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Influence of an atomic resonance on the coherent control of the photoionization process
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In coherent control schemes, pathways connecting an initial and a final state can be independently controlled
by manipulating the complex amplitudes of their transition matrix elements. For paths characterized by the
absorption of multiple photons, these quantities depend on the magnitude and phase between the intermediate
steps, and are expected to be strongly affected by the presence of resonances. We investigate the coherent control
of the photoemission process in neon using a phase-controlled two-color extreme ultraviolet pulse with frequency
in proximity of an excited energy state. Using helium as a reference, we show that the presence of such a
resonance in neon modifies the amplitude and phase of the asymmetric emission of photoelectrons. Theoretical
simulations based on perturbation theory are in fair agreement with the experimental observations.

DOI: 10.1103/PhysRevResearch.4.033231

I. INTRODUCTION

Coherent control is a fundamental quantum strategy for
steering the outcome of a chemical reaction or a physical
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process. This control relies on the premise that several
quantum-mechanical paths can connect the initial and final
states of a system, with each of them being characterized by a
complex transition matrix element. The interference of these
complex terms governs the properties of the final state, which
can be controlled by manipulating the contributions associated
with one or more pathways. As described in [1], coherent
control schemes are widely applied in numerous fields, such
as chemical reactions [2,3], biological processes [4], ultra-
cold physics [5], quantum information [6], and attosecond
physics [7].

Typically, coherent control is implemented by shaping, in
both amplitude and phase, the spectral components of the
laser pulses that interact with the quantum system [8]. For
nonlinear pathways characterized by the absorption of several
photons, the structure of the intermediate energy levels of
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the system is expected to play a fundamental role and to
significantly affect the overall complex amplitude of the path.
The presence of an intermediate resonance, together with the
control of the energy of the interacting laser pulse, offers an
additional degree of freedom for controlling the final outcome
of the reaction. Even though such controls are widely used
in coherent schemes in the visible range [9–12], the effect of
an intermediate energy resonance on the characteristics of the
final state has not yet been observed in experiments in the
extreme ultraviolet (XUV) range. However, recent theoreti-
cal works suggest that resonances in the nonlinear pathway
leading to photoemission should influence the photoelectron
angular distributions (PADs) as a function of the photon en-
ergy [13–15].

In the XUV spectral range, pulse shaping is extremely
challenging, due to the lack of suitable materials and flexible
schemes for controlling the amplitude and phase of the pulses.
An alternative approach, based on the manipulation of the
electron bunch generating the XUV pulses, instead of the
XUV spectrum itself, was recently demonstrated at the seeded
free-electron laser (FEL) FERMI [16]. Using this approach,
phase differences corresponding to delays as small as 3 at-
toseconds (as) (1 as = 10−18 s) between two harmonics of the
seed laser [17] and complete pulse shaping of a multicolor
XUV spectrum [18–20] were demonstrated.

In the present work, we investigate the effect of an atomic
resonance on the coherent control of the photoionization
process in neon by using a two-color, tunable XUV pulse,
composed of a fundamental frequency (ω) and its second har-
monic (2ω). The energy of the fundamental was tuned around
the 2p → 4s atomic resonance in neon (h̄ω ≈ 19.75 eV),
and the PADs were characterized by a velocity map imaging
(VMI) spectrometer [21].

The effect of the intermediate resonance on the path-
way characterized by the absorption of two photons of the
fundamental pulse [blue lines in Fig. 1(a)] is qualitatively
presented in Fig. 1(b) using the classical Lorentz model for
the light-matter interaction. The presence of the resonance
around 19.75 eV strongly affects the magnitude and phase
of the transition dipole moment between the ground and the
excited state as a function of the photon energy h̄ω. This
variation is expected to be imprinted in the overall magni-
tude (d1) and phase (ϕ1) of the nonlinear pathway, which
also includes the contribution of the nonresonant two-photon
ionization [light-blue lines in Fig. 1(a)], connecting the initial
and final states. In contrast, due to the absence of resonances
in the continuum, the magnitude (d2) and phase (ϕ2) of the
linear pathway [purple lines in Fig. 1(a)] should present only
a negligible variation when the photon energy is changed.

The photoelectron signal generated by the two-color field
can be described by the relation

S(p, τ ) =
∣∣E2

1 ei2ψ1 d1(p)eiϕ1(p) + E2ei(ψ2−2ωτ )d2(p)eiϕ2(p)
∣∣2

,
(1)

where E1, E2, ψ1, and ψ2 denote the (real) magnitudes and
phases of the fundamental and the second harmonic delayed
by τ , respectively. The terms di(p) and ϕi(p) depend on the
momentum p of the photoelectron and indicate the magnitude
and phase of the total dipole matrix element for the nonlinear
(i=1) and linear (i=2) processes, respectively.

(a) (b)

(c) (d)

FIG. 1. Coherent control of photoionization in neon (a), (b) and
helium (c), (d). A photoelectron can be emitted via two different
pathways, characterized by the absorption of two photons of the
fundamental ω (resonant, blue lines; nonresonant, light-blue lines) or
one photon of the second harmonic 2ω (purple lines). The position
of the 4s resonance in neon (a) and that of the 2p in helium (c) are
indicated. The dashed lines indicate the ionization threshold. The
magnitude (black) and phase (red) of the dipole matrix element using
the classical Lorentz model are shown for neon in (b) and helium
in (d). The shaded yellow area indicates the photon energy range
investigated in the present work.

Photoionization paths characterized by the absorption of
two photons of the fundamental or by a single photon of the
second harmonic lead to final states in the continuum charac-
terized by different parities [see Fig. 1(a)]. The coherent sum
of these two contributions results in the asymmetric emission
of photoelectrons along the polarization direction of the XUV
pulses. Taking advantage of this property, we characterize
the influence of the intermediate resonance by monitoring
the characteristics of the asymmetric PADs as a function of
the fundamental photon energy.

In the experiment, however, upon changing the funda-
mental photon energy, an additional, unknown relative phase
between the two colors or a modification of the ratio of their
amplitudes can be introduced (see Sec. II).

In order to isolate the effect of the resonance on the co-
herent control mechanism, the experiment was performed in a
mixture of neon and helium atoms, using the signal derived
from the photoelectrons ejected from the latter target as a
reference (see Sec. IV). Since the photon energy around the
2p → 4s resonance in neon is sufficiently distant from all
dipole-allowed resonances in helium [see Fig. 1(c)], neither
the magnitude nor the phase of the nonlinear pathways are
expected to change significantly in helium [22]. The first
dipole-allowed resonance (1s → 2p at 21.2 eV) is sufficiently
far away in energy to introduce only a negligible varia-
tion in magnitude and phase of the transition matrix dipole
moment for small variations of the photon energy around
19.75 eV, as schematically shown in Fig. 1(d). This quali-
tative conclusion is also supported by simulations based on
solving the two-electron time-dependent Schrödinger equa-
tion (TDSE) [23–25] (see Sec. III).

This paper is organized as follows: In Sec. II we present the
experimental setup and introduce the asymmetry parameter
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FIG. 2. (a) Experimental setup. Schematic view of the six undulators available at FERMI. The phase shifter PS placed between the fifth and
sixth undulator was used to change the relative phase 2ωτ between the two colors. The gas jet was composed of a mixture of neon and helium
(shown with red and blue circles). (b) VMI spectrum (noninverted and background corrected) showing the angular-resolved photoelectron
spectra emitted by the two-color fields in a mixture of neon and helium. The inner and outer rings correspond to the photoelectrons generated
in helium (white) and neon (red), respectively. The gray line indicates the polarization direction of the FEL pulse. The angle θ defines the
emission direction of the photoelectrons.

measured in the experiment. Section III describes the theoreti-
cal models used to simulate the photoelectron spectra obtained
in helium and neon. The comparison of the experimental and
theoretical data is presented in Sec. IV. The conclusions and
future perspectives are discussed in Sec. V.

II. EXPERIMENTAL SETUP

The experiment (see Fig. 2) was performed at the seeded
FEL FERMI [16] at the low-density-matter beamline [26].
The two-color XUV pulse was generated by tuning the first
five undulators at the fundamental frequency ω (between
19.60 and 20.20 eV) and the last undulator at its second
harmonic 2ω (between 39.20 and 40.40 eV).

The duration of the XUV pulses was estimated to be about
60 fs [27] (full width at half maximum). The XUV field was
focused using a Kirkpatrick-Baez arrangement (not shown in
Fig. 2) in the focal position of the VMI spectrometer. Con-
sidering the energy of the fundamental measured using a gas
monitor placed after the undulators (E = 33 µJ; not shown),
we estimated a peak intensity of I1 ≈ 1013 W/cm2 for the
fundamental frequency. The intensity of the second harmonic
was estimated as I2 ≈ 2×1012 W/cm2.

The photon beam was crossed with a cold atomic jet com-
posed of a mixture of helium and neon. The percentage of
the mixture was optimized considering the cross sections to
obtain comparable photoelectron signals for the two gases.

A phase shifter placed between the fifth and sixth un-
dulator delayed the electron bunch with respect to the field
generated in the first undulators [28]. For each delay, 3000
consecutive shots were acquired. The images were inverted
using an onion-peeling algorithm [29,30], which reduces the
influence of experimental noise on the reconstructed photo-
electron distribution [31]. The intensities of the photoelectron
spectra were integrated over opposite hemispheres. At each
photon energy of the fundamental, the relative delay τ be-
tween the two fields was changed in steps of &τ = 13.2 as
up to τmax = 210 as, corresponding to twice the period of
the second harmonic (2ωτmax = 4π ). The best resolution
achievable with this delay line was estimated to be about
3 as [17].

The evolution of the asymmetry as a function of the delay
τ is then expected to oscillate according to the expression

A(k)(ω, τ ) = A(k)
ω cos

(
2ωτ − φ(k)

ω

)
(2)

as a function of τ . The superscript (k) is used to distinguish
between neon (k = n) and helium (k = h).

Figure 2(b) presents a typical photoelectron spectrum ac-
quired in the gas mixture using the VMI spectrometer. Fits
were performed to extract the respective amplitudes and
phases of the oscillations.

The asymmetry for photoelectrons emitted from neon and
helium was estimated as

A(k)(ω, τ ) =
W (k)

u (ω, τ ) − W (k)
d (ω, τ )

W (k)
u (ω, τ ) + W (k)

d (ω, τ )
, (3)

where W (k)
u and W (k)

d indicate the photoelectron signal inte-
grated over the corresponding peak, emitted in the upward
(0 < θ < π/2) and downward (π/2 < θ < π) hemispheres
with respect to the polarization direction of the XUV field
[cf. Fig. 2(b)]. The error bars for the asymmetry parameters
were determined by dividing the data into five subsets. Then
the standard deviation was calculated for the entire dataset.

However, the change of fundamental photon energy of
the FEL pulse can introduce an additional, unknown relative
phase between the two frequencies and also a variation of the
ratio of the amplitudes. Indeed, the delay depends on the su-
perposition of the magnetic fields of the phase shifter and the
undulators. While the phase shifter field is known, the second
contribution is known only when the two undulators are set
to the same resonance wavelength (i.e., the same undulator
gap), but not different ones. As a result, a change in photon
energy (which in the case of FERMI corresponds to a change
of the undulator gap), can introduce an additional phase shift
and a variation of the intensity ratio between the two colors,
which is not known a priori. In order to compensate for these
variations, the experiment was performed in a neon/helium
mixture, using the amplitude and phase of the asymmetries
measured in helium as reference.
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III. THEORETICAL DESCRIPTION

Calculations for neon were performed in the lowest nonva-
nishing order of nonstationary perturbation theory (PT) with
multiconfiguration intermediate-coupling atomic wave func-
tions [32].

We consider the PAD in the electric dipole (E1) approxi-
mation for two linearly polarized beams with collinear electric
field vectors. The field is described by the relation

E(t ) = ε F (t )[E1 cos (ωt + ψ1)

+ E2 cos (2 ωt + ψ2 − 2 ωτ )]. (4)

Here ε is the unit polarization vector along the z axis, ψ1,2
are the phases of the harmonics, and F (t ) is the pulse en-
velope containing N optical cycles. We used F (t ) = sin2 ωt

2N
for 0 ! t ! 2π

ω
N and 0 otherwise. The field amplitude in

atomic units is E1,2 = 0.5338×10−8
√

I1,2 with I denoting
the peak intensity in W/cm2. We took N = 500, which cor-
responds to a total pulse duration (beginning to end) of
≈100 fs or ≈40 fs FWHM of the intensity.

Performing transformations similar to those described
in [32,33], we obtain the angle-differential PAD for the solid-
angle d) as a sum of three terms:

dW
d)

= dW
d)

(I)

+ dW
d)

(II)

+ dW
d)

(III)

. (5)

The first and second terms are the PADs due to one-photon
ionization by the second harmonic and two-photon ionization
by the fundamental frequency, respectively. The third term
is due to the interference between the two paths. The three
components are given in terms of Legendre polynomials as

dW
d)

(I)

= 1
4π

∑

kll ′KK ′

l̂ l̂ ′K̂K̂ ′(−1)Jf −1/2(10, 10 | k0)(l0, l ′0 | k0)

×
{

k 1 1
1
2 K ′ K

}{
k l l ′

Jf K ′ K

}
D(1)(Jf l[K]1)

[
D(1)(Jf l ′[K ′]1)

]∗
Pk (cos ϑ ), (6)

dW
d)

(II)

= 1
12π

∑

kll ′KK ′JJ ′

l̂ l̂ ′K̂K̂ ′(−1)Jf −1/2(J0, J ′0 | k0)(l0, l ′0 | k0)

×
{

k J J ′
1
2 K ′ K

}{
k l l ′

Jf K ′ K

}
D(2)(Jf l[K]J )

[
D(2)(Jf l ′[K ′]J ′ )

]∗
Pk (cos ϑ ), (7)

dW
d)

(III)

= 1

2
√

3π

∑

kll ′KK ′J ′

l̂ l̂ ′K̂K̂ ′(−1)Jf −1/2(10, J ′0 | k0)(l0, l ′0 | k0)

×
{

k 1 J ′
1
2 K ′ K

}{
k l l ′

Jf K ′ K

}
Re

{
D(1)(Jf l[K]1)

[
D(2)(Jf l ′[K ′]J ′ )

]∗}
Pk (cos ϑ ), (8)

where θ is counted from the direction of the electric field. In Eqs. (6)–(8) we use the jK-coupling scheme, where the total
angular momentum J f of the residual ion is first coupled to the orbital angular momentum of the photoelectron l , J f + l = K,
with subsequent coupling to the spin of this electron, K + s = J. Standard notations for the Wigner 6 j symbols and Clebsch-
Gordan coefficients are used, and we abbreviated â =

√
2a + 1. We also introduced shorthand notations for the first-order and

second-order partial-wave transition amplitudes in terms of the reduced dipole matrix elements:

D(1)(Jf l[K]1) ≡ −i−l eiδl T (1)〈Jf l[K] : 1− || D || 0+〉, (9)

D(2)(Jf l[K]J ) ≡ −i−l eiδl (10, 10 | J0)

(
∑

n

T (2)
εn

〈Jf l[K] : J+ || D || ξn : 1−〉〈ξn : 1− || D || 0+〉
)

, (10)

where δl is the scattering phase in the photoionization channel
with orbital angular momentum l . The summation in (10)
proceeds over all intermediate states, and the time-dependent
factors are

T (1) = E2

2
e−iψ2+2iωτ

∫ NT

0
F (t ′)ei(ε−ε0−2ωt ′ )dt ′, (11)

T (2)
εn

= e−iψ1
E2

1

4

∫ NT

0
F (t ′)ei(ε−εn−ω)t ′

×
∫ t ′

0
F (t ′′)ei(εn−ε0−ω)t ′′

dt ′′dt ′, (12)

where ε is the energy of the photoelectron, ε0 is the energy of
the initial state, and εn is the energy of an intermediate state.

A. Applicability of perturbation theory

The question may arise whether PT is applicable at inten-
sities up to I1 = 1013 W/cm2. To check this point, we solved
the TDSE in the single-active electron (SAE) approximation
for an electron initially in the 2p orbital of the neon ground
state, employing the same basic method and the associated
computer code described by Pauly et al. [34]. We used the
same potential as in previous investigations [32], in which
we calculated the 2p and other bound orbitals such as 4s and
3d , as well as the continuum orbitals, to represent the ejected
electron. The above potential produces the first ionization po-
tential of neon, i.e., the binding energy of the 2p electron, very
well. The calculations were carried out in the length gauge
of the electric dipole operator. Tests carried out by varying
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FIG. 3. Ratio of ionization probability by the second harmonic
and the fundamental for different detunings & (0 eV: solid, black
line; 0.05 eV: red, dotted line; 0.1 eV: blue, dashed line), as calculated
using the TDSE model.

the time step, the radial grid, and the number of partial waves
give us confidence that any inaccuracies in the predictions are
due to the inherent limitations of the SAE model rather than
numerical issues.

Simulations were performed for different intensities of the
fundamental frequency and for different detunings & between
the fundamental photon energies and the resonance energy of
the 2p → 4s transition. The results are shown in Fig. 3 for
the resonant case (& = 0 eV) and for photon energies close to
the resonance (& = 0.05 and 0.1 eV). Saturation effects start
playing a role only for intensities higher than 1013 W/cm2 and
exactly in resonance (black curve), thus indicating the validity
of the predictions of the PT approach for our conditions.

B. Atomic model

The photon energy interval investigated in the experiment
is dominated by five excited states of neon, which, in the
jK-coupling scheme, are [2p5]4s[ 3

2 ]1 (19.688 eV), 4s′[ 1
2 ]1

(19.780 eV), 3d[ 1
2 ]1 (20.025 eV), 3d[ 3

2 ]1 (20.040 eV), and
3d ′[ 3

2 ]1 (20.139 eV). These levels are coupled to the ground
state by electric dipole transitions. Strong mixing between the
4s and 4s′ states and the presence of the 3d states in their

vicinity distinguishes our case from previous theoretical stud-
ies of coherent control in ω + 2ω ionization with intermediate
resonances [13–15]. The experimental excitation energies of
the five states were imposed.

The ground state of neon was obtained by a fully self-
consistent calculation of the 1s22s22p6 configuration. To
obtain the multiconfiguration wave functions of the interme-
diate excited states | ξn : 1− 〉 with total electronic angular
momentum J = 1 and odd parity, we performed separate
self-consistent calculations for each of the basis configura-
tions 1s22s22p53s, 1s22s22p54s, 1s22s22p55s, 1s22s22p56s,
1s22s22p53d , 1s22s22p54d , 1s22s22p55d , 1s22s22p43s3p,
1s22s22p43p4s, and 1s22s12p53s3d with Jπ = 1− for all
possible terms in the LS-coupling scheme, with subse-
quent diagonalization of the Breit-Pauli Hamiltonian for the
Jπ = 1− states. We fully accounted for the nonorthogonality
of the one-electron orbitals using the B-spline R-matrix code
of Zatsarinny [35]. The wave functions of the intermediate
states in Eq. (10) are thus expanded as

|ξn : 1−〉 =
∑

p

αn
p|χpLpSp : 1−〉, (13)

where Lp and Sp are the total orbital and spin angular mo-
menta of the electronic shell, respectively, the χp denote other
quantum numbers needed to identify the basis configurations,
and the αn

p are the mixing coefficients.
For bound-continuum transitions, the initial states for

each R-matrix run are identical to the intermediate excited
states (13) described above. To obtain the final ionic states
of Ne+, we first individually optimized each of the configura-
tions from the following lists:

(a) Odd parity: 1s22s22p5, 1s22s22p43p, 1s22s22p33s2,
1s22s22p34s2, 1s22s22p33p2, 1s22s22p33d2, 1s22s12p53s,
1s22s12p53d , 1s22s12p54s, 1s22s02p53s2, 1s22s02p53d2,
1s22s02p54s2, 1s22s02p53p2.

(b) Even parity: 1s22s12p6, 1s22s12p53p, 1s22s12p43s2,
1s22s12p44s2, 1s22s12p43d2, 1s22s12p43p2, 1s22s22p43s,
1s22s22p43d , 1s22s22p44s, 1s22s02p63s, 1s22s02p63d ,
1s22s02p64s.

All possible LS terms were constructed. Then, similarly
to the intermediate excited states, the Breit-Pauli Hamiltonian
was diagonalized in the basis of the above configurations for

19 20 21 22 23
10-5

10-4

10-3

10-2

10-1

100

σ
(M

b)

Photon energy ω (eV)

4s (L)
4s (V)
4s' (L)
4s' (V)

(a) (b)

19 20 21 22 23
10-5
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2P3/23d[1/2](L)
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FIG. 4. Photoionization cross section obtained in the length (solid line) and velocity gauge (dashed lines) of polarized 4s and 4s′ (a) and
3d (b) states by linearly polarized fields. The shaded (yellow) region indicates the range of photon energies used in the experiment.
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TABLE I. Ab initio results for helium using the time-dependent
close-coupling method. The peak intensity of the fundamental ω is
I1 = 1013 W/cm2, and the intensity of the second harmonic 2ω is
I2 = 2×1012 W/cm2. Both pulse durations (FWHM) are 7 fs.

h̄ω (eV) cs×103 cp×102 cd×103 δsd δpd A(h)
ω ×102 φ (h)

ω

19.6 −0.97 8.86 −6.62 4.73 1.97 7.5 0.92
19.7 −1.10 8.82 −6.60 4.72 1.96 7.5 0.89
19.75 −1.16 8.80 −6.60 4.72 1.96 7.6 0.88
19.8 −1.23 8.74 −6.59 4.71 1.96 7.7 0.86
19.9 −1.39 8.69 −6.59 4.71 1.96 7.8 0.82
20.0 −1.56 8.61 −6.60 4.70 1.96 8.0 0.78
20.1 −1.75 8.56 −6.62 4.69 1.95 8.2 0.75
20.2 −2.00 8.49 −6.66 4.69 1.95 8.5 0.69

the ionic states with various total angular momentum and
parity. The lowest mixed-configuration thresholds with dom-
inating components (1s22s22p5)2Po

3/2;1/2, (1s22s12p6)2Se
1/2,

(1s22s22p43s)2Se
1/2,

2Pe
3/2;1/2, 2De

5/2;3/2, and 4Pe
5/2;3/2;1/2 were

included in the R-matrix calculations.
In Fig. 4 we present the photoionization cross sections for

magnetic sublevels with projection MJ = 0 of the interme-
diate 4s and 3d states of neon by a linearly polarized field
[Eq. (11) of [36]]. The sharp structures in the photoionization
cross sections are due to excitation of the 2s2p63s autoioniz-
ing state (AIS). Even though they are about 2 eV away from
the energy range investigated experimentally, the wings may
still affect the details of the theoretical predictions. Note the
large differences between the results obtained in the length
and velocity gauges. Specifically, the peaks just above 22 eV
in Fig. 4(a) are only seen in the results obtained in the length
gauge, and the peaks seen in Fig. 4(b) at slightly lower photon
energies clearly differ in shape, i.e., they are characterized by
significantly different Fano q parameters.

This behavior is due to a complex interplay between the
initial state, the AIS, and the continuum in which the AIS
is embedded. In fact, in simple spectroscopic models, the
2s2p63s AIS cannot be directly excited from the 3d states.
On the other hand, in our extensive R-matrix calculations, the
small excitation probability is due to the very small overlap
integral 〈 3s | 2s 〉. Therefore, even though the dipole matrix

element 〈2p || D || 3d〉 is quite close in the length and velocity
gauges, after multiplying it with 〈 3s | 2s 〉 and summing over
all configurations, positive as well as negative values of the
matrix element, which determines the sign of the q parameter
in the Fano line shape, can be obtained. These observations
will be important for the discussion of the agreement between
experimental and PT results presented in Sec. IV.

C. TDSE calculations in helium

The model used for the TDSE calculations in helium is
presented elsewhere [23–25]. The helium ionization channels
are described by a single quantum number l , corresponding to
the orbital momentum of the emitted electron. Indicating each
complex ionization amplitude as cl exp[iδl ] (l = s, p, d for
the three outgoing partial waves), the hemisphere-integrated
asymmetry in helium, as a function of the relative phase
between the two fields δ = 2ωτ , is

A(h)(ω, τ ) =
√

3cp[
√

5cd cos(δpd + δ) + 4cs cos(δps + δ)]

4
(
c2

s + c2
p + c2

d

) ,

(14)

where δll ′ = δl − δl ′ .
The values of the magnitudes cl and phase difference δll ′ , as

well as the amplitudes and phases of the asymmetry A(h)
ω and

φ(h)
ω for the different photon energies, are shown in Table I. It

can be observed that the latter present only a limited variation
in the photon energy range of the experiment, as anticipated.

IV. RESULTS AND DISCUSSION

Figure 5 presents the experimental asymmetries measured
in neon and helium in the photon energy range 19.6–20.2 eV.
The asymmetries were determined using Eq. (3) and then
fitted using the expression given in Eq. (2). The experimental
values of the fitting procedure are summarized in Table II.

The small bandwidth &ω of the pulses available at FERMI
(&ω + 10−3ω) allows one to characterize the influence of
the resonance on the asymmetric photoemission. In neon
(see Fig. 5), the amplitudes of the oscillation and the phase
strongly depend on the photon energy, while the measure-
ments in helium exhibit only a small variation of the amplitude

TABLE II. Photon energies h̄ω, amplitudes (A(k)
ω ), and phases (φ (k)

ω ) of the asymmetry oscillations for neon and helium obtained from
Eq. (2) for the experimental data presented in Fig. 5, together with the relative amplitude Aω and phase φω. The uncertainty in the photon
energy was estimated based on the typical bandwidth of the pulses generated at FERMI [27], while the uncertainties for the amplitudes and
phases were extracted from the sinusoidal fits shown in Fig. 5.

Photon energy Neon Helium Rel. amplitude Rel. phase

h̄ω (eV) A(n)
ω (×100) φ (n)

ω (rad) A(h)
ω (×100) φ (h)

ω (rad) Aω = A(n)
ω /A(h)

ω φω = φ (n)
ω − φ (h)

ω (rad)

19.60 ± 0.02 1.3 ± 0.8 0.63 ± 0.59 1.6 ± 0.3 1.02 ± 0.19 0.8 ± 0.5 −0.39 ± 0.62
19.70 ± 0.02 2.6 ± 0.4 1.09 ± 0.17 2.7 ± 0.3 0.24 ± 0.13 1.0 ± 0.2 0.85 ± 0.21
19.75 ± 0.02 1.9 ± 0.4 0.31 ± 0.24 1.3 ± 0.2 0.30 ± 0.17 1.5 ± 0.4 0.01 ± 0.29
19.80 ± 0.02 3.5 ± 0.5 1.84 ± 0.14 1.7 ± 0.4 0.98 ± 0.23 2.1 ± 0.6 0.86 ± 0.27
19.90 ± 0.02 1.2 ± 0.5 0.93 ± 0.42 2.4 ± 0.3 0.47 ± 0.15 0.5 ± 0.2 0.45 ± 0.45
20.00 ± 0.02 1.0 ± 0.4 0.51 ± 0.49 2.6 ± 0.3 1.08 ± 0.15 0.4 ± 0.2 −0.57 ± 0.51
20.10 ± 0.02 0.2 ± 0.2 2.11 ± 1.65 1.9 ± 0.4 1.12 ± 0.20 0.1 ± 0.1 0.99 ± 1.66
20.20 ± 0.02 0.3 ± 0.3 1.04 ± 0.79 2.3 ± 0.4 0.93 ± 0.17 0.1 ± 0.1 0.11 ± 0.81
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FIG. 5. (a)–(p) Experimental asymmetry (solid circles) as a func-
tion of the relative phase 2ωτ between the two harmonics measured
in neon (a), (c), (e), (g), (i), (k), (m), (o) and helium (b), (d), (f),
(h), (j), (l), (n), (p) for the photon energies E = 19.6 eV (a), (b),
E = 19.7 eV (c), (d), E = 19.75 eV (e), (f), E = 19.8 eV (g), (h),
E = 19.9 eV (i), (j), E = 20.0 eV (k), (l), E20.1 eV (m),(n), and
E = 20.2 eV (o), (p). The solid lines represent the sinusoidal fit of
the asymmetry curves. The definitions of A(k)

ω and φ (k)
ω [see Eq. (2)]

for neon (k = n) and helium (k = h) are shown in panels (g) and (l),
respectively.

of the oscillation when changing the photon energy. The quan-
tities measured in helium were used to rescale those measured
in neon, introducing the relative amplitude Aω = A(n)

ω /A(h)
ω and

relative phase φω = φ(n)
ω − φ(h)

ω . This procedure allows one to
isolate the effect of the neon resonance on the variations of the
amplitude and phase of the asymmetry and thereby to rule out
the contribution of an unaccounted phase shift or a modified
harmonic ratio between the two colors. The values of Aω and
φω are also listed in Table II.

FIG. 6. The relative amplitude ratio Aω = A(n)
ω /A(h)

ω (a) and
relative phase difference φω = φ (n)

ω − φ (h)
ω (b) of the hemisphere-

integrated asymmetry from Eq. (2) as functions of the photon energy.
The positions of the resonance states in neon are indicated on the en-
ergy axis. The solid dark-blue and dashed red lines correspond to PT
calculations in the length (L) and velocity (V) gauges, respectively,
while the blue circles represent the experimental points.

The comparison between the experimental data and the
predictions of the PT (carried out for both the length and
velocity forms of the electric dipole operator) is presented in
Fig. 6. There is reasonable agreement in the energy region
around the 4s and 4s′ states. The experimental data confirm
the decrease of the amplitude of the oscillations for photon
energies above ≈19.8 eV predicted by the PT. However,
major differences between the experimental and theoretical
results appear in the vicinity of the 3d state(s), where the PT
in the velocity gauge predicts much larger asymmetries than
those observed in the experiment as well as those obtained
in the length gauge. The large difference in the visibility of
the asymmetry predicted in the two gauges around the 3d
resonance can be understood by looking at the photoionization
cross section for the intermediate states in the two gauges
(cf. Fig. 4).

For the 4s and 4s′ states, the predictions calculated in the
length and velocity gauges are very close in the photon energy
range of the experiment [yellow shaded area in Fig. 4(a)].
As a result, the asymmetries predicted in the two gauges
(see Fig. 6) present a similar evolution around the region
of these resonances. On the other hand, the photoionization
cross sections of the 3d intermediate state exhibit a signifi-
cant difference between the two gauges, indicating a different
coupling between the excited state and the AIS [see yellow
shaded area in Fig. 4(b)].
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The sensitivity of the results for energies in the 19–20 eV
range to the gauge used can be explained by (i) the presence
of a Cooper minimum in the 3d → ε f ionization channel,
which results in the zero crossing of the corresponding mag-
nitudes to occur at slightly different photon energies in the
length- and velocity-gauge calculations, and (ii) the presence
of the 2s2p63s AIS. The latter induces a strong channel in-
teraction, resulting in the ionization cross section of the 3d
states predicted in the length gauge to come out one order of
magnitude smaller compared to the velocity gauge. For this
reason, the amplitude of the asymmetry in the length gauge
almost vanishes for photon energies in the 20.0–20.2 eV range
[see Fig. 6(a)].

For the phase φω presented in Fig. 6(b), the experimental
results appear to be in better agreement with the theoretical
predictions obtained in the velocity rather than the length
gauge. We currently have no explanation for this result. It may
just serve as another illustration of the challenges faced in both
the measurement and the theoretical description.

V. CONCLUSION

In conclusion, we have shown how an intermediate atomic
resonance affects the amplitudes and phases of the asym-
metries observed in a two-color ω − 2ω coherent control
experiment. The experimental data are in fair agreement with
a model based on perturbation theory. Large differences seen
between the results obtained in the length and velocity gauges,
however, indicate that this is a very challenging problem for
theory. We therefore hope that the present work will stimulate
further efforts by other groups.

Our findings demonstrate that intermediate energy levels
can be used as an additional parameter to control the details
of the photoionization process. Such states may open inter-
esting perspectives for the extension of the coherent control
technique in the XUV regime to the investigation of molecular
resonances, where the presence of rotational, vibrational, and
electronic resonances is expected to deliver additional com-

plexity to the problem. In particular, our results are relevant
for the development of coherent control schemes using tun-
able XUV and x-ray pulses in the proximity of resonances
embedded in the continuum (as, for example, in x-ray absorp-
tion near-edge structure spectroscopy) down to the attosecond
domain [37].
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