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Abstract
Design and engineering of effective bifunctional electro-
catalysts for the oxygen reduction reaction (ORR) and oxygen
evolution reaction (OER) represents a critical first step in the
further development of rechargeable metal-air batteries, a
sustainable energy technology. Recently, nanocomposites
based on metal species atomically dispersed within carbon
scaffolds have emerged as viable alternatives to the conven-
tional precious metal-based electrocatalysts. In this review, we
summarize the latest progress by including a brief introduction
to the fundamentals of ORR/OER electrochemistry and an
overview of the synthetic strategies and bifunctional perfor-
mances of carbon-based nanocomposite catalysts with single
and dual metal sites. We conclude the review with a
perspective about the challenges and opportunities for further
innovation of carbon-supported nanocomposites for bifunc-
tional oxygen electrocatalysis.
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Introduction
Rechargeable metal-air batteries (MABs) have emerged
as a sustainable technology for energy conversion and
www.sciencedirect.com
storage, due to the high energy density, low cost, and
minimal impacts on the environment; and the perfor-
mance is mainly determined by the bifunctional activity
of the cathode catalysts towards the oxygen reduction
reaction (ORR) during discharging and oxygen evolution

reaction (OER) during charging [1]. Traditional catalysts
are based on noble metals, such as Pt/C for ORR, and
RuO2 or IrO2 for OER; yet the wide-spread application of
MABs has been impeded by the high costs, poor dura-
bility and unsatisfactory bifunctional activity of these
precious metal-based catalysts [2]. Therefore, it is of
fundamental and technological significance to develop
high-performance, low-cost bifunctional electrocatalysts
for MABs, and nanocomposites based on transition
metals atomically dispersed within a nitrogen-doped
carbon scaffold have been recognized as viable alterna-

tives, due largely to the formation of unique MNx coor-
dination moieties [3e5].

Typically, a rechargeable MAB consists of four major
components, a metal plate (anode), an aqueous (alka-
line) solution or conducting polymer electrolyte, a
bifunctional air cathode catalyst, and a membrane sepa-
rator [6]. In comparison to the theoretical equilibrium
potential of 1.65 V, in practice the discharging potential
can be as low as 1.3 Vand the charging potential as high as
over 1.9 V (both at the current density of 10 mA cm�2),

mainly due to the sluggish electron-transfer kinetics and
complicated pathways of the cathodic ORR/OER pro-
cesses. In alkaline media, ORR entails three major in-
termediates, *OOH, *O and *OH, in the following steps,

O2 þ * þ H2O þ e� / *OOH þ OH� (1)

*OOH þ e� / *O þ OH� (2)

*O þ H2O þ e� / *OH þ OH� (3)

*OH þ e� / OH� (4)

where * stands for active sites. The reaction steps are

reversed in OER [6]. To achieve bifunctional activity, it is

essential to strike a deliberate balance between the

adsorption free energies of these key intermediates onto

the active sites. The experimental strategies are primarily

based on structural engineering of the metal atomic sites

and/or the carbon scaffolds (Scheme 1).
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Scheme 1

Summary of the mechanistic contributions of carbon-based single and dual atom sites to the ORR/OER electrocatalytic activity.

2 Energy Storage: Batteries and Supercapacitors
Herein, we will survey the recent progress in the prep-
aration of carbon-based nanocomposites with single and
dual metal sites and their bifunctional performances in
rechargeable MABs and conclude the review with a
perspective about the challenges and opportunities of
carbon-supported nanocomposites as MAB bifunctional
oxygen electrocatalysts.
Carbon-based single-metal sites
Modulation of coordination environment
The electronic structure of the single metal sites (i.e.,
single-atom catalysts, SACs) can be readily regulated by
modulating the MNx atomic configurations (e.g.,
chelating atoms, coordination number, and structural
distortion) as well as defect engineering of the carbon

scaffold [7,8]. Among these, MN4 nanocomposites (e.g.,
FeN4, CoN4, MnN4, and CuN4) are of particular inter-
est, with a structure analogous to that of metal phtha-
locyanine [9e11]. For instance, Yang et al. [12] prepared
nanocomposites with CoN4 moieties dispersed within
N-doped graphitic nanosheets (CoN4/NG) by a
surfactant-assisted approach and observed an apparent
bifunctional activity with a half-wave potential (E1/2,

ORR) of þ0.87 V versus reversible hydrogen electrode
(RHE) for ORR and a potential (E10, OER) of þ1.61 V at
the current density of 10 mA cm�2 for OER. The po-

tential gap (DE) between E1/2,ORR and E10, OER (0.74 V)
was 20 mV lower than that of the commercial Pt/
C þ IrO2 counterparts. Chen and coworkers [13] pre-
pared a carbon-based SAC with unique FeN5 centers by
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controlled pyrolysis of zeolitic-imidazolate-frameworks-
8 (ZIF-8) and graphene oxide. Unlike the plane-like
MNx (x = 2, 3, and 4) sites, tetrahedral FeN5 moieties
exhibit an asymmetric electron depletion zone and can
effectively facilitate the generation of reactive in-
termediates and enhance the eventual catalytic activity
with an even lower DE of 0.71 V. An asymmetric elec-
tronic distribution of the metal centers can also be
induced by the incorporation of additional heteroatom

dopants, such as S, P, and B [14,15]. For instance, plane-
like FeN4eC generally shows a remarkable ORR activity
but only a mediocre OER performance [16]; yet addi-
tional S doping forming a FeN4eS structure can signif-
icantly reduce the OER overpotential by over 100 mV
[17]. This is because the additional S doping elevates
the charge density, opens the metallic spin channels of
the Fe center, and shifts the d-band center towards the
Fermi level, leading to moderate OOH* stabiliza-
tion [18].

Computational studies based on density functional

theory (DFT) calculations represent an even more
efficient approach to the systematic screening of the
MNx-C nanocomposites as ORR/OER bifunctional cat-
alysts. Recently, Xiao et al. [19] computationally evalu-
ated a series of MNx-C nanocomposites (M = Mn, Fe,
Co, Ni, Cu, Pd, and Pt; and x = 3, 4), as shown in
Figure 1aeb. Among the MN3-C nanocomposites,
NiN3eC exhibited the optimal adsorption energy of key
intermediates and hence the lowest overpotential (h)
www.sciencedirect.com
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Figure 1

(a) Free energy diagram of NiN3–C. (b) Overpotentials of ORR and OER for various transition metal-nitrogen (TMNx) nanocomposites. Reproduced with
permission from ref. 19, Copyright 2021, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature. (c, d) Limiting po-
tentials of ORR (pink bars) and OER (aqua bars) of six different MNx-C configurations at +0.402 V vs RHE. Reproduced with permission from ref. 20,
Copyright 2021, Elsevier. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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4 Energy Storage: Batteries and Supercapacitors
of �0.29 V and þ0.28 V for ORR and OER, respectively.
In contrast, for the MN4-C series, CoN4eC displayed
the best performance with the overpotentials of�0.39 V
for ORR andþ0.37 V for OER, both subpar as compared
to those of NiN3eC. In another study [20], results from
the calculations of 60 different MNx-C (x= 4, 3, 2) and
MN3XeC (X = P, S, and B) moieties show that both the
central metal and coordinating atoms strongly impact

the performance of oxygen electrocatalysis, predomi-
nantly by tuning the adsorption free energy of hydroxyl
intermediate (DG*OH). From the dual limiting-potential
volcano plots for ORR and OER, NiN2eC was identified
as the optimal structure for bifunctional ORR/OER
electrocatalysis, followed closely by FeN4eC, CoN4eC,
CoN2eC, and NiN3PeC (Figure 1ced).

Notably, machine learning (ML) integrated DFT cal-
culations have recently been used to accelerate the
design and discovery of SACs through the establishment

of deep structureeactivity relationships [21,22]. Huang
et al. examined a group of 27 C2N monolayer-supported
SACs as promising bifunctional OER/ORR catalysts by
theoretical calculations and found a volcano-shaped
relationship between the catalytic activity and oxygen
adsorption free energy (DG*O) [23]. They further
unraveled the origin of the element-specific activity by
ML modelling based on the random forest algorithm
that considers the outer electron number and oxide
formation enthalpy as the two most important factors.
This model can give an accurate prediction of DG*O

with much reduced time and cost.

Certainly, to translate these computational advances to
practical applications, development of effective syn-
thetic strategies is of urgent need. Several protocols
have been developed, such as fixing the coordination
number of metal precursors by strong chemical bonds
[13], increasing edge sites for unsaturated coordination
[24], using metal organic frameworks (MOFs) as the
precursors to gain a uniform coordination environment
[25], elevating pyrolysis temperature to facilitate the
breaking of the metaleN bonds and/or distortion of the

geometrical configuration [26,27]. However, due to the
complexity of the pyrolysis process, the precise control
of the atomic configuration of the metal sites has
remained a significant challenge.

Carbon substrate engineering
The electrocatalytic performance can also be aided by
the manipulation of the structure of the carbon scaffold,
such as the specific surface area, porosity, electrical
conductivity, surface morphology, heteroatom doping,
among others [28e32]. Because SACs are mostly pre-
pared by a bottom-up method, the metal sites are
formed both on the surface and in the interior of the

carbon frameworks. A hierarchically porous structure
(and hence high specific surface area) can facilitate not
Current Opinion in Electrochemistry 2023, 37:101197
only the accessibility of the active sites but also abun-
dant channels for mass transport of electrolyte and re-
actants [33,34]. Meanwhile, a high degree of
graphitization can enhance electron transfer and struc-
tural stability by reducing carbon corrosion during
electrode reactions. In a recent study [35], biomass
hydrogels were utilized as structural templates to pre-
pare carbon aerogels embedded with Fe single atoms by

controlled pyrolysis. The resulting composites exhibited
a 3D hierarchically porous structure and an excellent
ORR/OER electrocatalytic performance with a DE of
only 0.71 V. Shen et al. [36] prepared graphitic FeeNeC
nanospheres by the pyrolysis of porous polymers syn-
thesized via Schiff base condensation, which exhibited
an ultrahigh specific surface area of 1796.0 m2 g�1, a high
degree of graphitization, and a remarkable bifunctional
activity and stability. In another study [37], Jiang et al.
used a sacrificial template to prepare Co single-atom
electrocatalysts with an urchin-like nanotube hierar-

chical structure derived from ZIF-67 precursors, and the
resulting CoN4eC composites exhibited a remarkable
ORR/OER bifunctional activity with a low DE of 0.72 V.
Hu et al. [38] prepared a nanocomposite of Co single
atoms anchored onto N-doped graphene tubes and
sheets, where the enrichment of CoN4 on the graphene
tubes facilitated ready access to the ORR active sites,
and concurrently the synergistic interactions with the
CoN4-sheet decreased the overpotential of both OER
and ORR.

Notably, the structures of both the metal centers and
the carbon scaffold are often simultaneously manipu-
lated for the optimization of the catalytic performance.
In a recent report [39], Co SACs on ultrathin porous
carbon nanosheets were derived from molten salt pre-
cursors, where the unique carbon structure facilitated
accessibility of the active centers and simultaneously
endowed abundant defective CoN4 configurations. The
defects in the second coordination shell of Co SACs
promoted the desorption of the OH* intermediate for
ORR and facilitated deprotonation of OH* for OER.
Nevertheless, excessive carbon defects mean reduced

graphitization and compromise electrical conductivity.
Thus, a deliberate balance must be struck for an
optimal performance.

Carbon-based dual-metal sites
Optimization of the ORR/OER bifunctional activity can
also be achieved by the introduction of a second metal
site in the proximity into the nanocomposites forming
dual-atom catalysts (DACs) [40e45]. For instance, Fe
SACs have been known to exhibit a better ORR activity
than Ni SACs [46e48], while the OER activity is the
opposite [49]. To optimize the ORR/OER bifunctional
activity, a step-by-step self-assembly strategy has been

developed to prepare Janus hollow graphene with dual-
metal atom sites of NiN4 and FeN4. Experimental and
www.sciencedirect.com
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theoretical studies show that the outer FeN4 sites and
inner NiN4 sites are respectively active for ORR and
OER, and the interconnected metal sites are preferred
for the bifunctional activity, in comparison to the inde-
pendent counterparts [50,51].

Dual-metal sites with direct chemical bonds
For dual-metal sites with a direct chemical bond in a
configuration of N3M’�M00N3, the distance between
the metal centers is ca. 2.5 Å. This small separation
allows for synergistic adsorption of oxygen in-

termediates; meanwhile, the strong metalemetal
charge transfer (MMCT) and orbital hybridization may
drastically impact the electronic structures of the metal
centers and hence the eventual bifunctional activity
[43]. For instance, Hu’s group prepared binary CoeNi
sites embedded in N-doped hollow carbon nanocubes
by controlled pyrolysis of a dopamine-coated MOF [52].
Theoretical studies demonstrated that the resulting
N3CoeNiN3 dual-metal sites synergistically facilitated
the adsorption of reaction intermediates and reduced
the overall reaction barriers. Zhu et al. [53] fabricated

N-doped hollow carbon spheres embedded with
N3FeeNiN3 dual metal sites, and the FeeNi bonding
interactions manipulated the electronic structures of
both the Fe and Ni sites that lowered the energy barriers
for ORR and OER (Figure 2aeb). Results from theo-
retical calculations further showed that the electroni-
cally modified Ni and Fe atoms were the active sites for
OER and ORR, respectively (Figure 2ced).

It has also been argued that within the dual-metal atom
configuration, a primary site is responsible for the

enhanced bifunctional activity, due to the MMCT ef-
fects that reduce the reaction energy barrier [54], where
the activity of the primary site is electronically modu-
lated by the second one. For instance, Yu et al. [55]
synthesized MOF-derived N3FeeNiN3 DACs
embedded in N-doped porous carbon and argued that
the Fe site was the active center for the four-electron
ORR/OER processes, while the Ni sites helped reduce
the energy barrier of the rate-determining step by
regulation of the electronic structure of the Fe sites.

Dual-metal sites with indirect interactions
The dual-metal sites can also be connected by indirect

interactions, where both metals are in the MN4

configuration but share two of the four N chelating
atoms at a metalemetal distance over 2.6 Å. In a recent
DFT study of N2M’N2M

00N2 DACs (M0, M’’ = Fe, Co,
and Ni) on N-doped graphene (Figure 2e) [56], it was
observed that charge transfer still occurred between the
two adjacent metal centers and effectively regulated the
adsorption energy of key reaction intermediates. Among
these, the N2FeN2CoN2 DAC stood out as the optimal
bifunctional catalysts with the lowest energy barrier for
both ORR and OER (Figure 2f), where the FeeCo
www.sciencedirect.com
interactions not only improved the ORR activity of the
Fe sites and OER activity of the Co sites, but also greatly
enhanced the ORR activity of the Co sites and OER
activity of the Fe sites by changing the OER potential-
determining step from the third to the second step.
Further mechanistic insights were obtained from in situ
X-ray absorption spectroscopy (XAS) measurements and
theoretical studies [57], where the Ni sites in the DACs

preferably underwent structural reconstruction and
facilitated the formation of NieOeFe moieties
(N2FeO2NiN2) as the true dual-metal active sites for
OER. The different spin states of Ni and Fe centers led
to the formation of spin channels for electron transfer,
and optimized the adsorption of key reaction in-
termediates, resulting in a significantly improved
OER activity.

The manipulation of the spin state and hence the cat-
alytic activity of DACs has also been demonstrated in

some other studies [58e62]. Li et al. [63] showed that
the Fe 3d itinerant charge and moderate spin polariza-
tion could be induced by the adjacent Ni atoms, leading
to an enhanced catalytic activity. In another study [64],
results from DFT calculations show a nearly linear cor-
relation of the energy barriers of key reaction steps in
ORR with the Fe magnetic moment. Experimentally,
when single Cu sites were incorporated into FeeNeC
aerogels, the Fe centers exhibited a reduced magnetic
moment, markedly enhanced ORR activity, and excel-
lent bifunctional activity with an ultralow DE of

only 0.67 V.

The bifunctional activities of the above catalysts are
listed in Table 1, from which one can see that for SACs,
the Fe-based ones exhibit the best bifunctional activity.
It is well-known that the undesirable Fenton reaction of
Fe-based catalysts during the electrocatalytic process
can lead to deactivation of the Fe sites and compromise
the structural integrity of the nanocomposite catalysts
[10,65]. The introduction of a second metal can not only
enhance the bifunctional activity, but also greatly
improve the stability of the catalyst by suppressing the

Fenton reaction. However, in comparison to SACs, the
coordination environment of DACs is much more com-
plex, which greatly increases the difficulty of structural
characterization and mechanism exploration. Therefore,
further research is urgently needed for the establish-
ment of a systematic structureeactivity correlation to
facilitate the rational design of dual-metal site bifunc-
tional catalysts.
Conclusion and perspectives
In summary, carbon-supported SACs and DACs have
emerged as viable bifunctional oxygen electrocatalysts
for rechargeable MABs, due to their maximum atom
utilization, tunable active sites and well-defined atomic
configurations; and the performance can be readily
Current Opinion in Electrochemistry 2023, 37:101197
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Figure 2

Free energy diagrams of (a) ORR and (b) OER on the N3Fe–NiN3 dual metal sites, with the proposed pathways shown in (c) and (d), respectively.
Reproduced with permission from ref. 53, Copyright 2021, Elsevier. (e) Configurations and formation energies (Ef) of various M2N6 models. Brown, silver,
yellow, blue, and green spheres indicate the C, N, Fe, Co, and Ni atoms, respectively. (f) Overpotentials of the active sites in all models. Reproduced with
permission from ref. 56, Copyright 2022, American Chemical Society. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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Table 1

Bifunctional catalytic performances of carbon-based nanocomposites with single or dual metal sites in alkaline media.

Catalysts E1/2,ORR (V vs RHE) E10,OER (V vs RHE) DE (V) Ref.

CoN4/N-graphitic sheets +0.87 +1.61 0.74 [12]
FeN5/N-carbon matrix +0.88 +1.59 0.71 [13]
FeNx/N, S-carbon layer/nanotube +0.85 +1.60 0.75 [17]
FeNx/N-carbon aerogel +0.90 +1.60 0.70 [35]
FeN5/N-carbon +0.91 +1.61 0.70 [36]
CoN4/urchin-like nanotube hierarchical structures +0.89 +1.61 0.72 [37]
MS–Co SAs–N–C +0.86 +1.62 0.76 [39]
NiN4–FeN4/hollow graphene nanospheres +0.83 +1.62 0.79 [50]
CoN3–NiN3/N-carbon nanocube +0.76 +1.57 0.81 [52]
FeN3–NiN3/N-carbon sphere +0.84 +1.57 0.73 [53]
FeN3–NiN3N-carbon nanocube +0.84 +1.50 0.66 [55]
CoN4–FeN4/N-graphene +0.90 +1.59 0.69 [56]
FeN4–NiN4/N-carbon +0.86 +1.55 0.69 [63]
FeN4–CuN4/N-carbon aerogel +0.94 +1.61 0.67 [64]
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manipulated by structural engineering of the metal
atomic configurations as well as the carbon scaffolds. Yet,

despite substantial progress in recent research, further
studies are strongly desired for further enhancement of
the electrocatalytic activity. This mainly involves the
following issues, precise regulation of the coordination
configurations of the metal centers, interactions be-
tween the metal centers, and optimization of the
structure of the carbon scaffolds.

First, carbon-based SACs and DACs synthesized by py-
rolysis at high temperatures are usually composed of a
mixture of metal sites in a wide range of coordination

configurations that may exhibit a widely different elec-
trocatalytic activity. This renders it challenging to
correlate the material structure with the electrocatalytic
performance and unravel the actual active sites.
Development of effective strategies to precisely control
the coordination environment of the metal sites is
highly desired.

Second, the catalytic active centers may entail a dy-
namic evolution during electrochemical reactions. In
situ and even operando characterization of the nano-

composite catalysts is anticipated to yield important
insights into the identification of the actual active
sites/configurations.

Third, the stability during the electrode reaction is a key
factor in practical applications. During long-term
chargeedischarge cycles at high potentials, carbon-
based nanocomposites are known to exhibit apparent
degradation, due to demetallation, carbon oxidation and
bulk carbon corrosion. Therefore, strategies are urgently
needed to enhance the structural stability of the nano-

composite catalysts by, for instance, increasing the
fraction of highly stable metal sites [66], improving the
antioxidation of the metal centers [67], and developing
www.sciencedirect.com
advanced carbon substrates with both high graphitiza-
tion and abundant defects to support the metal sites.
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