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Context-Aware Attentive Multilevel Feature Fusion
for Named Entity Recognition

Zhiwei Yang , Jing Ma , Hechang Chen , Jiawei Zhang , and Yi Chang , Senior Member, IEEE

Abstract— In the era of information explosion, named entity
recognition (NER) has attracted widespread attention in the
field of natural language processing, as it is fundamental to
information extraction. Recently, methods of NER based on
representation learning, e.g., character embedding and word
embedding, have demonstrated promising recognition results.
However, existing models only consider partial features derived
from words or characters while failing to integrate semantic and
syntactic information, e.g., capitalization, inter-word relations,
keywords, and lexical phrases, from multilevel perspectives.
Intuitively, multilevel features can be helpful when recognizing
named entities from complex sentences. In this study, we propose
a novel attentive multilevel feature fusion (AMFF) model for
NER, which captures the multilevel features in the current
context from various perspectives. It consists of four components
to, respectively, capture the local character-level (CL), global
character-level (CG), local word-level (WL), and global word-
level (WG) features in the current context. In addition, we further
define document-level features crafted from other sentences to
enhance the representation learning of the current context.
To this end, we introduce a novel context-aware attentive mul-
tilevel feature fusion (CAMFF) model based on AMFF, to fully
leverage document-level features from all the previous inputs.
The obtained multilevel features are then fused and fed into
a bidirectional long short-term memory (BiLSTM)-conditional
random field (CRF) network for the final sequence labeling.
Extensive experiments on four benchmark datasets demonstrate
that our proposed AMFF and CAMFF models outperform a set
of state-of-the-art baseline methods and the features learned from
multiple levels are complementary.

Manuscript received May 8, 2021; revised February 13, 2022 and
March 14, 2022; accepted May 19, 2022. This work was supported in part
by the National Natural Science Foundation of China under Grant 61976102,
Grant U19A2065, and Grant 61902145; in part by the National Science
Foundation (NSF) under Grant IIS-1763365 and Grant IIS-2106972; and in
part by the University of California at Davis and Hong Kong Baptist Uni-
versity (HKBU) One-Off Tier 2 Start-Up Grant RCOFSGT2/20-21/SCI/004.
(Corresponding authors: Hechang Chen; Yi Chang.)

Zhiwei Yang is with the College of Computer Science and Technology and
the Key Laboratory of Symbolic Computation and Knowledge Engineering
of Ministry of Education, Jilin University, Changchun 130012, China (e-mail:
yangzw18@mails.jlu.edu.cn).

Jing Ma is with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong, China (e-mail: majing@comp.hkbu.edu.hk).

Hechang Chen is with the School of Artificial Intelligence and the
Key Laboratory of Symbolic Computation and Knowledge Engineering of
Ministry of Education, Jilin University, Changchun 130012, China (e-mail:
chenhc@jlu.edu.cn).

Jiawei Zhang is with the IFM Laboratory, Department of Computer Sci-
ence, University of California at Davis, Davis, CA 95616 USA (e-mail:
jiawei@ifmlab.org).

Yi Chang is with the School of Artificial Intelligence, the International
Center of Future Science, and the Key Laboratory of Symbolic Computation
and Knowledge Engineering of Ministry of Education, Jilin University,
Changchun 130012, China (e-mail: yichang@jlu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3178522.

Digital Object Identifier 10.1109/TNNLS.2022.3178522

Index Terms— Attention mechanism, multilevel feature extrac-
tion, named entity recognition (NER), sequence labeling.

I. INTRODUCTION

NAMED entity recognition (NER) is a fundamental task
of information extraction to identify entities from raw

text and assign them predefined tags, such as person (PER),
organization (ORG), and location (LOC) [1]. NER has been
extensively studied for various tasks such as part-of-speech
tagging, chunking, and semantic role labeling [2]. Considering
the diversity and complexity of natural language, named
entities can be characterized by multiple features (character-
level and word-level) and from multiple perspectives (local
and global), as illustrated in Fig. 1. The example in the
figure illustrates that to accurately label polysemous words
(e.g., Washington), NER should consider capitalization (“W”),
keywords (“in”), and lexical phrases.

Previous knowledge-based approaches for NER merely
depended on handcrafted rules and domain-specific dictio-
naries to recognize named entities [3], [4]. However, such
approaches are manual and thus prone to poor coverage. Simi-
larly, traditional machine learning approaches used supervised
learning by incorporating a wide variety of hand-crafted
features. To alleviate the heavy manual effort associated
with these approaches, neural models were proposed to
learn the implicit features by utilizing word-level embed-
ding [5], character-level embedding [6], or both [7]. However,
these methods largely ignore or oversimplify the correlations
among the different levels of features such as word-level and
character-level features. Although NER approaches combining
word-level embedding and character-level embedding have
demonstrated improved results [7]–[9], they may pay little
attention to fusing multifeatures and therefore lose a signif-
icant amount of information. For example, when only take
features of adjacent words or characters in the current context
into consideration without incorporating character-level global
features, the polysemous word “Washington” in “Washington
University” (ORG) might be mislabeled as B-PER in the
sentence in Fig. 1. This may result in “Washington University”
being misclassified as PER.

To the best of our knowledge, no existing NER model
incorporates such multilevel features except that outlined in
our recent work [10]. That work was a preliminary study on
fusing multilevel semantic and syntactic features for identify-
ing named entities in an input sentence. The proposed model
included four parallel attention-based components and inte-
grated multilevel features from different perspectives based on
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Fig. 1. Brief illustration of the multilevel features. There are four kinds
of character-level and word-level features from local and global perspec-
tives: Char_Local, Char_Global, Word_Local, and Word_Global, such as the
capitalization (in orange), the polysemous word “Washington” (in red), the
keyword “in” (in green), and the lexical phrase (in blue) which frequently
occur together. The output named entities are shown in black.

Fig. 2. Illustration of extended context in the biomedical literature. Previous
context can be incorporated into the current context to enhance NER, e.g., the
feature relevant to the entity “5-lipoxygenase” in the sentence S1 may help
the recognition of entities that are identical or with similar features in the
sentence S2.

the current context, thereby achieving promising results. The
current study extends the previous work in [10] by: 1) intro-
ducing a memory-distilled network to memorize and dis-
till previous contextual features for enhancing representation
learning enhancement and 2) performing more in-depth experi-
ments and analyses based on the CoNLL-2003, NCBI-disease,
SciERC, and JNLPBA datasets. The results demonstrate that
the new NER model exhibits superior performance.

In this article, we first propose the attentive multi-
level feature fusion (AMFF) framework for NER, where
the multilevel semantic and syntactic features of a given
input sequence are simultaneously captured from different
views, as shown in Fig. 1. Inspired by the transformer net-
work [11], we explicitly employ four components, namely
the local character-level (Char_Local), global character-level
(Char_Global), local word-level (Word_Local), and global
word-level (Word_Global) components, to process the current
input sequence. The fusion representation of the context-aware
multilevel features is then fed into the bidirectional long
short-term memory (BiLSTM)-conditional random field (CRF)
network [5] for the final prediction.

However, a drawback of this model is that it only considers
the current context, which prevents the utilization of previous
contextual information. For example, as shown in Fig. 2, the
feature relevant to the entity “5-lipoxygenase” extracted from
the previous context S1 could enhance the recognition of the
identical entity “5-lipoxygenase” (PROTEIN) or other entities
[e.g., “HL-60 cells” (CELL_LINE)] in S2 with similar features
such as those in the combination of characters and numbers
denoting proteins or cells in biology. Therefore, a more general
framework for NER is urgently needed.

Previous studies have found that NER can be enhanced by
incorporating document-level information [12]. In this work,

we further propose the context-aware AMFF (CAMFF) model,
which memorizes and distills context-aware document-level
features, i.e., character-level and word-level features captured
from other sentences in the document. To distill context-
aware document-level features, we design a set of dilated
convolutional neural networks with different dilated rates from
fine to coarse. Besides, previous contextual features are con-
catenated to the current context iteratively, thereby broadening
the contextual information in sequence labeling.

We conduct extensive experiments on four datasets, i.e.,
CoNLL-2003, SciERC, NCBI-disease, and JNLPBA, and
demonstrated that: 1) the proposed AMFF yields outstand-
ing improvements over the state-of-the-art baseline methods;
2) the CAMFF framework is more effective at capturing
multilevel features; and 3) the document-level features are
complementary with the local/global character/word-level fea-
tures. The main contributions of our article are fourfold.

1) We propose the AMFF framework for NER, which
enables the multilevel features from diverse word-level
and character-level perspectives to be integrated. Based
on AMFF, we develop CAMFF by incorporating pre-
vious contextual features to broaden the scope of the
context. To the best of our knowledge, this is the first
study to use attention mechanisms for capturing multi-
level contextual features from different perspectives.

2) By adopting feature selectors for local character-level
(CL), global character-level (CG), local word-level
(WL), and global word-level (WG) in AMFF to cap-
ture the features pertaining to capitalization, inter-word
relations, keywords, and lexical phrases, respectively.
We simplify the problem and improve interpretability.

3) In CAMFF, we extend the scope of the current context
by incorporating previous contextual features iteratively.
This provides a novel solution for aggregating effective
information from an extended context for NER.

4) Extensive validations on four benchmark datasets against
the state-of-the-art models demonstrate the superiority
of our proposed methods. Systematic analyses reveal
an in-depth understanding of each component and the
robustness of the proposed frameworks. Moreover, addi-
tional experiments show that the previous context con-
tributes to the effectiveness and robustness for NER.

The rest of this article is organized as follows. Related
work is first summarized in Section II. We then formulate the
problem of NER in Section III. Next, the proposed AMFF
model and its extension CAMFF are detailed in Section IV,
as illustrated in Figs. 3 and 4, respectively. After that,
Section V presents the experimental results and analyses.
Finally, Section VI summarizes the conclusions and outlines
directions for future work.

It is noted that there is a shorter conference version of
this article published in [10]. To the best of our knowledge,
most NER studies have extracted entities solely from current
context fragments, thereby limiting representation learning.
Our initial conference paper focused on the multilevel features
in the current context for NER and was therefore limited in
the scope of the contextual information it included. In this
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Fig. 3. AMFF framework. Character embeddings and word embeddings of the sentence are inputs for the feature selection layer. From this layer, Char_Global,
Char_Local, Word_Global, and Word_Local components are simultaneously adopted to extract the character-level global (CG), character-level local (CL),
word-level global (WG), and word-level local (WL) features, respectively. For convenience, we leave out the words labeled with O . Dashed arrows indicate
that a dropout operation is applied.

Fig. 4. Additional Contextual feature enhancing in CAMFF. E denotes the fused multilevel feature encoding before the sequence labeling layer of AMFF.

manuscript, we propose a remedy solution CAMFF to address
this limitation and provide additional analyses on the results
of our experiments.

II. RELATED WORK

With the recent advancements in deep learning (DL),
DL-based NER models are being predominantly adopted
for NER and have achieved the state-of-the-art results [1],
[13]. Compared with traditional approaches, DL is superior
at discovering hidden features from context automatically.
Existing DL-based NER methods are primarily based on word
embeddings, character embeddings, and combinations of other
embeddings as follows.

The first word embedding-based NER approach [2]
adopted convolution neural networks (CNNs) to produce
local features, and a CRF layer to predict entity attributes.
To incorporate long-distance dependencies, a subsequent study
replaced the CNN layer with a bi-directional long short-term

memory (BiLSTM) layer, thereby enabling a better selection
of global features [5]. Another study combined CNN and
BiLSTM to improve the performance of linguistic sequence
labeling [14]. However, these methods did not account for
effects at the character level, thereby potentially losing impor-
tant information.

Word representations can be obtained from character-level
embeddings as a sentence can be regarded as a charac-
ter sequence. A character-level convolutional neural network
(CharCNN) [15] was proposed to extract local sub-word
information. This approach relied on LSTM for contex-
tual features and the softmax function for the final predic-
tion, which highlighted the character embeddings for NER.
Another study adopted character-level recurrent neural net-
works (CharRNN) [6] to select global features from the con-
text, and improved NER using CRF. In addition, it achieved
better performance in dealing with multiple languages [16],
[17]. However, methods based on character embeddings do not
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prioritize word-level features, and therefore exclude valuable
information.

Recent studies have demonstrated the advantage of
recognizing named entities based on a combination of embed-
dings [7], [18]. To capture both global and local fea-
tures, existing methods have incorporated additional types
of embeddings. For example, BERT-based methods such as
SciBERT [9] have incorporated token embeddings, segment
embeddings, and position embeddings for NER. Moreover,
other auxiliary information such as affix embeddings can also
be used to augment the NER architecture [19]. Another study
utilized the multitask learning strategy that divides the original
task into multiple subtasks for performing nested NER [20].
Although these methods have enhanced NER, few of them
have explored the attention mechanism for multilevel feature
selection in NER and thereby have not comprehensively uti-
lized the information that can be leveraged.

In addition, there is another significant challenge in utilizing
document-level features from previous context. As we known,
LSTM language models use only 200 context words on aver-
age [21]. One study addressed this using attentive language
models to improve the effect of long-term dependency on sepa-
rated fixed-length segments [12]. Recent studies have adopted
the attention mechanism [10], [22], [23], dependency-based
BiLSTM networks [24], [25], and the purely parsing-based
approach [26] to learn global dependencies in a sentence
context, and these have achieved highly competitive perfor-
mances. Another study [27] proposed a FOFE-based method,
which encodes the left and right context of a sentence into
the target span similar to bag-of-words. However, there is
a paucity of work that incorporates document-level semantic
features for NER. Owing to the fixed lengths of the contexts,
existing models do not effectively capture features beyond the
current context, thereby preventing the utilization of previous
contextual information [28].

In contrast to existing models that mine information from
merely one perspective, our model focuses on leveraging
multilevel features from multiple perspectives. This enables
obtaining more types of information and deliver a comprehen-
sive final prediction. Our model also fully utilizes information
from previous inputs by distilling previous contextual features
to extend the current context, which further contributes to
aggregating information from a larger scope for NER.

III. PROBLEM FORMULATION

Given an input sentence S composed of a sequence of
words {w1, w2, . . . , wt , . . . , wn}, where n is the total number
of words in the sentence, we assign each word wt with
a label yt that takes one possible class from the named
entity label set: y = {B − ORG, I − ORG, E − ORG, O,
S-LOC,B-PER,…}, where the tags B-, I-, and E-, respectively,
indicate the beginning, intermediate, and ending positions
of the entities, the tag S- indicates an entity with a single
word, and the tag O indicates other types. ORG,LOC, and
PER are categorical abbreviations of organization, location,
and person, respectively. Thus, we formulate it as a sequence
labeling problem, that is, f : {w1, w2, . . . , wt , . . . , wn} →
{y1, y2, . . . , yt , . . . , yn}. Figs. 3 and 4 present the overviews of
our proposed frameworks, which are depicted in Section IV.

IV. OUR PROPOSED FRAMEWORK

This section will introduce our proposed models, i.e., AMFF
and CAMFF for NER, respectively. AMFF consists of shared
embedding layer, multilevel feature selection layer, feature
fusion layer, and sequence labeling layer, as illustrated in
Fig. 3. In addition, CAMFF contains a contextual feature
enhancing layer after the multilevel feature fusion layer,
as illustrated in Fig. 4.

A. Embedding Layer

For a given input word sequence w, we represent each
token in the sentence by adopting both word embedding and
character embedding [29]. From a word sequence, we obtain
the word embedding of the t th word as follows:

xwt = ew(wt) (1)

where ew denotes a pretrained word embedding lookup table.
In addition, the embedding of each character within the i th
word is denoted as follows:

xc
t j = ec(c j) (2)

where ec denotes the character embedding lookup, which is
randomly initialized in this work.

B. Multilevel Feature Selection

The multilevel feature selection contains four compo-
nents, i.e., Char_Global, Char_Local, Word_Global, and
Word_Local, to extract the character-level global (CG),
character-level local (CL), word-level global (WG), and word-
level local (WL) features, respectively, as illustrate in Fig. 3.

1) CG Feature Selection: As demonstrated by the
BiLSTM-CRF model [5], long-distance dependencies are
important for NER. For example, in the sentence in Fig. 1,
“Washington” is relevant to both the past and future contexts,
i.e., “University” and “George.” As the attention mecha-
nism eliminates the necessity for encoding all information
equally [30], we combine the BiLSTM network with the
attention mechanism to facilitate NER for extracting CG
features. We take character embeddings in the tth word xc

t j
into BiLSTM to learn hidden states and the contextual hidden
state is expressed as follows:

hchar
t = [−→

h char
t ⊕←−h char

t

]
(3)

where
−→
h char

t and
←−
h char

t denote the forward and backward
outputs of BiLSTM at time step t . ⊕ denotes concatenation.
We adopt the self-attention mechanism to effectively capture
the relationships between any two representations regardless
of the distance between them [11], e.g., “Washington/B-ORG”
is relevant to but different from “Washington/E-PER” in
Fig. 1. Formally, we take hchar

t as the input to obtain the CG
representation hCG

t as follows:
hCG

t = tanh
(
Wc

[
ct ⊕ hchar

t

])
(4)

ct =
∑

s

αtshchar
s (5)

αts = softmax
(
µT

a tanh
(
W1hchar

s +W2hchar
t

))
. (6)

Here ct is the context vector. We then let hchar
s = hchar

t to
obtain the additive attention weight αts . W1, W2, and Wc are
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weight matrices, and µa is a vector of parameters, which are
randomly initialized.

2) CL Feature Selection: As demonstrated by
BiLSTM-CNN [31], convolutional neural networks (CNNs)
are useful for capturing character-level information, such
as capitalization. Owing to their sparse connectivity and
parameter sharing, CNNs are able to effectively process
the sequences in the current receptive field akin to the
attention mechanism. Furthermore, the max pooling operation
significantly enhances the capturing of the most significant
feature [15]. This is why BiLSTM and CNN are adopted
together to capture CL features.

We employ CNN with a redundant position of input
sequences that are masked to extract the character-level fea-
tures, which can be expressed as follows:

Conv
(
xc

t

) = Mask
(
xc

t

) ∗ U (7)

where U is the filter with filter width k set as 3. The
convolution operation is typically denoted by an asterisk, and
the masking function, Mask, simply sets the padded position
of input sequences as zero.

Additionally, the max pooling operation, Max, is applied to
capture the significant local features assigned with the highest
value for a given filter [15], such as the capitalization of “M”
for “Missouri.” At time step t , the character-level representa-
tion from the local perspective is obtained as follows:

hCL
t = Max

(
Conv

(
xc

t

))
(8)

Thus, hCL
t represents the CL representation.

3) WG Feature Selection: Previous studies [7], [32] have
shown that word embeddings, especially the pretrained embed-
dings, play an important role in capturing word similarity
and relations in other words. Therefore, WG features, such
as lexical phrases where words frequently co-occur, can be
obtained by merely using self-attention, which has the advan-
tage of modeling dependencies between words regardless of
the distance between them [11]. For example, the label LOC
frequently occurs after “in.” We simply use basic dot-product
attention as follows:

Att(Q,K,V) = softmax(QKT )V (9)

where query vectors Q ∈ Rn×dw , key vectors K ∈ Rn×dw ,
and value vectors V ∈ Rn×dw . dw denotes the dimension of
each word embedding. It is noted that attention was com-
puted without scaling to maintain comparability with other
representations. By setting Q = WQxwt ,K = WK xwt ,V =
WV xwt where W is the parameter to be learned, the word
representation based on self-attention is obtained as follows:

hWG
t = Att

(
xwt , xwt , xwt

)
. (10)

In our experiments, we found that incorporating the
BiLSTM network worsened the result (e.g., AMFF-BI in
Table II). Therefore, inspired by residual networks [33],
we simply use hWG

t as a shortcut connection for improving
the gradient’s back-propagation.

4) WL Feature Selection: Inspired by the language
model [15], the max pooling operation facilitates the selection
of prominent features. For example, we can distill WL features
from inter-word relations based on the attention mechanism,
such as the relevant keyword “in” from the input sequence in
Fig. 1. Based on (10), the final representation of local word
embeddings hWL

t is obtained as follows:
hWL

t = Max
(
FFN

(
hWG

t

))
(11)

where Max indicates the max pooling, and FFN is a feed-
forward network.

C. Multilevel Feature Fusion

Multilevel feature fusion is a robust and efficient strategy for
NER, as it leverages the most significant features to achieve
better results. The objective of feature fusion for NER is to
form representations of the original input sequences based on
global information by combining multiple relevant features.
We employ a concatenation strategy to fuse the multilevel
features with finetuning. For conciseness, the final fusion
representation of the multilevel features from the current
context is obtained as follows:

ht = λ1hCG
t ⊕ λ2hCL

t ⊕ λ3hWG
t ⊕ λ4hWL

t (12)

where hCG
t , hCL

t , hWG
t , and hWL

t represent the features extracted
from the above components, respectively. λm (m ∈ {1, 2, 3, 4})
controls the degree of the importance for each component,
which is randomly initialized. Moreover, this equation can
be easily extended to other cases by adding more relevant
features.

D. Additional Contextual Feature Enhancing

To our knowledge, almost all approaches for NER extracted
entities solely from a fragment of the current context, which
limits representation learning. The success of [12] demon-
strates that widening the scope of the utilized informa-
tion enhances contextual representation learning in NER.
For example, in the sentences in Fig. 2, the entities
“5-lipoxygenase” and “HL-60 cells” are most likely to be
projected on to the vicinity of a feature that indicates a
combination of characters and numbers in the field of biology.
Since AMFF only encodes multilevel features from the current
context, the natural extension is to fully utilize features from
previous contexts. This enhances NER in the current context
by connecting it with similar contexts at the document level.

CAMFF is a memory-distilled network based on AMFF,
which memorizes and distills contextual features from pre-
vious inputs, i.e., document-level features, to improve NER
performance, as shown in Fig. 4. Thus, the proposed frame-
work enhanced by previous contextual features is referred to
as CAMFF. Unlike [12] that memorized the representations for
each unique word in the sentences using a key-value memory
network [34], we explicitly designed a set of dilated CNNs
with different dilation rates ranging from fine to coarse. This
contributes to the distillation of multigrained discriminative
features from the previous contexts and obtains refined repre-
sentations based on extended context.
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Algorithm 1 CAMFF for NER
Input:

A sequence of words S = {w1, w2, . . . , wn};
The dimension of word embeddings dw and charac-
ter embedding dc; Word-level LSTM units dlstm and
character-level LSTM units dlstm’.

Output:
Named entity labels ŷ∗ = {ŷ1, ŷ2, · · · , ŷn}

1: for numbers of training iterations do
2: Word-level representations xw ← Equation (1)
3: Character-level representations xc ← Equation (2)
4: Char_Global: hCG ← f CG(xc)
5: Char_Local: hCL ← f CL (xc)
6: Word_Global: hW G ← f W G (xw)
7: Word_Local: hW L ← f W L (xw)
8: Fused representation ht based on above features by

Equation (12)
[Contextual Feature Enhancing]

9: Additional contextual features Zd
i−1 ← Equation (14)

10: Enhanced representation Z̃i by Equation (15)
11: ŷ∗ ← BiLSTM-CRF(Z̃i )
12: end for
13: return Named entity labels ŷ∗

Specifically, previous multiscale contextual features are
aggregated with dilated convolutions, and are then cached
and reused as an extended context for the next segment.
Formally, let the two consecutive sequences be Si−1 =
{xi−1,1, xi−1,2, . . . , xi−1,L } and Si = {xi,1, xi,2, . . . , xi,L ′ },
respectively. We denote the (i − 1)th context representation
as Hi−1 = {hi−1,1,hi−1,2, . . . ,hi−1,t , . . . ,hi−1,L }(i > 1) based
on (12). Thus, the current i th refined representation is obtained
as follows:

Zd
i−1 = ReLU(Dconv(Hi−1)) (13)

Zi−1 = Zd=1
i−1 ⊕ Zd=2

i−1 ⊕ Zd=5
i−1 (14)

Z̃i = Cached(Zi−1)⊕ Zi (15)

where Dconv denotes the dilated CNN with a dilation rate
d ∈ {1, 2, 5}, and the kernel size is set to 3. ReLU denotes the
activation function, and Cached denotes fixing and caching
without gradient operation. Z̃i denotes the output refined
representation incorporated with previous contextual features,
which is then fed to the sequence labeling layer for final
prediction (the upper part of Fig. 3).

Enhanced by the additional memory-distilled network,
CAMFF explicitly uses fused contextual features in the history.
Consequently, the effective context utilized for NER can
exceed the current context. In general, CAMFF can cache pre-
vious context without limitation and reuse them as additional
knowledge. However, in our experiments, we reused only
consecutive previous contextual features owing to a limited
GPU memory capacity.

E. Sequence Labeling for Final Prediction

The output refined representation with context-aware mul-
tilevel features is fed into a BiLSTM network to fully utilize

TABLE I

STATISTICS OF THESE FOUR DATASETS, #TOK DENOTES TOKENS
AND #ENT DENOTES ENTITIES

all the semantic and syntactic information at a higher level.
In addition, CRF enhances NER by considering neighboring
labels to avoid mislabeling. For example, I-ORG cannot follow
E-ORG in the NER task with BIOES annotation. Therefore,
we incorporate a CRF in the BiLSTM network to jointly
decode the best chain of labels.

Formally, we suppose that the current final representation
output by BiLSTM is r = (r1, r2, . . . , rn), with the corre-
sponding generic label sequence ŷ = (ŷ1, ŷ2, . . . , ŷn). Given
the input sequence r, the conditional probability [31] is defined
as p(ŷ|r;W,b) in CRF models as follows:

p(ŷ|r;W,b) =
∏n

t=1 ψt (ŷt−1, ŷt , r)∑
ŷ′∈S(r)∏n

t=1 ψt

(
ŷ′t−1,ŷ

′
t ,r

) (16)

where ŷ ′ represents a label chosen arbitrarily from all possible
labels S(r), and ψt (ŷ ′t−1, ŷ ′t , r) = exp(Wŷ′t−1,ŷ

′
t
rt + bŷ′t−1,ŷ

′
t
).

Here Wŷ′t−1,ŷ
′
t

and bŷ′t−1,ŷ
′
t

are the weight parameter and bias
parameter corresponding to the label pair (ŷ ′t−1, ŷ ′t).

For CRF training, the objective of the model is to maximize
the following log-likelihood, which is given by:

L(W,b) =
∑

rt ,ŷt

log(p(ŷt |rt ;W,b)). (17)

During the decoding phase, we search for the best label
sequence ŷ∗ that maximizes the likelihood as follows:

ŷ∗ = arg max
ŷ∈S(r)

p(ŷ|r;W,b). (18)

Furthermore, for sequence labeling, we adopt a dynamic plan-
ning method named Viterbi to calculate the final tag sequence
efficiently. Our complete training procedure for CAMFF is
shown in Algorithm 1.

V. EXPERIMENTS

In this section, we first introduce the datasets and base-
line methods for comparison. The experimental settings and
metrics are then described in detail. Finally, the results and
analyses are presented.

A. Datasets

To verify the effectiveness of the proposed frame-
works, we conducted experiments on the CoNLL-2003 [36],
NCBI-disease [37], SciERC [38], and JNLPBA [39] datasets,
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TABLE II

EXPERIMENTAL RESULTS ON TEST SETS COMPARED TO THE CLASSIC AND STATE-OF-THE-ART METHODS. STANDARD PRECISION (P ), RECALL (R),
AND F1 SCORE (F1) ARE EMPLOYED AS EVALUATION METRICS

containing 4, 1, 6, and 5 entity types, respectively. All datasets
were separated into training, development, and test sets. Table I
presents the descriptive statistics of these four datasets.

1) CoNLL-2003 contains four types of named entities:
PER, LOC, ORG, and MISC. It is a collection of
newswire articles from the Reuters Corpus. The English
version of the dataset was used in this work.

2) NCBI-disease contains a collection of 793 PubMed
abstracts annotated at the mention and concept levels
for disease name recognition, covering all the sentences
in every PubMed citation.

3) SciERC is derived from 500 scientific abstracts.
It includes annotations for scientific entities, their rela-
tions, and coreference clusters. The dataset contains six
scientific entity types across 2687 sentences.

4) JNLPBA contains extract terms from molecular biol-
ogy, such as PROTEIN, DNA, RNA, CELL_LINE, and
CELL_TYPE. It was originally derived from the GENIA
corpus. However, only the flat entities were preserved
from the original corpus.

B. Baseline Methods

We compared our proposed models with the following
baseline methods.

1) BiLSTM-CRF [5]: This applies the BiLSTM network to
efficiently learn both past and future features of word
embeddings, and uses a CRF layer to capture overall
tag dependencies.

2) BiLSTM-CNNs [35]: This extracts character-level
features using CNN, and word-level features
from pretrained word embeddings, in addition
to encoding partial lexicon matches in neural
networks.

3) NeuralNER [29]: Similar to Chiu and Nichols [35],
this regards the word as a sequences of characters and
learns character-level features from a BiLSTM, rather
than CNNs.

4) TreeBiLSTM [24]: This introduces a tree-structured
LSTM network, which is able to incorporate information
from multiple child units.

5) DepBiLSTM [25]: This incorporates the features of
long-distance and syntactic dependency graphs between
words in a sentence to identify named entities.

6) CS Embeddings [7]: The neural language model gen-
erates context embeddings at the character level and
obtains the final representation by concatenating pre-
trained word embeddings and character embeddings.

7) SciBERT [9]: It introduces a contextualized embedding
model for scientific text based on BERT, which leverages
unsupervised pretraining on a large corpus of publica-
tions and achieves the state-of-the-art on several tasks.

8) CollaboNet [18]: This is built upon multiple identical
single-task NER models (STMs) that send information
to the proper model for more accurate predictions in the
biomedical field.

Among the above methods, BiLSTM-CRF, BiLSTM-CNNs,
NeuralNER, TreeBiL-STM, and DepBiLSTM may be consid-
ered classic methods, whereas CS Embeddings, SciBERT, and
CollaboNet are the state-of-the-art methods.

C. Experimental Settings and Evaluation Metrics

For experimental settings, we used both the pretrained
word embeddings from GloVe and the randomly initialized
character embeddings as input [40]. For word embeddings,
the dimension was set to 300 and the word-level LSTM size
was set to 250. For character embeddings, the dimension was
set to 100, the character-level LSTM size was generally set to
25, and the CNN filter number was set to 50. For reusing
contextual features, we adopted three multigrained dilated
convolutions to iteratively incorporate the preceding previous
context into the current context for NER, i.e., L = 1. The
dilated rates were separately set to 1/2/5 with SAME padding,
and the strides were set to 1. We train our proposed model
using SGD to perform back-propagation through time. The
batch size is set to 16. The learning rate was set to 0.001.
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To avoid overfitting, dropout with a rate of 0.5 was applied
to the input of each component as well as the output of the
feature fusion layer in our model. For time efficiency, we gen-
erally initialized other related hyper-parameters according to
the aforementioned baselines. We repeated the experiment
10 times with an early stopping strategy, and the average per-
formance on the test set was reported as the final performance.
All of our experiments were performed on the same machine
with NVIDIA 2080ti GPU and Intel1 Xeon E7-4870 CPU.
We built our model with several widely-used libraries such as
python, tensorflow-gpu, numpy, pathlib, etc.

For evaluation, we employed precision (P), recall (R), and
F1-score (F1) as metrics and adopted the BIOES tagging
scheme for all datasets. F1-score was chosen as the primary
metric because it is the harmonic mean of precision and recall.
Moreover, we designed the following four variants of the
proposed model for ablation studies as follows.

1) AMFF: This is our basic model, incorporating multilevel
features, e.g., character-level local features, character-
level global features, word-level local features, and
word-level global features, as shown in Fig. 3.

2) AMFF-BI: This incorporated a BiLSTM network into
the WG component of the proposed AMFF.

3) AMFF-NA: This is a variant of the proposed AMFF
without the attention mechanism.

4) CAMFF: This is the proposed AMFF enhanced with
previous contextual features as illustrated in Fig. 4.
Therefore, AMFF can be regarded to be a part of
CAMFF.

D. Overall Results and Comparisons

Table II shows the experimental results for AMFF and its
variants (AMFF-BI, AMFF-NA, and CAMFF), displaying as
two groups, i.e., classic and state-of-the-art methods. For a fair
comparison, we report their average results on the four bench-
mark datasets. Classic character-based and word-based NER
methods obtained lower F1 scores than the recent methods
on most benchmark datasets. In the case of the BiLSTM-CRF
network, this might have occurred because of the bias caused
by the previous label owing to insufficient information. Struc-
tured RNN baselines, i.e., TreeBiLSTM and DepBiLSTM,
exhibited competitive performance on all datasets, demonstrat-
ing that NER could benefit from the dependency relations
and long-distance dependencies. However, they performed
slightly worse on CoNLL-2003 and JNLPBA than some other
classic baselines, may be partly because of the quality of the
dependency parsing.2

SciBERT achieved prior the state-of-the-art performances
on NCBI-disease and SciERC, which depends on pretrain-
ing over a large corpus of scientific publications to gen-
erate contextualized embeddings. CollaboNet obtained the
best result on JNLPBA because of multitask learning, which
may make a wrong prediction when errors overlap. However,
on CoNLL-2003, classic methods achieved F1 scores more
than 90% and performed slightly better than SciBERT and

1Registered trademark.
2https://spacy.io/

CollaboNet. This is probably because these two methods were
designed for academic and biomedical fields, respectively, and
therefore failed to effectively capture general features such
as local character features and lexical phrases. In addition,
CS Embeddings achieved a prior state-of-the-art performance
with 92.74% F1 score on CoNLL-2003 and also obtained
competitive results on the other datasets, by merely taking the
global word- and character-level features into consideration,
which is partly similar to our proposed AMFF.

Overall, the state-of-the-art baselines generally outper-
formed the classic methods in terms of the F1 score. This is
likely due to the richer information utilized by the recent meth-
ods, as shown in Table II. Consistent with this observation,
our proposed method CAMFF achieved the best results on the
four benchmark datasets, thereby validating its effectiveness.
The mere incorporation of WG features based on attention
enhanced the overall performance, as evidenced by AMFF-BI.
This might be because the inter-word relations provided
by pretrained word embeddings made BiLSTM redundant.
Besides, there was a slight performance degradation when
attention was omitted from the model (i.e., AMFF-NA), which
highlights the importance of incorporating multilevel features
based on attention mechanisms. CAMFF outperformed AMFF
to achieve the best performance in terms of the F1 score
on all four datasets. This indicates that broadening the scope
of the current context considerably enhances NER. Further,
CAMFF achieved the highest improvement of the F1 score
on JNLPBA compared to the other three datasets. This may
be due to the fact that the biomedical dataset contains more
unusual entities than the other datasets, and therefore previous
contextual features can provide supplementary knowledge for
identifying these entities.

E. Ablation Study

To evaluate the contributions of the components (regarding
WG, WL, CG, and CL) in AMFF and CAMFF, we conducted
ablation experiments on the development sets of the four
datasets. Table III shows that CAMFF and AMFF achieved
overall better performance, demonstrating all components con-
tribute to the recognition of named entities. Specifically, the
performance of AMFF with only a single component was
not satisfactory, whereas the fusion of multiple components
made AMFF more competitive. This might be because the
multilevel features captured from the four primary components
of CG, CL, WG, and WL enhanced our model from multiple
perspectives. Based on the attention mechanism, word-level
components seemed to be more effective than character-level
components, owing to the pretrained word embedding. On the
SciERC dataset, the F1 score decreased to 65.86% when
three components were fused. This could be due to the noise
caused by the fusion of the components. However, in general,
our proposed model tended to be more effective and robust
when the number of components that were fused increased.
This is mainly because each component contributed a unique
perspective. CAMFF did not achieve the best performance on
the development set of the NCBI-disease and SciERC datasets.
This is perhaps due to noise from previous contexts. However,
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TABLE III

RESULTS OF THE ABLATION STUDY OF AMFF ON DEVELOPMENT SETS. “WG,” “WL,” “CG,” AND “CL” DENOTE THE GLOBAL
WORD-LEVEL COMPONENT, LOCAL WORD-LEVEL COMPONENT, GLOBAL CHARACTER-LEVEL COMPONENT, AND

LOCAL CHARACTER-LEVEL COMPONENT, RESPECTIVELY

TABLE IV

OUR INDIVIDUAL ENTITY RESULTS ON FOUR DATASETS

CAMFF further improved the performance of NER on the
CoNLL-2003 and JNLPBA datasets with F1 scores of 94.70%
and 82.76%, respectively. This demonstrates its potential for
enhancing NER and developing a more competitive model by
leveraging a wider scope.

In addition, Table IV presents the performance of the
CAMFF model for individual entity results on four datasets.
The table shows that CAMFF exhibited competitive perfor-
mances for fine-grained entity recognition. These results indi-
cate that our CAMFF not only achieves superior performances
for overall entity recognition, but also identifies individual
entities accurately regarding F1 score across four datasets,
further highlighting the superiority of our CAMFF.

F. Case Study for Detailed Analysis

Table V presents a case study comparing our model with
CS Embeddings [7] and SciBERT [9], which are more

TABLE V

CASE STUDY. THE BOLD WORDS ATTRACT MORE ATTENTION

representative than the others. In the example sentence, the
word “Washington” is polysemous, i.e., the first “Washington”
denotes an ORG together with “University,” whereas the
second in “George Washington” must be categorized as a PER.
CS Embeddings and SciBERT may recognize “Washington” as
either B-ORG or B-PER from the context, potentially causing
“University” to be erroneously labeled E-PER because of the
lack of auxiliary features.

In contrast to the existing methods, AMFF and CAMFF can
easily recognize entities by considering additional features of
the original sequences, such as the lexical phrases and the
keyword “in,” which are vital for distinguishing categorical
entity labels. Furthermore, AMFF and CAMFF emphasize
disambiguation based on self-attention, which enables the
long-distance dependencies to be captured, as shown in Fig. 1.
Our models are therefore advantageous for distinguishing
polysemous words owing to their ability to fuse multilevel
features from different perspectives.

G. Parameter Sensitivity Analysis

Four primary parameters, namely dropout rate, LSTM size,
filter number, and batch size, were selected and their impacts
on the effectiveness of AMFF were verified. The dropout
rate denotes the percentage of units that are dropped in a
neural network, the LSTM size controls the number of hidden
state units used in sequence labeling, the filter number affects
the output shape of the character-level CNN module, and
the batch size controls training efficiency and the allocated
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Fig. 5. Parameter sensitivity analysis for AMFF on these four datasets.

Fig. 6. Impact of the length of previous context for CAMFF. Different lengths of the previous context were incorporated, i.e., L , varied from 1 to 5, where
1 represents the preceding previous context, 2 represents the preceding two previous contexts, etc.

resources. To study the uncertainty in the output of our
proposed model, we employed single-parameter sensitivity
analysis by varying one parameter at a time while fixing the
others each time. As shown in Fig. 5, AMFF maintained a high
performance while the parameter varies on the four benchmark
datasets. This demonstrates that multilevel features contribute
to enhance NER, and further verifies the effectiveness and
robustness of our proposed model.

H. Length of Previous Context

To explore the impact of the previous context, we con-
ducted additional experiments on the development sets of these
datasets by varying the length of the previous context while
fixing other parameters. As shown in Fig. 6, different lengths

of the previous context impacted the NER results differently.
As a longer previous context did not always imply better
NER, perhaps owing to data distribution and noise, we simply
set the length of the previous context to 1. Overall, CAMFF
maintained a high performance while the parameter varied,
owing to the relevant contextual features obtained from a larger
scope. This indicates that previous contextual features play an
important role for NER in the current sequence. Therefore,
CAMFF is effective and robust at dynamically utilizing context
beyond current sequences.

I. Further Discussion

In this section, we will give a more in-depth analysis of the
proposed frameworks in terms of effectiveness and robustness.
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The proposed framework AMFF leverages the aggregation of
relevant multilevel relevant features for NER. It outperformed
a set of state-of-the-art baseline methods by a considerable
margin. In CAMFF, which is a natural extension of the stan-
dard AMFF, previous contextual features demonstrated signif-
icant potentials to further enhance NER. CAMFF is therefore
a novel solution for incorporating additional information, not
only from different perspectives but also from a broader
context, to effectively enhance NER. However, as CAMFF
caches the previous contextual features, it inevitably requires
more memory resources. To update the context, the memory
slots used to store the previous context are updated once in one
epoch to incorporate the preceding context. In the experiment,
we set the length of the previous context to 1 to balance per-
formance and resource consumption. In addition, both AMFF
and CAMFF maintained a high performance while the model
parameters (e.g., the dropout rate and the length of the previous
context) varied as shown in Figs. 5 and 6, demonstrating that
the frameworks are effective and robust. The frameworks can
be easily extended and applied to enhance NER.

VI. CONCLUSION

This article presented a novel AMFF framework, i.e.,
AMFF, and a context-aware AMFF framework, i.e., CAMFF,
which effectively leverage multilevel features for predict-
ing categorical entity labels. The proposed frameworks cap-
ture character-level and word-level features from both global
and local perspectives by adopting attention mechanisms.
In CAMFF, we extended the scope of the current context
by incorporating previous context and aggregating multiscale
document-level features, which further improved the NER
performance. Furthermore, the proposed frameworks can be
easily extended by incorporating more discriminative features
such as affixes to boost the NER performance. The experi-
mental results demonstrated that CAMFF outperformed AMFF
and various baseline methods, establishing new state-of-the-
art results on the CoNLL-2003, NCBI-disease, SciERC, and
JNLPBA datasets. Moreover, the analyses of the parameter
sensitivity and the impact of the length of the previous context
showed that our proposed frameworks are highly effective and
robust.

For future work, the proposed frameworks, i.e., AMFF and
CAMFF, are readily extended to improve the effectiveness in
cross-language tasks, e.g., Chinese and English mixed corpus,
and deal with downstream NLP applications, e.g., search
engines, text mining systems, and fake news detection analysis.
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