Received: 6 June 2021

Accepted: 27 January 2022

W) Check for updates

DOI: 10.1002/int.22854

RESEARCH ARTICLE

WILEY

Adaptive momentum with discriminative
weight for neural network stochastic

optimization
Jiyang Bai'

'Department of Computer Science,
Florida State University, Tallahassee,
Florida, USA

*Department of Computer Science,
IFM Lab, Florida State University,
Tallahassee, Florida, USA

*Department of Computer Science,
IFM Lab, University of California, Davis,
Davis, California, USA

Correspondence

Yuxiang Ren, Department of Computer
Science, IFM Lab, Florida State
University, Tallahassee, FL 32306, USA.
Email: yuxiang@ifmlab.org

Funding information

National Science Foundation,
Grant/Award Number: 1IS-1763365

| Yuxiang Ren?

| Jiawei Zhang?

Abstract

Optimization algorithms with momentum have been
widely used for building deep learning models because
of the fast convergence rate. Momentum helps accel-
erate Stochastic gradient descent in relevant directions
in parameter updating, minifying the oscillations of the
parameters update route. The gradient of each step in
optimization algorithms with momentum is calculated
by a part of the training samples, so there exists sto-
chasticity, which may bring errors to parameter up-
dates. In this case, momentum placing the influence of
the last step to the current step with a fixed weight is
obviously inaccurate, which propagates the error and
hinders the correction of the current step. Besides,
such a hyperparameter can be extremely hard to tune
in applications as well. In this paper, we introduce a
novel optimization algorithm, namely, Discriminative
WEight on Adaptive Momentum (DEAM). Instead of
assigning the momentum term weight with a fixed
hyperparameter, DEAM proposes to compute the mo-
mentum weight automatically based on the dis-
criminative angle. The momentum term weight will be
assigned with an appropriate value that configures
momentum in the current step. In this way, DEAM

involves fewer hyperparameters. DEAM also contains a

Should be considered joint first author.

Int J Intell Syst. 2022;37:6531-6554.

wileyonlinelibrary.com/journal/int

© 2022 Wiley Periodicals LLC 6531

https://orcid.org/0000-0002-0621-8815
https://orcid.org/0000-0001-8829-3984
https://orcid.org/0000-0003-3356-6361
mailto:yuxiang@ifmlab.org
https://wileyonlinelibrary.com/journal/int
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22854&domain=pdf&date_stamp=2022-02-08

6532 BAI ET AL.
—I—Wl LEY

novel backtrack term, which restricts redundant up-
dates when the correction of the last step is needed.
The backtrack term can effectively adapt the learning
rate and achieve the anticipatory update as well. Ex-
tensive experiments demonstrate that DEAM can
achieve a faster convergence rate than the existing
optimization algorithms in training the deep learning

models of both convex and nonconvex situations.

KEYWORDS

deep learning, momentum, neural network training,
optimization algorithm, stochastic optimization

1 | INTRODUCTION

Deep learning methods can achieve outstanding performance in multiple fields, including
computer vision,"™* natural language processing,”® speech and audio processing,” and graph
analysis.® Training deep learning models involves an optimization process to find the para-
meters that minimize the loss function. Simultaneously, the number of parameters commonly
used in deep learning methods can be huge.

Therefore, optimization algorithms are critical for deep learning methods: not only the
model performance but also training efficiency are greatly affected. To cope with the high
computational complexity of training deep learning methods, stochastic gradient descent
(SGD)’ is utilized to update parameters based on the gradient of each training sample instead.
The idea of momentum, inspired by Newton's first law of motion, is used to handle the
oscillations of SGD. SGD with momentum'' achieves a faster convergence rate and better
optimization results compared with the original SGD. In gradient descent-based optimization,
training efficiency is also greatly affected by the learning rate. AdaGrad'” is the first optimi-
zation algorithm with adaptive learning rates, which uses the learning rate decay. AdaDelta"?
subsequently improves AdaGrad to avoid the extremely small learning rates. Adaptive mo-
mentum (ADAM)' involves both adaptive lealrning9 and momentum'® and utilizes the ex-
ponential decay rate §; (momentum weight) to accelerate the convergence in the relevant
directions and dampen oscillations. However, the decay rate §; of the first-order momentum
m; in ADAM is a fixed number, and the selection of the hyperparameter 8, may affect the
performance of ADAM greatly. Commonly, 8, = 0.9 is the most widely used parameter as
introduced in Reference [14], but there is still no theoretical evidence proving its advantages.
We summarize the contributions of the methods mentioned in Table 1.

During the optimization process, it is common that there exist errors in some update steps.
These errors can be caused by the inappropriate momentum calculation and then lead to
slower convergence or oscillations. For each parameter update, the fixed momentum weight
fails to take the different influences of the current gradient into consideration, rendering errors
in momentum computing. For example, when there exist parts of opposite eigencomponents'®
between the continuous two parameter updates (we regard this situation as an error), the
current gradient should be assigned a larger weight to correct the momentum in the last update

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Kopan'A

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

ET AL. 6533
- WILEY-—2

TABLE 1 Contributions of related works
Methods Contributions

10,11

SGD with momentum Propose the momentum mechanism to handle the oscillations of SGD

AdaGrad™? Propose the adaptive learning rate decay
AdaDelta'? Avoid the extremely small learning rates in AdaGrad
ADAM™ Combine both adaptive learning rate and momentum mechanisms

Abbreviations: AdaGrad, Adaptive Gradient; ADAM, adaptive momentum; SGD, stochastic gradient descent.

instead of being placed with a fixed influence. We will illustrate this problem through cases in
Section 3.1.1 where ADAM with a fixed weight 5, cannot handle some simple but intuitive
convex optimization problems. On the basis of this situation, we need to control the influence
of momentum by an adaptive weight. Moreover, designing hyperparameter-free optimization
algorithms has been a critical research problem in recent years. Reducing the number of
hyperparameters will not only stabilize the performance of the optimization algorithm but also
release the workload of hyperparameters tuning.

In this paper, we introduce a novel optimization algorithm, namely, Discriminative wEight
on Adaptive Momentum (DEAM) to deal with the aforementioned problems. DEAM proposes
an adaptive momentum weight B, ,, which will be updated in each training iteration auto-
matically. Besides, DEAM employs a novel backtrack term d;, which will restrict redundant
updates when DEAM decides that the correction of the previous step is needed. We also
provide the theoretical analysis about the adaptive momentum weight along with extensive
experiments. On the basis of them, we verify that the adaptive momentum term weight 8, , and
the operation of backtrack term d; can be crucial for the learning algorithms' performance.

Here, we summarize the detailed learning mechanism of DEAM as follows:

« DEAM computes adaptive momentum weight 3, , based on the “discriminative angle” 6
between the historical momentum and the newly calculated gradient.

« DEAM introduces a novel backtrack term, that is, d;, which is proposed to correct the
redundant update of the previous training epoch when necessary. The calculation of d; is
also based on the discriminative angle 6.

« DEAM involves fewer hyperparameters than the ADAM during the training process, which
can decrease the workload of hyperparameter tuning.

Detailed information about the learning mechanism and the concepts mentioned above will be
described in the following sections. This paper will be organized as follows. In Section 2, we cover
related works about widely used optimization algorithms. In Section 3, we analyze more detail of
our proposed algorithm, whose theoretical convergence rate will also be studied. Extensive ex-
periments are exhibited in Section 4. Finally, we give a conclusion of this paper in Section 6.

2 | PROBLEM DEFINITION AND RELATED WORKS

Function optimization: Given a differentiable function f and its domain X, the function opti-
mization is to find the optima point x* € X such that V x € &, f (x*) < f(x). For the neural
network function optimization, the optimization algorithms aim at finding the optima point of

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

6534 BAI ET AL.
—I—Wl LEY

neural networks: that is, the weights of network producing the smallest loss function value.
Commonly, the optimization algorithms are designed based on the gradient descent algorithm.
We summarize the notations used in this paper in Table 2.

SGD: SGD*'® performs variable updating for each training example X[i, :] and label y[i].
(Here, X represents the training set matrix, every row of which is a training sample vector; y is
the vector of all training samples' labels).

where 7 is the learning rate and V is the derivative of the loss function. The advantages of SGD
include fast converging speed compared with gradient descent and preventing re-
dundancy.’ Reddi et al.’® use the variance reduction methods to accelerate the training process
of SGD. The works of stochastic average gradient (SAG)'” and stochastic dual coordinate ascent
(SDCA)'® can achieve a variance reduction effect for SGD that leads to a linear convergence
rate. On the basis of them, stochastic variance reduced gradient (SVRG)'® does not require the
storage of gradients; SAGA® is with better theoretical convergence rates and supports non-
strongly convex problems.

Adaptive learning rates: To overcome the problems brought by the unified learning rate,
some variant algorithms applying adaptive learning rate*’ have been proposed, such as
AdaGrad,'” AdaDelta,"> RMSProp,”* apam,'* recent ESGD,”* and AdaBound.** AdaGrad
adopts different learning rates to different variables, and its variable updating equation can be
represented as

TABLE 2 Abbreviated notations used in the paper

Notation Description

7, The learning rate at the tth training epoch

m, The first-order momentum at the tth training epoch

y The weight of the first-order momentum in the SGD with momentum optimizer

\ The second-order momentum in the RSMProp, ADAM, and DEAM optimizers at the tth

training epoch

By The weight of the previous first-order momentum when computing the updated first-order
momentum in the ADAM optimizer

B, The weight of the previous second-order momentum when computing the updated first-order
momentum in the ADAM and DEAM optimizers

By, The adaptive weight of the current gradient when computing the updated first-order
momentum in the DEAM optimizer at the tth training epoch

Ay The model weights update term in the DEAM optimizer at the tth training epoch

d; The backtrack term when computing the current weight update term A, in the DEAM
optimizer at the tth training epoch

g The backtrack term coefficient

6 The discriminative angle in the DEAM optimizer

Abbreviations: ADAM, adaptive momentum; DEAM, Discriminative wEight on Adaptive Momentum; SGD, stochastic gradient
descent.

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

ET AL. 6535
- WILEY-—#%

g, =n- Vf,(w),

W= Wi — o @

A Zﬁ=1 g8 0Og; ’

where 7 is the learning rate and V is the derivative of the loss function. We have to mention that
the Y}, ®, and - in the above equation are elementwise operations. One drawback of AdaGrad is
that with the increase of iteration number ¢, the adaptive term Zlegi © g; will inflate con-
tinuously, which will lead to a very slow convergence rate. RMSProp>* can solve this problem by
using the moving average of historical gradients. The update rule of RMSProp is shown as follows:

W =Wi1 =7 - 8/Vs
Vi=F Vit (1-5) 8 08, ®)
In the above equation, term 3, is a hyperparameter in the interval [0, 1]. In this way, the
adaptive term v; will not increase continuously.
Momentum: Momentum'®"*>” is a method that helps accelerate SGD in the relevant
direction and discourage oscillations on the descent route. SGD with momentum updates
variables with the following equations:

W, =W_; — m,,
m, =y -m_; +7 - V(W) @

In the equation, y is the weight of the momentum, and 7 is the learning rate. The momentum
accelerates updates for dimensions whose gradients are in the same direction as historical gra-
dients, and reduces updates for dimensions whose gradients are the opposite. Momentum is also
applied in Nesterov accelerated gradient (NAG),”® which can be presented as

W = Wi — Imy,
=ym;_ +7 - Vfi(wW_; — ym;_). Q)

ADAM'**° is proposed based on SGD and momentum concept, and it also computes
individual adaptive learning rates for different variables. The variable updating rules in ADAM
can be represented by the following equations:

thVf;(W),

m =3 -m_+Q1-6) g m= mt/(l_‘31)
vi=g, i+ (1-8)-808g; V= /(1_52)
W, = Wi — 7 - 1, /(¥ + e).

(6)

ADAM records the first-order momentum m, and the second-order momentum v; of the
gradients using the moving average (controlled by the parameters 8, and §,, respectively), and
further computes the bias-corrected version of them (th; and V). On the basis of
ADAM, Keskar and Socher’® propose to switch from ADAM to SGD during the training
process. In this way, it can combine the advantages of both SGD and apam.

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

6536 BAI ET AL.
—I—Wl LEY

AMSGrad®! is a modified version of abam. AMSGrad changes the definition of the second-
order momentum by ¥, = max{¥,_;, v}, and other settings are almost the same as apam. This
formula is to make sure that the second moment will always increase along with ¢, which
ensures the decreasing of step size. What is more, AMSGrad applies a varied learning rate 7,
comparing to ADAM, but the definition of 7, is not specified.

DEAM is an optimization algorithm that involves the adaptive momentum weights and
backtrack mechanisms, and is first proposed in Reference [32]. In this paper, we further explore
the effectiveness of DEAM by giving a detailed theoretical analysis on the convergence and
comprehensive experiments on more types of models (e.g., Graph Neural Networks and RNNs).
Both the theoretical convergence analysis and the experimental results further demonstrate the
validity of DEAM.

Algorithm convergence: Most of the machine learning and deep learning tasks are under
nonconvex conditions. However, most convergence analysis of the mentioned optimization
algorithms is based on convex situations. Chen et al.>* give a convergence rate of order
O(log T/~/T) for nonconvex stochastic optimization with respect to the ADAM-type methods.

3 | PROPOSED ALGORITHM

Algorithm 1: DEAM Algorithm

Input: loss function 7 (w) with parameters w; learning rate {n; L; B2 = 0.999

Output: trained parameters

mg « 0; /* Initialize first-order momentum. */

Vo < 0, Vg « 0; /* Initialize second-order momentum. */
fort=1,2,..., T do

8t = Vi (wy);
§ = (Dt ,g[>; /* The operator (-, -) represents the angle between two vectors. */
VVi-1

if 0 € [0, %) then
| B1t=sinf/K +¢;

else
| Bie=1/K /*Here, kK = 2Z1) +/;
end
me = (1—=PB1¢) - Me1 + Bre - 8¢
Ve =Py Ve + (1= B2) -8t @8 /* ©is element-wise multiplication.*/
Ve = max{V¢_1, Vs };
di = min{ay cos 6,0} /* Here, ag = 0.5 in default. */;
Ay =dp-Diq—ny - %
We = Wi + Ay

end

return wr

Our proposed algorithm DEAM is presented in Algorithm 1. In the algorithm, f,, f,, ..., f; is
a sequence of loss functions computed with the training minibatches in different iterations (or
epochs). DEAM introduces two new terms in the learning process: (1) the adaptive momentum
weight 3, ,, and (2) the “backtrack term” d;. In the ¢th training iteration, both B, , and d, are
calculated based on the “discriminative angle” 6, which is the angle between previous
m;,_;/ \/ﬁ and current gradient g, (since essentially both m,_,/ \/ﬁ and g, are vectors,

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

ET AL. 6537
- WILEY-—

there exists an angle between them). Here, m is the first-order momentum that records the
exponential moving average of historical gradients; v is the exponential moving average of the
squared gradients, which is called the second-order momentum. In the following parts of this
paper, we will denote m;_/ \/ﬁ as the “update volume” in the (¢t — 1)th iteration. Formally,
B, determines the weights of the previous first-order momentum m,_; and current gradient g,
when calculating the present m,. Meanwhile, the backtrack term d; represents the returning
step of the previous update on parameters. We can notice that in each iteration, after the 6 has
been calculated, the 8, , and d, are directly obtained according to the 6. In this way, we can
calculate appropriate §, , as the discriminative angle changes. The d; term balances between
the historical update term A,_; (defined in Algorithm 1) and the current update volume
m,/ \/\AT, when computing A,. In the proposed DEAM, g, , and d, terms can collaborate with
each other and achieve faster convergence.

3.1 | Adaptive momentum weight g, ,
3.1.1 | Motivation

In the ADAM' paper, (the first-order) momentum'’s weight (i.e., 3,) is a prespecified fixed
value, and commonly 8, = 0.9. It has been used in many applications and the performance can
usually meet the expectations. However, this setting is not applicable in some situations. For
example, for the case

F(x,y) =x* + 42, @)

where x and y are two variables, it is obvious that f is a convex function. If f(x,y) is the
objective function to optimize, we try to use ADAM to find its global optima.

Let us assume ADAM starts the variable search from (—4, —1) (i.e., the initial variable
vector is wy = (—4, —1)7) and the initial learning rate is », = 1. Different choices of g, will
lead to a very different performance of ADAM. For instance, in Figure 1, we illustrate the
update routes of ADAM with 8, = 0.9 and 3, = 0.0 as the blue and red lines, respectively. In
Figure 1, the ellipse lines are the contour lines of f(x,y), and points on the same line share
the same function value. We can observe that after the first updating, both of the two
approaches will update variables to (—3, 0) point (i.e., the updated variable vector will be
w; = (=3, 0)"). In the second step, since the current gradient g, = (-6, 0)", the ADAM with
B, = 0.0 will update variables in the (1,0) direction. Meanwhile, for the ADAM with
B, = 0.9, its m, is computed by integrating m; and g, together (whose weights are 8, and
1 — f3,, respectively). Therefore the updating direction of it will be more inclined to the
previous direction instead. Compared with ADAM with 8, = 0.0, the ADAM with 8, = 0.9
takes much more iterations until converging.

From the analysis above, we can observe that a careful tuning and updating of 5, in the
learning process can be crucial for the performance of Apam. However, by this context so far,
there still exist no effective approaches for guiding the parameter tuning yet. To deal with this
problem, DEAM introduces the concept of discriminative angle 6 for computing 5, auto-
matically as follows.

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

6538 BAI ET AL.
—I—Wl LEY

X o

FIGURE 1 The update routes of ADAM with 8, = 0.9 (the blue line) and 8, = 0.0 (the red line). ADAM,
adaptive momentum [Color figure can be viewed at wileyonlinelibrary.com]

3.1.2 | Mechanism

The momentum weight 8, will be updated in each iteration in DEAM, and we can denote its
value computed in the fth iteration as 8, , formally. Essentially, in the tth iteration of the
training process, both the previous update volume and g, are vectors (or directions), and these
directions directly decide the updating process. Thus we try to extract their relation with the
help of angle, and subsequently determine the weight 5, , (or 1 — §8, ;) by the angle.

In Algorithm 1, the discriminative angle 0 in the tth iteration is calculated by

m;_; m;_;
0=(———,-8,\= 8.).

< VVi-1 [> < VVi-1 ' ®)

Here, the operator (-,-) denotes the angle between two vectors (the angle is calculated
according to the cosine similarity). This expression is easy to understand, since the
—m,_;/+/V,_; can represent the updating direction of (¢t — 1)th iteration in AMSGrad, mean-
while —g, is the reverse of the present gradient. So we can simplify it as 6 = < v":/’_‘l , g[>. If6 is

=1

close to zero (denoted by 6 — 0°), the m,_;/ \/ﬂ (previous update volume) and g, are almost
in the same direction, and the weights for them will not be very important. Meanwhile, if 6
approaches 180° (denoted by 6 — 180°), the previous update volume and g, will be in totally
reverse directions. This means in the current step, the previous momentum term is already in a
wrong direction. Therefore, to rectify this error of the last momentum, DEAM proposes to
assign the current gradient's weight (i.e., 8, , in our paper) with a larger value instead. As the
B, varies when 6 changes from 0° to 180°, we intend to define 3, , with the following equation:

sin 6/K + e, 6 e [O, ,

B = 1K, 6 < [g’]’ 9

NN
N—"

N

where K = 10(2 + 7) /27 and € is a very small value (e.g., ¢ = 0.001). In the equation above, the
threshold of the piecewise function is 8 = 7 /2, because sin 6 comes to the maximum at this

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouI0) 9ARERx) d[qeandde a1 Aq PAWIaAGS AIE SOOI VO aSN JO AN 10J ATeIqrT SUIUQ AS[IA U0 (SUO

http://wileyonlinelibrary.com

ET AL. 6539
- WILEY-—*2

point and goes down when 6 > % If % < 0 <7, which is exactly the situation 8 — 180° we
discussed above, we intend to keep 8, , in a relatively large value. The reason we rescale sin 6 by
1/K is that directly applying 8, , = sin 6 will overweight g,, which may cause fluctuations on
the update routes. The value of K is determined by

10 . ” 52 + 7)
K=— 6dob dg| = ——=.
(j(; sin + j: 1] (10)

T z T

In the equation above, assume 6 is randomly distributed on [0, 7]. Here, we specify

K = 22*7 in this calculation so that we can get
1 T
ElB.)= — [B.©)d0 =01, an
0

In other words, the expectation of 8, , (i.e., E(B, ,)) will be identical to the 8, used in ADAM
paper.'* After obtaining B, » it will be applied to calculating m; as shown in Algorithm 1. In
this way, we have achieved momentum with adaptive weights, and this weight is automatically
computed during the training process, fewer hyperparameters will be involved.

3.2 | Backtrack mechanism d,

To further speed up the convergence rate, we employ a novel backtrack mechanism for DEAM.
As a mechanism computed based on the discriminative angle 6, the backtrack term allows
DEAM to eliminate redundant update in each iteration. Besides, according to our following
analysis, the backtrack term d, virtually collaborates with the 3, , term to further accelerate the
convergence of the training process.

3.2.1 | Motivation

When optimizer (e.g., ADAM) updates variables of the loss function (e.g., f (x, y)), some update
routes will look like the black arrow lines shown in Figure 2A, especially when the dis-
criminative angle 6 is larger than 90°. We call this phenomenon the “zig-zag” route. In
Figure 2A, it shows the update routes of a two-dimensional function. Each black arrow line in
the figure represents the variables’ update in each epoch; the red dashed line is the direction of
the update routes; the 6 is the discriminative angle. If 6 > 90°, the “zig-zag” phenomenon will
appear severely, which may lead to slower convergence speed. The main reason is when
0 > 90°, if we map two neighboring update directions onto the coordinate axes, there will be at
least one axis of the directions being opposite. This situation is shown in Figure 2B. For the
example of a function with two-dimensional variables, the update volume m;/ \/\7_1 can be
decomposed into (x;, y,)" in Figure 2B, and the same with m,/./¥,. We can notice that y, and
¥, are in the opposite directions, so the first and second steps practically have inverse updates
subject to the y-axis. We attribute this situation to the overupdate (or redundant update) of the
first step. Therefore the backtrack term d, is proposed to restrict this situation.

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

6540 BAI ET AL.
—I—Wl LEY

A B C
A By wa ©x)
Wi e
Y W3 '
| , (-
Wy Y2 ® w g APt
WZ w2 We_1 - m‘; W
Wo W VP
The "zig-zag" route Axis decomposition Example: When 9 = 180°

FIGURE 2 Examples about d;. (A) The update routes of a two-dimensional function. The 6 in the figure
denotes the angle between the update direction from w, to w; and the update direction from w; to w,; (B) an
example of the opposite axis directions in the update routes of (A); (C) the mechanism of the backtrack term d,
[Color figure can be viewed at wileyonlinelibrary.com]

3.2.2 | Mechanism

Since the redundant update situation is caused by over updating of the previous iteration,
simply we intend to deal with it through a backward step. Meanwhile, during the updating
process of variables, not every step will suffer from the redundant update: if & — 0°, the
updating process becomes smooth, not like the situation shown in Figure 2A. Besides, from
the analysis above we conclude that if 6 > 90°, there will be at least one dimension involves the
redundant update. Thus, in the tth iteration we quantify d; as the following equation:

d, = min{ay cos 6, 0} (12)

and we rewrite the updating term with backtrack in DEAM as

At:dt'At—l_nt'

S (13)

where 0 is the discriminative angle, a; equals to 0.5 in our default setting, and A, is the
updating term in Algorithm 1. By designing d, in this way, when 8 — 0°, d; = 0 and there is

no backward step, the updating term A; = —7, - % is similar to AMSGrad; when 6 — 180°,

d; equals to 0.5cos 6 and comes to the maximum value when 6 = 180°. In Equation (12),
cos 0 is rescaled by ag4, the reason of our default setting ety = 0.5 is that: in Figure 2C, w;_;
and w; are the variables updated by DEAM without d; term in the (¢t — 1)th and tth itera-
tions, respectively. If the backtrack mechanism is implemented, in the (¢t + 1)th iteration,
since 6 = 180°, first d; = a4 cos 6 — —0.5 makes the backtrack to the w; point (the middle
point of w;_; and w;). Thus, this backtrack step allows the variable to further approach the
optima. For more complicated situations, since it is too hard to find the optimal ay value for
every specific learning task, we use the following expectation to set the default value of ay.
In the tth iteration, considering when 6 — 180°, d; < 0 and wt’ should locate between the
w;—; and w;. As the optimal relative location of w,' is unknown, we assume that wt’ is
randomly distributed between w;_; and w,. Thus, the statistical expectation of the location

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

http://wileyonlinelibrary.com

ET AL. 6541
- WILEY-—%

of wt’ is the central point between w;_; and w;. In other words, d; should be -0.5 when
0 — 180°, and ag = 0.5 is the optimal choice under our backtrack mechanism.

By implementing the backtrack term d;, DEAM can combine it with the adaptive mo-
mentum weight 3, , to achieve the collaborating of them. For the situation of large dis-
criminative angle (6 > 90°), both B, , and d; in the current step can make corrections to the last
update. Since when 6 > 90°, the last update is in conflict direction compared with the current
gradient, and 3, , will increase to allocate a large weight for the present gradient, which
subsequently corrects the previous step. Meanwhile, the d; will also conduct a backward step of
to further rectify the last update.

3.3 | Theoretical analysis

In this part, we give the detailed analysis on the convergence of our DEAM algorithm.
According to References [14,31,33,34], given an arbitrary sequence of convex objective func-
tions f;(w), f,(w), ..., fr (W), we intend to evaluate our algorithm using the regret function,

which is denoted as
T

R(T) = X [f,(w) — f,(w™)], (14)

t=1

where w* is the globally optimal point. In the following Theorem 1, we will show that the
above regret function is bounded. Before proving Theorem 1, there are some properties and
lemmas as the prerequisites.

Proposition 1. If a function f:R% — R is convex, then Vx,y € R, V¢ € [0, 1], we
have

flgx+ 1 —-@)y)<¢f(x)+ A - P)f ().
Proposition 2. If a function f:R% — R is convex, then Vx,y € R? we have
F2f@) + VF) (y = x).

Lemma 1. Assume that the function f, has bounded gradients, IVf,(W)ll, < G. Let m,
represents the ith element of m; in DEAM, then the my; is bounded by

mtiS (1 - EO)GOO,
' KA -2)

where ¢, and A are defined in Theorem 1.

Proof. Let g, = Vf,(w). According to the definition of m,; in our algorithm,

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

6542 BAI ET AL.
—I—Wl LEY

m;; = Z :8141_[(1 Bri-1418;,i
j=1

fé H(l —€)<?°°§ (1 — e

where K and ¢ are the terms in Algorithm 1. |

For the following proof, g, := Vf,(w;) and g, ; will represent the ith element of g, & R4, and
8r.0i = (815 8 - Bril-

Theorem 1. Assume {f}—, have bounded gradients \Vf,(W)ll,, < G, for all w € RY, all
variables are bounded by llw, — wyll, <D and llw, — wyll, <D, V p,q € {1,2,.., T},

n,=n/Jt, =0 — t—:o)/\/ﬁ—2 and satisfies y; <1, e =1 — (1 —)21, 1 € (0,1). Our
proposed algorithm can achieve the following bound on regret:

d
D? P (1 —¢€0)*G,,D,d
R(T)SQZl Tvri + K-
i=

741+ log
— T Nlig, ol
ké(l—n)ﬁ——ﬁzg Bur.

Proof. According to Proposition 2, for V ¢t € {1, 2, ..., T}, we have

[(W) — f,(W*) < V(W) (W — W)
d
= Z gt,i(“’t,i - W;k)

From the definition of A; in the updating rule of DEAM, we know it is equal to multi-
plying the learning rate 7, in some iterations by a number in [0.5, 1], which means
W1 =W — 17, %; f,=H, - 71, where g, € [0.5,1]. Thus if we first focus on the ith

element of w;, we can get

Then,

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

ET AL. 6543
= WILEY-—%

7 B ®) _)2)2

¢ Egzl(w,i_wi)—(w,i_wi) _(“It+1,i_wi)
. (1=B)

=21, - T;,mt—l,i ' (VVt,i - W?) +9 50

i

So we can obtain

gt’i(wl’,' - wf) \/‘7—“ [(W ;| — W:k)z - (VVt+1,i - Wz*)z] (15)

21 By
(1 - ﬁl,t)
-, Iy, l(w' - W, l) (16)
B
A 2
77[mt,i
+ TR 17
261,[Vii a7

t=1
1 2
S:{(Wll—WT) ‘ +
0 ™
o o [
* VYT, Vro1,i
+ (WT’i - Wi) (nr - Nr—1)}
D? ~
< —=JTv
on T,i

The first inequality is satisfied because of the ¥, = max{¥,_;, v} in Algorithm 1. For
Equation (16) in the formula, if we sum it from¢t=1tot =T,

T (1 - 51 t) * (G())G Doo
—1LilW; — W) S ————— 1-p5,
t; B ———m 1,(w W) K(1—/1)0[2;(B
(€0)G Doo €O)G Doc _
< 2m T B0/ PeTe = = S0P SV gy p-l
KA - ey tz;(K(l—/l) % tz;()
< (1 - €O)ZGooDoo
B K(l - /I)ZE() ’

The first inequality is according to Lemma 1. Finally, we will infer Equation (17) in
previous formula. According to the Lemma 2 of Reference [31], we have

:sd1Y) SUONIPUOD) PUE SWIaT, A 938 “[£207/£0/0€] U0 ATEIqET AWUQ AS[IAL “SIABQ - BIWIOJ[ED) JO AUSIOATUN KQ $SSTZIUYZ001-0T/I0P W0 Ko[IAATeIqIIauIuoy/:Sdy WOl Papeofumoq °6 ‘7207 *X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

6544 BAI ET AL.
—I—Wl LEY

T A 2 T 2 T 2

Z 77: mt,i 1 Z mt,i n Z t,i
~ Ui =

=1 2B, Vi 2600 Vi 260,53 Vii

n (Zzzlﬁu [a- 51,z—l+1)gj,i)2
e (a-g) ¥ e

§ (Bt B wre)
5 (a-387)

y I Z’.zl(l - eO)“fgﬁ,i

IA
N|3
M=

T t
e nh-F 260./1 - ; f; 52_]gj,i

I N1l +1log T

vz
| <
\/ ;thzlg“jzt Jt 260(1_71)\/1_ﬁ2 ngl

In the above inequalities, some inferences are based on Cauchy-Schwarz Inequality.
Therefore, the final bound of R(T) can be expressed as

I/\

- d
R(T) < —Z VTV + St

741+ log
_INIFORD N g .
231 -1 1-5, 1_21 BLri O

(

For the bound term, as T — +o, — 0 and we can infer that limr_,.[f; (W) — f,(W*)] = 0,

which means the proposed algorlthm can finally converge.

4 | EXPERIMENTS

We have applied the DEAM algorithm on multiple popular machine learning and deep learning
structures, including logistic regression (LR), deep neural networks (DNNs), convolutional neural
networks (CNNs), graph convolutional networks (GCNs), and recurrent neural networks (RNNs).
These structures cover both convex and nonconvex situations. Through experiments, we demon-
strate that DEAM has universal advantages for different types of machine learning structures.
Below we introduce the experimental results in detail for each learning structure.

41 | Comparison algorithms

To show the advantages of the algorithm, we compare it with various popular optimization
algorithms.

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

ET AL. 6545
- WILEY-—%

« DEAM: DEAM is the proposed algorithm in this paper.

« DEAM without d;: We remove the backtrack mechanism from DEAM to verify the effec-
tiveness of d;, by ablation study.

« ADAM': ADAM is an algorithm for the first-order gradient-based optimization based on
adaptive estimates of lower-order moments. But the momentum is controlled by hypermeters
(ie., B, and B,).

« RMSProp**: RMSprop belongs to the realm of adaptive learning rate algorithms.

+ AdaGrad'*: AdaGrad adapts the learning rate to the parameters, which strategy is setting low
learning rates for parameters associated with frequently occurring features but high learning
rates for parameters associated with infrequent features.

+ SGD’: SGD performs a parameter update for each training example, which leads to more
frequent parameter updates but more fluctuated objective functions.

To ensure fairness, we use the same parameter initialization when testing each optimization
method and fine-tune the hyperparameters (e.g., learning rate and decay weight) of each
optimization method and report the best results. The experimental device is a Dell PowerEdge
T630 Tower Server, with 80 cores 64-bit Intel Xeon CPU E5-2698 v4@2.2 GHz. The total
memory is 256 GB, with an extra (SSD) swap of 256 GB. The operating system is Ubuntu
16.04.3, and all codes are implemented in Python.

4.2 | Experiments in LR

We first evaluate our algorithm on the multiclass LR model since it is widely used and owns a
convex objective function.'* We conduct LR on the ORL data set.>® During the training process,
the minibatch size is 128, and the learning rate is 0.0001. ORL data set consists of face images of
40 people, each person has 10 images, and each image is in the size of 112 X 92. The loss of
objective functions on both the training set and testing set is shown in Figure 3. From the
figure, it can be found that DEAM has obtained the fastest convergence rate with apparent
advantages and converges to the global minimum. From the running time listed in Table 3, the

(A) 175 (B)
SGD 160 SGD
150 —— AdaGrad 140 —— AdaGrad
125 —— RMSProp 20 —— RMSProp
o — ADAM nl —— ADAM
o 100 —— DEAM 8 100 —— DEAM
c DEAM without d; - —— DEAM without d;
= 75 — o 80 —_—
j -
s 50 + 60
55 40
20
0 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
iterations over entire dataset iterations over entire dataset
Train loss on ORL Test loss on ORL

FIGURE 3 The optimization process of Logistic Regression. AdaGrad, Adaptive Gradient; ADAM, adaptive
momentum; DEAM, Discriminative wEight on Adaptive Momentum; SGD, stochastic gradient descent [Color
figure can be viewed at wileyonlinelibrary.com]

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

http://wileyonlinelibrary.com

1098111x, 2022, 9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/int.22854 by University Of California - Davis, Wiley Online Library on [30/07/2023]. See the Terms and Conditions (https:

BAI ET AL.

WILEY

6546

6L°80C
€8°€CC
CL'98C
000S<
86°CIT

LSINIAl uo
INLST

wiley.

d) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

JUIISIP JUSIPRIS ONSBYI0IS ‘DS SIOMIOU [BINSU JUILINIAI ‘NN ‘AIOWSN WId]-}I0oyS SuoT ‘ALST ‘uorssardar onsido] YT Sf1omiau [euonnjoauod ydeid ‘NDO Sj1omiou
reanau doap ‘NN(J ‘Wnjudwoly 2Andepy uo JYSIgM SANBUTWIINSIJ ‘AVAJ S[I0MIdU [BINdU [RUONN[OAUO0I ‘NND ‘Wwnjudwow dandepe ‘WVAV usipeln aandepy ‘peioepy SUOIRIAIqqY

66°9S€S
000°0T<
I8°CLIL
000°0T<
000°0T<
ppay uo
NNA

8S°L

001<

001<

(44

e

JI99S9)1) U0

NOD

9

0s<

0s<

ST

0¢

©I0) U0

NOD

T9L°LS
¥95°L9
000°00T<
SOEv8
¥8S°L9

0T-9vd4Id uo
NND

6L9TT
G8691
000°0S<
L66TT
SLLIT

LSINIAl uo
NND

#90°sE g 8¢ WVEd
000°00T< 3 00C< +a0s
000°00T< L99 00z< 2PEIDEPY

TTLioE LOE 8% OIS

STH LY 99 201 HNVAVY
TIO uo ISININ uo TIO uo spoyjow

NND NNa a1 uostreduro)

s[opour [fe uo dwn Surauny

(puodas ST sanyea jo jrun 3Y)) spoyjow uostedwod pue INyHAJ jo dwn Suruuny € ATIV.L

ET AL. 6547
- WILEY-—*

optimization time required for DEAM is also the shortest, which shows that the additional
overhead brought by the adaptive momentum and backtrack mechanism in DEAM is worth-
while for the overall running time improvement.

4.3 | Experiments in DNNs

We use a DNN with two fully connected layers of 64 hidden units and the Rectified Linear
Unit (ReLU)* activation function. The data set we use is MNIST.* The MNIST data set includes
60,000 training samples and 10,000 testing samples, where each sample is a 28 X 28 image of
hand-written numbers from 0 to 9. The minibatch size is set as 128, and the learning rate is
0.0001. Results are exhibited in Figure 4, which shows DEAM achieves the best convergence
performance. Besides, DEAM requires the least running time (50% running time compared
with ADAM) to finish the optimization process in Table 3.

44 | Experiments in CNNs

The CNN model in our experiments is based on the LeNet-5.* We test it on multiple data sets:
ORL, MNIST, and CIFAR-10.*” The CIFAR-10 data set consists of 60,000 32 x 32 images of 10
classes, with 6000 images per class. For different data sets, the structures of CNN models are
modified: for the ORL data set, the CNN model has two convolutional layers with 16 and 36
feature maps of 5 kernels and 2 max-pooling layers, and a fully connected layer with 1024
neurons; for the MNIST data set, the CNN structure follows the LeNet-5 structure in Reference
[4]; for CIFAR-10 data set, the CNN model consists of three convolutional layers with 64, 128,
and 256, respectively, and a fully connected layer having 1024 neurons. All experiments apply
ReL U activation function, and the minibatch size is set as 128 together with the learning rate
of 0.0001. From the results shown in Figure 5, DEAM can converge to optimum faster in a
smoother process. All three data sets demonstrate the same advantage. The running time of

(A) 0.6 (B) 0.50
SGD SGD
0.45
0.51 —— AdaGrad AdaGrad
—— RMSProp 0.40 RMSProp
v 0.4 —— ADAM © 035 ADAM
o —— DEAM o DEAM
c 0.3 —— DEAM without d; - 030 DEAM without dj
= n
© & 0.25
S +—
bt
0.2 0.20
0.15
0.1
0.10
0 2 4 6 8 10 0 2 4 6 8 10

iterations over entire dataset
Test loss on MNIST

iterations over entire dataset
Train loss on MNIST

FIGURE 4 The optimization process of the DNN structure. AdaGrad, Adaptive Gradient; ADAM, adaptive
momentum; DEAM, Discriminative wEight on Adaptive Momentum; DNN, deep neural network;
SGD, stochastic gradient descent [Color figure can be viewed at wileyonlinelibrary.com]

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

http://wileyonlinelibrary.com

6548
—I—Wl LEY

BAI ET AL.

(A)
35
3.0
w25

o
=20

£
© 1.5
1.0
0.5
0.0

SGD
—— AdaGrad
—— RMSProp
—— ADAM
—— DEAM
DEAM without d¢

(©)
2.25
2.00
1.75

(7))
§ 1.50
© 125
® 100
)
0.75
0.50
0.25

0 20 40 60 80 100
iterations over entire dataset
Train loss on ORL

SGD
—— AdaGrad
—— RMSProp
—— ADAM
DEAM
DEAM without d;

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iterations over entire dataset

Train loss on MNIST

N
o

train loss
=
®

=
o

SGD
—— AdaGrad
—— RMSProp
—— ADAM
DEAM
DEAM without d;

I
>

0 2 4 6 8 10 12 14 16 18
iterations over entire dataset
Train loss on CIFAR

=

3.5

3.0

2.5

2.0

test loss

1.51
1.0
0.51

SGD
—— AdaGrad
—— RMSProp
—— ADAM
—— DEAM
DEAM without d;

0 20 40 60 80 100

(D)

iterations over entire dataset
Test loss on ORL

2.251
2.00
1.754
1.50
1.251
1.00¢
0.75+
0.50+
0.251

test loss

SGD
—— AdaGrad
—— RMSProp
—— ADAM
—— DEAM
DEAM without d;

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iterations over entire dataset

Test loss on MNIST

SGD
—— AdaGrad
—— RMSProp
—— ADAM
—— DEAM
DEAM without d;

0 2 4 6 8 10 12 14 16 18
iterations over entire dataset
Test loss on CIFAR

FIGURE 5 The optimization process of CNN structure. AdaGrad, Adaptive Gradient; ADAM, adaptive
momentum; CNN, convolutional neural network; DEAM, Discriminative wEight on Adaptive
Momentum; SGD, stochastic gradient descent [Color figure can be viewed at wileyonlinelibrary.com]

sdny) suonIpuoy) pue swa1, 3y 938 “[£207/£0/0€] U0 ATeiqr] 2uUQ AJ[1AN “SIABC - BIUION[ED JO ANSIOAIUN AQ $SSTTIUNZO01"01/10P w0 Ko[imAeqijaur[uoy/:sdiy wiolj papeojumoq] ‘6 ‘TZ0T X1 118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

http://wileyonlinelibrary.com

ET AL. 6549
- WILEY-—2

DEAM on three data sets is less than other optimization methods as well. Through the com-
parison between DEAM and DEAM without d; term, we observe that the performance im-
provement brought by the backtrack mechanism is evident, which verifies that the backtrack
mechanism proposed in DEAM is critical for optimizing the CNN model.

4.5 | Experiments in RNNs

To evaluate the performance of DEAM in RNN structures, we employ two kinds of structures
(i.e., basic RNN and Long Short-Term Memory [LSTM]) to implement experiments.

We use the basic RNN model structure first. The hidden size is 100, and the vocabulary size
is set as 8000. During the training process, the training batch size is 128. The experiment is run
on Reddit data set,* which collects real comments from the Reddit website. We sample 2000
sentences from the data set as the training set and 200 sentences as the test set. The basic RNN
is trained to work on text generation tasks. From Figure 6A,B, we can observe that DEAM can
converge to a lower position with a higher rate compared with other optimization algorithms.

(A) (B)
9 SGD 9.0 SGD
—— AdaGrad 8.5 —— AdaGrad
8 —— RMSProp 8.0 —— RMSProp
0 —— ADAM " —— ADAM
87 —— DEAM 275 —— DEAM
= —— DEAM without d; : 7.0 —— DEAM without d;
56 g
s} + 6.5
5 6.0
5.5
4
0 10 20 30 40 50 0 10 20 30 40 50
iterations over entire dataset iterations over entire dataset
RNN Train loss on Reddit RNN Test loss on Reddit
(©) 200 (D) 200
SGD SGD
175 —— AdaGrad 175 —— AdaGrad
150 —— RMSProp 150 —— RMSProp
0 —— ADAM " —— ADAM
&1 L DEAM 0 125 - DEAM
c 100 —— DEAM without d¢ : 100 —— /DEAM without d¢
‘© VWY a Ui
g (|8 s AL
50 50
25 25
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
iterations over entire dataset iterations over entire dataset
LSTM Train loss on MNIST LSTM Test loss on MNIST

FIGURE 6 The optimization process of the recurrent neural network structures. AdaGrad, Adaptive
Gradient; ADAM, adaptive momentum; DEAM, Discriminative wEight on Adaptive Momentum; LSTM, Long
Short-Term Memory; SGD, stochastic gradient descent [Color figure can be viewed at wileyonlinelibrary.com]

y:sdnyy) suonipuo)) pue swa [Ayl 23§ “[€707/L0/0€] U0 Areiqry surquQ A1 “SIAB(- RIUIOfI[E)) JO ANSIOATUN) Aq HS8TT /001 0 1/10p/wod Kd[im AIeIqiaur[uoy/:sdiy woly papeofumod ‘6 “7Z0Z X1118601

Roji:

5u901T SuouI0) 9ARERx) d[qeandde a1 Aq PAWIaAGS AIE SOOI VO aSN JO AN 10J ATeIqrT SUIUQ AS[IA U0 (SUO

http://wileyonlinelibrary.com

6550 BAI ET AL.
—I—Wl LEY

The backtrack mechanism (i.e., d;) significantly enhanced model performance in this
experiment.

The other RNN structure we run in the experiment is the LSTM model. Here, we
implement the LSTM model on the MNIST data set to classify the image. As the MNIST
data set images have a size 28 x 28, each row of the images is considered a word, and each
image can be transferred to a sentence with 28 words (rows). In our experiment, the
hidden size of LSTM is 128, and the learning rate is 0.001. From Figure 6C,D, DEAM,
ADAM, and SGD can achieve comparable performance which beats the results from
RMSProp and AdaGrad.

4.6 | Experiments in GCNs
Graph Neural Networks®*** are deep models to serve tasks involving graph-structured data. In
this paper, we evaluate the proposed algorithms on the GCN structure in Reference [39] on
Cora and Citeseer data sets.** The Cora data set contains 2708 nodes from 7 classes and 1433
features per node. The Citeseer data set has 3327 nodes, 3703 features per node, and nodes
belong to 6 classes. GCN works on the node classification task, and the loss function (objective
function) we have selected is the cross-entropy loss function. All other experimental details
(e.g., training/test ratio) follow the settings in Reference [39]. The learning rate is 0.01 for GCN
optimization. The results are shown in Figure 7. We can observe that DEAM converges faster
than other widely used optimization algorithms in all the cases. Within the same number of
epochs, DEAM can converge to the lowest loss on both the training set and test set.

4.7 | Analysis of the backtrack mechanism

To show the effectiveness of the backtrack term d,, we carry out the ablation study of DEAM
without d; term, and exhibit the results from Figures 4 to 7. The results indicate that after
applying d; term, the converging speed becomes faster for most of the neural network struc-
tures. To thoroughly prove the effectiveness of our proposed d; term, we compare it with other
definitions of backtrack terms e.g., d; = 0.5cos 8, and present the results in Figure 8. In
Figure 8, d, = sigmoid_based represents thatd, = —1/(1 + e~¢=27)) 4+ % and d; = tanh_based

1

means that d, = —2/(1 + e72%727)) + 1. Due to the limited space, here we only exhibit the

results of the logistic regression on the ORL data set. The experimental results of other machine
learning structures on different data sets are consistent. The results in Figure 8 demonstrate
that the designed d; in DEAM is effective and can achieve the best convergence performance.

4.8 | Time-consuming analysis

We have recorded the running time of DEAM and other comparison algorithms in every
experiment and list them in Table 3. The running time shown in Table 3 contains “>,” which
means the model still does not converge at the specific time. From the results, we can observe
that in all of our experiments, DEAM finally converges within the smallest amount of time.
From the results from Figures 4 to 7 and Table 3, we can conclude that DEAM can converge not

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

BAI ET AL. 6551
WILEY
(A) 2.00 (B) 2.0
SGD SGD
1.75 —— AdaGrad 1.8 —— AdaGrad
1.50 — RMSProp —— RMSProp i
" —— ADAM 1.6 —— ADAM
n 1.25 0
o — DEAM 3 —— DEAM
< 1.00 DEAM without d; - 14 —— DEAM without d;
= =
5075 3
0.50
0.25 Lo
0.00 0.8
0 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
iterations over entire dataset iterations over entire dataset
Train loss on Cora Test loss on Cora
(©) (D) 14
1.75
1.8
1.50 17
1.25
§ @ 1.6
=z 1.00 <GD 8 1.5 <GD
'S 0.75{ —— AdaGrad o 1.49 — AdaGrad
b 0501 —— RMSProp + 1.3{ — RMSProp
’ —— ADAM 1| — ADAM
0.25{ —— DEAM \ “| — DEAM
0.00] — DEAM without d 111 DEAM without d;
’ 1.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30

iterations over entire dataset

Train loss on Citeseer

iterations over entire dataset

Test loss on Citeseer

FIGURE 7 The optimization process of GCN structure. AdaGrad, Adaptive Gradient; ADAM, adaptive
momentum; DEAM, Discriminative wEight on Adaptive Momentum; GCN, graph convolutional network;
SGD, stochastic gradient descent [Color figure can be viewed at wileyonlinelibrary.com]

3.5
3.0
2.5
g 2.0
Z1s
1.0
0.5

0.0

—— d: in DEAM

—— dy=0.5-cosb

dy = sigmoid_based
—— d:=tanh_based

I

0 20 40

60

80 100

iterations over entire dataset

FIGURE 8 Comparison between various designed d; terms. DEAM, Discriminative wEight on Adaptive

Momentum [Color figure can be viewed at wileyonlinelibrary.com]

only in fewer epochs, but also cost less running time. The results in Table 3 also show that the
computational cost of the proposed adaptive learning rate and the backtrack mechanism is
worthwhile compared with the faster convergence speed they bring because the total running
time required is shorter.

sdny) suonIpuoy) pue swa1, 3y 938 “[£207/£0/0€] U0 ATeiqr] 2uUQ AJ[1AN “SIABC - BIUION[ED JO ANSIOAIUN AQ $SSTTIUNZO01"01/10P w0 Ko[imAeqijaur[uoy/:sdiy wiolj papeojumoq] ‘6 ‘TZ0T X1 118601

Roji:

5u901T SuouI0) 9ARERx) d[qeandde a1 Aq PAWIaAGS AIE SOOI VO aSN JO AN 10J ATeIqrT SUIUQ AS[IA U0 (SUO

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

6552 Wl LEY BAI ET AL.
5 | FUTURE EXPLORATION

On the basis of the current version of DEAM algorithm, there are still some directions that can be
further improved: (1) the second-order momentum weight 8, in DEAM is a fixed hyperparameter
under our design. Such design may not be the ideal solution for different neural networks opti-
mization tasks, thus we expect to propose an adaptive 3, in the future work; (2) according to
Equation (12), our proposed backtrack term d; is computed by d; = min{0.5 cos 6, 0}. Here, the 0.5
is also a hyperparameter for the d; computation. To further eliminate redundant update in the
optimization process, this hyperparameter can be specified before the optimization process. For
example, we can sample a subset of the training data to grid-search the optimal hyperparameter for
the current model optimization task.

6 | CONCLUSION

In this paper, we have introduced a novel optimization algorithm, the DEAM, which imple-
ments the momentum with discriminative weights and the backtrack term. We have analyzed
the advantages of the proposed algorithm and proved it by theoretical inference. Extensive
experiments have shown that the proposed algorithm can converge faster than existing
methods by almost 50% on both convex and nonconvex situations, and the time consuming is
better than existing methods: the time consuming of DEAM is only half of the most widely used
optimizers SGD and ADAM on average. Not only the proposed algorithm can outperform other
popular optimization algorithms, but also fewer hyperparameters will be introduced, which
makes the DEAM much more applicable.

FUNDING INFORMATION
National Science Foundation, Grant Number: IIS-1763365.

ORCID

Jiyang Bai @ https://orcid.org/0000-0002-0621-8815
Yuxiang Ren © https://orcid.org/0000-0001-8829-3984
Jiawei Zhang (@ https://orcid.org/0000-0003-3356-6361

ENDNOTE

*https://www.kaggle.com/nursen/redditcomments.

REFERENCES

1. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition; 2016:770-778.

2. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.
Adv Neural Inf Process Syst. 2012;25:1097-1105.

3. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2015:1-9.

4. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc
IEEE. 1998;86(11):2278-2324.

5. Dong L, Wei F, Zhou M, Xu K. Question answering over freebase with multi-column convolutional neural
networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing; 2015:260-269.

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

https://orcid.org/0000-0002-0621-8815
https://orcid.org/0000-0001-8829-3984
https://orcid.org/0000-0003-3356-6361
https://www.kaggle.com/nursen/redditcomments

ET AL. 6553
- WILEY-—2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:14090473. 2014.

Neumann M, Vu NT. Attentive convolutional neural network based speech emotion recognition: a study on
the impact of input features, signal length, and acted speech. In: Proceedings of the Interspeech 2017; 2017:
1263-1267.

Zhang J. Graph neural networks for small graph and giant network representation learning: an overview.
arXiv preprint arXiv:190800187. 2019.

Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:160904747. 2016.
Qian N. On the momentum term in gradient descent learning algorithms. Neural Networks. 1999;12(1):
145-151.

Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep
learning. In: International Conference on Machine Learning. PMLR; 2013:1139-1147.

Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization.
J Mach Learn Res. 2011;12(7):2121-2159.

Zeiler MD. AdaDelta: an adaptive learning rate method. arXiv preprint arXiv:12125701. 2012.

Kingma DP, Ba J. ADAM: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.
Bianchi P, Jakubowicz J. Convergence of a multi-agent projected stochastic gradient algorithm for non-
convex optimization. IEEE Trans Autom Control. 2012;58(2):391-405.

Reddi SJ, Hefny A, Sra S, Poczos B, Smola A. On variance reduction in stochastic gradient descent and its
asynchronous variants. arXiv preprint arXiv:150606840. 2015.

Roux NL, Schmidt M, Bach F. A stochastic gradient method with an exponential convergence rate for finite
training sets. arXiv preprint arXiv:12026258. 2012.

Shalev-Shwartz S, Zhang T. Stochastic dual coordinate ascent methods for regularized loss minimization.
J Mach Learn Res. 2013;14(2):567-599.

Johnson R, Zhang T. Accelerating stochastic gradient descent using predictive variance reduction. Adv
Neural Inf Process Syst. 2013;26:315-323.

Defazio A, Bach F, Lacoste-Julien S. SAGA: a fast incremental gradient method with support for non-
strongly convex composite objectives. arXiv preprint arXiv:14070202. 2014.

Behera L, Kumar S, Patnaik A. On adaptive learning rate that guarantees convergence in feedforward
networks. IEEE Trans Neural Networks. 2006;17(5):1116-1125.

Tieleman T, Hinton GE. Leture 6.5 RMSProp, COURSERA: Neural Networks for Machine Learning. Tech-
nical Report; 2012.

Dauphin YN, De Vries H, Bengio Y. Equilibrated adaptive learning rates for non-convex optimization.
arXiv preprint arXiv:150204390. 2015.

Luo L, Xiong Y, Liu Y, Sun X. Adaptive gradient methods with dynamic bound of learning rate. arXiv
preprint arXiv:190209843. 2019.

Li Q, Zhou Y, Liang Y, Varshney PK. Convergence analysis of proximal gradient with momentum for
nonconvex optimization. In: International Conference on Machine Learning. PMLR; 2017:2111-2119.
Dozat T. Incorporating Nesterov Momentum into ADAM; 2016.

Mitliagkas I, Zhang C, Hadjis S, Ré C. Asynchrony begets momentum, with an application to deep learning.
In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE;
2016:997-1004.

Nesterov Y. A method for unconstrained convex minimization problem with the rate of convergence
o(1/k2). In: Doklady ANUSSR; 1983.

Zhang Z, Ma L, Li Z, Wu C. Normalized direction-preserving ADAM. arXiv preprint arXiv:170904546. 2017.
Keskar NS, Socher R. Improving generalization performance by switching from ADAM to SGD. arXiv
preprint arXiv:171207628. 2017.

Reddi SJ, Kale S, Kumar S. On the convergence of ADAM and beyond. arXiv preprint ar-
Xiv:190409237. 2019.

Bai J, Ren Y, Zhang J. DEAM: adaptive momentum with discriminative weight for stochastic optimization.
In: 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE;
2020:37-41.

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

6554 BAI ET AL.
—I—Wl LEY

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Chen X, Liu S, Sun R, Hong M. On the convergence of a class of ADAM-type algorithms for non-convex
optimization. arXiv preprint arXiv:180802941. 2018.

Zinkevich M. Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of
the 20th International Conference on Machine Learning; 2003:928-936.

Samaria FS, Harter AC. Parameterisation of a stochastic model for human face identification. In:
Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. IEEE; 1994:138-142.

Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the
27th International Conference on Machine Learning; 2010.

Krizhevsky A, Hinton G, et al. Learning Multiple Layers of Features from Tiny Images; 2009.

Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized
spectral filtering. In: Proceedings of the 30th International Conference on Neural Information Processing
Systems; 2016:3844-3852.

Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: ICLR; 2017.
Velickovi¢ P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. arXiv
preprint arXiv:171010903. 2017.

Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the
31st International Conference on Neural Information Processing Systems; 2017:1025-1035.

Bai J, Ren Y, Zhang J. Ripple walk training: a subgraph-based training framework for large and deep graph
neural network. In: IJCNN; 2021.

Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T. Collective classification in network data.
AI Mag. 2008;29(3):93.

How to cite this article: Bai J, Ren Y, Zhang J. Adaptive momentum with
discriminative weight for neural network stochastic optimization. Int J Intell Syst.
2022;37:6531-6554. doi:10.1002/int.22854

:sdny) suonipuo)) pue suud [ay) 23§ "[£707/L0/0€] uo Areiqry aurjuQ A3Jip\ ‘SIAB(- BIUIOJI[ED) JO ANSIOAIUN Aq pSSTT U001 0 1/10p/wod Ko[im AIeIqi[aur[uoy/:sdiy woly papeo[umod ‘6 ‘7Z0T X1118601

Roji:

5u901T SuouIo) aANEax) d[qeadde A Aq PAWIaAGS SIE SOOI VO aSN JO AN 10] ATeIqrT AUIUQ AS[IA O (:

https://doi.org/10.1002/int.22854

