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Abstract

Quantum networks consist of quantum nodes that are linked by entanglement, and
quantum information can be transferred from one node to another. Operations can be
applied to qubits of local nodes coordinated by classical communication to manipulate
quantum states, and readout/measurement will be employed to obtain results. Here, we
use quantum circuits to simulate quantum state transfer between two nodes connected
in a linear geometry through other nodes. We explore the interplay between gate and
readout errors on the performance of state transfer. We find that the nominal success
probability is not necessarily a monotonic function of the two error rates and employ
numerical simulations and analytic tools to understand their interplay.

Keywords Quantum state transfer - Teleportation - Swap - Gate teleportation - GHZ
state - Noise - Error mitigation

1 Introduction

One of the goals of quantum technology research deals with linking up many local
quantum devices to act together as a network called a quantum network or internet.
The local nodes in that network (see Ref. [1]) are quantum processing units, which
can be thought of as small quantum computers with quantum memory. The links con-
necting these nodes can be either classical or quantum channels (or both)—that is,
equipped with a mechanism of communication between nodes, with the basic proto-
cols to establish entanglements, such as quantum teleportation [2] and entanglement
swapping [3].
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In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a long-distance quan-
tum communication protocol (i.e., the DLCZ protocol) over long lossy channels using
photons and atomic ensembles [4]. Despite the scheme’s simplicity, compared to the
complexity of realizing a universal quantum computer, a full-scale implementation
of the DLCZ protocol over long distances has not yet been carried out. However,
advancements are being made, such as individual addressability of multiplexed quan-
tum memory [5], teleportation between non-neighboring nodes [6], the distribution of
a Greenberger—Horne—Zeilinger state (GHZ), and multi-node entanglement swapping
(see Ref. [7]), and establishment of long-range entanglement between single atoms
[8]. Other efforts include schemes and experiments for measurement-based filtration
to GHZ state [9], high-fidelity multi-qubit gates for SWAP and GHZ construction with
quantum hardware, such as NMR [10, 11], and remote entanglement generation and
distribution towards the development of stacks of quantum networks [12-16].

As Wehner, Elkouss, and Hanson lay down in Ref. [17], all these quantum network
stages and efforts coalesce into a unified framework of stages toward a quantum
internet. Ultimately, we would like to reach a full quantum computation stage in the
quantum network—before which we would ideally have a few-qubit fault-tolerant
network. However, the current stage in the development of quantum computers is
more accurately characterized as the NISQ (noisy intermediate-scale quantum) era
[18], and presently, there are mostly proposals and small-scale tests of fault-tolerant
quantum computation [19-23] only. Thus, the issue of noise remains one of the biggest
impediments to practical and scalable quantum computation and consequently to the
quality and performance of a quantum network.

In the context of the quantum internet roadmap [17], noise and errors hamper
functionality in all quantum network stages of state preparation and measurement,
entanglement distribution, and entanglement generation execution. In this paper, we
focus on the issue of quantum state transfer [24], an important process in quantum
networks, especially with regard to the entanglement swapping process in quantum
repeaters—and which offers implications for the aforementioned quantum network
stages. Specifically, we concern ourselves with the interaction of noise errors and
their effect on a measure of successful state transfer.

Despite that quantum communication is well developed [25-27], no large-scale
quantum network testbed is currently available. In contrast, there are several available
quantum computers. Moreover, the usage of NISQ devices has provided ample fertile
ground to test various aspects of quantum networks ranging from quantum telepor-
tation protocols [28, 29], graph state generation [30], to testing quantum router and
quantum repeater designs [31-33]. As such, our study will use qubits and gates in
the NISQ context to simulate quantum state transfer. In particular, we investigate the
interplay between gate and readout errors due to the importance of measurement read-
out of expectation values and the prevalent usage of noisy gates such as CNOT (C X)
in most protocols.

There is a focus in the literature on quantum state transfer for a particular physical
system and its experimental realization like a topological chain [34], solid-state quan-
tum network [35], or spin networks [36-38] or via Huddard interaction [39], relying
on some form of swapping usually. There is also an emphasis on the concept of perfect
state transfer (PST) but with quantum walks [40, 41]. In comparison, we narrow our
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investigation at the algorithmic scheme level, looking at how specific model schemes
are affected by varying degrees of gate and readout errors. By understanding their
counterintuitive error dynamics specifically and their leaking error mixing effects on
measures of the fidelity for quantum state transfer, our efforts work toward the ends
of designing noise-aware schemes for robust quantum networks. This can be crucial
when trying to mitigate expectation values in novel ways, especially at the nominal
level, to understand the error dominance, the scaling, and any error interference. Addi-
tionally, it can also offer further insight into the fragility of certain entangled states
under particular noise [42] and aid in using techniques such as maximum likelihood
estimation (MLE) in quantum state tomography [43]. More recent techniques such as
Clifford data regression [44] are one possibility of exploiting noise-scaling, for exam-
ple, and we also briefly introduce the element of using zero noise extrapolation (see
Ref. [45, 46]) with predictive models on the scaled noise expectation value simulations
in this work.

The remainder of this paper is organized as follows. In Sect. 2, we describe the set-
up of our investigation using Qiskit [47], outline the different quantum state transfer
schemes we will compare throughout the paper, and address their initial performance.
Then, in Sect. 3 we present several plot results from numerical Qiskit simulations of
the different schemes and try to identify the interplay between gate and readout errors.
We then present an analytical point of view as well that matches the results seen in
the initial numerical Qiskit simulations. In Sect. 4, we touch upon the possible role
error mitigation; mainly, zero-noise extrapolation can serve in our analysis. Finally,
in Sect. 5, we summarize our results and propose a future outlook.

2 State transfer schemes

Due to the issue of diminishing the quality of quantum states across large distances in
a quantum network, efficient and effective state storage and transfer are crucial. Even
with the use of intermediary repeaters, entanglement swapping remains a significant
component, and hence the problem of state transfer remains [48].

To investigate effective quantum state transfers, one can look at how different
schemes, or perhaps ‘resource schemes’, can vary and, more intriguingly, affect the
success probability of transferring an arbitrary initial state from a starting site i to an
end site j. These starting and end sites would be connected via some known or provided
connectivity topology that dictates the specific gate operations that are available for use,
as well as the positioning of intermediary qubits facilitating the connection between
the start and end sites. Given such a setup, for simplicity, we consider in this section
onward a qubit mapping to a linear chain connected topology, and we ask how certain
schemes would fair in achieving the goal of successful state transfer—especially under
noisy and error-prone situations. Specifically, the physical setup that we consider is a
collection of qubits in a quantum computer, which can be acted by single- and two-
qubit gates, such as the transmon qubits of IBMQ. While still in the broader context
of quantum networks, we treat them from the state transfers perspective, not across
long-distance nodes but across a few qubits geometrically nearby.
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Fig.1 Anexample five-qubit circuit schematic for the successive SWAP scheme. We note that the traditional
SWAP gate remains in the three CNOT decomposed format [54] for all simulations done to study the impact
of CNOT gate noise clearly
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With that in mind, in this paper, we perform an analysis of how the following four
different schemes (see Appendix A for the terminology) would fair when given such
a task:

SWAP: Sole, successive state swaps from a site i to a site j;
. Teleportation: Sole, successive state teleportation [2] (via the creation of a sequence
of Bell pairs) from a site i to a site j;
3. GHZ: State transfer from site i to site j via the creation of a GHZ state [49, 50] as
a channel;
4. Cluster: State transfer from a site i to a site j via the intermediate creation of a
cluster state as a resource channel [51, 52], also known as gate teleportation.

DN —

Each of the four schemes considered offers some interesting variation. One uses
the least measurements (SWAP scheme), one uses the most measurement-outcome-
dependent gates (GHZ scheme), and another uses a well-known protocol involving
Bell state measurements (teleportation scheme), while an alternative may be more
suited to a particular qubit topology (cluster state resource scheme).

In terms of evaluating an event of a successful state transfer, we sample a random
initial state vector in Qiskit (approximately from the uniform Haar measure) and
initialize the qubit at site i (call it the first qubit w.l.o.g.) in that state using some
initializing gate Z for all the schemes. We then apply the gates of a particular state
transfer scheme, and finally, in the end, apply a so-called ‘disentangler’ (which we
denote by Z~ 1) at site j (or rather, the final qubit). This Z~! operation is a gate in Qiskit
that undoes the unitaries that initialized the first qubit into the starting random state
vector used at the beginning of the circuit. Lastly, this is followed by a measurement in
the Z basis to get the probability of being in our very initial |0) state. This probability of
measuring ‘0’ is the nominal success probability, and when there are errors and noise,
the act of obtaining ‘0’ does not necessarily mean that the final state before Z~! is the
same random state we begin with but only indicates that the protocol was successfully
completed. (This is in some sense similar to the nominal success of the entanglement
swap in the DLCZ protocol when a single photon is detected at the beam splitter [4,
53].) The particular implementation of the respective schemes is best illustrated with
circuit examples, and, in the order listed above, they can be seen in Figs. 1, 2, 3 and
4 for five qubits. Additionally, a more detailed explanation of the GHZ and Cluster
state schemes can be found in Appendix C. We note that to highlight and contrast any
scheme advantage, we use the full set of CNOTs for the successive SWAP scheme.
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Fig. 2 An example five-qubit circuit schematic for the successive teleportation scheme. We note that the
block of gates in the dashed sections form the standard teleportation protocol utilizing Bell state creation
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Fig. 3 An example five-qubit circuit schematic for the GHZ scheme wherein an initial GHZ state is used
like a channel for state transfer from the first to the last qubit

Fig. 4 An example five-qubit, simplified circuit schematic derived from using an intermediary ‘resource’
cluster state to facilitate state transfer in the cluster scheme. We note that in the gate teleportation used in the
cluster scheme, the controlled-Z (C Z) gate is the native gate and the remaining qubits should be initialized
in |4), but the circuit is translated to the CNOT-based circuits, as CNOT and C Z are related by Hadamard
(H) gates

To start, we consider running the four schemes on Qiskit’s ‘QASM simulator’ and
applying the noise model of ‘IBM Q Montreal’ device (simulated via the FakeMontreal
backend provider to best emulate the real device) with no circuit mapping optimization
or error mitigation applied. We restrict ourselves to only the QASM simulator in this
section as we are limited in running most of the schemes (that is, all but the SWAP
scheme) on areal IBM device. In particular, we require the use of real-time conditional
quantum gates based on measurement results (as is needed to apply the classical
corrections after quantum teleportation as an example). Unfortunately, at the time
of the manuscript completion and submission, the conditional ‘c_if()’ functionality
in Qiskit could not be used on IBM’s real devices as of the writing of this paper—
though we expect it may be a feature available in the future so that actual execution
of the schemes considered here can be done and their results can be compared with !
We could still, of course, use the principle of delayed measurements to postpone all
measurements till the end, however, that introduces additional control gates that may

1 Note added: This feature has become available in some of IBM’s quantum devices since November 2022.
But to perform the actual demonstration is beyond the scope of the current work.
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not be directly available with the nearest-neighbor qubits and may cloud our analysis
on any advantage certain schemes may have over each other.

In light of this, we mostly employ the ‘QASM’ simulator in Qiskit, as that allows
us to simulate the operation of real devices and to make full use of, otherwise unavail-
able, measurement-outcome-based conditional gates (indicated by the double lines
connecting gates in Figs. 1, 2, 3 and 4).

2.1 Noisy simulations

Given such a setup, we began simulations for each scheme ranging from three qubits
to thirteen qubits (in a linear geometry) on a quantum circuit, enabling all the gate and
readout error noise from the real-device noise model. The gate error model specifies
the application of non-ideal quantum gate operations in a quantum circuit because of
a particular probability of error. For example, with the H gate, an ideal agplication of

the H gate on the basis states |0) and |1) results in an output of the |+) = 7 10y +11))

and |—) = % (]0) — |1)) states, respectively. With the presence of a gate error model,
for example, a depolarizing error model with depolarization error, p, application of the
H gate on an initial state means that the ideal H gate will be applied with probability
(1 — p), but the state will undergo a random rotation around one of the three axes
of the Bloch sphere each with probability p/3. The readout error, on the other hand,
models the deviations in the measurement output due to various imperfections, such
as decoherence, relaxation, or measurement apparatus issues.

To stay consistent between the different schemes and averages, we fix the same
logical qubit to device qubit error index mapping, i.e., the qubit layout, ensuring the
topology mapping remains a linear geometry. The exact layout used for simulations
can be seen in Appendix B. Thus, when the number of qubits is, say, five, the simulation
uses only the qubits labeled [0, 1, 2, 3, 4] (in Fig. 17) for a given state transfer scheme.
This means that qubit ‘zero’ is treated as the starting qubit, and qubit ‘four’ is treated
as the end qubit for the state transfer in that case for example.

Fixing that layout, the circuit was then transpiled using the FakeMontreal backend
and executed using the QASM simulator with 8192 shots. We ensure that, for all our
simulations, we do not rely upon any particular initial state. Indeed, we sample all
initial states in all our Qiskit simulations from a random seed and average our results
over all the randomly sampled initial states with a large number of shots for each and
every scheme—allowing us to reasonably assess the general performance and trend
on average.

We found that, overall, the SWAP scheme performed the best, then the cluster
scheme (though closely followed by the teleportation scheme) with the GHZ scheme
performing the worst as the qubits in the circuit increased. This is evident from Fig. 5,
which shows how the numerical value of the expectation value of measuring zero
(where, again, zero indicates successful state transfer in our setup) on the final qubit
(to which the initial state is being transferred to) changes—for each state transfer
scheme—as the number of connected intermediary qubits increases between the start-
ing qubit/site and the end qubit/site.
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Fig.5 A plot of the expectation value of zero (where measurement of zero indicates successful state transfer
and a measurement of one, failure) varies with increasing qubit number in the different circuit schemes.
The simulation used all the gate and readout errors from the device noise model of IBM FakeMontreal with
8192 shots for every data point (and each averaged over fifty random initial states). No optimization or
mitigation was applied, and error bars represent the standard error in the average value

The nature of the trend observed with the increasing number of qubits is due to
the fact that more intermediary qubits are being used to facilitate the state transfer
between the starting qubit and the end qubit (an analog somewhat to an increasing
distance between a starting site i and an end site j with increasing repeater nodes). The
use of increasing intermediary qubits, naturally, introduces more noise as more noisy
gate operations are applied—hence continually decreasing the expectation value from
the ideal value of one.

However, something may be slightly surprising at first; the SWAP scheme utilizes
the most CNOT operations (which tend to have higher gate error rates compared to
single-qubit gates and we ensured the SWAP scheme utilized all three CNOT gates
composing a single SWAP gate) when compared to the other three schemes. Moreover,
the cluster-state and teleportation schemes both utilize the same number of CNOT
gates—smaller than that of the SWAP scheme (if that is the only dominant error of
concern)—yet the cluster scheme appears to fair slightly better than the teleportation
scheme on average.

Closer inspection, however, suggests that perhaps the measurement errors (or read-
out errors) of the device dominated, or rather, impacted the noisy simulations more so
than initially anticipated. This raises a further, seemingly quite important, question of
the balance between the cumulative gate errors and the cumulative readout errors in
achieving an effective state transfer scheme in a noisy environment.
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3 Interplay of readout and gate errors
3.1 Simulations on the interplay
3.1.1 Turning off readout error

To piece out the relative significance of the errors dominant in the previous section, we
consider next the effects of having no readout errors in our noise model, namely having
ideal measurements whilst maintaining the device gate error noise. Keeping the same
conditions for the simulation as previously (i.e., 8192 shots and averaging over fifty
random initial states each time), the simulation results of turning off readout errors
can be seen in Fig. 6a, which displays the relationship between the nominal successful
state transfer probability (i.e., expectation of measuring zero at the final qubit) vs.
the total number of qubits present in the circuit. And perhaps more predictably, we
find that the SWAP scheme (the circuit with the most CNOT gates) now performs the
worst, with the GHZ and teleportation schemes performing best (almost within error,
on average).

3.1.2 Turning off gate error

In contrast to that, we also looked at the effects on the scheme performance when the
gate errors were set to zero (that is, ideal gate operations), but with active readout errors
present—results obtained, again, from IBM FakeMontreal backend simulator. Utiliz-
ing the same topology as in previous simulations and setting any Qiskit optimization
to zero, we found, interestingly and, by now expectedly, that the SWAP scheme now
performs the best. The teleportation scheme is the next best (though by the end, the
cluster scheme is better and teleportation worse) and the GHZ scheme performs the
worst, on average, though marginally (see Fig. 6b).

3.1.3 The interplay

To investigate the curious balance and coupled effects of having both a gate error noise
model and readout error model on the different state transfer schemes, we consider
how the nominal success probability varies as a function of varying levels or degrees
of gate noise and readout errors. To model such a simulation, we take the gate error
model for the circuit basis gates to be a standard depolarizing error model in the Qiskit
library (Ref. [47]) controlled by a noise-level parameter p (for0 < p < 1):

4p 4p I
E(p) = (1 - ?)p + <? Tr(p)>2—N (D

where p is the density matrix of the circuit, / is the identity matrix, N the qubit number,
and Tr(p) = 1 (a normalization we will mostly use). This choice for the gate error
model is motivated by Ref. [55] wherein they utilize a depolarizing channel to model
the gate infidelities source of error for NISQ devices. Indeed, generally speaking, the
depolarization channel is a commonly used gate error for theoretical considerations,
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Fig.6 Plots a and b show the variation of the probability of zero when all gate errors and readout errors (in
the noise model using IBM FakeMontreal as a backend) are set to zero, respectively. Each data point shown
was evaluated with 8192 shots and averaged over fifty randomly sampled initial states at the beginning of
the circuit. No circuit optimization or mitigation was applied, and all error bars represent the standard error
in the average value

and as discussed in Ref. [56], being able to error-correct the depolarizing channel
automatically allows us to error-correct an arbitrary single-qubit quantum operation.
Hence, it is an important noise channel to continue to study and use towards such a
goal, guided by our understanding of its interplay. Furthermore, from the perspective
of simulation, Qiskit’s backend noise model utilizes a depolarizing error for both its
single- and two-qubit gate errors. Thus, we believe it is appropriate to, by and large,
consider for the purposes of our particular study the depolarizing channel. Lastly, we
note that for simplicity and our particular analysis (that is, a focus on gate error noise
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that does not consider other types of noise such as crosstalk noise for example), we
assume uncorrelated error between different qubits. So, for the case of CNOT gate
error, we take a tensor product of depolarizing error (similar to Ref. [41]) for analytic
and Qiskit numerical simulations.

Following the notation of Ref. [47], the readout error is given via the conditional
probability P(B|A) which stores the probability of recording a true measurement
outcome, A, as instead a misread outcome, B. For our numerical simulations, we
take the offset ‘symmetric’ case where [P (0]0), P(1|0)] = [1 — P(1]0), P(1]|0)] =
(1 —Z,9]and [P(0[1), P(1|1)] = [P(O[1), 1 — P(O|1)] = [g, 1 — q]. That is, we
consider only a single parameter (and in that sense, we loosely say ‘symmetric’), g,
that controls the probability of recording a true measurement outcome of say one, as
zero for example. We note that the factor of % is introduced in [P (0]0), P(1|0)] to
take into account that |0) is a lower energy state than |1) and hence is more likely to
be measured due to decay.

Given this arrangement, we define a custom noise model that is applied to all the
standard basis gates in a given quantum circuit and run the simulation to find the
probability of measuring zero on the final qubit in the circuit. On the IBM simulator,
the gate error model is implemented by having a subset of noisy basis gates (for our
simulations, we use Uy, Uz, U3z and C X gates) that contain the particular noise model
‘applied’. Then, when a quantum circuit is transpiled with noise, all gates present in the
circuit are stripped of their labels and ‘unrolled’ into a corresponding noisy basis gate.
The readout error model is implemented via matrix multiplication, mapping the counts
based on a matrix of error probabilities (called the response matrix). This transpilation
is illustrated in Fig. 7a, b.

By varying the domain of g and p values input into our custom noise model, we
can generate a surface plot of the nominal success probability as a function of ¢
and p. If we take, for example, say, seven qubits in each of our circuit schemes, we
yield the surface plots seen in Fig. 8 (with plots of the three- and five-qubit cases in
Appendix D). Each of the surface plots is composed of 1600 (g, p) simulation data
points to create the underlying mesh grid. Every single one of those data points used
1024 shots and whose expectation value was averaged over five random initial states
(so an effective 5120 shots per data point present). While we may be limited in the
number of random initial states we can average over in a finite numerical simulation,
we hold that our results give a general indication of a given scheme’s performance
with scaling errors regardless of the initial state as our random initial state sampling
and averaging reasonably suppress any fluctuations on various simulation runs. We are
further reassured by the results seen later in Sect. 3.2, where we were able to integrate
over the entire Bloch sphere, and our resulting expectation value plots are strongly
comparable to the numerical simulation expectation value plots we find here.

Examining Fig. 8, a first glance reveals a somewhat expected behavior of decreas-
ing probability of successful state transfer with increasing depolarizing noise and/or
readout error for all of the schemes. Taking a further look, however, there is a peculiar
pattern that is persistent throughout all of the surface plots in which the success prob-
ability appears to be higher for high p and ¢ values than when p is high and ¢ is low.
The pattern appears to remain persistent even when averaged over a couple of random
initial states and using a large number of shots. Due to the inherent numerical nature

@ Springer



Quantum state transfer: interplay between... Page 110f36 275

i .J}Jmm

Global Phase: 0.88846

w .J;
P ok sl o

°

800

600

Count

400

200

0

(b) Example noisy circuit transpilation for the teleportation scheme

Fig. 7 Illustration of the circuit transpilation for the QASM simulator backend with 1024 shots using
the teleportation scheme as an example and a random initial state ((0.30719863 — 0.37807185i)|0) —
(0.28356911 + 0.82600196i)|1)). The histograms show the counts for the final qubit of interest (labeled
g2) only. Figure (a) shows the decomposition of the teleportation circuit into the ideal (noise-free), basis
gates of the QASM simulator (standardly consisting of the Uy, U, Uz and CX (CNOT gate) in Qiskit’s
gate library). With no noise model, this transpiled circuit yields the correct expected counts. (b), on the other
hand, shows a circuit decomposition into particular noisy basis gates (our custom noise model simulations
use the /(identity), C X, Rz (z-axis rotation gate), /X) gates as the noisy basis gates and a noisy measure
operation) from a given noise model (in this case depolarization error model and readout error). This is
what we mean by applying a gate and readout error model to a circuit, and we can see that this circuit’s
counts histogram deviates from the ideal due to the presence of noise
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Fig. 8 Collection of the numerical simulations composed of 1600 data points for each of the four state
transfer schemes using a seven qubit circuit using 1024 shots (and averaged over five random initial states
for every single data point on the surface mesh). The custom noise model used consisted of depolarizing
gate error (controlled via parameter p) and a readout error model (characterized via parameter ¢), with no
error mitigation applied. The z-axis of the plots represents the nominal success probability for the particular
state transfer scheme. We note that results for three and five qubits are shown in Appendix D

of producing the plot, however, it can be costly (in compute) to generate a sufficiently
smooth surface for the success probability to analyze more closely. As an alternative,
we sought to take advantage of machine learning surface regression methods from
libraries such as scikit-learn SVM (support vector machines); see, e.g., Ref. [57]. For
our purposes, scikit-learn SVM has SVR (support vector regression) that would allow
us to create a predicted surface regression using the raw numerical data from Fig. 8.
This would give us an expected surface that could allow one to predict or interpolate
the success probabilities, approximately, for (g, p) data point values not evaluated in
the raw numerical simulations of Fig. 8. Such regression surfaces, for each of the state-
transfer schemes (visualized with Plotly, see Ref. [58]) with the same seven qubits,
can be seen in Fig. 9.

We see that these predicted regression surface plots emphasize the peculiar patterns
seen in the standard numerical simulations with the almost exaggerated dip in success
probability seen when p is around or less than 0.5 and when ¢ is around or less than 0.2.
We also point out that though all these plots show how the nominal success probability
of state transfer varies, it can also be closely connected to a meaningful measure of
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Fig.9 Smooth SVR (support vector regression) generated surface plots for each of the four schemes on their
nominal success probability in state transfer. Similar behavior is present in Fig. 8, with the dip in ‘success’
probability being more starkly visible at low readout error and moderate levels of depolarizing error

Hellinger fidelity of the state transfer. This arises from the emphasis on the probability
distribution, and we are especially led to believe this seeing how the Hellinger fidelity
surface plots (see Fig. 20) mirror nominal success surface plots of Fig. 8. This further
adds interest to our investigation seeing how the interplay of gate and readout errors
impacts fidelity measures.

These results so far implore us to consider more carefully a somewhat counterintu-
itive interplay between how the quantum error channel and the classical readout error
model affect each other. As an aside, we also find similar interplay effects from using
an individual Pauli error model instead (see Appendix F), suggesting that this is not
necessarily a feature of the depolarizing error model only. To tease out that interplay,
we turn towards an analytic understanding of the process in the next subsection. In
particular, by observing that our trend of interest is present at all total qubit circuit
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lengths—as low as a three-qubit circuit (see Fig. 18 in Appendix D)—it suffices to
study and analytically calculate the success probability of state transfer from a three-
qubit density matrix to reveal the interplay. Furthermore, we need only consider three
of the four outlined schemes as the teleportation and GHZ schemes are equivalent at
the three-qubit level of interest.

3.2 Analytical results

To start the analysis, we take an arbitrary initial density matrix, p;, of a three-qubit
system (dim(p;) = 8 x 8) to be just:

cos? (0/2) 1e7sin(0)0---0
zel?sin(9) sin?(6/2) 0---0

pi = i) (Wil = 0 0 SRR (2)

0 0 0---0
where the components along both the row and column are listed in the order of |000),
[100), |010), |111), and our initial state is given by the state |v;) = |7;)|00) and our
arbitrary state to be transferred given by |7;) = cos (8/2)|0) + /% sin (6/2)|1). We

assume |7;) can be initialized via a gate Z (subject to gate noise) from an initial |0)
state by applying the general U-gate,

_ _ ) —sin(§
I—U(9,¢»O)—< %) eiq;cos(zg) , (3)

' sin

with our ‘disentangler’ gate modeled as the inverse matrix of (3).
We model our gate error channel, £, using the standard operator-sum representation
of £ (Ref. [56]) with Kraus operators E;:

E(p) =) EipE], @)

where our primary Kraus operators used for the depolarizing channel (with probability

p) are
E()Zy/l—pI,ElZ\/gx,EQZ\/gY,L%:\/gZ, 5)

and if applicable, the following for a bit flip:
Eo =PI, E1 = J1-pX, ©)
and a phase-flip:
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Eo=/pl,E1 =1-5Z, )

channel of probability p, with I as the identity matrix and X, Y, Z the standard Pauli
matrices (see also Appendix F). We consider only a single-qubit version of the depo-
larizing channel and merely apply a tensor product of the single-qubit depolarizing
channel when adding error to two-qubit gates, such as CNOT (similar to our Qiskit
numerical simulations).

As brought up, e.g., by Sun, Jinzhao, et al. in Ref. [59], the noise impact for a
digital gate-based quantum computer can usually be simplified to a quantum channel
appearing either before or after each gate operation. And so, for all error channels,
we chose to evolve the density matrix through the error channel after applying the
ideal, desired quantum gate operation to model a noisy gate analytically. This kind of
modeling, for example, is also used in the discrete event quantum network simulator,
NetSquid [60], where they tend to model each noisy operation, Oyoisy as the ideal
operation Ojgeq followed by a noise channel, A, such that: Onoisy = N o Oigeal.
Moreover, this stays in line with the documentation of Qiskit’s quantum error class that
we used in our numerical simulations, as it states that it describes CPTP (completely
positive trace-preserving) gate errors that can be applied after gate or reset instructions,
or before measure instructions. Our modeling choice is substantiated further by the
fact that Qiskit Aer (the Qiskit module containing the noise model class we used in
our numerical simulations) is tailored for Markovian circuit-based noise models. That
is, they can always be represented as an ideal operation followed by CPTP maps, as
noted by Christopher J. Wood in Qiskit’s GitHub repository. This meets our working
assumption and hence why, for simplicity, we proceed that way in our analytical
considerations as, generally, errors are modeled by adding stochastic errors to the
ideal gate operations, while readout errors are modeled by applying a measurement
error model to the measurement results.

Next, for the final measurement readout dependent error, we restrict ourselves to the
classical single-qubit readout error model [61] (see also Ref. [62]) on the final qubit to
which the state |7) has been transferred to. Indeed, with our ‘disentangler’ gate, we are
primarily just interested in the measurement outcome ‘0’ (‘1) as our criterion for the
nominal success of (failure of) state transfer. Thus, we obtain the recorded outcomes,
m; = (mg,m1)7, with our single-qubit readout error model by applying the response
matrix, A, to the true measurement outcomes m; = (Tr[|0){0] o], Tr[|1)(1 |,of])T =

(mo, m1)T as follows:
mo\ _ (1—q0 @1 mo ®)
ny qgo 1—q1) \m

where we define go and ¢ to be conditional probabilities P (1|0) and P (0|1), respec-
tively. To restrict the number of free parameters, we take go = «¢g (for some positive
real number «) and g1 = ¢ for all proceeding analyses.
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There exists a further issue of single-shot readout error that gives rise to the accumu-
lating readout-caused error. Such errors are only of concern in the teleportation, GHZ,
and cluster state schemes, wherein intermediate measurement-outcome-dependent
errors (or justintermediate readout errors) from the ancillary qubits can lead to accumu-
lating, incorrect application of the correcting measurement-outcome-based conditional
gate. Accounting for single-shot readout error is a more difficult problem, and so for
our purposes (where we primarily only care about average expectation values), we
consider an alternative approximation that could account for such accumulating errors
at the qualitative level.

Assuming that the accumulation of such errors occurs with the same probability,
qo = kq (or g1 = g depending on random measurement outcome), we attempt to
account for such intermediary errors by applying a bit-flip channel (for X measurement
conditional gate) and a phase-flip channel (for Z measurement conditional gate). In
practice, as an example, this would mean our analytical calculation for the teleportation
scheme, after measurement of the first qubit as, say, zero would evolve the density
matrix through a phase flip channel of probability 1 — gq. In other words, the channel
would model applying the identity with probability 1 — g (occurs the majority of the
time if go is small) and applying a Z gate with probability go. This is because one
would normally only need to apply the identity gate as the corrective, measurement-
outcome conditional gate if the first qubit measurement outcome is one. But, a readout
error model mistaking the true measurement of zero as a one signals that a Z gate
needs to be applied before proceeding (incorrectly, from an outside perspective)—and
we assume that such incorrect application, in this scenario, occurs with probability go.

Given our setup so far, if we work out (via standard matrix multiplication) the
evolution of p; through the three-qubit SWAP scheme unitaries, whilst individually
applying a tensor product of the single-qubit depolarizing error channel (same as done
in our custom noise model in the Qiskit simulations) after every CNOT gate opera-
tion, one finds the following normalized, average (integrated) expected measurement
outcomes, m;, for the final qubit, as a function of the depolarizing parameter p:

12 i A2j=1)
_ (= 1)/ [Aswap] 2/ :
moswap(P) =1+ T ' ©)

j=1

where Agwap = (32, 156, 460, 915, 1296, 1344, 1032, 585, 240, 68, 12, 1)T. We note
that integration over the entire Bloch sphere is performed to obtain all true average
measurement outcomes in this subsection as follows:

2 T
i = 1 / Te[li)(ilps (0, ¢)]sin6 dO d¢. (10)
4 0 0

Applying our final measurement readout error model, and using the fact that

1—1m0,(scheme) = "1, (scheme), WE get that the nominal success probability for state
transfer, that is, mg, is given by:

mo(q, p) = q +mo(l — (k + Dg). (11)
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SWAP Scheme

0.9

0.5

Fig. 10 Nominal success probability surface plot of Eq. (11) (after input of Eq. (9)) for the SWAP scheme
circuit with three qubits

Plotting Eq. (11) using the function from Eq. (9) for, like our previously chosen, k = %
(see Fig. 10), we begin seeing the trends observed in the previous numerical Qiskit
simulations exactly. That is, for the SWAP scheme, we evidently see the same structure
with the same linear drop-off near the p = 0 plane and a dip in the expectation value
near low readout error and high gate error that was peculiar to us before.

Accordingly, following similar calculations, but now for the teleportation and
cluster-state schemes (using the same depolarizing channel but accounting for the
possible accumulating intermediary readout error, g, with either bit or phase flip chan-
nels), we find the following for the three-qubit teleportation (from which we can safely
infer the three-qubit GHZ circuit scheme as well) and cluster-state schemes,

_ 10 2 (— 1)k p@n—k=1)
mo,(scheme) = ¢ + (1 — (k + 1)q) Z Z [A (scheme) lnk 31—k +1) q p",
n=0 k=0

with, respectively,

626 102 239 371 399 301 157 54 11 1
(Atelepm)T = | 436 147 359 581 651 51127799212 |, (13)
11045 120210 25221012045101
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Teleportation Scheme

0.9

0.5

Fig. 11 Nominal success probability surface plot of Eq. (12), using the coefficients from (13) for the
teleportation scheme with three qubits. The plot gives insight into a three-qubit GHZ scheme as well due
to the circuit equivalence at the three-qubit level

and

6 26 105 260 435 510 421 240 90 20 2
(Actuser)” = | 4 40 180 480 840 1008 840 480 18040 4 | . (14)
22090 240 420 504 420 240 90 20 2

We note that m for the cluster and teleportation is an average of the four possible
measurement outcomes of the ancilla qubits. The plots of Eq. (12) with coefficients
from (13) and (14) can be seen in Figs. 11 and 12, respectively (with x = % as before).

With our sole analytic analysis, we can now explain (and replicate) the peculiar
behavior of low readout error and high gate noise resulting in the lowest successful state
transfer with our analytic expressions. Indeed, from these results, we can glean that at
high readout error and high gate noise, there is so much classical readout flipping of the
true measurement result that it seems to ‘counteract’ the decrease in the measurement
of the zero outcomes from the gate noise. Furthermore, the asymmetry in the readout
error model appears to be creating a ‘biasing’ effect where the recorded measurements
of particular outcomes become more common at certain levels of readout error that
it appears to give better results at the nominal success level. This suggests that there
can exist ‘minima’ at each readout error and gate noise produces the lowest nominal
success rate, and that higher values can have some sort of ‘interference’ effect of
counteracting each other. Grasping this concept can perhaps lead to using particular
levels of readout error to one’s advantage and/or applying error mitigation techniques
more effectively to ‘steer’ where pockets (of minima) of lowest, nominal success
probability can appear. As a further possibility, it could allow one to better avoid
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Cluster State Scheme
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Fig. 12 Nominal success probability surface plot of Eq. (12) (using the specific input of (14)) for the cluster
state scheme with three qubits

minima pitfalls if performing noise-scaled regressions and building noise-learning
models.

On the flip side, one could also ask if there are any similarities of such trends in the
actual state fidelity as well—or even how exactly the functional form and coefficients
change in contrast. While we cannot output the exact state vector of a qubit state on a
real device, our analytic methods allow us to work out the fidelity by omitting the final
‘disentangler’ gate unitary and final qubit measurement. Computing the density matrix
evolution exactly as before, we can then compute the average state fidelity, F, as a
function of the noise parameters p and g (where, again, ¢ is now a stand-in for any
incorrect application of intermediary measurement dependent gate due to incorrect
readout of ancilla qubits) with the commonly used formula (Ref. [63, 64]):

1
F(q. p) = E/mmwdsz, (15)

where the integration is over the entire Bloch sphere again, and |t) is an arbitrary
initial state.
For the SWAP scheme, which has no measurement-dependent gates, we get the

average fidelity (referred to as just the fidelity in the plots and text henceforth for
brevity) as purely a function of p:

11 P A2j=1)
(= 1)/ [Bgwapl ;237 ;
Foap(p) = 1+ ) 26D p’ (16)

j=1
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SWAP Scheme
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Fig. 13 Final state fidelity surface plot from a three-qubit SWAP scheme with varying depolarizing noise,
p, and no intermediary readout error ¢ dependence, following Eq. (16)

where Bgwap = (29, 127, 333, 582, 714, 630, 402, 183,57, 11, l)T. For the teleportation
and cluster-state schemes, the fidelity functions are now both a function of p and re-
contextualized ¢, and they are given by:

_1)(n+k)2(2n—k—1)

9 2
(
Fscheme) = Z Z [B(scheme) lnk 31—k+1) qkpn (17
n=0 k=0

with, respectively,

623 79 160 211 188 11344 10 1
(Btelepon)T = | 432115 244 337 314 197 80 19 2 (18)
19 36 84 126126 84 36 9 1

and,

623 82 178257 253 168 72 182
(Betusier)T = | 4 36 144 336 504 504 336 144 36 4 (19)
218 72 168 252 252 168 72 182

with the respective plots of the fidelity functions shown in Figs. (13, 14 and 15).
Looking at those fidelity plots, we notice that the stark dip observed previously is

not quite expressly present at the low readout and high depolarization noise. Though,

there is some resemblance to the contours of the success probability surface plots of
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0.9

Fig. 14 Final state fidelity surface plot from a three-qubit teleportation scheme with varying depolarizing
noise (p) and intermediary readout dependent error, ¢, following Eq. (17) and the coefficients of (18)

Cluster State Scheme

o
0

P

0.9

0.5
Fig. 15 Final state fidelity surface plot from a three-qubit teleportation scheme with varying depolarizing

noise, p, and intermediary readout dependent error, ¢, following Eq. (17) and the coefficients of (19)
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Figs. 10, 11 and 12 near the small gate error region, the high noise and high readout
behavior in the fidelity surface plot is different because the surface tends to decrease
and plateau. Still, the functional form of the fidelity matches closes with our measure
of the success probability, differing most significantly in the particular coefficients of
A(scheme) and Byscheme)- This is illuminating in how different fidelity measures differ
and also highlights an important note: how the measured nominal ‘counts’ from a
real device, from a black box lens, may differ significantly in behavior to analyzing
the state fidelity. These results showcase what the role readout and gate error play in
biasing that expectation value—and the almost non-monotonic relationship they have
to the nominal expectation value.

4 Error mitigation possibilities

With our understanding of the role of gate and readout errors, a natural question
to ask would be if we could leverage our analysis so far to mitigate errors. Given
that throughout the paper we only accounted for gate errors, a technique such as
zero-noise extrapolation ( [45, 46]), or ZNE for short, can be a powerful tool to
mitigate noisy (from real device noise models) expectation values. The question of
mitigating accumulated measurement outcome-dependent errors (call it intermedi-
ate readout resultant errors) can be more tricky. In the case of the SWAP scheme,
merely inverting the response matrix, A, in Eq. (8) would be sufficient — as there
are no measurement-outcome-based conditional gates. Unfortunately, mitigating the
accumulated readout-caused errors for the other schemes is not as straightforward as
that requires shot-by-shot mitigation. However, given that we are particularly dealing
with mitigating average expectation values, we could attempt to apply an approximate
inverse response matrix, A~!, and assess how well it can mitigate accumulated read-
out error on average. One possible way to go about mitigating real device noise could
be to compare ZNE mitigated expectation values (‘probability of zero’ or ‘successful
counts’ depending on the context) and extrapolate the amount of accumulated readout
error, on average, was needed to achieve that particular ZNE mitigated expectation
value from the surface plots we have generated (on the contour of p = 0).

With that idea in mind, a plot of how the expectation value of zero, E, degrades
with increasing partial gate set, G, folding can be seen in Fig. 16 for a three-qubit
circuit. We chose to implement the gate folding following scheme outlined in Ref.
[45], wherein our circuit depth, of say D, is scaled to oD after gate folding. For our
circuits, we folded the Hadamard (H) and CNOT subset of gates and kept all else the
same. From there, following Ref. [45] again, we extrapolate to the zero-noise limit of
E (o = 0) (as can be seen via the vertical, dashed black line in Fig. 16) by performing
an exponential fit of the form E (&) ~ ae ™% +c. An example dataset of the three-qubit
ZNE mitigated expectation values for a particular random initial state can be seen in
Table 1.

Next, to attempt to mitigate the accumulated readout-caused error, we apply A~}
(keeping g0 = % and g1 = ¢) to the ZNE mitigated values. To get a good estimate for
the average ¢ in A~!, we extrapolate its value, for a given scheme, from the respective
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Fig. 16 Three-qubit circuit scheme expectation values, E, for measuring zero (i.e., the probability of zero)
with increasing noise scaling parameter, « (controlling the CNOT and H gate folding in the circuits),
to interpolate the zero noise limit of E(«¢ = 0). The noise model used for the data points is from IBM
FakeMontreal, with each data point having 4098 shots and each expectation value averaged five times (with
error bars representing the standard error in that average). The initial state vector sampled for this specific
datais |7;) = (0.79114257 4 0.37436334i)|0) + (0.40615923 4 0.26264083i)|1)

Table 1 Example dataset of expectation values of zero

Circuit scheme Unmitigated value ZNE Mitigated value Readout mitigated value
SWAP 0.95583 0.99952 4+ 0.01250 1.00000 % 0.01250
Teleportation 0.94436 0.96469 + 0.00501 0.97728 £ 0.00501
GHZ 0.94802 0.96361 £ 0.00325 0.97662 + 0.00325
Cluster state 0.92533 0.94260 £ 0.00301 0.96427 £+ 0.00301

The unmitigated values are the exact output of the probability of zero for a three-qubit circuit simulation
(4098 shots) using IMBQ’s FakeMontreal backend noise. The ZNE mitigated values are obtained from
doing the extrapolation in Fig. 16. The final column shows the average readout mitigated values from
inverting an approximate response matrix A. The initial state vector sampled for this specific dataset is
|ti) = (0.79114257 + 0.37436334)|0) + (0.40615923 4 0.26264083i)|1)

scheme’s expectation value of zero surface plot. In particular, we would determine
the g value present at the point where p = 0 and the z coordinate = the unmitigated
expectation value. At the three-qubit level, we can straightforwardly use our analytic
equations to determine such a ¢ value for A~!. An example of the mitigation possible
by this method, for a three-qubit circuit, can be seen in Table 1.

For larger qubit circuits, where specific analytic expressions may be harder to find,
one could generate surface plots akin to Fig. 8, but with the axis of increasing gate
noise replaced, instead, with increasing ZNE noise parameter, o, from normal device
noise. The readout error axis would need to be varied as well, in some probabilistic
fashion or by simply updating the device noise model each time. With sufficient data
points from many randomized circuits, one could use regression methods (like those
used in Fig. 9) to generate a smooth surface plot of the expectation value varying with
increasing device noise («) and readout error. This could allow one to extrapolate ¢
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numerically, for a given expectation value, at the « = 0 limit without any analytic
expression.

Finally, looking at Table 1, we see that the ZNE mitigation works well to improve
the expectation values closer to their ideal (and more so when gate noise is domi-
nant like in the SWAP scheme), and applying an approximate inverse response matrix
allows us to mitigate all noise from the SWAP scheme in particular (within some small
error margin). While the same is not exactly true for the other remaining schemes, we
can still report that the method of surface g extrapolation can at least provide a notice-
able improvement in the expectation values for all the three-qubit circuit schemes.
This suggests that an approximate response matrix can still have a role in mitigating
accumulated readout-caused errors, even if further mitigation techniques would still
be required depending on the particular scheme.

5 Conclusion and discussion

In this work, we looked at quantum state transfer at the level of algorithmic protocols
to facilitate quantum state transfer. Our results indicate how different state transfer
schemes (a successive standard SWAP, standard teleportation, GHZ resource, and
cluster state resource) fair in quantum state transfer, from a site i to site j in a linear
chain geometry, under the particular gate and readout errors model. We show the
unexpectedly significant role readout error can play in choosing a state transfer scheme
and primarily illustrate the counterintuitive interplay readout error has with gate noise
in measuring nominal expectation values. We also presented analytical equations, for
the three-qubit level, that can reproduce and explain that counterintuitive interplay
that one sees, through a black-box lens, on a real device. Lastly, we briefly touched
upon how error mitigation may enter this picture in helping to determine better scheme
performance.

The schemes we worked with can be translated to other schemes involving, for
example, those of a SWAP chain state transfer, schemes with time-dependent Hamil-
tonian applied to a series of qubits to perform state transfer like adiabatic transfer,
or gate teleportation in the MBQC framework. It also naturally leads to the advan-
tages of the schemes we presented, which can reduce the overhead effect of gate noise
with their native gate connectivity. The SWAP scheme is particularly relevant when
a SWAP chain can be utilized between neighboring qubits without the added over-
head of intermediary SWAP operations. The teleportation scheme presents advantages
between distant qubits that require routing the quantum state where reasonably low
readout error overcomes the accumulating error from additional, possibly unnecessary
CNOT gates between intermediary qubits. The GHZ scheme may be an alternative if
a high-fidelity resource GHZ state is readily available for use and the measurement
errors are much less than the gate errors for the system. The cluster state scheme would
be particularly advantageous if one was interested in quantum state transfer within an
existing lattice cluster state structure or general graph state quantum network. It would
also be the preferred way of quantum state transfer in the MBQC framework.

While we only considered gate errors and classical readout errors, there are possible
extensions in investigating other noise interconnections than that of just depolarizing
noise. Furthermore, one could also extend this work to consider quantum state transfer
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in different network geometries and how that changes the scheme performances. Lastly,
one could also investigate more sophisticated error mitigation and correction schemes
that can perhaps exploit the interplay we have seen in this paper.
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Appendix A Terminology

Term Definition

SWAP A shorthand for the action of a SWAP gate; a gate which exchanges the states of
two qubits. In other words, performs the following map on a two-qubit state:
V) ® [¢) — 1) @ [¥).

Teleportation A shorthand for the teleportation protocol which allows one to transfer the
quantum state of one qubit to another as independently copying the exact same
quantum state onto another qubit is prohibited by the no-cloning theorem. [56].

GHZ State An abbreviation for the Greenberger—Horne—Zeilinger state. It is a multi-qubit
entangled state with equal superposition of the zero and one states. That is, for N
qubits, of the form:%(|0)®N + \l)®N).

Cluster State An entangled state following a lattice structure wherein each qubit, initialized as
[+) = \%(IO) 4+ |1)) via a Hadamard gate, is connected to its nearest neighbor
via a controlled Z(C Z) gate operation

Noise model A model of operations that simulates the effects of noise and errors on an input

state quantum system to a resulting output quantum state affected by the noise

Topology mapping The stage in the quantum circuit transpilation that maps the logical qubits used at
the quantum circuit level to physical connectivity (access) of physical qubits on a
real device/quantum processor.

Transmon qubit A physical qubit can be thought of as a two-level quantum system, and the
transmon [65] qubit is a type of superconducting qubit akin to that of an LC
oscillator but with the inductor and capacitor analogs being a Josephson junction
and capacitance, respectively. The various levels of the superconducting system
are isolated to two energy levels to get an approximate qubit.

Appendix B Device connectivity
We show in Fig. 17 the layout of IBM Q Montreal whose device noise model was used

in our simulations. The numbers marked in the diagram show the linear chain that we
used in comparing different state transfer schemes.

@ Springer



275 Page 26 of 36 B. Thotakura, T.-C Wei

Fig. 17 Linear chain layout of IBM Q Montreal used for all simulations. Specifically, the custom qubit
mapping to device qubit mapping is given by [0, 1,2, 3,4,5,6,7, 8,9, 10, 11, 12] =[0, 1, 2, 3, 5, 8, 11,
14, 16, 19, 22, 25, 24], with the latter being the physical qubit labeling on the real device

Appendix C GHZ and cluster schemes

Here we detail the state transfer scheme algorithm given an N-qubit circuit at the state
level for the GHZ and Cluster state scheme.

GHZ scheme: Suppose that the first qubit of an N-qubit (wetake N > 4and N = 3 as
equivalent to the teleportation scheme) system, |1}, is initialized in the normalized
state |7) = «|0) + B]1) and the remaining qubits form a GHZ state like so:

lYo) = |7) ® %(mw—” + |1>®<N—“) (C1)

with logical qubit labeling starting from gg to gy—1. Applying a CNOT gate between
the first (go) and second qubit (g1) then gives,

1) = ! <a|00)|0>®“v’2)+a|01>|1>®(N’2)+ﬁ|11)|0)®("”2>+ﬂ|10)|1>®(N’2)> (C2)

N7

and after measuring the second qubit in the Z-basis, with measurement outcome
m1 € {0, 1} for g1, the state becomes:

N—-1
Y2) = <oc|0m1 Q) x")10) PN 4
i=2

N—-1
Blimi) () X")[1)&N - 2>> (C3)
i=2

We then apply a H gate to the first qubit and notice that we can undo the possible
byproduct X; gates (applied to logical qubit ¢;) on all the remaining (N-2) qubits by
applying measurement-conditional gates, ®1N= _21 X ;"‘ (as X2 = I), to all the qubits
aside from the first two so that,

[Y3) = <a|+m1>|0>®<N2> + ﬁ|—m1>|1>®<N2>), (C4)
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where the shorthand |+) = \/Li(|0) =+ |1)) is used. If we now measure the first qubit
in the Z-basis with measurement outcome, m, the resulting state becomes:

[Ya) = [momy) ® <a|0>®<N—2> + ﬂ(z;"°|1>)|1>®<N—3>). (C5)

The possible minus sign on the third qubit can be avoided with a measurement-
conditional Z gate. If we continue to apply a H gate to the third qubit like so,

[¥s) = [mom1) ® <a|+>|0>®<N3> + ﬂ|—>|1>®<N3>>. (C6)

and measure the third qubit in the computational basis, we will end up in a similar
situation as C5 with the remaining state («[0)® V=3 4 B(Z32[1))[1)®N =), wherein
applying a local Z gate, based on the measurement outcome, will correct for the
possible minus sign. Lastly, repeating the process for all but the last qubit by applying
an H gate, Z-basis measurement on the remaining qubits (with outcome m; for logical
qubit ¢;), and a Z correction gate on the respective proceeding qubit yields, by the
end, the following state:

|¥6) = <®|m) («l0) + BI1)) (®|m)®|r (C7)

showing that our initial state, |7), has been successfully transferred to the final qubit
starting with an initial resource (N-1) qubit GHZ state.

Cluster scheme: To understand the Cluster state scheme, it is illuminating to simply
start with the gate teleportation protocol that is used in measurement-based quantum
computation (MBQC) from Ref. [66]:

Rz 1) H—{F—=mo

[+) X™HR7 |t)

where the gate U = X™0H Rz has been teleported given a measurement outcome,
mo € {0, 1}, on the first qubit - which begins in the normalized state |[t) = «|0) 4 §]|1)
and an Ry gate (Z-rotation gate parameterized by some angle 6) operation. We can
cancel a possible X0 gate application via a measurement-conditional X gate. Then,
w.l.o.g., we can take Rz to be an identity gate (by setting its angle parameter to zero).
We are then only left with a teleported Hadamard gate, but given our state transfer
purpose of obtaining just |t), we can exploit the identity HZ = X H to work with:

!
[+) (H | 4 IT)

[l I el
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Thus, we can perform an N -qubit state transfer given an initial (N-1) qubit resource
cluster state via several concatenated gate teleportation circuit blocks to form the
Cluster state scheme. However, in our simulations, we use CNOT as our basis gate,
and so as to not introduce additional gates to convert to CZ gates, we instead work
with the following translated circuit instead for all our simulations:

[ ]
0 4]

0)

o

N
D

(z}—10

utilizing the identity CNOT = (I ® H)C Z(I ® H) (see Ref. [54]), given the Hadamard
from the initial |+) state and ‘teleported’ H from before.

Appendix D Success probability for 3 and 5 qubit circuits

In Fig. 8, we show the success probability of different state transfer schemes using

seven-qubit circuits; in Figs. 18 and 19, we show the corresponding results with three
and five qubits, respectively.
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Fig. 18 Three-qubit surfaces composed of 1600 data points for each of the four state transfer schemes
using 1024 shots (and averaged over five random initial states for every single data point on the surface).
The custom noise model used consisted of depolarizing gate error (controlled via parameter p) and a
readout error model (characterized via parameter ¢), with no error mitigation applied. The z-axis of the
plots represents the nominal success probability for the particular scheme of state transfer
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Fig. 19 Five-qubit surfaces composed of 1600 data points for each of the four state transfer schemes using
1024 shots (and averaged over five random initial states for every single data point on the surface). The
custom noise model used consisted of depolarizing gate error (controlled via parameter p) and a readout
error model (characterized via parameter ¢g), with no error mitigation applied. The z-axis of the plots
represents the nominal success probability for the particular scheme of state transfer

Appendix E Hellinger fidelity plots for a 7 qubit scheme

As an aside, we could try to consider another measure for ‘successful’ state transfer
in Qiskit such as the so-called Hellinger fidelity, Fg, [47] defined as:

Fy = (1 - h2)2 (E1)

where # is the Hellinger distance. This distance & generally tells you the ‘closeness’
of two probability distributions (in our case, ‘counts’ distribution) given some obser-
vations (see Ref. [67] for more details). We note that this Fy quantity reduces to the
quantum state fidelity for diagonal density matrices (i.e., the classical fidelity) [47].
In Fig. 20, we plot how Fy varies with ¢ and p for an example five-qubit case, and
interestingly, the surface shapes match closely the structure we saw in Fig. 8. Thus,
we see that while our expectation value of zero as the standard for ‘successful state
transfer’ may not be directly related to the exact quantum state fidelity itself, it is
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Fig. 20 Example numerical simulations measuring the Hellinger fidelity, Fpy, instead for each of the four
schemes for a seven-qubit circuit averaged over five randomly sampled initial states. The generated surface
is composed of 1600 simulation data points (using 1024 shots)

nevertheless a useful measurement as it can serve as an analogy to some useful notion
of fidelity, namely Hellinger fidelity.

Appendix F Success probability with individual Pauli-Noise

In Sect. 3.1, we performed numerical Qiskit simulations for success probabilities using
the depolarizing error model from Eq. (1). Here we consider similar simulations (that
is, keeping the same readout error model) using five-qubit circuits but replace our gate
error model of gate error probability, p, with the following Pauli error model,

&i(p) = (1 = p)p + p(oipoi) (F1)

where 01 = X, 0p = Y, 03 = Z gate. The respective simulation surface plots using
&1,&2, and &3 are shown in Figs. 21, 22 and 23. From these, we can see that the kind
of interplay between the errors can vary based on the gate error type. Figure 21 shows
that the GHZ scheme is affected most by just Pauli-X errors and that the teleportation
and SWAP scheme surfaces tend to have higher success probabilities despite high
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Fig. 21 Qiskit numerical simulations for a five-qubit successful state transfer using £ with gate error
probability p as the gate error model instead. Each data point is averaged over five randomly sampled initial
states. The generated surface is composed of 1600 simulation data points (using 1024 shots each)

readout and gate errors—suggesting these schemes allow for better cancellation of
the readout and Pauli-X error. Figure 22 then shows symmetry in the SWAP scheme
in the face of Pauli-Y error (that is, both Pauli X and Z) perhaps owing to its own
circuit gate symmetry. The remaining schemes perform similarly to the depolarizing
noise case—not surprisingly as our depolarizing error model uses an equal mix of
X, Y (which is just both X and Z), and Z. Lastly, Fig. 23 reveals that the SWAP
scheme’s success probability is least affected by Pauli-Z errors, followed by the Cluster
scheme though with lots of variance between simulations. This suggests that the Cluster
scheme’s single, commuting, measurement-conditional Z gate is applied properly
enough times due to the Pauli-Z interference. This advantage is not present for the
worse dip in success probability with the teleportation and GHZ schemes, which have

additional measurement-conditional X gates and so cannot leverage the ‘constructive
interference’ seen in the Cluster scheme.
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