Knowledge and Information Systems
https://doi.org/10.1007/s10115-023-01887-6

REGULAR PAPER

®

Check for
updates

Temporal super-resolution traffic flow forecasting via
continuous-time network dynamics

Yi Xie'2 . Yun Xiong'2 . Jiawei Zhang? - Chao Chen?. Yao Zhang'? . Jie Zhao* -
Yizhu Jiao'? - Jinjing Zhao® - Yangyong Zhu'2

Received: 20 September 2022 / Revised: 27 March 2023 / Accepted: 22 April 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract

Traffic flow forecasting is a critical task for intelligent transportation systems. However, the
existed forecasting can only be conducted at certain time steps, because the data are discretely
collected at these time steps. In contrast, traffic flow evolves in real time via a continuous
manner in real world. Therefore, an ideal forecasting paradigm should be performed at
arbitrary time steps instead of only at these certain time steps. Considering the forecasting time
steps will no longer be restricted by these time steps, we call such paradigm as temporal super-
resolution forecasting. In this paper, we incorporate the idea of neural ordinary differential
equations (neural ODEs) to handle the problem, modeling the change rate of traffic flow on
the urban road. Therefore, due to the continuous nature of ordinary differential equations,
the traffic flow at arbitrary time steps can be forecasted by performing definite integral for
the change rate. The urban road is usually regarded as a network, and the change rate of
which can be described by continuous-time network dynamics, we parameterize the network
dynamics of the traffic flow to quantify the change rate. On these foundations, we propose
spatial-temporal continuous dynamics network to complete the temporal super-resolution
forecasting task. Extensive experiments on public traffic flow datasets illustrate that our
model can achieve high accuracy on temporal super-resolution forecasting, while ensuring
its performance on conventional experimental settings at these certain time steps.
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1 Introduction

With the urbanization and intelligence of human activities, traffic flow forecasting plays a
fundamental role in urban governance. Such a task can significantly enhance various urban
computing tasks, e.g., traffic congestion control, vehicular trajectories analysis, estimating
time of arrival and internet of vehicles [1-4]. In most cases, traffic flow data are usually
recorded at certain time steps, resulting in the recorded data has inherent discrete nature.
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Fig. T The illustration of our motivation and solution. For simplicity, we use integer time steps to represent
recording time steps, and use float time steps time steps to represent any time steps within recording intervals.
A The motivation. Conventionally, the forecasting can only be conducted at the recording time steps, and can’t
be conducted at arbitrary time steps within recording intervals. B The solution. We model the change rate of
traffic flow and perform definite integral for the change rate, so that forecast the traffic flow at arbitrary time
steps regardless of the recording intervals

The discrete nature hinders us from handling the information within intervals among
recording time steps. Because there is no information to be contrasted within recording
intervals, implying most of the information is unrecorded and intractable, resulting in the
forecasting can only be conducted at these recording time steps. For instance, when the
recording interval is 5 min, one can’t forecast the traffic flow after 30s or 7 min, since there
are no supervision signals to guide the forecasting at corresponding time steps. Under such
circumstances, the forecasting flexibility will be significantly restricted. Especially in some
cases, people usually need more flexible or more frequent forecasting, e.g., rescue activities,
emergencies or rush hours, etc., the equal-resolution forecasting under the existing paradigm,
where the forecasting intervals equal to the original recording intervals, will powerless.
Therefore, a new forecasting paradigm that beyond the original recording time steps will be
more valuable to those in need. The motivation can be illustrated in Fig. 1A.

This paper aims to make the traffic flow forecasting can be conducted at arbitrary time steps,
regardless of the recording intervals. In which, the forecasting intervals can be far smaller
than recording intervals. We call such a forecasting paradigm as temporal super-resolution
traffic flow forecasting (TSRF for short). Correspondingly, the conventional case that the
forecasting are conducted at recording time steps is referred to as temporal equal-resolution
traffic flow forecasting (TERF for short) in this paper.

Despite its significance, TSRF is very challenging due to the following reasons:

e The sparsity of supervision signals. The coarse-grained nature results in the extreme
sparsity of provided supervision signals, which means that the forecasting at most time
steps is unavailable to contrast with supervision signals. Therefore, we should make full
use of the limited supervision signals to overall optimize the forecasting at all time steps,
which is not focused on in the previous studies.

o The causality of temporal correlations. Time series data always present strong temporal
causality [5], which implies that the evolution within any tiny time intervals should meet
such an abstract but actually existed temporal causality. Because the causality is hard to
be quantified, it will inject extra complexity in TSRFE.

e The dependencies of spatial correlations. Although the TSRF is conducted in the
temporal dimension, the traffic flow evolution also has spatial correlations, which should
be simultaneously modeled in the forecasting.
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Fig. 2 The network dynamics of traffic flow on the urban road network. A The topology of abstract road
network, black lines represent the directed edges in the network, and the orange dotted lines are modeled
transition probabilities at the moment. B The traffic flow evolution driven by flow transitions, where At denotes
atiny time interval (mathematically infinitesimal). C At the corresponding time steps, where supervision signals
are available, we will use the supervision signals to correct the forecasting and optimize the network dynamics
(Color figure online)

Fortunately, the idea of neural ordinary differential equations (neural ODEs) [6] points
out that the traffic flow evolution within tiny time intervals is not untraceable. We model
the change rate for traffic flow and perform the definite integral for the change rate thus
forecasting the traffic flow at arbitrary time steps due to the continuous nature of ordinary
differential equations. The solution is shown as Fig. 1B.

The urban road is usually modeled as a network, we use continuous-time network dynamics
to describe the change rate. Previous studies confirm that traffic flow of adjacent vertices in
road networks are typically similar to each other because vehicles traverse between them
frequently [7, 8], which can be recognized as the spatial local stationary property in statistics
[9]. In light of the traffic flow will spontaneously transfer with corresponding transition
probabilities to the adjacent vertices, the network dynamics can be quantified as a transition
process on the road network, which will be divided into two parts: (1) real-time inference
of transition probabilities for traffic flow and (2) calculation of traffic flow transition volume
based on transition probabilities. Intuitively, we take Fig. 1B as an example, the traffic flow
of vertex A continuously transfer to vertex B with transition probability p4p(¢) at time step
t, causing the traffic flow to increase in B but decrease in A. Therefore, we can model the
traffic flow evolution with a tiny time interval in terms of traffic flow transitions, to better
capture the spatial correlations.

By incorporating the concept of continuous network dynamics, we can well tackle the three
challenges mentioned above. Firstly, the continuous nature of network dynamics can help us
to infer the traffic flow at arbitrary desired time steps. Secondly, because of the additivity of
definite integrals, subsequent states are completely determined by previous states, so that the
temporal causality can be well preserved. Lastly, we specify the network dynamics as the form
of GNN:ss to capture the complex spatial correlations due to the message passing mechanism of
GNNs [10]. Based on the above, we design a model, Spatial-Temporal Continuous Dynamics
Network (STCDN).! In STCDN, we model the continuous-time network dynamics for traffic
flow on the road network and forecast future instantaneous traffic flow at arbitrary desired
time steps. Experiments on four public traffic flow datasets illustrate that our model can not

I The source code is available at https://github.com/Xieyyyy/STCDN.
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only achieve high accuracy on temporal super-resolution traffic flow forecasting, but also
outperforms other baselines on conventional TERF tasks.
In general, the major contributions can be summarized as follows:

e We identify a common but under-explored issue, that existing traffic forecasting studies
can only be conducted at certain recording time steps and fail to perform temporal super-
resolution forecasting Therefore, we propose Spatial-Temporal Continuous Dynamics
Network (STCDN) to forecast the traffic flow at arbitrary time steps, rather than these cer-
tain recording time steps. We call such forecasting paradigm as temporal super-resolution
forecasting (TSRF).

e To this end, we incorporate the idea of neural ordinary differential equations (neural
ODEs) to model change rate of traffic flow, and to forecast the traffic flow at arbitrary
time step via definite integrals. Considering the urban road is usually recognized as a
network, we specify the change rate of traffic flow as continuous-time network dynamics.

e Extensive experiments illustrate that in temporal super-resolution forecasting tasks, com-
paring with an intuitive solution, i.e., incorporating interpolation algorithms, our model,
respectively, achieves averaged 8.0% performance improvements. Meanwhile, in con-
ventional experimental settings, our model also outperforms other baselines evaluated
by 10 out of 12 metrics with averaged 2.60% improvements.

2 Related work
2.1 Traffic flow forecasting

Traffic flow forecasting is a typical spatial-temporal modeling task that is important for urban
computing and is of great significance for the construction of smart cities. Earlier studies focus
on traditional statistical methods to analyze univariate time series, the representatives include
historical average (HA), vector auto-regression (VAR) [11, 12], auto-regressive integrated
moving average (ARIMA) [13, 14], and support vector regression machines (SVR) [15],
etc. These shallow methods only capture the temporal dependencies and simplify the traffic
flow modeling into individual time-series forecasting, the preconditions for these methods
to capture complex spatial-temporal correlations are sophisticated and manually designed
feature engineering.

With deep neural networks proving their superiority of powerful representation ability,
subsequent studies leveraged neural networks to complete more accurate modeling [16—
18], which completely ignores the spatial dependencies. Accordingly, convolutional neural
networks (CNNs) are utilized to model spatial correlations of rasterized road networks [19—
22]. Meanwhile, the temporal information can be handled by sequential models, like recurrent
neural networks (RNNs) [20, 23] or temporal convolutional networks (TCNs) [24, 25].

However, CNN-based methods can only be applied to Euclidean data. Therefore, graph
neural networks (GNNs) are incorporated to tackle massive non-Euclidean spatial data,
named spatial-temporal graph neural networks [26]. Some graph-based methods adopt prior
knowledge to construct a graph structure via a pre-defined adjacency matrix [23, 24, 27, 28],
in which the graph structure remains constant because its information has been determined
by prior knowledge. In order to boost the representation ability of graph neural networks,
various auxiliary adjacency matrices are introduced to describe spatial relationships from
different aspects, such as DTW distances [29, 30] for measuring the feature relevance of ver-
tices, or other specific functional relevance (e.g., POI) [20, 31]. Recently, some studies have
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adopted entirely data-driven optimizable semantic adjacency matrices [25, 32, 33] to capture
latent correlations among vertices. The spatial information and temporal information will be
further integrated and fused in different ways, such as stacking [24, 27, 34], embedding [23,
25] or synchronization [28].

Recently, some studies introduce neural ODEs to to obtain spatial-temporal hidden states
with continuous depth, thus greatly improving the representation ability of the model [30, 35—
37]. Nonetheless, these studies use neural ODE as a tool to solve their confronted problems,
for instance, [30] and [36] are to use the idea of neural ODE to solve the problem of spatially
unreachable information at remote nodes, and to alleviate the over-smoothing issue for the
spatial information; [35] uses neural ODE to balance the forecast ing precision with the
computational cost; and [37] introduces neural ODE to handle irregular time series. Although
these studies use neural ODE to solve well-motivated and achieve good results, these studies
can not handle the temporal super-resolution forecasting.

2.2 Super-resolution reconstruction

Super-resolution reconstruction was first widely studied in computer vision. Researchers aim
to reconstruct relatively higher resolution images based on lower resolution images, referred
to as super-resolution reconstruction [38, 39]. Earlier studies adopt interpolation algorithms
[40, 41] to reconstruct fine-grained information on images and obtain high-resolution images.
However, Super-resolution reconstruction is an inherently ill-posed problem, there always
exist multiple high-resolution images corresponding to one original low-resolution image.
Therefore, learned-based methods are incorporated to reconstruct super-resolution images
with richer semantic information [42, 43]. Subsequently, several studies referred to the idea of
super-resolution reconstruction to reconstruct fine-grained information of MRI information
[44], crowd flow information [45—-47], and radio map information [48, 49], efc. Nonetheless,
these studies all focus on fine-grained spatial information reconstruction. Very few studies
focus on temporal information reconstriction and temporal super-resolution forecasting. A
similar task is missing value imputation of time series [50-52]. Nonetheless, the missing
value imputation task has fundamental differences with our task: (1) Task difference. The
former is an interpolation task, which aims to impute the original incomplete time series data.
In our task, it is an extrapolation task, aiming to make the forecasting intervals independent
of recording intervals; (2) Data difference. The former is usually adopted to tackle corrupted
data, which might be caused by device failures and human errors, efc. In our task, the data
could be corrupted or not, the coarse-grained and incomplete nature of which is mainly caused
by the inherent recording limitations. (3) Purpose difference. The former is usually adopted
to repair corrupted data, and our task is adopted to forecast future traffic flow at flexible time
steps.

3 Problem statement
3.1 Definition (traffic network)
Let G = (V, E, A) denotes a traffic network, with the set of vertices V (sensing devices),

and the set of edges E (geographical or semantic connections). |V | = n represents the graph
G contains n vertices. A € R"*" denotes the adjacency matrix of G. This paper will learn

@ Springer



Y. Xie et al.

the adjacency matrix A with an end-to-end manner. Additionally, at the time step #, there are
features of vertices X(¢) € R"*', where i is the original input feature dimension.

3.2 Temporal super-resolution traffic flow forecasting (TSRF)

The temporal super-resolution traffic flow forecasting task (TSRF) is introduced to forecast
traffic flow at arbitrary desired time steps.

Formally, given the traffic network G and £ historical observations from the initial time
step t_j, to the terminal time step 7—1: X (t—p, : 1—1) = [X(t_p), X(t—p+1), - -+ , X(t-1)], our
target is to find a mapping function Fg(t, -) to forecast the traffic flow at an arbitrary time
step ¢. Here, ¢ can be any time step that satisfies # > t9, where 7o denotes the initial time
step of forecasting. We should minimize the error between the forecasted traffic flow and the
supervision signals X (to : t,—1) = [X(%), X(#1), - - - , X(#4—1)] at corresponding time steps
locate in T = [tg, ty, -+ , tg—1]:

argmin Z L(Y(1), X(t))
© 1eT , (1)
st. Y(t) = Folt, X(t_p 1 t—1))

where L is the objective function, ® denotes all trainable parameters. Fg (t, X (f_j : t_1)) €
R"* is a matrix to describe the state at time stept, X (t_p 1 t_1) € Ri>nxi 'y (1), X(r) € R*¥
are lists of values, we stack it as matrices to facilitate parallelization. Note that we will use
negative values to denote the time steps with historical observations, while #y denotes the
initial time step of forecasting.

3.3 Temporal equal-resolution traffic flow forecasting (TERF)

In order to correspond to the aforementioned TSRF, we introduce the temporal equal-
resolution traffic flow forecasting task (TERF) to represent the conventional traffic flow
forecasting, where the forecasting intervals equal to the recording intervals.

Formally, given the traffic network G and £ historical observations from the initial time
step t_j, to the terminal time step 7—1: X (t—p, : t—1) = [X(t—p), X(t—p+1), - -+ , X(t-1)], our
target is to find a mapping function Fg (-) to forecast the next g-step traffic flow from the time
step fo to the terminal 7, | as V(t : t,—1), and minimize the error between the forecasted
traffic flow and the supervision signals X'(fy : t,—1):

argmin  L(Y(fo : tg—1), X (fo : t4—-1))
© ; 2)
s.t. V(o : ty—1) = Fo(X(-p :t-1))

where V(19 : t,-1), X(to 1 ty—1) € Ra*nxi,

The Problem 1 is what our model should tackle, and the Problem 2 is the conventional
problem definition of previous studies. The difference between the both is if we can flexibly
select the forecasted time step . In the former, # can be any time step that satisfies t > 1,
while the forecasted time step ¢ are fixed in the latter. Actually, the latter is a subproblem of
the former, which implies that one can solve the former will certainly solve the latter, and
not vice versa.
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4 An overall solution

From the continuous-time dynamical system view, the continuous depth of neural networks
is equivalent to continuous physical time [6, 53, 54]. Meanwhile, the discrete layer of neural
networks can be converted as a continuous one in the neural ODEs, also can be recognized as
the change rate of features at each moment [6]. Therefore, we impose the continuous depth
on network dynamics via neural ODEs, enabling it to represent continuous physical time.

Firstly, for better representation ability, we will use a fully connected layer to map the
original input traffic flow feature X(¢) € R"*’ at time step ¢ into high-dimensional hidden
space H(r) € R"*? with hidden dimension d. At time step ¢, the traffic flow hidden state is
denoted as H(r) € R"*“, we formulate the network dynamics of traffic flow on road network
as a continuous-time function fg (¢, H(¢)) over time ¢. The network dynamics should be the
form of ordinary differential equation [6]:

dH(r)
dr

fe(r, H(t)) = (3)
where ® denotes all trainable parameters. Essentially, the network dynamics is the derivative
function of hidden state H(7) over time ¢. Under the circumstances of our task, it can also be
interpreted as the instantaneous rate of change of traffic flow.

By integrating the Eq. (3) over time ¢ from an initial hidden state H(fp) € R"*¢ at time
step o, Eq. (3) is actually equivalent to solving an initial value problem [55]. We can infer
the continuous-time instantaneous hidden state H(#) at an arbitrary time step ¢t > fy via the
definite integral with variable upper bound:

t
H(r) = H(zx) +/ fo(r, H(r))dr. 4
10

Therefore, from the Eq. (4), we can model the traffic flow on road network as a constant
coefficient dynamical system with parameter sharing over time. The larger upper bound ¢
is, the "deeper" the neural networks is, and in physical meaning, the longer the evolution
time-consuming of traffic flow on the road network is. Meanwhile, because the upper bound
t can be arbitrarily selected, as long as it satisfies ¢ > ty, we can infer the traffic flow at
arbitrary time steps regardless of the recording intervals, realizing the TSRF task. Also, the
parameter sharing nature provides the opportunity to overall optimize the network dynamics
by minimizing the loss on partial time steps.

We will use a self-attention-based graph neural network to specify the network dynamics.
Intuitively, in the context of traffic flow on road network, the above idea can be interpreted as a
straightforward phenomenon that the ceaseless traffic flow transition in the road network will
trigger the evolution of traffic flow over time. The intuition is exactly meets the conventional
physical-guided traffic flow theories [7, 8, 56].

5 Methodology: spatial-temporal continuous dynamics network
5.1 Overview
The overview of spatial-temporal continuous dynamics network (STCDN) is shown as

Fig. 2. From the illustration, we can see that STCDN is a typical encoder-decoder model
[57]. The most intuitive characteristic is our model will generate a set of continuous dotted
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curves via the definite integral of the network dynamics, which exactly represent the continu-
ous evolution of traffic networks in which we will use a graph neural network to parameterize
the network dynamics thanks to its message passing nature in graphs [10, 53]. According to
the definition of ordinary differential equations [6, 58], the parameterized network dynamics
is equivalent to the change rate with respect to the temporal dimension of the traffic network.
Then, the network dynamics will perform definite integral to form the evolution with contin-
uous patterns, and finally be, respectively, coupled with the encoder and decoder of STCDN
(Fig. 3).

5.2 Network dynamics

Firstly, we first specify the network dynamics, denoted as fg(-). For better simulate the traffic
flow transition on the traffic network, considering the network dynamics are equivalent to the
change rate of traffic flow, the network dynamics should contain two processes: (1) real-time
inference of transition probabilities for traffic flow and (2) calculation of traffic flow transition
volume based on transition probabilities. Therefore, we design a based graph neural network
to specify the network dynamics.

Firstly, infer the real-time transition probabilities for traffic flow. We use hidden state
H(r) € R4 to describe the traffic flow state on the traffic network at the time step 7. Give
the hidden state H(¢) and the adjacency matrix A at time step ¢, we denote the transition
probabilities as a transition matrix M(z) € R"*":

M(t) = Softmax(Filter(A o (Q1(z) + Q2(t)K®) "), ®)
where
Qi (1) =H([®)Ogp,
Q2(1) =H()Og2,. (6)
K(t) =H()Og
A A
Filter(A;;) = i / i # 9 ) )
—o0 otherwise
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Fig.3 The overview of spatial-temporal continuous dynamics network
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®p1,002, 0k € R9*d gre trainable parameters, o denotes Hadamard product. The purpose
of the simultaneous existence of Q;(¢) and Q> () is to obtain the representations as the roles
of target and source in a directed graph, respectively. Filter(-) is a newly defined function to set
0-value entries as the negative infinity, ensuring the transition probabilities of non-neighbor
are always 0 after the Softmax(-) (Fig. 4).

After obtaining the transition probabilities matrix, the next task is to calculate the traffic
flow transition volume C(r) € R"*4 based on transition probabilities:

Ct) =M@®)V(@), ()
where
V(@) =H@)Oy, 9

Oy € RY*? is a matrix of trainable parameters. The purpose of Eq. (8) is to complete
traffic flow transition and perform feature transformation. The traffic flow transition volume
C(#) numerically equals to the network dynamics fg (¢, H(z)). Intuitively, the traffic flow
transition volume is exactly the volume of change of the traffic flow at each moment, which
can represent the derivative function of traffic flow on road network.

Combining Egs. (5), (6), (7), and (8), the network dynamics based on graph neural net-
works can be written as the following fully expanded form:

fo(t, H(t)) = Softmax(Filter(A o Q1 (#)+

(10)
Qx(1))(K(1) V(1)

Similar to other self-attention-based algorithms [59, 60], we impose multi-head operation on
the network dynamics to reduce parameters and enhance the representation ability.
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Fig.4 The illustration of the self-attention-based network dynamics

@ Springer



Y. Xie et al.

5.2.1 Encoder

Theoretically, if we have the initial hidden state H(#p), we can inference the subsequent
continuous-time hidden state via the Eq. (4). This implies that the initial hidden state should
contain rich semantic information. Therefore, we design an encoder to incorporate the infor-
mation from historical observations.

Formally, given the historical observations X' (r_j, : t_1) = [X(_p), X(t_p+1), - -+ , X(t-1)]
from the from the initial time step 7_; to the terminal time step f_j, where X' (7_j
t.1) € RP7<i We firstly use a fully connected layer to map it into a hidden space:
Ht_p : t-1) = [H@_p), H_pt1), -, H@z_1)], where H(t_p : 1_1) € R4 We
take H(7_j) as the initial state to solve the initial value problem until the integral upper
bound 7_j,11 via the network dynamics fe, (¢, H(f)), and obtain the hidden state at z_y:
pt

H(p1) =H(-p) +/ Jor (z. H(7))dr, an

I—p

where ® ¢ denotes all trainable parameters in the encoder, which implies the parameters in
the encoder and the decoder are not shared. After obtaining the H(7_j,4+1) € R"*4 there are
historical observations X(7_;41) € R™*/ that can be used to complement the hidden state,
reducing the errors accumulation. We will use a linear combination to fuse the hidden state
H(z_j1) and the historical observations X(¢_j1):

X(t—pt1) i= FCH(—p11) + FCX(1—p41), (12)

where F C(-) denotes a fully connected layer with activation function. The above process will
be performed repeatedly, until all historical observations are encoded into an intermediate
hidden state H € R"*.

Although the TSRF will not be performed in the encoder, we still encode the network
dynamics, since we observe the network dynamics can be interpreted as a feature augmen-
tation, enabling the model to achieve better forecasting performance. The hypothesis will be
confirmed in the ablation study part.

5.2.2 Decoder

The decoder takes the hidden state H as the initial information. Because no any comple-
mentation information should be incorporated, we directly integrate the network dynamics
fo, (t, H(1)) to forecast the traffic flow Y (z) € R"* at the time step ¢:

t
Y(@) = FC(H+/ fop (r, H(r))d7). (13)
10

Analogously, ®p denotes all trainable parameters in the decoder.

5.2.3 Optimization

STCDN provides an end-to-end manner to optimize. Formally, given the ground-truth from
fo to 141, X(fo : t;—1), as supervision signals, together with the set of time step where
supervision signals locate in: T = [#9, t1, - - - , t;—1]. We use Mean Absolute Errors (MAE)
as the loss function:

L= "Y(®) = X©®|+ 28], (14)
teT
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where the latter term A||®]|, denotes L2 regularization for avoiding over-fitting.

We will only extract the forecasting results at time step that contained in T to contrast
the ground-truth and optimize. Because the network dynamics share the same parameters,
we optimize the model according to the forecasting at these certain time step, forecasting
at arbitrary time step will also be adjusted simultaneously, since these forecasting are all
generated by the network dynamics. From this perspective, the TSRF can be regarded as a
semi-supervised learning task.

5.3 Implementation details
5.3.1 Numerical integration

We solve the initial value problem shown in Egs. (4), (11), and (13) by numerical integration
methods, such as Euler method, Runge—Kutta method, or Dormand-Prince method [61].
These numerical integration methods can infer the continuous-time instantaneous hidden
state that determined by network dynamics.

5.3.2 Adjacency matrix

Instead of using geographical adjacency matrix that generated by prior geographical relation-
ships, we adopt the trainable adaptive adjacency matrix to obtain the semantic relationships
[25, 32, 33], which has been proved that can achieve better performance:

A = TopK (Tanh(c(M; - M,))), (15)

where M|, M, € R " are trainable parameter matrices with n’ < n, initialized by Xavier
method [62]. o (-) is the ReLU activation function. The T anh(-) function here is to constrain
the entries within O to 1 (together with the Re LU (-) function). T op K (-) function means that
we will only retain a certain percentage of edges according to the weight, and other edges
will be removed, the purpose of which is to ensure the sparsity of the adjacency matrix.

5.3.3 Computational complexity

The computational complexity (both time and space complexity) is related to the used
numerical integration algorithm, and different numerical integration algorithms have dif-
ferent computational complexity. Specifically, widely used numerical integration algorithms
in neural ordinary differential equations [6], have a significant parameter: the integration step
(equivalent to the super- resolution multiplier in our method), which determines the com-
putational complexity. In our method, the computational complexity will be slightly higher
than that of RNN (O (L) for L-length time series) due to the discrete approximation nature
of numerical integration algorithms, but all present a linear complexity with respect to the
number of time steps, i.e., O (kL) for L-length time series and % integration step.

6 Evaluation

In this section, we conduct extensive experiments on four real-world datasets to answer the
following questions:
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Table 1 Basic information of

datasets Datasets #Vertices Interval (min) #Time steps
PeMSD3 358 5 26208
PeMSD4 307 5 16992
PeMSD7 883 5 16992
PeMSD8 170 5 28224

Q1. How does the STCDN performs in the temporal super-resolution forecasting (TSRF)

tasks?

Q2. How does the STCDN performs in the conventional temporal equal-resolution fore-

casting (TERF) tasks?

e Q3. What the performance tendency of TSRF tasks is as the forecasting resolution mag-
nification increases?

e Q4. Does encoding network dynamics in the encoder improve the forecasting perfor-

mance?

6.1 Datasets

We will conduct conventional TERF on PeMSD3, PeMSD4, PeMSD7, and PeMSDS8, TSRF
and other experiments will be conducted on PeMSD4 and PeMSD8. Necessary information
of datasets is given in Table 1. All datasets record the information of traffic flow every 5 min.
These datasets are the benchmarks used in many existing studies [27-30, 63, 64].
According to these existing studies, for fairness, we adopt general solutions to preprocess
these datasets. Firstly, we utilize the Z-score normalization to the input information X’:

X —mean(X)

std(x) (16)

where mean(-) and std(-) are the mean value and the standard deviation of the input infor-
mation, respectively. All datasets aggregate records into 5-min interval, and 288 time steps
per day.

In addition, following these studies, we split the training set, validation set, and test set
for these datasets according to the chronological order by the corresponding ratio, i.e., 60%
for training set, 20% for validation set and 20% for test set.

6.2 Basic experimental introduction

We design two types of basic experiments to answer the Q1 and Q2, respectively.

6.2.1 Experimental introduction of TSRF

Performing temporal super-resolution forecasting (TSRF) is one of the most important moti-
vations for this paper. Nonetheless, evaluating the quality of TSRF is a problem, because
the purpose of TSRF is to forecast at time steps where there is no supervision signal, but
without a supervised signal we cannot evaluate the forecasting performance of the model.
To bridge the gap, We use upsampling to generate a new set of data with reduced resolution
from the original data. By doing so, we can train the model with the set of low-resolution
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data, while the original data are still high-resolution compared to the training data, so we can
use this high-resolution original data to evaluate our temporal super-resolution forecasting.
Specifically, in this part, we reduce the resolution by a factor of k = 3 for training, which
means that the resolution is in fact magnified by a factor of 3 for evaluating the TSRF.

6.2.2 Experimental introduction of TERF

The TEREF task is a conventional task that widely conducted in previous studies [27-30, 63,
64]. We refer to the experimental settings in previous studies for fairness, using past 12 time
steps of historical observations to forecast traffic flow of future 12 time steps, in which the
recording intervals are 5 min.

6.3 Baselines

Up to our knowledge, there is no spatial-temporal modeling algorithm that dedicated to
independently perform TSRF tasks. We divide all baselines into basic baseline models and
interpolation models. The former class can complete TERF. We introduce a compromised
way, imposing interpolation models on the forecasting results of these basic baseline models
to simulate TSRF tasks.

6.3.1 Basic baseline models

e Vector auto-regression (VAR) [11], a time series model to capture the pairwise relation-
ships among time series;

e Long short-term memory (LSTM) [65], a classical variant of recurrent neural networks
(RNNs) for time series;

e Diffusion convolutional recurrent neural networks (DCRNN) [23], in which the spatial
dependencies are captured by random walks, and the temporal dependencies are captured
by RNNs;

e Spatial temporal graph convolution networks (STGCNSs) [24], which formulates the
problem on graphs and builds the model with complete convolutional structures;

e Graph WaveNet (GWN) [25], a framework for deep spatial-temporal graph modeling,
which applies a learnable adaptive adjacency matrix to capture the hidden spatial depen-
dency;

e Attention-based spatial-temporal graph convolutional networks (ASTGCN) [27], which
designs spatial attention and temporal attention mechanisms to model spatial and tem-
poral dynamics, respectively;

e Spatial-temporal synchronous graph convolutional networks (STSGCN) [28], which
synchronously captures the spatial and temporal information by stacked graph convolu-
tional neural networks.

e Spatial-temporal fusion graph neural networks (STFGNN) [29], which adopt a data-
driven temporal graph to compensate several existing correlations that spatial graph may
not reflect.

e Spatial-temporal graph ODE networks (STGODE) [30], an model that captures spatial-
temporal dynamics through a tensor-based ordinary differential equation.
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6.3.2 Interpolation models

Lagrange interpolation (LAG), an interpolation algorithm based on polynomials [66];
Slinear interpolation (SLI), a spline interpolation of first order;

Quadratic interpolation (QUA), a spline interpolation of second order;

Cubic interpolation (CUB), a spline interpolation of third order [67];

Linear interpolation (LIN), an interpolation algorithm that the interpolation function is
a polynomial of the first degree;

e Nearest interpolation (NEA), an interpolation algorithm that selects the nearest informa-
tion to perform interpolating.

Performing interpolating requires sampling points, which should be coarse-grained. These
coarse-grained sampling points should be provided by other forecasting algorithms, referred
to as basic model. In this paper, we select DCRNN [23], STGCN [24], Graph WaveNet [25],
ASTGCN [27], and STGODE [30] as basic models and perform interpolating based on the
forecasting results of these models.

6.4 Experimental settings
6.4.1 Implementation settings

Our experiments were conducted on the computer environments with Tesla V100 GPU cards.
We implement our algorithm by PyTorch. Batch size is set as 32, the number of attention
heads (Z) is 8, hidden dimension in our algorithm (d) is 128, learning rate is 0.0003. We
incorporate Adam optimizer [68] to train our model. In the adjacency matrix, we retain
7.5% edges with the largest weight, and remove others. In computation, we select the 5-order
Dormand-Prince method [61] for numerical integration. Notability, the numerical integration
methods can be selected arbitrarily, e.g., Euler method, Runge—Kutta method, etc.

6.4.2 Evaluation metrics

Mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage
errors (MAPE) are used as the evaluation metrics. These metrics are defined as:

Yier YD) = X(@)]

MAE(Y, &) = (17
q
VY (@) —X(1))?
RMSE(Y, X) = Lier VYO Q) , (18)
q

Y(r) — X(¢

MAPE(Y, X) = Laer V() = X( )l, (19)
qX() +o0)

where X = [X(10), X(t1), - -+, X(ty—1)] and Y = [Y(#), Y(t1), - -- , Y(t4—1)] denote the
ground-truth and predictions with g-length, respectively. T = [f, t1, - -+ , t,—1] s the set of

time steps where supervision signals locate in. o denotes a tiny shift to prevent the denomi-
nator equals zero.

Experiments on all datasets are conducted at least 5 times with different random seeds,
and the shown metrics are the mean value all experiments. Note that we prefer to refer
to the experimental results of baselines given by authors if any. Otherwise, we tune the
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hyperparameters of baselines carefully, detailed settings of hyperparameters for baselines
are given on Github.

6.5 Experimental results
6.5.1 Performance comparison of TSRF

The detailed comparison of TSRF is given in Table 2. Note that the comparison shown
in the Table 2 is under the forecasting resolution magnification k = 3, other forecasting
resolution magnifications will be analyzed in the subsequent section.

From the comparison, we can see that STCDN presents the best performance on TSRF
tasks. Concretely, comparing STCDN with the second best performance, STCDN achieves
averaged 7.58% and 8.40% performance improvements on the two datasets, respectively.
Such a superiority mainly comes from the fundamental difference between STCDN and
other basic baseline models.

Interpolation-based methods overall exhibit less performance. On one hand, the perfor-
mance of these interpolation-based methods is highly dependent on the basic baselines that
they rely on. Moreover, basic baselines that perform well on conventional TERF task are
not consistent with the TSRF task. For instance, GWN can perform better on TSRF task
when it is considered as a basic baseline, but it failed to present competitivity in TERF task
as shown in Table 3. This results in selecting a ideal basic baseline a difficult and tricky
affair. Meanwhile, since different interpolation strategies take into account different orders,
the performance of these methods also dependent on the selecting of interpolation strate-
gies. The above two items make the construction of interpolation-based methods more like
a time-consuming permutation and combination when performing the TSRF task. Even so,
this approach did not achieve the desired performance.

In contrast, STCDN considers the traffic flow on road network as a physical-guided way,
i.e., continuous-time dynamical system. Whether classical physics-guided traditional theo-
ries [56], or human intuitive perception of traffic flow transitions [7, 8] have confirmed that
comparing with conventional spatial-temporal models that directly fusing spatial informa-
tion and temporal information [27-30, 63, 64], our proposed continuous-time transition of
traffic flow can better reflect the nature of the road network as a complex physical system.
Meanwhile, such a continuous-time nature can also more accurately approximate the real
traffic flow at arbitrary time steps in a more natural mean.

6.5.2 Performance comparison of TERF

The performance comparison of TERF is given in Table 3, which has the conventional
experimental settings. The comparison shows that our proposed model overall outperforms
other baselines in four public traffic flow datasets on 10 out of 12 metrics with averaged 2.60%
improvements. As we mentioned above, the modeling ideas of STCDN are fundamentally
different the idea of directly fusing spatial information and temporal information, which more
meets the natural evolution of traffic flow. Additionally, in the numerical integration methods,
there will be a lot of temporary hidden states are generated, which can be regarded as feature
augmentation. Therefore, we hypothesize that such a performance superiority mainly comes
from the augmented features provided by the generated hidden states, which will be verified
in the subsequent ablation studies.
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Table 2 Performance comparison of TSRF

Datasets Interpolations LAG SLI QUA CUB LIN NEA
Algorithms Metrics
PeMSD4 DCRNN MAE 32.88 28.63 30.53 29.13 30.96 30.67
RMSE 45.62 42.64 43.40 42.26 45.93 43.39
MAPE(%) 29.40 25.43 26.03 25.10 26.94 25.08
STGCN MAE 38.71 30.36 31.47 32.16 31.89 31.70
RMSE 55.93 48.73 47.52 48.29 45.28 47.23
MAPE(%) 42.02 30.28 33.28 34.77 31.16 31.53
GWN MAE 29.39 25.66 25.67 25.99 26.06 26.10
RMSE 43.86 38.24 38.10 38.28 38.50 38.61
MAPE(%) 21.34 20.05 20.01 19.40 19.99 19.39
ASTGCN MAE 29.72 28.85 28.46 27.60 28.34 28.36
RMSE 42.19 42.40 41.62 40.85 4141 41.74
MAPE(%) 24.21 21.50 21.64 21.47 24.69 2291
STGODE MAE 29.57 26.54 26.37 27.23 27.10 2691
RMSE 42.60 38.21 39.44 39.51 40.71 40.33
MAPE(%) 22.34 19.19 20.22 19.31 19.52 19.47
STCDN MAE 24.23 (| 5.57%)
RMSE 36.15 (| 5.12%)
MAPE(%) 17.60 (| 12.05%)
PeMSD8 DCRNN MAE 28.07 23.58 23.03 23.80 23.94 23.01
RMSE 40.53 35.55 35.47 34.83 34.69 33.48
MAPE(%) 21.66 18.67 17.61 18.53 18.31 18.78
STGCN MAE 30.95 26.64 26.97 26.13 25.17 26.73
RMSE 46.51 38.21 40.23 39.52 41.73 4243
MAPE(%) 31.28 20.33 21.38 23.17 22.78 21.12
GWN MAE 22.89 20.87 20.34 20.10 21.48 21.57
RMSE 3491 31.14 31.60 31.70 31.01 31.20
MAPE(%) 20.37 14.81 15.32 15.41 14.90 14.69
ASTGCN MAE 27.83 25.28 25.66 25.24 25.48 25.57
RMSE 40.89 37.27 37.33 36.80 37.18 37.31
MAPE(%) 19.43 18.16 17.48 17.66 16.82 17.34
STGODE MAE 24.13 21.51 21.32 20.87 21.44 21.39
RMSE 36.67 32.58 32.33 31.89 33.64 32.70
MAPE(%) 20.68 15.31 14.64 14.01 14.88 14.41
STCDN MAE 19.05 (} 5.22%)
RMSE 29.43 (| 5.49%)
MAPE(%) 12.56 (| 14.50%)

Bold fonts denote the best performance and underlines denote the second best performance
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Among these baselines, STFGNN [29] and STGODE [30] achieve the second best per-
formance. The both, utilized DTW-augmented graphs to complete the feature augmentation.
Therefore, the performance superiority of these two algorithms mainly comes from more
powerful feature engineering. Interestingly, in previous comparison in TSRF, GWN-based
algorithms achieve strong performance with interpolation, but it do not perform well in
TEREF tasks. This also confirms the randomness and uncertainty of selecting the combination
of basic baselines and interpolations when performing TSRF. Also, the experiment illus-
trates that STCDN can not only perform excellently in TSRF with significant performance
improvements, but also present strong competitivity in conventional TERF tasks.

Notability, our model significantly outperforms all baselines in metrics MAE and RMSE,
but failed to achieve the best in MAPE. This is because of we modeled network dynamics
is essentially a first-order ordinary differential equation mathematically. If only the first-
order terms are considered, without incorporating higher-order terms, the modeled evolution
trajactories of traffic flow will be smooth. Such a smooth nature will result in excellent average
forecasting performance for all time steps, but tends to be insensitive to mutations or jumps.
This will be the future direction of our subsequent studies.

6.6 Parameter sensitivity analysis

To answer Q3, we will discuss the influence of forecasting resolution magnification k on
the accuracy of TSRF.

Based on the settings in the TSRF tasks, we will discuss the influence of forecasting reso-
lution magnification k ranges from 2 to 6 on PeMSD4 and PeMSD8 datasets, i.e., correspond
to the cases of forecasting intervals of 150s to 50s, respectively, under the 5-min recording
interval. As a comparison, we also illustrate the TSRF performance of basic models with
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Fig.5 The forecasting performance comparison under different resolution magnifications
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Table 4 Ablation study of network dynamics

Models STCDN STCDN(w/o dynamics)
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%)
Datasets

PeMSD3 1633 (| 4.00%) 26.14 (| 11.12%) 15.87 (| 9.83%) 17.01 29.41 17.60

PeMSD4 2041 () 1.93%) 3124(} 1.21%) 1398 () 1.62%) 20.81 31.62 1421
PeMSD7 2240 () 6.75%) 3522(} 6.11%)  10.10(} 6.31%) 2402 3751  10.78
PeMSDS  16.48 (| 0.36%)  24.90 (| 2.28%) 1051 (| 2.41%) 16.54 2548  10.77

Bold fonts denote the best performance and underlines denote the second best performance in the both Table

Slinear interpolation algorithms, which presents the overall best TSRF performance among
all baselines.

The TSRF comparison under different resolution magnification is shown as Fig. 5.
Generally, the comparison illustrates that with the resolution magnification increases, the
forecasting performance of all algorithms are getting worse, which is intuitive. Because a
larger resolution magnification implies the more information should be forecasted, while
the less information we known, thereby increasing the difficulty of accurate forecasting.
Additionally, in our settings, we expand the recording intervals to simulate the case of lager
intervals, which also leads to numerical increasement. But this does not prevent us from
comparing the relative performance among models.

In the comparison, we can see that our model consistently achieves the best performance
among these algorithms in the task. Meanwhile, we can see with the forecasting resolution
magnification k increases, the performance degradation of our algorithm is minimal overall.
The experiment illustrates that even in the case of sparse recording data to be the supervision
signals, STCDN can still perform accurate TSRF compared to other baselines.

6.7 Ablation study

In this subsection, to answer the Q4, we will analyze how the existence of continuous-time
hidden states that are generated by integrating the network dynamics affects forecasting
performance.

To this end, we no longer regard the network dynamics, shown in Eq. (10), as dynamical
information, but as a simple spatial information extractor. Therefore, we will not perform
a definite integral in the temporal dimension. Instead, we incorporate the idea of DCRNN
[23] that using an RNN block to handle the temporal information. The ablation model is
referred to as STCDN(w/o dynamics). The experiment will conducted on all datasets, and
all evaluation metrics are obtained via TERF tasks. Thus, STCDN follows the conventional
strategy that fusing spatial and temporal information. Results are shown in Table 4.

From the comparison, we can see that the continuous-time hidden states from the view
of network dynamics can enhance the forecasting performance with 4.50% improvements.
We hypothesize such superiority can be explained from two aspects: (1) the continuous-time
hidden states that are generated by the physical-guided way can better approximate the nature
of the continuous evolution of traffic flow on the road network, enabling STCDN to have a
better representation ability; (2) the continuous-time hidden states can also be regarded as a
way of feature augmentation to improve forecasting performance.
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7 Conclusions and future work

In this paper, we notice that the widely applied recording way in traffic flow might result in
the coarse-grained and incomplete nature of supervision signals, leading to the forecasting
intervals being strictly limited by recording intervals. Therefore, we propose a new task
named Temporal Super-Resolution Traffic Flow Forecasting to help the forecasting intervals
eliminate the limitations of recording intervals. Specifically, we regard the traffic flow on the
road network as a continuous-time dynamical system. By modeling the network dynamics and
incorporating the idea of ordinary differential equations, we can model the continuous-time
hidden states, and further infer the traffic flow at arbitrary desired time steps.

This is a novel attempt at making the forecasting intervals independent of the record-
ing intervals, enabling traffic forecasting with more flexible intervals. Theoretically, such a
continuous-time dynamical system based idea can be expanded to any domain that is related
to time series, not just traffic flow forecasting. Therefore, it can also benefit more potential
applications. On the other hand, we also need to confront some problems due to the imma-
turity of this solution for the novel task, such as insensitivity of mutations or jumps, and
time-consuming. In the future, we will work to solve these problems and improve the idea
to better tackle such a novel problem.
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