) completely overlaps with (2
(resp. )2) except for B and its attached wire; (ii) (1 (resp. (2) only

overlaps with )1 (resp. )2) on B and its attached wire. This corre-

sponds to a baseline case as described in Section 2.2. Then, we can

show Cov
(
��1��2 , ��1��2

)
g

(
df2

)2�
d22(	+� ) , and there are

¬(sub% (� )sub% (� )) number of ((1,)1, (2,)2) satisfying the above

conditions (i) and (ii). Therefore, combining this with (14) and

Proposition 1 yields

Var [¨�� ]
E [¨�� ]2

s
1

|T |2
(
df2

)2�
=2�

∑

�,� *T
aut(� )aut(� )sub% (� )sub% (� )

(
df2

)2�
d22(	+� )

1{ |K (� )+K (� ) |=1}

=

∑
�,� *T 1{ |K (� )+K (� ) |=1}

|T |2d2(	+� ) s
!2

d2(�+	 ) |J |
.

where the last step holds because there are !
( | J |
	

) ( | J |
	21

)
number of

pairs of � and � that only share a single bulb.

The upper bound (23) for fake pairs is sharp. In fact, if # 2 j =,

@ f 1/2, and d g 0, for any collectionH of uniquely rooted trees

(not just chandeliers) and any fake pair 8 b 9 , we have

Var[¨H
� ! ]

E

[
¨
H
��

]2 g ¬

(
1

|H |d2�

)
. (25)

To see this, �rst note that for any (1,)1, (2,)2 where (1 (8), (2 ( 9) �
� and )1 (8),)2 ( 9) � � with �, � * H ,

Cov
(
,�,� (�),!,� (�) , ,�,� (�),!,� (�)

)

= E

[
,�,� (�),!,� (�),�,� (�),!,� (�)

]
g 0 ,

where the �rst equality applies (18) for uniquely rooted trees, and

the last inequality holds because E
[
��1��2��1��2

]
g 0 whenever

d g 0 (cf. (43) in Lemma 1, Appendix A). Second, consider the

special case where � = � and (1 = )1, (2 = )2, (1 and (2 are vertex-

disjoint (i.e., just focus on the diagonal terms in the expansion of the

variance (14) and ignore the possible correlations between counts

of distinct trees inH ), we get

Cov
(
,�,� (�),!,� (�),,�,� (�),!,� (�)

)

g
∑

�1 (� )=�1 (� )��

∑

�2 ( ! )=�2 ( ! )��

1{�1 and �2 are vertex-disjoint}Cov
(
��1��2 , ��1��2

)

= f4�
∑

�1 (� )��

∑

�2 ( ! )��
1{�1 and �2 are vertex-disjoint}

= ¬

(
f4�=2� /aut2 (� )

)
.

Therefore,

Var
[
¨
H
� !

]
g

∑

� *H
aut(� )2

Cov
(
,�,� (�),!,� (�),,�,� (�),!,� (�)

)

g ¬

(
|H |f4�=2�

)
.

Combining the above with Proposition 1 yields (25).

3.1 Proof of Theorem 1

We aim to prove Theorem 1 under the assumption (9), that is, d2 g
U + n , and the following more general condition than (10):

! f 21 log=

log log=
' 26

:
=@,

22

log(=@) f "

 
f

log
�2

�

2 log 1
�2

,

 ! g 23 log=

log
�2

�

,  +" f 24 log=, ' = exp(25 ), (26)

for some absolute constants 21, . . . , 26 > 0. Indeed, the speci�c

choice of  , !,", ' in (10) satis�es (26) when =@ g � (n) for a
su�ciently large constant � (n) that only depends on n .

Next, we verify that (26) with appropriately chosen (21, . . . , 26)
ensures that the condition (20) in Proposition 2 and the condition

(22) in Proposition 3 are both satis�ed for all su�ciently large =. To

start, we note that

"

 
f

log
�2

�

2 log 1
�2

ñó d2(�+	 )/�

U
g

√
d2

U
. (27)

Moreover, since ' = exp(25 ), by choosing 25 to be an appropriate

absolute constant and applying (7), we have that for all  large

enough,

|J | g (U (1 + 20))2� , (28)
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where 20 > 0 is an arbitrarily small constant. Combining the last

two displayed equation gives that

d2(�+	 ) |J | g
(
d2(�+	 )/�

U (1 + 20)

)�
g

(
d2

U

)�/4
, (29)

where the last inequality holds by choosing 20 = d2/U 2 1 g
n/U . Since ! f �1 log%

log log%
and  ! g �3 log%

log(�2/� ) ,  g �3 log log%

�1 log(�2/� ) . We

deduce from (29) that

d2(�+	 ) |J | g (log=)�3/(4�1 ) g l (!2), (30)

where the last inequality holds by choosing 21, 23 so that 23/21 > 8.

Assuming that  + " f 24 log=, ! f 21
log%

log log%
, and ' =

exp(25 ), by choosing 24 to be a su�ciently small constant and

noting that # = ( +")!, we deduce that
11'4 (2# )3 (11V)2(�+	 )

=
f 1

2
.

Assuming that "/ g 22/log(=@), by choosing 22 to be a su�-

ciently large constant, we get that

'
4
	 (11V) 4	+4�

	

=@
f 1

2
.

Finally, assuming that ! f 26
:
=@ and d2 > U , by choosing 26 to be

a su�ciently small constant, we conclude that

1 + 2!2

d2=@
f 1

2

completing the veri�cation of (20).

For (22), under the assumption ! f 21
log%

log log%
, !	 f =�1 . Thus,

under the assumptions that  +" f 24 log=, and ' = exp(25 ),
by choosing 21, 24 to be su�ciently small constants, we get that

4	+3!2	'(4�+2) (11V)8(�+	 )'2 (2# + 1)3 f =

2
,

hence the desired(22).

Now we are ready to prove Theorem 1 by applying Propositions

1 and 3. De�ne

� = {8 : |¨�� 2 ` | > (1 2 2)`} £ {8 : ¨�� < g} , (31)

in view of g = 2`. Applying Proposition 1, Proposition 3, and

Chebyshev’s inequality, we get that for any 8 b 9 ,

P
{
¨� ! g g

}
= P

{
¨� ! 2 E

[
¨� !

]
g 2E [¨�� ]

}

f
Var

[
¨� !

]

22E [¨�� ]2
= $

(
1

|T |d2�

)
. (32)

Note that

|T |d2� =

(
|J |
!

)
d2� g

(
|J |
!

)	
d2	 (�+	 )

g
(
1

!

)	 (
d2

U

)�	/4
g =�3/42�1 = l (=2) , (33)

where the second inequality holds due to (29); the last inequality

holds due to the assumptions that ! f 21 log=/log log= and  ! g
23 log=/log(d2/U); the last equality holds by choosing 23/4221 > 2.

Hence, applying union bound together with (32) yields that

P
{
#8 b 9 * [=] : ¨� ! g g

}
= > (1) . (34)

It follows that with probability at least 1 2 > (1), ¨� ! < g for all

8 b 9 * [=], which, by our construction of � and ĉ , further implies

further implies � £ [=] \ � and ĉ = c |� .
By Chebyshev’s inequality and our choice of g = 2E [¨�� ] g 0,

for any 8 * [=],
P {|¨�� 2 ` | > (1 2 2)`} = P {|¨�� 2 E [¨�� ] | > (1 2 2)E [¨�� ]}

f Var [¨�� ]
(1 2 2)2E [¨�� ]2

~ W ,

Applying Proposition 2 yields that

W = $

(
!2

=@
+ !2

d2(�+	 ) |J |

)
. (35)

It follows that E [|� |] f W=. For any constant X * (0, 1), we can
choose the constant� (n, X) large enough, so that when=@ g � (n, X),
the assumption ! f 26

:
=@ holds for a su�ciently small constant

26 and consequently W f X . Thus, E [|� |] = = 2 E [|� |] g (1 2 X)=.
If =@ = l (1), then by choosing 26 = > (1) we get W = > (1).

Therefore, by Markov’s inequality,

P
{
|� | g :

W=
}
f :

W = > (1) .
It follows that with probability at least 1 2 > (1), |� | f :

W= and

hence |� | g (1 2 :
W)= = (1 2 > (1))=.

4 APPROXIMATED SIMILARITY SCORES BY

COLOR CODING

In this section, following [32], we provide a polynomial-time algo-

rithm to approximately compute the similarity scores {¨� ! }�, !*[%]
in (3) when T is the family of chandeliers8 of size $ (log=), using
the idea of color coding [2, 3].

Approximate signed rooted subgraph count. Let � be a rooted

connected graph with # + 1 vertices. For each 8 * [=], we �rst

approximately count the signed graphs rooted at 8 that are isomor-

phic to � . Speci�cally, given a weighted adjacency matrix " on

[=], we generate a random coloring ` : [=] ³ [# + 1] that assigns
a color to each vertex of" from the color set [# +1] independently
and uniformly at random. Given any + ¢ [=], let j
 (+ ) indicate
that ` (+ ) is colorful, i.e., ` (G) b ` (~) for any distinct G,~ * + . In
particular, if |+ | = # + 1, then j
 (+ ) = 1 with probability

A ~
(# + 1)!

(# + 1)�+1 . (36)

De�ne

-�,� (", `) ~
∑

� (� )��
j
 (+ (())

∏

(+,-) *� (� )
"+- . (37)

Then E
[
-�,� (", `)

]
= A,�,� ("), where,�,� (") is de�ned in (1).

Hence, -�,� (", `)/A is an unbiased estimator of,�,� (").
When � is a tree, the color coding together with the recur-

sive tree structure enables us to use dynamic programming to

count colorful trees and compute -�,� (", `) e�ciently. This is

summarized as [32, Algorithm 2] for unrooted trees and the same

algorithm with minor adjustments also works for rooted trees.

First, since � is already a rooted tree, the step of assigning an ar-

bitrary vertex of � as its root is not needed and thus the rooted

8In fact, the algorithm does not rely on the chandelier structure and works for any
trees.
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tree )� constructed is exactly � itself. Second, as an intermedi-

ate step, [32, Algorithm 2] computes . (8,)� , [# + 1], `), which
is the same as aut(� )-�,� (", `). Hence, we can simply output

1
aut(� ). (8,)� , [# + 1], `) as the rooted tree count -�,� (", `).
Finally, we generate independent random colorings `1, . . . , `+

and average over -�,� (", `#)’s to better approximate,�,� ("),
where we set

C ~ +1/A, .

Approximate similarity scores. To approximate ¨� ! c ¨
T
� ! in (3),

we apply the above idea to each chandelier� * T . Generate 2C ran-

dom colorings {`�}+�=1 and {a�}+�=1 which are independent copies

of ` that map [=] to [# + 1]. De�ne

˜̈� ! ~
1

A2

∑

� *T
aut(� )

(
1

C

+∑

�=1

-�,� (�, `�)
) (

1

C

+∑

�=1

- !,� (�, a�)
)
.

(38)

Then E
[˜̈� ! | �, �

]
= ¨� ! . Moreover, the following result bounds

the approximation error under the same conditions as those in

Propositions 2 and 3 for the second moment calculation.

Proposition 4. For any 8 * [=], if (20) holds,
Var[˜̈�� 2 ¨�� ]
E [¨�� ]2

= $

(
!2

d2=@
+ !2

d2(�+	 ) |J |

)
; (39)

for any 8 b 9 , if (22) holds,

Var[˜̈� ! 2 ¨� ! ]
E [¨�� ]2

= $

(
1

|T |d2�

)
. (40)

Finally, we show that the approximate similarity scores ˜̈� ! can
be computed e�ciently using Algorithm 2.

Algorithm 2 Approximate similarity scores via color coding

1: Input: Centered adjacency matrices � and � and integers

 , !,", #, '.

2: Apply the algorithm for generating rooted trees in [7, Sec. 5]

to list all non-isomorphic rooted trees with  edges, compute

aut(� ) for each rooted tree using the automorphism algorithm

for trees in [11, Sec. 2], and return J as the subset of rooted

trees whose number of automorphisms is at most '.

3: Generate ( , !,", ')-chandeliers using J to obtain T per Def-

inition 3.

4: Generate i.i.d. random colorings {`�}+�=1 and {a�}
+
�=1 mapping

[=] to [# + 1].
5: for each 0 = 1, · · · , C do
6: For each � * T , compute {-�,� (�, `�)}�*[%] and

{- !,� (�, a�)} !*[%] via [32, Algorithm 2] with adjustments de-

scribed after (37).

7: end for

8: Output: {˜̈� ! }�, !*[%] according to (38).

Proposition 5. Algorithm 2 computes {˜̈� ! }�, !*[%] in time$
(
=2 (34U)�

)
.

Furthermore, when =@ g 2, under the choice of  , !,", ' * N as

per (10), the time complexity is$ (=�/� ), where n is from (10) and 2 is

an absolute constant.

Proof of Theorem 2. Note that

Var[˜̈� ! ] = Var[˜̈� ! 2 ¨� ! ] + Var[¨� ! ] + 2Cov
(
˜̈� ! 2 ¨� ! ,¨� !

)

= Var[˜̈� ! 2 ¨� ! ] + Var[¨� ! ] , (41)

where the last equality holds because E
[˜̈� ! |�, �

]
= ¨� ! and so

Cov
(
˜̈� ! 2 ¨� ! ,¨� !

)
= E

[
E

[
(˜̈� ! 2 ¨� ! ) |�, �

]
¨� !

]
= 0 .

Under the assumption of Theorem 1, both (20) and (22) hold.

Since E
[˜̈� !

]
= E

[
¨� !

]
, applying Proposition 4 yields

Var[˜̈�� ]
E

[˜̈��
]2 = $

(
!2

d2=@
+ !2

d2(�+	 ) |J |

)
;

for all 8 and

Var[˜̈� ! ]

E
[˜̈��

]2 = $

(
1

|T |d2�

)
.

for all 8 b 9 . In other words, Propositions 2– 3 and hence Theorem 1

continue to hold with ˜̈� ! in place of ¨� ! . The time complexity

follows from Proposition 5. ¥

5 SEEDED GRAPH MATCHING

Recall that with high probability Algorithm 1 applied to the class T
of chandeliers �nds a set � with |� | = =2> (=) and recovers the latent
permutation c on � . In this section, we develop a seeded graph

matching subroutine (Algorithm 3) that matches the remaining

vertices, thereby achieving exact recovery. Since the seed set �

depends on graphs � and �, we need to show that Algorithm 3

succeeds even if the seed set � is chosen adversarially as long as

|� | = (1 2 > (1))=.
Given � 2 ¢ [=] and an injection c 2 : � 2 ³ [=], for any vertex 8

in � and vertex 9 in �, denote by Nÿ 2 (8, 9) the number of common

neighbors of 8 and 9 under the vertex correspondence c 2, namely,

the number of vertex D * � 2 such that D is a neighbor of 8 in � and

c 2 (D) is a neighbor of 9 in �.

Algorithm 3 Seeded graph matching

1: Input: � and �, a mapping ĉ : � ³ [=], and W .
2: Let � = � and c̃ = ĉ .

3: while there exists 8 + � and 9 + c̃ (� ) such that Nÿ̃ (8, 9) g
W (= 2 2)@2 do

4: Add 8 to � and let c̃ (8) = 9 .

5: end while

6: Output: c̃ .

Algorithm 3 keeps adding vertices as new seeds once we are

con�dent that they are true pairs based on the current seed set,

in a similar fashion as the percolation graph matching proposed

in [46]. It is a simpli�ed version of [6, Algorithm 3.22], since our

initial seeds are guaranteed to be error-free (thanks to Theorem 1)

and so there is no need to clean up any mismatch. This allows us

to show our Algorithm 3 succeeds under the information-theoretic

necessary condition of =@(@ + d (1 2 @)) g (1 + n) log=, whereas
their algorithm requires=@(@+d (12@)) > logÿ = for some constant
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� > 1. Another similar algorithm in prior work is [31, Algorithm 4],

which however requires =@ f
:
=/log=.

The following proposition gives su�cient conditions for our

seeded algorithm to achieve exact recovery. Let

ℎ(G) = G logG 2 G + 1 (42)

for G > 0, which is a convex function with the minimum value 0

achieved at G = 1.

Proposition 6. Fix an arbitrarily small constant n > 0. Suppose

�, � > G(=, @, d) with @ f 1
2 , =@(@ + d (1 2 @)) g (1 + n) log=, and

d g n . Let ĉ c ĉ (�, �) denote a mapping: � ³ [=] such that ĉ = c |�
and |� | g (1 2 n/16) =. Let W denote the unique solution in (1, +>) to
ℎ(W) = 3 log%

(%22)'2 . Then with probability at least 1 2 > (1), Algorithm 3

with inputs ĉ and W outputs c̃ = c in $ (=3@2) time.

Proof of Theorem 3. Theorem 1 ensures that, with probability

12> (1), Algorithm 1 returns a mapping ĉ : � ³ [=] in time$ (=ÿ )
such that ĉ = c |� and � g (1 2 n/16)=. Furthermore, Proposition 6

implies that, with probability 1 2 > (1), Algorithm 3 outputs c̃ = c

in $ (=3@2) time. Hence, Theorem 3 follows. ¥
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A AUXILIARY RESULTS

The following lemma computes the cross-moments of �+- and

�ÿ (+ )ÿ (-) from the centered adjacency matrices.

Lemma 1 ([32, Lemma 5]). Let (�, �) > G(=, @, d). Assume @ f 1
2 .

For any 0 f ℓ,< f 2 with 2 f ℓ +< f 4,

E

[
f232#�

3
+-�

#
ÿ (+ )ÿ (-)

]
=




d1{3=#=1} ℓ +< = 2
� (122'):
' (12')

ℓ +< = 3

' (12')+� (122')2
' (12') ℓ +< = 4

. (43)

Moreover,���E
[
f232#�

3
+-�

#
ÿ (+ )ÿ (-)

] ���

f |d |1{3=#=1}1{3+#=2} +
√

1

@
1{3+#=3} +

1

@
1{3+#=4} . (44)

B A DATA-DRIVEN CHOICE OF THE

THRESHOLD

In this section, we describe a data-driven approach to choose thresh-

old g in Algorithm 1 without the knowledge of @ and d . For each

8 * [=], let k (8) denote one of the maximizer of ¨� ! over all

9 * [=]. Let : denote the corresponding node such that ¨!� (! )

is the median of {¨�� (� ) : 8 * [=]}. Set ĝ =
1
2¨!� (! ) . We claim

that 1
22` f ĝ f 1

2 (2 2 2)` for any constant 0 < 2 < 1 with prob-

ability 1 2 > (1) when =@ = l (1) and with probability 1 2 3X for

any constant X * (0, 1) when =@ g � (n, X). Hence by Theorem 1,

|� | = (1 2 > (1))= with probability 1 2 > (1) in the former case and

E [|� |] g (1 2 3X) (1 2 X)= g (1 2 4X) in the latter case.

It remains to show the claim, which reduces to proving 2` f
¨!� (! ) f (2 2 2)`. Without loss of generality, we assume c = id.

Let

� =

{
8 * [=] : 8 * argmax

!
¨� ! and 2` f ¨�� f (2 2 2)`

}
.

Recall that � = {8 : |¨�� 2 ` | > (1 2 2)`} as de�ned in (31). By (34),

with probability at least 1 2 > (1), ¨� ! < 2` for all 8 b 9 and hence

� = [=]\� . Moreover, we have E [|� |] f W=, where W is given in (35).

By Markov’s inequality, P {|� | g =/3} f 3W . Note that W = > (1) if
=@ = l (1), and W < X for any constant X * (0, 1) if =@ g � (n, X).
Hence, we have |� | g 2=/3 with probability 1 2 > (1) if =@ = l (1),
and with probability 1 2 3X if =@ g � (n, X). Henceforth assume

|� | g 2=/3. If ¨!� (! ) > (2 2 2)`, then there are at least =/2 nodes
8 with ¨�� (� ) > (2 2 2)`, contradicting |� | g 2=/3. Analogous
argument holds for the case of ¨!� (! ) < 2`. Thus, we must have

2` f ¨!� (! ) f (2 2 2)`.
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