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Abstract
This paper considers the problem of learning a sin-
gle ReLU neuron with squared loss (a.k.a., ReLU
regression) in the overparameterized regime,
where the input dimension can exceed the num-
ber of samples. We analyze a Perceptron-type
algorithm called GLM-tron (Kakade et al., 2011)
and provide its dimension-free risk upper bounds
for high-dimensional ReLU regression in both
well-specified and misspecified settings. Our risk
bounds recover several existing results as special
cases. Moreover, in the well-specified setting,
we provide an instance-wise matching risk lower
bound for GLM-tron. Our upper and lower risk
bounds provide a sharp characterization of the
high-dimensional ReLU regression problems that
can be learned via GLM-tron. On the other hand,
we provide some negative results for stochastic
gradient descent (SGD) for ReLU regression with
symmetric Bernoulli data: if the model is well-
specified, the excess risk of SGD is provably no
better than that of GLM-tron ignoring constant
factors, for each problem instance; and in the
noiseless case, GLM-tron can achieve a small risk
while SGD unavoidably suffers from a constant
risk in expectation. These results together suggest
that GLM-tron might be preferable to SGD for
high-dimensional ReLU regression.

1. Introduction
In modern machine learning such as deep learning, the num-
ber of model parameters often exceeds the amount of train-
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ing data, which is often referred to as overparameterization.
Yet, overparameterized models (when properly optimized)
can still achieve strong generalization performance in prac-
tice. Understanding the statistical learning mechanism in
the overparameterized regime has drawn great attention in
the learning theory community.

Recently, overparameterized linear regression problems
have been extensively investigated. Dimensional-free, finite-
sample, and instance-wise excess risk bounds have been
established for various algorithms, including the minimal
ℓ2-norm interpolator (Bartlett et al., 2020), ridge regression
(Tsigler & Bartlett, 2020; Cheng & Montanari, 2022), low-
norm interpolator (Zhou et al., 2020; 2021; Koehler et al.,
2021) and the online stochastic gradient descent (SGD)
methods (Zou et al., 2021b; Wu et al., 2022a). These results
together deliver a relatively comprehensive picture of when
and how high-dimensional linear regression problems can
be learned with finite samples.

However, when the model is not linear, the overparame-
terized regime is much less well understood, even for the
arguably simplest ReLU regression problems (see (1)). This
work aims to fill this gap by providing sharp risk bounds for
learning high-dimensional ReLU regression problems with
finite samples.

High-Dimensional ReLU Regression. The problem of
ReLU Regression aims to minimize the following risk:

R(w) := E
(
ReLU(x⊤w)− y

)2
, w ∈ H, (1)

where H is a Hilbert space that can be either d-dimensional
for a finite d or countably infinite dimensional; ReLU(·) :=
max{·, 0} is the Rectified Linear Unit (ReLU); (x, y) ∈
H ⊗ R denotes a pair of an input feature vector and the
corresponding scalar response; the expectation is taken over
some unknown distribution of (x, y); and w ∈ H denotes
the model parameter. It is worth noting that in general R(·)
is non-convex due to the non-linearity of ReLU. Therefore,
ReLU regression is significantly harder than linear regres-
sion.

Given N i.i.d. samples, (xt, yt)
N
t=1, two iterative algorithms

will be considered for optimizing (1). The first algorithm is
stochastic gradient descent (SGD), which is initialized from
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w0 and then makes the following update: for t = 1, . . . , N ,

wt = wt−1 − γt · gt, and (SGD)

gt :=
(
ReLU(x⊤

t wt−1)− yt
)
xt · 1[x⊤

t wt−1 > 0]

where (γt)
N
t=0 refers to a stepsize scheduler, e.g., a geomet-

rically decaying stepsize scheduler (Ge et al., 2019; Wu
et al., 2022a),

for t ≥ 1, γt =

{
γt−1/2, t %

(
N/ log(N)

)
= 0;

γt−1, otherwise;
(2)

and the output is the last iterate, i.e., wN . The second
algorithm is known as Generalized Linear Model Perceptron
(GLM-tron) (Kalai & Sastry, 2009; Kakade et al., 2011),
which is also initialized from w0 and makes the following
update: for t = 1, . . . , N ,

wt = wt−1− γt ·
(
ReLU(x⊤

t wt−1)− yt
)
xt, (GLM-tron)

where (γt)
N
t=0 is a stepsize scheduler, e.g., (2); and the

output is the last iterate, i.e., wN . Comparing these two
algorithms, the only difference is that (GLM-tron) ignores
the derivative of ReLU(·) in its updates.

Contribution 1 (Well-Specified Setting). We first con-
sider the well-specified setting (also known as the “noisy
teacher” setting (Frei et al., 2020)), where the expectation
of the label conditioned on the input is a linear function
followed by ReLU. In this setting, we provide a risk upper
bound, minR(·) + O(Deff/N), for (GLM-tron), where
Deff is an effective dimension jointly determined by the
sample size, stepsize, and the data covariance matrix, and
is independent of the ambient dimension. In particular,
Deff is small when the spectrum of the data covariance
matrix decays fast. Moreover, we provide an instance-wise
nearly-matching risk lower bound, demonstrating the tight-
ness of our analysis. These bounds are in a similar flavor
as the benign-overfitting-type bounds established for high-
dimensional linear models (see, e.g., Bartlett et al. (2020);
Tsigler & Bartlett (2020); Zou et al. (2021b)), but are the
first of their kind for high-dimensional non-linear models.

Contribution 2 (Misspecified Setting). We then consider
the misspecified setting (also known as the agnostic setting,
see, e.g., Diakonikolas et al. (2020)), where no distributional
assumption is made on the label generation. In this case, we
provide an O(minR(·) + Deff/N) risk upper bound for
(GLM-tron), where the Deff is the same effective dimen-
sion defined in the well-specified setting. Therefore, we can
characterize when (GLM-tron) achieves a constant-factor
approximation for misspecified ReLU regression in the over-
parameterized regime. In particular, when specialized to the
finite-dimensional case, our upper bound improves an exist-
ing analysis for GLM-tron by Diakonikolas et al. (2020).

Contribution 3 (Comparison with SGD). We also show
some negative results on (SGD) for ReLU regression with
symmetric Bernoulli data: in the well-specified case, we
show that the excess risk achieved by (SGD) is always no
better than that achieved by (GLM-tron) ignoring constant
factors, for every problem instance; in the noiseless case,
(SGD) unavoidably suffers from a constant risk (in expecta-
tion) while (GLM-tron) is able to attain an arbitrarily small
risk. These together suggest a potentially more preferable
algorithmic bias of (GLM-tron) (compared with (SGD)) in
ReLU regression.

Contribution 4 (Techniques). From a technical perspec-
tive, we introduce new analysis techniques which extend
the operator method initially developed for linear models
(see, e.g., Jain et al. (2017); Zou et al. (2021b); Wu et al.
(2022a) and references therein) to handle the non-linearity
of ReLU. The key idea is, instead of controlling the entire
covariance matrix of the iterates as in the linear case, one
should work with the diagonal matrix to better deal with
the non-linearity of ReLU. Our novel development of the
operator method can be of independent interest.

Paper Organization. The remaining paper is organized
as follows. We first review related literature in Section 2.
Then we set up the preliminaries in Section 3. We present
our main results for well-specified, misspecified ReLU re-
gression, and the comparison between GLM-tron and SGD
in Sections 4, 5 and 6, respectively. We sketch our proof
techniques in Section 7. Finally, the paper is concluded in
Section 8. All proofs are deferred to the appendix.

2. Related Work
ReLU Regression. We first review a set of literature on
the hardness results and achievable bounds for ReLU regres-
sion. On the negative side, Goel et al. (2020) showed that
learning ReLU regression is NP-hard without distributional
assumption. Moreover, Goel et al. (2019) showed that even
for Gaussian features, learning ReLU regression with small
excess risk is as hard as the learning sparse parities with
noise problem, which is believed to be computationally in-
tractable. On the positive side, Frei et al. (2020) showed
that under certain conditions (e.g., bounded and well-spread
features), GD or SGD can learn ReLU regression problems
with minR(·) + o(1) risk in the well-specified cases and
O(minR(·) + o(1)) risk in the misspecified cases. Com-
pared to Frei et al. (2020), our risk bounds for (GLM-tron)
are more general in both settings and can recover their
bounds. For finite-dimensional misspecified ReLU regres-
sion, Diakonikolas et al. (2022) showed that a constant-
factor approximation is possible with only poly-logarithmic
samples. However, their result becomes vacuous in the
overparameterized regime. Finally, in a significantly easier,
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noiseless setting where y = ReLU(w⊤
∗ x) for some w∗ ∈ H,

there are far more results (see, e.g., Soltanolkotabi (2017);
Du et al. (2017); Yehudai & Shamir (2020); Frei et al. (2020)
and the references therein). Although our results can be di-
rectly applied, the noiseless setting is not the main focus of
our paper.

Tangibly related to ReLU regression, the problem of learn-
ing leaky ReLU regression has been studied by Mei et al.
(2018); Foster et al. (2018); Frei et al. (2020); Yehudai &
Shamir (2020). Since ReLU is not a strictly increasing func-
tion (unlikely leaky ReLU), these results for leaky ReLU
regression cannot be applied to ReLU regression.

Recent work by Zhou et al. (2022) provided dimension-
free bounds on the generalization gap between the Moreau
envelope of the empirical and population loss for general
GLMs including ReLU regression. But their analysis is
limited to Gaussian data while our analysis imposes much
fewer constraints on the data distribution.

GLM-Tron. The GLM-tron algorithm dates back to at
least Kalai & Sastry (2009); Kakade et al. (2011) for learn-
ing the well-specified generalized linear model (GLM),
where the expectation of the label conditioning on the fea-
ture is generated through a GLM. As a special case, their re-
sults apply to well-specified ReLU regression as well. How-
ever, our results are significantly different from theirs. First
of all, in the well-specified regime, we show nearly match-
ing upper and lower excess risk bounds for (GLM-tron),
which can recover the excess risk upper bounds from Kalai
& Sastry (2009); Kakade et al. (2011). Moreover, from
a technical standpoint, their analysis is motivated by the
classical analysis for the perceptron algorithm (see, e.g.,
Section 4.1.7 in Bishop & Nasrabadi (2006)), while we take
a completely different approach by analyzing (GLM-tron)
in ReLU regression with the operator methods developed
for analyzing SGD in linear regression (see, e.g., Zou et al.
(2021b); Wu et al. (2022a)). We refer the reader to Section
7 for a detailed overview of our techniques. On the other
hand, we remark that our analysis is specialized to ReLU
regression and may not directly apply to general GLMs
covered by Kalai & Sastry (2009); Kakade et al. (2011).

More recently, Diakonikolas et al. (2020) revisited GLM-
tron for learning misspecified ReLU regression and showed
a risk upper bound of O(minR(·) +

√
d/N) , where d is

the ambient dimension and N is the sample size. Their
bound becomes vacuous in the overparameterized regime.
In comparison, our bound in the misspecified setting can be
applied in the overparameterized setting. Moreover, when
specialized to the finite-dimensional cases, our bound im-
proves the bound in Diakonikolas et al. (2020).

3. Preliminaries
In this part, we set up some additional preliminaries be-
fore presenting our results. The following defines the data
covariance matrix.

Definition 3.1 (Data covariance matrix). Assume that each
entry and the trace of the E[xx⊤] are finite. Define H :=
E[xx⊤]. Denote the eigenvalues of H by (λi)i≥1, sorted in
non-increasing order.

In what follows, we will make the following assumption
about the symmetricity of the feature vector.

Assumption 3.2 (Symmetricity conditions). Assume that
for every u ∈ H and v ∈ H, it holds that

E
[
xx⊤ · 1[x⊤u > 0,x⊤v > 0]

]
= E

[
xx⊤ · 1[x⊤u < 0,x⊤v < 0]

]
;

E
[
(x⊤v)2xx⊤ · 1[x⊤u > 0,x⊤v > 0]

]
= E

[
(x⊤v)2xx⊤ · 1[x⊤u < 0,x⊤v < 0]

]
.

Assumption 3.2 requires that both the second and fourth
moments of x, when projected into a sector, are invariant
under sign flipping. Clearly, Assumption 3.2 holds when
x follows a symmetric distribution, i.e., x and −x satisfy
the same distribution, which covers Gaussian or symmetric
Bernoulli distributions. We also remark that Assumption 3.2
can be slightly relaxed; see more discussions in Appendix
A.

Most existing results for ReLU regression impose some
distributional conditions on the feature vectors. For exam-
ple, Frei et al. (2020); Yehudai & Shamir (2020) assumed
that the p.d.f. of x is “well-spreaded” along every two-
dimensional projection. Diakonikolas et al. (2020; 2022)
assumed concentration and anti-concentration (and anti-anti-
concentration) conditions on x. Our Assumption 3.2 only
involves up to the fourth moments of x and is not directly
comparable to theirs that involve the entire p.d.f. of x.

Notation. We reserve upper-case calligraphic letters for
linear operators on symmetric matrices. For two positive-
value functions f(x) and g(x) we write f(x) ≲ g(x) or
f(x) ≳ g(x) if f(x) ≤ cg(x) or f(x) ≥ cg(x) for some ab-
solute constant c > 0 respectively; we write f(x) ≂ g(x) if
f(x) ≲ g(x) ≲ f(x). For two vectors u and v in a Hilbert
space, their inner product is denoted by ⟨u,v⟩ or equiva-
lently, u⊤v. For a matrix A, its spectral norm is denoted by
∥A∥2. For two matrices A and B of appropriate dimension,
their inner product is defined as ⟨A,B⟩ := tr(A⊤B). For
a positive semi-definite (PSD) matrix A and a vector v of
appropriate dimension, we write ∥v∥2A := v⊤Av. The
Kronecker/tensor product is denoted by ⊗. Moreover, log(·)
refers to logarithm base 2.
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Denote the eigen decomposition of the data covariance by
H =

∑
i λiviv

⊤
i , where (λi)i≥1 are eigenvalues in a non-

increasing order and (vi)i≥1 are the corresponding eigen-
vectors. We denote Hk∗:k† :=

∑
k∗<i≤k† λiviv

⊤
i , where

0 ≤ k∗ ≤ k† are two integers, and we allow k† = ∞. For
example,

H0:k =
∑

1≤i≤k

λiviv
⊤
i , Hk:∞ =

∑
i>k

λiviv
⊤
i .

Similarly, we denote Ik∗:k† :=
∑

k∗<i≤k† viv
⊤
i .

4. Well-Specified ReLU Regression
In this part, we present our results for well-specified ReLU
regression. In the literature, the well-specified setting is also
extensively referred to as the “noisy teacher” setting (Frei
et al., 2020). We formally define a well-specified noise as
follows.

Assumption 4.1 (Well-specified noise). Assume that there
exists a parameter w∗ ∈ H such that

E[y|x] = ReLU(x⊤w∗).

Moreover, denote the variance of the additive noise by

σ2 := R(w∗) = E[(y − ReLU(x⊤w∗))
2].

Clearly, in the well-specified case, we have

R(w) = R(w∗) + E[(ReLU(x⊤w)− ReLU(x⊤w∗))
2],

which implies that w∗ ∈ argminR(·). In this case, we will
work with the excess risk, defined by

∆(w) := R(w)−R(w∗). (3)

Excess Risk Landscape. Our first observation is that
the landscape of the excess risk (3) in ReLU regression
is closely related to that in linear regression, i.e., a quadratic
landscape. The following lemma rigorously characterizes
this connection.

Lemma 4.2 (Excess risk landscape). Under Assumptions
3.2 and 4.1, the following holds for (3):

0.25 · ∥w −w∗∥2H ≤ ∆(w) ≤ ∥w −w∗∥2H.

Even though the excess risk (3) could be non-convex locally,
Lemma 4.2 suggests that the landscape of the excess risk
in a large scale is “approximately” quadratic in the sense
of ignoring some multiplicative factors. This landscape
enables us to build sharp upper and lower bounds on the
excess risk by bounding a simpler quadratic, ∥w −w∗∥2H.

Operators. We follow Zou et al. (2021b); Wu et al.
(2022a) and introduce some matrix operators for applying
the operator methods to analyze (GLM-tron). Firstly, we
denote the covariance of the (GLM-tron) iterates by

At := E(wt −w∗)(wt −w∗)
⊤, t ≥ 0. (4)

We next define a set of linear operators on the matrix space:

I := I⊗ I, M := E[x⊗4], M̃ := H⊗H,

T (γ) := I⊗H+H⊗ I− γ · M,

T̃ (γ) := I⊗H+H⊗ I− γ · M̃.

(5)

A Key Lemma. The next lemma is the key to our analysis,
which relates the covariance of a sequence of (GLM-tron) it-
erates for a ReLU regression problem with the covariance of
a sequence of “imaginary” SGD iterates for an “imaginary”
linear regression problem.
Lemma 4.3 (Generic bounds on the GLM-tron iterates).
Under Assumptions 3.2 and 4.1, the following holds for (4):

(A) At+1 ⪯
(
I − γt

2 · T (2γt)
)
◦At + γ2

t σ
2 ·H;

(B) At+1 ⪰
(
I − γt

2 · T
(
γt

2

))
◦At +

γ2
t σ

2

4 ·H.

In the remaining part of this section, we will derive sharp
risk bounds for (GLM-tron) in high-dimensional ReLU re-
gression based on Lemma 4.3 and the results for SGD in
high-dimensional linear regression developed by Zou et al.
(2021b;a); Wu et al. (2022a;b).

4.1. Symmetric Bernoulli Distributions

In order to gain intuitions on the behaviors of (GLM-tron),
we start with a simple, symmetric Bernoulli data model
defined as follows. Note that this is just the symmetrization
of the one-hot data model considered in Zou et al. (2021a).
Assumption 4.4 (Symmetric Bernoulli distribution). Let
(ei)i≥1 be a set of orthogonal basis for H. Assume that
P{x = ei} = P{x = −ei} = λi/2 for i ≥ 1, where
λi ≥ 0 and

∑
i λi = 1.

Clearly Assumption 4.4 implies Assumption 3.2. We now
present our instance-wise sharp excess risk bounds for
(GLM-tron) under Assumption 4.4.
Theorem 4.5 (Risk Bounds for GLM-tron). Suppose that
Assumptions 4.1 and 4.4 hold. Let wN be the output of
(GLM-tron) with stepsize scheduler (2). Assume that N >
100. Let Neff := N/ log(N). Suppose that γ0 < 1/2.

(A) For every k∗ ≥ 0 it holds that

E∆(wN ) ≲
∥∥w0 −w∗

∥∥2∏N
t=1(I−

γt
2 H)H

+ σ2 · Deff

Neff

,

where Deff is defined by

Deff := k∗ +N2
effγ

2
0 ·
∑
i>k∗

λ2
i . (6)
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(B) For Deff defined by (6) with

k∗ := max{k : λk ≥ 1/(γ0Neff)}, (7)

it holds that

E∆(wN ) ≳
∥∥w0 −w∗

∥∥2∏N
t=1(I−γtH)H

+ σ2 · Deff

Neff

.

Proof Sketch. We first use Lemmas 4.2 and 4.3 to relate
(GLM-tron) for ReLU regression problems to SGD for lin-
ear regression problems. Then we invoke the one-hot analy-
sis in Zou et al. (2021a) to get the results.

4.2. Hypercontractive Distributions

We are ready to present our results for the more interesting
distributions that satisfy the hypercontractivity conditions.
Assumption 4.6 (Hypercontractivity conditions). Assume
that the fourth moment of x is finite and:

(A) There is a constant α > 0, such that for every PSD
matrix A, we have

E[xx⊤Axx⊤] ⪯ α · tr(HA) ·H.

Clearly, it must hold that α ≥ 1.
(B) There is a constant β > 0, such that for every PSD

matrix A, we have

E[xx⊤Axx⊤]−HAH ⪰ β · tr(HA) ·H.

One can verify that Assumption 4.6 holds with α = 3 and
β = 1 when x ∼ N (0,H). Moreover, Assumption 4.6(A)
holds when H−1/2x is sub-Gaussian or sub-Exponential
and Assumption 4.6(B) holds when H−1/2x follows a multi-
dimensional spherically symmetric distribution (Zou et al.,
2021b; Wu et al., 2022a). For more examples of Assump-
tion 4.6 we refer the readers to Zou et al. (2021b); Wu et al.
(2022a).
Theorem 4.7 (Risk Bounds for GLM-tron). Suppose that
Assumptions 3.2 and 4.1 hold. Let wN be the output of
(GLM-tron) with stepsize scheduler (2). Assume that N >
100. Let Neff := N/ log(N).

(A) If in addition Assumption 4.6(A) holds, then for γ0 <
1/(4α(tr(H))) it holds that

E∆(wN ) ≲

∥∥∥∥ N∏
t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+
(
α
∥∥w0 −w∗

∥∥2I0:k∗
Neffγ0

+Hk∗:∞
+ σ2

)
· Deff

Neff

,

where Deff is defined by (6) and k∗ ≥ 0 is arbitrary.
(B) If in addition Assumption 4.6(B) holds, then for γ0 <

1/λ1, it holds that

E∆(wN ) ≳

∥∥∥∥ N∏
t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+
(
β∥w0 −w∗∥2Hk∗:∞

+ σ2
)
· Deff

Neff

,

where Deff is defined by (6) and k∗ is defined by (7).

Proof Sketch. We first use Lemmas 4.2 and 4.3 to relate
(GLM-tron) for ReLU regression problems to SGD for lin-
ear regression problems. Then we invoke Corollary 3.4 in
Wu et al. (2022b) to get the results.

These bounds in Theorem 4.7 match those of SGD for high-
dimensional linear regression shown in Wu et al. (2022b)
(and also Zou et al. (2021b); Wu et al. (2022a)) and can be
interpreted in a similar manner. Specifically, in the upper
bound, the first error term shows that wN recovers the true
model parameter geometrically at each dimension and is at
most

∥w0 −w∗∥22/(γ0Neff),

and the second error term is at most(
α
∥∥w0 −w∗

∥∥2
2
+ σ2

)
· Deff

Neff

.

Provided a bounded signal-to-noise ratio and a constant
initial stepsize (which might not be optimal), the expected
risk decreases at a rate of O(Deff/Neff). Moreover, the
lower bound justifies the sharpness of the upper bound.

We remark that Deff is independent of the ambient dimen-
sion, and is small so long as the spectrum of H decays fast.
This enables (GLM-tron) to achieve a small excess risk even
in the overparameterized regime.

The following corollary provides three concrete examples.

Corollary 1. Under the same conditions as Theorem 4.7,
suppose that γ0 = 1/(4α tr(H)), and ∥w0−w∗∥2 is finite.
Recall the eigenspectrum of H is (λk)k≥1.

1. If λk = k−(1+r) for some constant r > 0, then the
excess risk is O

(
N

−r
1+r · log

r
1+r (N)

)
.

2. If λk = k−1 log−r(k + 1) for some constant r > 1,
then the excess risk is O

(
log−r(N)

)
.

3. If λk = 2−k, then the excess risk is O
(
N−1 log2(N)

)
.

Iterate Averaging. Theorem 4.7 focuses on the last iterate
of (GLM-tron) with decaying stepsize (2). We remark that
this theorem can also be extended to constant stepsize GLM-
tron with iterate averaging. See Theorem B.5 in Appendix
B.6, where we show matching upto constant factor upper
and lower risk bounds for constant stepsize GLM-tron with
iterate averaging. It is proved similarly by invoking Lemmas
4.2 and 4.3 and related results from Zou et al. (2021b).
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Applications in the Classical Regime. In the next corol-
lary, we apply our instance-dependent risk bounds to the
classical regime, i.e., finite dimension and/or bounded ℓ2-
norm.

Corollary 4.8 (Classical regime). Under the setting of The-
orem 4.7, in addition assume that σ2 ≲ 1, ∥w0 −w∗∥2 ≲
1, λ1 ≲ 1. We then have the following:

(A) If tr(H) ≲ 1, then by choosing γ0 ≂ 1/
√
Neff and

k∗ := max{k : λk ≥ 1/
√
Neff}, we have

E∆(wN ) ≲
1√
Neff

=

√
log(N)

N
.

(B) If d is finite, then by choosing γ0 ≂ 1/ tr(H) and
k∗ = d, we have

E∆(wN ) ≲
d

Neff

=
d log(N)

N
.

It is worth remarking that the log(N) factors in the above
rates can be removed when considering constant-stepsize
GLM-tron with iterate-averaging (see Theorem B.5).

In Corollary 4.8, the condition ∥w0−w∗∥2 ≲ 1 corresponds
to the bounded ℓ2-norm condition of w∗ made in Kakade
et al. (2011); Frei et al. (2020) (by taking initialization
w0 = 0). The condition tr(H) ≲ 1 corresponds to the
bounded ℓ2-norm condition of features made in Kakade et al.
(2011); Frei et al. (2020) (because E[∥x∥22] = tr(H)). Then
Corollary 4.8(A) matches the Õ(1/

√
N) rate for GLM-tron

in Kakade et al. (2011), and nearly matches the O(1/
√
N)

rate for GD in Frei et al. (2020). Corollary 4.8(B) shows a
faster Õ(d/N) rate in the finite-dimensional regime.

5. Misspecified ReLU Regression
In this part, we present our results for misspecified ReLU
regression. This setting is also known as the agnostic setting
in literature (Goel et al., 2019; Diakonikolas et al., 2020).
We first define a misspecified noise as follows.

Assumption 5.1 (Misspecified noise). Denote the minimum
population risk by

OPT := min
w′∈H

R(w′).

Moreover, assume that there exists an optimal model param-
eter w∗ ∈ argminw′∈H R(w′) such that

E
[
(y − ReLU(x⊤w∗))

2xx⊤] ⪯ σ2 ·H (8)

holds for some constant σ2 > 0.

Different from the well-specified case, Assumption 5.1 does
not directly impose any probability condition on the label-
generating process. In particular, it captures the situation

when 1−OPT fraction of the label is generated without noise
while the rest OPT fraction of the label is adversarially given
(Diakonikolas et al., 2020).

Moreover, we empathize that the condition (8) in Assump-
tion 5.1 is very weak and conservative. In particular condi-
tion (8) holds trivially when y is bounded, ∥w∗∥H is finite
and x satisfies the hypercontractivity condition in Assump-
tion 4.6(A), because:

l.h.s. of (8) ⪯ 2E
[
y2xx⊤]+ 2E

[
(x⊤w∗)

2xx⊤]
⪯
(
2(sup{y})2 + 2α∥w∗∥2H

)
·H.

The above requirements on y, w∗ and x are already weaker
than that required in the literature for learning miss-specified
ReLU regression (Frei et al., 2020; Diakonikolas et al., 2020;
Goel et al., 2019).

In the misspecified setting, the label can correlate with data
in an arbitrary manner. This breaks our nice Lemma 4.3
proved in the well-specified setting. In order to analyze
(GLM-tron) in the misspecified setting, we extend the oper-
ator methods from considering PSD matrices to considering
only the diagonals of PSD matrices (see Section 7 for more
discussions). With the new techniques, we obtain the fol-
lowing instance-dependent risk bound.

Theorem 5.2 (Risk Bounds for GLM-tron). Suppose that
Assumptions 3.2, 4.6(A) and 5.1 hold. Let wN be the
output of (GLM-tron) with stepsize scheduler (2). As-
sume that N > 100. Let Neff := N/ log(N). Then for
γ0 < 1/(8α(tr(H))), it holds that

ER(wN ) ≲ OPT+

∥∥∥∥ N∏
t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+ (1 + SNR) · σ2 · Deff

Neff

,

where Deff is defined by (6), k∗ ≥ 0 is arbitrary, and

SNR

:= α
(
OPT+ ∥w∗∥2H +

∥∥w0 −w∗
∥∥2I0:k∗

Neffγ0
+Hk∗:∞

)
/σ2

≤ α(OPT+ ∥w∗∥2H + ∥w0 −w∗∥2H)/σ2.

Similar to the well-specified setting, Theorem 5.2 allows
(GLM-tron) to achieve a constant-factor approximation even
in the overparameterized regime, as long as the spectrum of
H decays fast such that Deff is small compared to Neff.

Applications in the Finite-Dimensional Regime. The
next corollary shows that, when applied to the finite-
dimensional regime, our bound improves an existing bound,
O(OPT +

√
d/N), of GLM-tron for misspecified ReLU

regression proved by Diakonikolas et al. (2020).
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Corollary 5.3 (Finite-dimensional regime). Under the set-
ting of Theorem 5.2, in addition assume that d is finite and

σ2 ≲ 1, ∥w0 −w∗∥2 ≲ 1, ∥w∗∥2 ≲ 1, λ1 ≲ 1.

Then by choosing γ0 ≂ 1/ tr(H) and k∗ = d, we have

ER(wN ) ≲ OPT+
d

Neff

= OPT+
d log(N)

N
.

6. Comparing GLM-tron with SGD
In this part, we show some negative results for (SGD) in
ReLU regression with symmetric Bernoulli data.

Well-Specified Case. We first consider well-specified
ReLU regression with symmetric Bernoulli data. We pro-
vide the following risk lower bound for (SGD).

Theorem 6.1 (Risk lower bound for SGD). Suppose that
Assumptions 4.1 and 4.4 hold. Let wN be the output of
(SGD) with stepsize scheduler (2). Assume that N > 100.
Let Neff := N/ log(N). Then for γ0 < 1, it holds that

E∆(wN ) ≳
∥∥w0 −w∗

∥∥2∏N
t=1(I−γtH)H

+ σ2 · Deff

Neff

+Ψ,

where Deff is defined by (6) with k∗ defined by (7), and

Ψ :=
〈N−1∑

t=0

γt(1− γt)
N−1∏
k=t+1

(1− γkH)H, Ft

〉
and Ft ⪰ 0 is a PSD matrix.

The excess risk lower bound for (SGD) in Theorem 6.1
is in sharp contrast to the excess risk upper bound for
(GLM-tron) in Theorem 4.5: the bias and variance error
lower bounds for (SGD) is comparable to the bias and vari-
ance error upper bounds for (GLM-tron); in addition, there
is an extra non-negative error term Ψ for (SGD). This seems
to suggest that (SGD) is no better than (GLM-tron). Our
next theorem formalizes this observation.

Theorem 6.2 (GLM-tron vs. SGD). Fix an initialization
w0. Consider a set of well-specified ReLU regression prob-
lems with symmetric Bernoulli data (denoted by E ) such
that: Assumption 4.1 and 4.4 hold and ∥w0 −w∗∥22 ≲ σ2.
Let wsgd

N (γsgd
0 ,P) and wtron

N (γtron
0 ,P) be the outputs of

(SGD) and (GLM-tron) with the same stepsize scheduler
(2), initialization w0, sample size N > 100, and on the
same problem instance P ∈ E , respectively, where γsgd

0 < 1
and γtron

0 < 1/2 denote their initial stepsizes, respectively.
Then for every problem P ∈ E , it holds that

min
γtron
0 <1/2

E∆
(
wtron

N (γtron
0 ,P)

)
≲ min

γsgd
0 <1

E∆
(
wsgd

N (γsgd
0 ,P)

)
.

This theorem shows that for every problem instance in E ,
the excess risk achieved by (SGD) is no better than that
achieved by (GLM-tron) ignoring constant factors.

Noiseless Case. Our final result shows that for the noise-
less ReLU regression with symmetric Bernoulli data, (SGD)
unavoidably suffers from a constant risk in expectation,
while (GLM-tron) can still obtain a small risk.
Theorem 6.3 (Failure of SGD). Consider a noiseless ReLU
regression problem with symmetric Bernoulli data, i.e., As-
sumptions 4.1 and 4.4 hold with σ2 = 0. Let Ew∗ denote
the expectation over the randomness of flipping the sign
in each component of w∗ uniformly and let Ealg denote
the expectation over the randomness of an algorithm. Let
N > 100 be the sample size. Then:

(A) For wtron
N , the (GLM-tron) output with stepsize sched-

uler (2) and initial stepsize γ0 < 1/2, it holds that

Ew∗EalgR(wtron
N ) ≲

∥∥w0 −w∗
∥∥2∏N

t=1

(
I− γt

2 H
)
H
.

(B) For wsgd
N , the (SGD) output with stepsize scheduler (2)

and any initial stepsize γ0 < 1, it holds that

Ew∗EalgR(wsgd
N ) ≥ 1

2
· ∥w∗∥2H ≥ 1

2
· R(0).

Simulations. Furthermore, we empirically compare the
performance of (GLM-tron) and (SGD) for ReLU regres-
sion with symmetric Bernoulli data. Simulation results are
presented in Figure 1. In the well-specified setting, Figures
1(a) and 1(b) show that the excess risk of (GLM-tron) is
no worse than that of (SGD), even when both algorithms
are tuned with their hyperparameters (initial stepsizes) re-
spectively. This verifies our Theorem 6.2. In the noiseless
setting, Figure 1(c) clearly illustrates that (SGD) can con-
verge to a critical point with constant risk, while (GLM-tron)
successfully recovers the true parameters w∗. This verifies
our Theorem 6.3.

7. Proof Sketch
We now overview our techniques for analyzing (GLM-tron)
iterates in both well-specified and misspecified cases.

For simplicity let us denote the label noise by ϵt := yt −
ReLU(w⊤

∗ xt). We first reformulate (GLM-tron) as

wt −w∗

=
(
I− γt1[x

⊤
t wt−1 > 0]xtx

⊤
t

)
(wt−1 −w∗)︸ ︷︷ ︸

c

+ γt
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
xtx

⊤
t w∗︸ ︷︷ ︸

f

+ γtϵtxt︸ ︷︷ ︸
n

,
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(a) λi ∝ i−2, well-specified setting
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(c) 2D illustration, noiseless setting

Figure 1. (a) and (b): Excess risk comparison between (SGD) and (GLM-tron) in well-specified ReLU regression with symmetric Bernoulli
data. Here d = 1, 024, σ2 = 0.01 and w∗ = (i−1)di=1. The eigen spectrum is λi ∝ i−2 and λi ∝ i−3 for (a) and (b), respectively.
For each algorithm and each sample size, we do a grid search on the initial stepsize γ0 ∈ {0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01} and
report the best excess risk. The plots are averaged over 20 independent runs. (c): Training trajectories of (SGD) and (GLM-tron) on a 2D
noiseless ReLU regression with symmetric Bernoulli data. Here (λ1, λ2) = (0.8, 0.2) and w∗ = (1,−1).

where the three parts can be understood as a contraction
term (c), a fluctuation term (f ) and a noise term (n), respec-
tively. So we have

At := E(wt −w∗)
⊗2 = E[(c+ f + n)⊗2]

= E[c⊗2 + f⊗2 + n⊗2 + cross terms].

We begin with computing the three quadratic terms. For the
contraction term, by Assumption 3.2 we have

E[c⊗2]

= At−1 −
γt
2
(HA⊤

t−1 +At−1H
⊤) +

γ2
t

2
M◦At−1.

For the fluctuation term, we have

E[f⊗2]

= γ2
t · E

[
(1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0])2·

(x⊤
t w∗)

2 · x⊗2
t

]
= 2γ2

t · E
[
1[x⊤

t w∗ < 0,x⊤
t wt−1 > 0]·

(x⊤
t w∗)

2 · x⊗2
t

]
,

where in the last inequality we use Assumption 3.2. As
for the noise term, we simply apply Assumption 4.1 in the
well-specified setting or Assumption 5.1 in the misspecified
setting to obtain

E[n⊗2] ⪯ γ2
t σ

2H.

In what follows, we utilize the symmetricity condition (As-
sumption 3.2) to compute the cross terms.

Well-Specified Setting. In the well-specified setting we
have that ϵt is mean zero conditional on xt, so all the cross
terms involving n is mean zero, then we have

E[cross terms] = E[cf⊤ + fc⊤].

Moreover, under Assumption 3.2 it holds that E[f ] = 0, so
the part in c that does not involve xt will disappear in the
expected crossing terms, i.e.,

E[cross terms] = E[cf⊤ + fc⊤]

= −γtE
[
1[x⊤

t wt−1 > 0]x⊤
t (wt−1 −w∗)(xtf

⊤ + fx⊤
t )
]

= 2γ2
t E
[
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]·

x⊤
t (wt−1 −w∗) · x⊤

t w∗ · xtx
⊤
t

]
.

Combining the cross term and E[f⊗2] we obtain

E[f⊗2 + cross terms] = E[f⊗2 + cf⊤ + fc⊤]

= 2γ2
t E
[
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]·

x⊤
t wt−1 · x⊤

t w∗ · xtx
⊤
t

]
⪯ 0,

where the last inequality is because the random variable
inside the expectation is always non-positive.

Putting everything together, we have shown that

At = E[c⊗2 + f⊗ + n⊗2 + cross terms]

= E[c⊗2 + f⊗ + n⊗2 + cf⊤ + fc⊤] (9)

⪯ At−1 −
γt
2

· (HA⊤
t−1 +At−1H

⊤)

+
γ2
t

2
· M ◦At−1 + γ2

t σ
2 ·H.

This matrix recursion has been well-understood thanks to
the works by Zou et al. (2021b); Wu et al. (2022a;b).

Misspecified Setting. Now we consider the misspecified
setting. Compared to the well-specified setting, the differ-
ence is that the part of the cross terms that involve ϵt is
no longer zero mean, as ϵt could correlate with xt in an
arbitrary manner. The extra work is to understand this part
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of the cross terms:

E[cn⊤ + nc⊤ + fn⊤ + nf⊤]

= γtE
[
ϵt
(
(wt−1 −w∗)x

⊤
t + xt(wt−1 −w∗)

)]︸ ︷︷ ︸
leading order

+ 2γ2
t E[IndFunc1 · ϵt · x⊤

t (wt−1 −w∗) · xtx
⊤
t ]︸ ︷︷ ︸

higher order 1

+ 2γ2
t E[IndFunc2 · ϵt · x⊤

t w∗ · xtx
⊤
t ]︸ ︷︷ ︸

higher order 2

,

where IndFunc1 and IndFunc2 are two functions of indi-
cators, both bounded between −1 and 1. For the first higher
order term, notice the following by Cauchy inequality:

IndFunc1 · ϵt · x⊤
t (wt−1 −w∗)

≤ 1

2

(
ϵ2t + (x⊤

t (wt−1 −w∗))
2
)
,

so we have

higher order 1

⪯ γ2
t · E[ϵ2txtx

⊤
t + (x⊤

t (wt−1 −w∗))
2 · xtx

⊤
t ]

⪯ γ2
t σ

2H+ γ2
tM◦At−1,

where in the last inequality we use Assumption 5.1. We
bound the second higher order term in the same manner:

higher order 2 ⪯ γ2
t · E[ϵ2t · xtx

⊤
t + (x⊤

t w∗)
2 · xtx

⊤
t ]

⪯ γ2
t σ

2 ·H+ αγ2
t ∥w∗∥2H ·H,

where the last inequality is by Assumptions 5.1 and 4.6(A).

The leading order term needs some special treatments. In
fact, it is hard to sharply control the leading order term
by a PSD matrix. Alternatively, it is possible to sharply
bound the diagonal of the leading order term by a diagonal
matrix (here we assume that H is diagonal, without loss of
generality). The following bound is proved in Lemma C.4
in Appendix C:

diag(leading order) ⪯ γt
2

·H diag(At−1) + 2γt ·Ξ,

where Ξ is a fixed diagonal PSD matrix and tr(Ξ) ≤ OPT.

Putting things together with (9), we have

diag(At)

= diag(E[c⊗2 + f⊗ + n⊗2 + cf⊤ + fc⊤])

+ diag(E[cn⊤ + nc⊤ + fn⊤ + nf⊤])

⪯ diag(At−1)− γtH diag(At−1)

+
γ2
t

2
diag(M◦At−1) + γ2

t σ
2H+ γ2

t σ
2H

+ γ2
t diag(M◦At−1) + γ2

t σ
2H+ αγ2

t ∥w∗∥2HH

+
γt
2
H diag(At−1) + 2γtΞ

⪯
(
I− γt

2
H
)
diag(At−1) + 2γ2

t diag(M◦At−1)

+ 3γ2
t (σ

2 + α∥w∗∥2H)H+ 2γtΞ.

The remaining efforts are to bound the above recursion
using techniques developed from Zou et al. (2021b); Wu
et al. (2022a;b). It is crucial to remark that tr(Ξ) ≤ OPT,
which ensures that the cumulation of the extra “noise term”,
2γtΞ, would cause an additive error of at most O(OPT) in
the final risk bound.

8. Conclusion
We consider the problem of learning high-dimensional
ReLU regression with well-specified or misspecified noise.
In the well-specified setting, we provide instance-wise sharp
excess risk upper and lower bounds for GLM-tron, that can
be applied in the overparameterized regime. In the misspec-
ified setting, we also provide sharp instance-dependent risk
upper bound for GLM-tron. In addition, negative results
are shown for SGD in well-specified or noiseless ReLU
regression with symmetric Bernoulli data, suggesting that
GLM-tron might be more effective in ReLU regression.
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A. Weaker Symmetricity Assumptions
In fact, Assumption 3.2 can be relaxed into some moment symmetricity conditions:

Assumption A.1 (Moment symmetricity conditions). Assume that

(A) For every u ∈ H, it holds that

E
[
xx⊤ · 1[x⊤u > 0]

]
= E

[
xx⊤ · 1[x⊤u < 0]

]
.

(B) For every u ∈ H and v ∈ H, it holds that

E
[
xx⊤ · 1[x⊤u > 0,x⊤v > 0]

]
= E

[
xx⊤ · 1[x⊤u < 0,x⊤v < 0]

]
.

(C) For every u ∈ H, it holds that

E
[
x⊗4 · 1[x⊤u > 0]

]
= E

[
x⊗4 · 1[x⊤u < 0]

]
.

(D) For every u ∈ H and v ∈ H, it holds that

E
[
(x⊤v)2xx⊤ · 1[x⊤u > 0,x⊤v > 0]

]
= E

[
(x⊤v)2xx⊤ · 1[x⊤u < 0,x⊤v < 0]

]
.

Clearly all the conditions in Assumption A.1 holds when Assumption 3.2 is true. Assumption A.1(A) is crucial to our analysis.
Assumption A.1(B) is only useful for deriving lower bounds. Note that Assumption A.1(B) implies Assumption A.1(A).
Assumption A.1(C) is only useful for deriving lower bounds, too. Assumption A.1(D) is only made for technical simplicity;
without using Assumption A.1(D) one can still derive an upper bound for GLM-tron, the only difference will be replacing
σ2 in the current upper bound with σ2 + α∥w∗∥2H.

Some Moments Results. The following moments results are direct consequences of Assumption A.1.

Lemma A.2. The following holds:

(A) Under Assumption A.1 (A), it holds that: for every vector u ∈ H,

E
[
xx⊤ · 1[x⊤u > 0]

]
=

1

2
· E
[
xx⊤] =:

1

2
·H.

(B) Under Assumption A.1 (C), it holds that: for every vector u ∈ H,

E
[
x⊗4 · 1[x⊤u > 0]

]
=

1

2
· E
[
x⊗4

]
=:

1

2
· M.

Proof of Lemma A.2. By Assumption A.1(A), we have

E
[
xx⊤1[x⊤u > 0]

]
= E

[
(−x)(−x)⊤1[(−x)⊤u > 0]

]
= E

[
xx⊤1[x⊤u < 0]

]
.

Moreover, notice that
E
[
xx⊤1[x⊤u > 0]

]
+ E

[
xx⊤1[x⊤u < 0]

]
= E

[
xx⊤].

The above two equations together imply that

E
[
xx⊤1[x⊤u > 0]

]
=

1

2
E
[
xx⊤].

Similarly, we can prove the second equality in the lemma.

B. Well-Specified Setting
In this section, we focus on the well-specified setting and always assume Assumption 4.1 holds.

11
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B.1. Proof of Lemma 4.2

We will prove a slightly stronger lemma.

Lemma B.1 (Loss landscape, restated Lemma 4.2). Suppose that Assumption 4.1 holds. Consider (3), we have:

(A) ∆(w) ≤ ∥w −w∗∥2H;

(B) if in addition Assumption A.1(B) holds, then ∆(w) ≥ 1
4 · ∥w −w∗∥2H.

Proof. Under Assumption 4.1, it holds that

∆(w) = E
(
ReLU(x⊤w)− ReLU(x⊤w∗)

)2
.

The upper bound follows from the fact that ReLU(·) is 1-Lipschitz, i.e., |ReLU(a)− ReLU(b)| ≤ |a− b|.

For the lower bound, we first expand the excess risk to obtain that

E
(
ReLU(x⊤w)− ReLU(x⊤w∗)

)2
= E

(
x⊤w · 1[x⊤w > 0]− x⊤w∗ · 1[x⊤w∗ > 0]

)2
= E

[
w⊤xx⊤w · 1[x⊤w > 0]

]
+ E

[
w⊤

∗ xx
⊤w∗ · 1[x⊤w∗ > 0]

]
− 2E

[
w⊤xx⊤w∗ · 1[x⊤w > 0,x⊤w∗ > 0]

]
.

In the above equation, we use Assumption A.1(B) to obtain that

E
(
ReLU(x⊤w)− ReLU(x⊤w∗)

)2
= E

[
w⊤xx⊤w · 1[x⊤w < 0]

]
+ E

[
w⊤

∗ xx
⊤w∗ · 1[x⊤w∗ < 0]

]
− 2E

[
w⊤xx⊤w∗ · 1[x⊤w < 0,x⊤w∗ < 0]

]
= E

(
ReLU(−x⊤w)− ReLU(−x⊤w∗)

)2
.

Moreover, notice the following by Cauchy inequality:(
x⊤w − x⊤w∗

)2
=
(
x⊤w1[x⊤w > 0]− x⊤w∗1[x

⊤w∗ > 0] + x⊤w1[x⊤w < 0]− x⊤w∗1[x
⊤w∗ < 0]

)2
≤ 2
(
x⊤w1[x⊤w > 0]− x⊤w∗1[x

⊤w∗ > 0]
)2

+ 2
(
x⊤w1[x⊤w < 0]− x⊤w∗1[x

⊤w∗ < 0]
)2

= 2
(
ReLU(x⊤w)− ReLU(x⊤w∗)

)2
+ 2
(
ReLU(−x⊤w)− ReLU(−x⊤w∗)

)2
.

Then taking an expectation on both sides we obtain that

E
(
x⊤w − x⊤w∗

)2 ≤ 2E
(
ReLU(x⊤w)− ReLU(x⊤w∗)

)2
+ 2E

(
ReLU(−x⊤w)− ReLU(−x⊤w∗)

)2
= 4E

(
ReLU(x⊤w)− ReLU(x⊤w∗)

)2
,

which concludes the proof.

B.2. Proof of Lemma 4.3

We will prove a stronger result.

Lemma B.2 (Generic bounds on the GLM-tron iterates, restated Lemma 4.3). Suppose that Assumption 4.1 holds. Consider
(GLM-tron). Then:

(A) If in addition Assumptions A.1(A) and A.1(D) hold, then At+1 ⪯
(
I − γt

2 · T (2γt)

)
◦At−1 + γ2

t σ
2H;

12
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(B) If in addition Assumptions A.1(A), A.1(C) and A.1(D) hold, then At+1 ⪰
(
I − γt

2 · T
(
γt

2

))
◦At +

γ2
t σ

2

4 ·H.

Proof. From (GLM-tron) we have

wt = wt−1 − γt ·
(
ReLU(x⊤

t wt−1)− yt
)
xt

= wt−1 − γt1[x
⊤
t wt−1 > 0] · xtx

⊤
t wt−1 + γt1[x

⊤
t w∗ > 0] · xtx

⊤
t w∗ + γtϵtxt

= wt−1 − γt1[x
⊤
t wt−1 > 0] · xtx

⊤
t (wt−1 −w∗)

+ γt
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
· xtx

⊤
t w∗ + γtϵtxt,

which implies that
wt −w∗ =

(
I− γt1[x

⊤
t wt−1 > 0]xtx

⊤
t

)
(wt−1 −w∗)

+ γt
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
xtx

⊤
t w∗ + γtϵtxt.

(10)

Let us consider the expected outer product:

E
(
wt −w∗

)⊗2

= E
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)⊗2

◦ (wt−1 −w∗)
⊗2︸ ︷︷ ︸

(quadratic term 1)

+ γ2
t · E

(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)2 · xtx
⊤
t w∗w

⊤
∗ xtx

⊤
t︸ ︷︷ ︸

(quadratic term 2)

+ γt · E
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
· xtx

⊤
t w∗(wt−1 −w∗)

⊤
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)
︸ ︷︷ ︸

(crossing term 1)

+ γt · E
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
·
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)
(wt−1 −w∗)w

⊤
∗ xtx

⊤
t︸ ︷︷ ︸

(crossing term 2)

+ γ2
t · E

(
ϵ2txtx

⊤
t

)
,

(11)

where the crossing terms involving ϵt has zero expectation because E[ϵt|xt] = 0.

For the second quadratic term in (11), notice that(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)2
= 1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] + 1[x⊤

t wt−1 < 0,x⊤
t w∗ > 0],

then we have

E(quadratic term 2)

= E
((

1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0]
)2 · (x⊤

t w∗
)2 · xtx

⊤
t

)
= E

((
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] + 1[x⊤

t wt−1 < 0,x⊤
t w∗ > 0]

)
·
(
x⊤
t w∗

)2 · xtx
⊤
t

)
(12)

= 2 · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] ·

(
x⊤
t w∗

)2 · xtx
⊤
t

)
, (13)

where the last equation is by Assumption A.1(D). For the crossing terms in (11) we have that

(crossing term 1) + (crossing term 2)

=
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
·
(
xtx

⊤
t w∗(wt−1 −w∗)

⊤ + (wt−1 −w∗)w
⊤
∗ xtx

⊤
t

)
− 2γt

(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
· 1[x⊤

t wt−1 > 0] · x⊤
t w∗ · x⊤

t (wt−1 −w∗) · xtx
⊤
t

13
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=
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
·
(
xtx

⊤
t w∗(wt−1 −w∗)

⊤ + (wt−1 −w∗)w
⊤
∗ xtx

⊤
t

)
+ 2γt1[x

⊤
t wt−1 > 0,x⊤

t w∗ < 0] · x⊤
t w∗ · x⊤

t (wt−1 −w∗) · xtx
⊤
t , (14)

where in the last equality we use

−
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
· 1[x⊤

t wt−1 > 0]

= 1[x⊤
t wt−1 > 0]− 1[x⊤

t w∗ > 0] · 1[x⊤
t wt−1 > 0]

= 1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0].

Now we take expectation on both sides of (14). By Assumption A.1(A) (or Lemma A.2(A)) the first term in (14) has zero
expectation, therefore we obtain

E
(
(crossing term 1) + (crossing term 2)

)
= 2γt · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · x⊤

t w∗ · x⊤
t (wt−1 −w∗) · xtx

⊤
t

)
= 2γt · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · x⊤

t w∗ · x⊤
t wt−1 · xtx

⊤
t

)
− 2γt · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] ·

(
x⊤
t w∗

)2 · xtx
⊤
t

)
, (15)

Now considering (11) and applying (13) and (15), we obtain

E
(
wt −w∗

)⊗2
= E

(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)⊗2

◦ (wt−1 −w∗)
⊗2 + γ2

t σ
2H

+ 2γ2
t · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · x⊤

t w∗ · x⊤
t wt−1 · xtx

⊤
t

)
. (16)

An Upper Bound. In (16), we can use the indicator function to show that

1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] · x⊤
t w∗ · x⊤

t wt−1 ≤ 0,

so we have

E
(
wt −w∗

)⊗2 ⪯ E
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)⊗2

◦ (wt−1 −w∗)
⊗2 + γ2

t σ
2H

= E
(
wt−1 −w∗

)⊗2

− γt · E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t

)
· E
(
wt−1 −w∗

)⊗2

− γt · E
(
wt−1 −w∗

)⊗2 · E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t

)
+ γ2

t · E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t · E

(
wt−1 −w∗

)⊗2 · xtx
⊤
t

)
+ γ2

t σ
2H. (17)

By Assumption A.1(A) (or Lemma A.2(A)) we have

E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t

)
=

1

2
H,

moreover
E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t ⊗ xtx

⊤
t

)
⪯ E

(
xtx

⊤
t ⊗ xtx

⊤
t

)
= M.

Then under notations of At, T and M, (17) can be written as

At ⪯ At−1 −
γt
2

(
HAt−1 +At−1H) + γ2

tM◦At−1 + γ2
t σ

2H

=

(
I − γt

2
· T (2γt)

)
◦At−1 + γ2

t σ
2H.

14
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A Lower Bound. We now derive a lower bound for (16). We first notice the following fact: for every two vectors v and u,
it holds that

uv⊤ + vu⊤ =
1

2

(
(u+ v)⊗2 − (u− v)⊗2

)
⪰ −1

2
(u− v)⊗2. (18)

Applying (18), we obtain that

2γ2
t · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · x⊤

t w∗ · x⊤
t wt−1 · xtx

⊤
t

)
= γ2

t · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · xtx

⊤
t ·
(
w∗w

⊤
t−1 +wt−1w

⊤
∗
)
· xtx

⊤
t

)
⪰ −γ2

t

2
· E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · xtx

⊤
t · (wt−1 −w∗)(wt−1 −w∗)

⊤ · xtx
⊤
t

)
⪰ −γ2

t

2
· E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t · E(wt−1 −w∗)

⊗2 · xtx
⊤
t

)
.

We now bring this into (16), then we get

E
(
wt −w∗

)⊗2 ⪰ E
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)⊗2

◦ (wt−1 −w∗)
⊗2 + γ2

t σ
2H

− γ2
t

2
· E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t · E(wt−1 −w∗)

⊗2 · xtx
⊤
t

)
= E

(
wt−1 −w∗

)⊗2

− γt · E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t

)
· E
(
wt−1 −w∗

)⊗2

− γt · E
(
wt−1 −w∗

)⊗2 · E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t

)
+ γ2

t · E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t · E

(
wt−1 −w∗

)⊗2 · xtx
⊤
t

)
+ γ2

t σ
2H

− γ2
t

2
· E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t · E(w∗ −wt−1)

⊗2 · xtx
⊤
t

)
= E

(
wt−1 −w∗

)⊗2

− γt · E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t

)
· E
(
wt−1 −w∗

)⊗2

− γt · E
(
wt−1 −w∗

)⊗2 · E
(
1[x⊤

t−1wt−1 > 0] · xtx
⊤
t

)
+

γ2
t

2
· E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t · E

(
wt−1 −w∗

)⊗2 · xtx
⊤
t

)
+ γ2

t σ
2H. (19)

By Assumptions A.1(A) and A.1(C) (or Lemma A.2(B)) we have

E
(
1[x⊤

t wt−1 > 0] · xtx
⊤
t

)
=

1

2
H, E

(
1[x⊤

t wt−1 > 0] · xtx
⊤
t ⊗ xtx

⊤
t

)
=

1

2
M.

Then under notations of At, T and M, (19) can be written as

At ⪰ At−1 −
γt
2

(
HAt−1 +At−1H) +

γ2
t

4
M◦At−1 + γ2

t σ
2H

=

(
I − γt

2
· T
(
γt
2

))
◦At−1 + γ2

t σ
2H.

We have completed the proof.
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B.3. Proof of Theorem 4.5

Notations. In this section, we always assume that H is diagonal. For a PSD matrix A, we use Å to refer to the diagonal
of A.

Proof of Theorem 4.5. The proof is by combing Lemma B.2, Lemma B.1 and the analysis for one-hot data in Zou et al.
(2021a).

Note that for symmetric Bernoulli distribution, or under Assumption 4.4, it holds that (see also the proof of Lemma A.1 in
Zou et al. (2021a)): for any PSD matrix A,

M◦A = E(x⊤Ax) · xx⊤ = diag(HA) = HÅ. (20)

Upper Bound. We first show the upper bound. By Lemma B.2 and (20) we have

At ⪯ At−1 −
γt
2

(
HAt−1 +At−1H) + γ2

tM◦At−1 + γ2
t σ

2H

= At−1 −
γt
2

(
HAt−1 +At−1H) + γ2

tHÅt−1 + γ2
t σ

2H.

Taking diagonal on both sides we get

Åt ⪯ Åt−1 − γtHÅt−1 + γ2
tHÅt−1 + γ2

t σ
2H

⪯
(
I− γt

2
·H
)
· Åt−1 + γ2

t σ
2H,

where we use the assumption that γ < 1/2. Solving the above recursion and apply Lemma C.7, we obtain

ÅN ⪯
N∏
t=1

(
I− γt

2
·H
)
· Å0 + σ2

N∑
t=1

γ2
t

N∏
k=t+1

(
I− γk

2
·H
)
H

⪯
N∏
t=1

(
I− γt

2
·H
)
· Å0 +

σ2

8
·
(

1

Neff

H−1
0:k +Neffγ

2
0Hk:∞

)
.

Taking inner product with H gives the upper bound on the excess risk.

Lower Bound. We next show the lower bound. By Lemma B.2 and (20) we have

At ⪰ At−1 −
γt
2

(
HAt−1 +At−1H) +

γ2
t

4
M◦At−1 + γ2

t σ
2H

⪰ At−1 −
γt
2

(
HAt−1 +At−1H) + γ2

t σ
2H.

Taking diagonal on both sides we get

Åt ⪰
(
I− γtH

)
· Åt−1 + γ2

t σ
2H.

Solving the above recursion and apply Lemma C.7, we obtain

ÅN ⪰
N∏
t=1

(
I− γtH

)
· Å0 + σ2

N∑
t=1

γ2
t

N∏
k=t+1

(
I− γkH

)
H

⪰
N∏
t=1

(
I− γtH

)
· Å0 +

σ2

400
·
(

1

Neff

H−1
0:k∗ +Neffγ

2
0Hk∗:∞

)
,

where k∗ := max{k : λk ≥ 1/(γ0Neff)}. Taking inner product with H gives the lower bound on the excess risk.
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B.4. Proof of Theorem 4.7

We first restate Corollary 3.4 in Wu et al. (2022b) under our notations.

Corollary (Corollary 3.4 in Wu et al. (2022b), restated). Consider a sequence of PSD matrices (At)
N
t=0 that describes the

covariance of the SGD iterates for linear regression, i.e.,

A0 := (w0 −w∗)
⊗2, At := E(I− γtxx

⊤)At−1(I− γtxx
⊤) + γ2

t · σ2 ·H, t = 1, . . . , N,

where (γt)
N
t=0 is a stepsize scheduler as defined in (2). Assume that N > 100. Let Neff := N/ log(N).

(A) If Assumption 4.6(A) holds, then for γ0 < 1/(4α(tr(H))) it holds that

⟨H,AN ⟩ ≲
∥∥∥∥ N∏

t=1

(
I− γtH

)
(w0 −w∗)

∥∥∥∥2
H

+
(
α
∥∥w0 −w∗

∥∥2I0:k∗
Neffγ0

+Hk∗:∞
+ σ2

)
·
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

,

where k∗ ≥ 0 is an arbitrary index.

(B) If Assumption 4.6(B) holds, then for γ0 < 1/(4α(tr(H))) it holds that

⟨H,AN ⟩ ≳
∥∥∥∥ N∏

t=1

(
I− γtH

)
(w0 −w∗)

∥∥∥∥2
H

+
(
β∥w0 −w∗∥2Hk∗:∞

+ σ2
)
·
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

,

where k∗ := max{k : λk ≥ 1/(γ0Neff)}.

Proof. See Corollary 3.4 in Wu et al. (2022b).

We restate Theorem 4.7 in a slightly stronger version.

Theorem B.3 (Risk Bounds for GLM-tron, restated Theorem 4.7). Suppose that Assumption 4.1 holds. Let wN be the
output of (GLM-tron) with stepsize scheduler (2). Assume that N > 100. Let Neff := N/ log(N).

(A) If in addition Assumption 4.6(A) and Assumption A.1(A)(D) hold, then for γ0 < 1/(4α(tr(H))) it holds that

E∆(wN ) ≲

∥∥∥∥ N∏
t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+
(
α
∥∥w0 −w∗

∥∥2I0:k∗
Neffγ0

+Hk∗:∞
+ σ2

)
·
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

,

where k∗ ≥ 0 is an arbitrary index.

(B) If in addition Assumption 4.6(B) and Assumption A.1 hold, then for γ0 < 1/λ1, it holds that

E∆(wN ) ≳

∥∥∥∥ N∏
t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+
(
β∥w0 −w∗∥2Hk∗:∞

+ σ2
)
·
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

,

where k∗ := max{k : λk ≥ 1/(γ0Neff)}.

Proof. We first use Lemma B.1 and Lemma B.2 to relate GLM-tron for ReLU regression problems to SGD for linear
regression problems. Then we invoke Corollary 3.4 in Wu et al. (2022b) (see above) to get the results.

B.5. Proof of Corollary 1

Proof of Corollary 1. For all these examples one can verify that tr(H) ≂ 1. Therefore γ0 ≂ 1.

We can verify that ∥∥∥∥ N∏
t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

≤
∥∥∥∥(I− γ0

2
H
)Neff

(w0 −w∗)

∥∥∥∥2
H

17
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=
∑
i

λi ·
(
1− γ0

2
· λi

)2Neff

· (w0[i]−w∗[i])
2

≲
∑
i

λi ·
1

γ0λiNeff

· (w0[i]−w∗[i])
2

≂
∥∥(w0 −w∗)

∥∥2
2

γ0Neff

≂
1

Neff

≂
log(N)

N
,

and that ∥∥w0 −w∗
∥∥2I0:k∗

Neffγ0
+Hk∗:∞

≲
∥∥w0 −w∗

∥∥2
2
≲ 1.

Therefore in Theorem 4.7 we have

E∆(wN ) ≲

∥∥∥∥ N∏
t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+
(
α
∥∥w0 −w∗

∥∥2I0:k∗
Neffγ0

+Hk∗:∞
+ σ2

)
·
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

≲
1

Neff

+
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

≲
k∗ +N2

eff ·
∑

i>k∗ λ2
i

Neff

.

We next examine each case. Recall that k∗ := max{k : λk ≥ 1/(γ0Neff)}.

1. By definitions we have
k∗ ≂ (Neff)

1
1+r ,

therefore we have

k∗ +N2
eff ·

∑
i>k∗

λ2
i ≂ k∗ + (Neff)

2 · (k∗)−1−2r

≂ (Neff)
1

1+r .

This implies that
E∆(wN ) ≲ (Neff)

−r
1+r ≂ (N/ log(N))

−r
1+r .

2. By definitions we have
k∗ ≂ Neff · log−r(Neff),

therefore we have

k∗ +N2
eff ·

∑
i>k∗

λ2
i ≂ k∗ + (Neff)

2 · (k∗)−1 log−2r(k∗)

≂ Neff · log−r(Neff).

This implies that
E∆(wN ) ≲ log−r(Neff) ≂ log−r(N/ log(N)) ≂ log−r(N).

3. By definitions we have
k∗ ≂ log(Neff),

therefore we have

k∗ +N2
eff ·

∑
i>k∗

λ2
i ≂ k∗ + (Neff)

2 · 2−k∗

≂ log(Neff).

This implies that
E∆(wN ) ≲ log(Neff)/Neff ≂ log2(N)/N.
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We have completed the proof.

B.6. Iterate Average

We may also consider constant-stepsize GLM-tron with iterate averaging, i.e., (GLM-tron) is run with constant stepsize γ
and outputs the average of the iterates:

w̄N :=
1

N

N−1∑
t=0

wt. (21)

Lemma B.4 (Iterate averaging). Suppose that Assumption 4.1 and Assumption A.1(A) hold. For w̄N defined in (21), we
have that

E⟨H, (w̄N −w∗)
⊗2⟩ ≤ 1

γN2

〈
I−

(
I− γ

2
H

)N

,
N∑
t=0

At

〉
;

E⟨H, (w̄N −w∗)
⊗2⟩ ≥ 1

2γN2

〈
I−

(
I− γ

2
H

)N/2

,

N/2∑
t=0

At

〉
.

Proof. In (10), we take conditional expectation to obtain

E[wt −w∗|wt−1] = E
[(

I− γt1[x
⊤
t wt−1 > 0]xtx

⊤
t

)
(wt−1 −w∗)|wt−1

]
+ γt · E

[(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
xtx

⊤
t w∗|wt−1

]
+ γtE[ϵtxt|wt−1]

= E
[(

I− γt1[x
⊤
t wt−1 > 0]xtx

⊤
t

)
(wt−1 −w∗)|wt−1

]
=

(
I− γ

2
H

)
(wt−1 −w∗),

where the second equation is due to Assumption A.1(A) (or Lemma A.2(A)) and Assumption 4.1, and the third equation is
due to Assumption A.1(A) (or Lemma A.2(A)). Applying the above recursively we obtain that: for t > s,

E[wt −w∗|ws] =

(
I− γ

2
H

)t−s

(ws −w∗),

which also implies that

E[(wt −w∗)⊗ (ws −w∗)] =

(
I− γ

2
H

)t−s

· E(ws −w∗)
⊗2 =

(
I− γ

2
H

)t−s

·As. (22)

Now let us consider E(w̄N −w∗)
⊗2:

E(w̄N −w∗)
⊗2

=
1

N2
·
(
E

N−1∑
t=0

(wt −w∗)
⊗2 + E

N−1∑
s=0

N−1∑
t=s+1

(
(wt −w∗)⊗ (ws −w∗) + (ws −w∗)⊗ (wt −w∗)

))

=
1

N2
·

(
N−1∑
s=0

As +
N−1∑
s=0

N−1∑
t=s+1

((
I− γ

2
H

)t−s

·As +As ·
(
I− γ

2
H

)t−s))
.

The remaining proof simply follows from Zou et al. (2021b).

We next present the risk bounds for constant-stepsize GLM-tron with iterate averaging as follows.
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Theorem B.5 (Risk Bounds for constant-stepsize GLM-tron). Suppose that Assumption 4.1 holds. Consider w̄N defined in
(21), i.e., the iterate average of constant stepsize (GLM-tron). Suppose N > 100.

(A) If in addition Assumption 4.6(A) and Assumption A.1(A)(D) hold, then for γ < 1/(4α(tr(H))) it holds that

E∆(w̄N ) ≲
1

N2γ2
·
∥∥w0 −w∗

∥∥2
H−1

0:k∗
+
∥∥w0 −w∗

∥∥2
Hk∗:∞

+

(
α ·

∥∥w0 −w∗
∥∥2
I0:k∗

+Nγ ·
∥∥w0 −w∗

∥∥2
Hk∗:∞

Nγ
+ σ2

)
·
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

,

where k∗ ≥ 0 is an arbitrary index.

(B) If in addition Assumption 4.6(B) and Assumption A.1 hold, then for γ0 < 1/λ1, it holds that

E∆(wN ) ≳
1

N2γ2
·
∥∥w0 −w∗

∥∥2
H−1

0:k∗
+
∥∥w0 −w∗

∥∥2
Hk∗:∞

+

(
β ·

∥∥w0 −w∗
∥∥2
I0:k∗

+Nγ ·
∥∥w0 −w∗

∥∥2
Hk∗:∞

Nγ
+ σ2

)
·
k∗ +N2

effγ
2
0 ·
∑

i>k∗ λ2
i

Neff

,

where k∗ := max{k : λk ≥ 1/(γ0Neff)}.

Proof. We first use Lemma B.1 and Lemma B.2 to relate GLM-tron for ReLU regression problems to SGD for linear
regression problems. Then we invoke Lemma B.4 and the proof of Theorems 2.1 and 2.2 in Zou et al. (2021b) to get the
results.

B.7. Proof of Corollary 4.8

Proof of Corollary 4.8. According to the stepsize scheduler (2) and the assumptions, we have that

E∆(wN ) ≲ ∥e−0.5Neffγ0HH(w0 −w∗)∥22 +
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

≲
1

Neffγ0
+

k∗ +N2
effγ

2
0

∑
i>k∗ λ2

i

Neff

,

where k∗ can be arbitrary.

For the first part, we choose γ0 = 1/
√
Neff and k∗ = max{k : λk > 1/

√
Neff}, then from tr(H) ≲ 1 we know that

k∗ ≲
√
Neff,

∑
i>k∗

λ2
i ≲

1√
Neff

.

Then we have

E∆(wN ) ≲
1

Neffγ0
+

k∗ +N2
effγ

2
0

∑
i>k∗ λ2

i

Neff

≲
1√
Neff

+

√
Neff +N2

eff · 1
Neff

· 1√
Neff

Neff

≂
1√
Neff

.

As for the second part, we choose γ ≂ 1/ tr(H), and k∗ := d, then

E∆(wN ) ≲
1

Neffγ0
+

k∗ +N2
effγ

2
0

∑
i>k∗ λ2

i

Neff

≲
tr(H)

Neff

+
d

Neff

≂
d

Neff

.

C. Misspecified Setting
In this part, we consider the misspecified setting and assume Assumption 5.1.
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Notations. In this section, we assume that H is diagonal. For At := E(wt −w∗)
2, we use Åt to refer to the diagonal of

At. For simplicity, we will use
ϵt := yt − ReLU(w⊤

∗ xt)

to refer to the misspecified noise in this section.

One technique we used for dealing with misspecified cases is to study the diagonal, instead of the matrix itself, of the
expected outer product of the error iterates. The following lemma is useful for translating inequalities about PSD matrices to
inequalities about their diagonals.

Lemma C.1. For every pair of symmetric matrices A and B, A ⪯ B implies Å ⪯ B̊.

Proof. We only need to show that diag(B−A) is PSD. This holds because every diagonal entry of a PSD matrix must be
non-negative.

C.1. Risk Landscape

We first show the following lemma about an upper bound on the risk.

Lemma C.2 (Risk landscape, misspecified case). Under Assumption 5.1, it holds that

R(w) ≤ 2 · ∥w −w∗∥2H + 2 · OPT.

Proof. We prove the conclusion as follows:

R(w) := E
(
ReLU(w⊤x)− y

)2
= E

(
ReLU(w⊤x)− ReLU(w⊤

∗ x) + ReLU(w⊤
∗ x)− y

)2
≤ 2 · E

(
ReLU(w⊤x)− ReLU(w⊤

∗ x)
)2

+ 2 · E
(
ReLU(w⊤

∗ x)− y
)2

≤ 2 · E
(
w⊤x−w⊤

∗ x
)2

+ 2 · E
(
ReLU(w⊤

∗ x)− y
)2

= 2 · ∥w −w∗∥2H + 2 · OPT,

where in the last inequality we use the fact that ReLU(·) is 1-Lipschitz.

C.2. Iterate Bounds

Lemma C.3 (Iterate upper bound). Suppose that Assumption 5.1, Assumption A.1(A) and Assumption 4.6(A) hold, then the
following holds for (GLM-tron):

Åt ⪯
(
I− γt

2
·H
)
· Åt−1 + 2αγ2

t · ⟨H, Åt−1⟩ ·H+ 3γ2
t (σ

2 + α∥w∗∥2H) ·H+ 2γt ·Ξ,

where Ξ is a diagonal deterministic matrix and tr(Ξ) ≤ OPT.

Proof. We first consider the expected outer product of (10) in the misspecified setting:

At := E
(
wt −w∗

)⊗2

= E
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)⊗2

◦ (wt−1 −w∗)
⊗2

+γ2
t · E

(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)2 · xtx
⊤
t w∗w

⊤
∗ xtx

⊤
t

+γt · E
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
· xtx

⊤
t w∗(wt−1 −w∗)

⊤
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)
+γt · E

(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
·
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)
(wt−1 −w∗)w

⊤
∗ xtx

⊤
t


=: S

+γ2
t · E

[
ϵ2txtx

⊤
t

]
+γt · E

[
ϵt

(
(wt−1 −w∗)x

⊤ + x(wt−1 −w∗)
⊤
)]

−2γ2
t · E

[
ϵt1[x

⊤
t wt−1 > 0] · x⊤

t (wt−1 −w∗) · xtx
⊤
t

]
+2γ2

t · E
[
ϵt
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
· x⊤

t w∗ · xtx
⊤
t

]
,


=: N

21



Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron

where we decompose At into a signal part and a noise part, i.e., At := S + N. We next upper bound these two parts
separately.

Signal Part. The analysis of this part is similar to the derivation of (17) in the proof of Theorem 4.3. However this time
we only use Assumption A.1(A) and do not use Assumption A.1(D). In specific, under Assumption A.1(A), (12) and (15)
still hold, and applying which to the signal part S we obtain

S = E
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)⊗2

◦ (wt−1 −w∗)
⊗2

+ 2γ2
t · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · x⊤

t w∗ · x⊤
t wt−1 · xtx

⊤
t

)
− 2γ2

t · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] ·

(
x⊤
t w∗

)2 · xtx
⊤
t

)
+ γ2

t · E
((

1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] + 1[x⊤
t wt−1 < 0,x⊤

t w∗ > 0]
)
·
(
x⊤
t w∗

)2 · xtx
⊤
t

)
.

In the above, the second term is always non-positive due to the property of the indicator function; and the third and fourth
terms together is equal to

γ2
t · E

((
1[x⊤

t wt−1 < 0,x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]

)
·
(
x⊤
t w∗

)2 · xtx
⊤
t

)
≤ γ2

t · E
(
(x⊤

t w∗)
2 · xtx

⊤
t

)
= γ2

t · M ◦ (w∗w
⊤
∗ ),

so the signal part can be bounded by

S ⪯ E
(
I− γt1[x

⊤
t wt−1 > 0] · xtx

⊤
t

)⊗2

◦ (wt−1 −w∗)
⊗2 + γ2

t · M ◦ (w∗w
⊤
∗ ).

Now use Assumption A.1(A) (or Lemma A.2(A)) and Assumption 4.6(A), we obtain

S ⪯ At−1 −
γt
2

(
HAt−1 +At−1H) + γ2

tM◦At−1 + γ2
t · M ◦ (w∗w

⊤
∗ )

⪯ At−1 −
γt
2

(
HAt−1 +At−1H) + γ2

tM◦At−1 + αγ2
t ∥w∗∥2H ·H. (23)

Noise Part. For the noise part, we apply Cauchy inequality to obtain

N := γ2
t · E

[
ϵ2txtx

⊤
t

]
+ γt · E

[
ϵt

(
(wt−1 −w∗)x

⊤ + x(wt−1 −w∗)
⊤
)]

− 2γ2
t · E

[
ϵt1[x

⊤
t wt−1 > 0] · x⊤

t (wt−1 −w∗) · xtx
⊤
t

]
+ 2γ2

t · E
[
ϵt
(
1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0]

)
· x⊤

t w∗ · xtx
⊤
t

]
⪯ γ2

t · E
[
ϵ2txtx

⊤
t

]
+ γt · E

[
ϵt

(
(wt−1 −w∗)x

⊤ + x(wt−1 −w∗)
⊤
)]

+ γ2
t · E

[(
ϵ2t +

(
x⊤
t (wt−1 −w∗)

)2) · xtx
⊤
t

]
+ γ2

t · E
[(
ϵ2t + (x⊤

t w∗)
2
)
· xtx

⊤
t

]
.

Next we apply Assumption 4.6(A) and Assumption 5.1 to obtain

N ⪯ γ2
t σ

2 ·H+ γt · E
[
ϵt ·
(
(wt−1 −w∗)x

⊤ + x(wt−1 −w∗)
⊤
)]

+ γ2
t ·
(
σ2 ·H+M◦At−1

)
+ γ2

t ·
(
σ2 ·H+ α tr(Hw∗w

⊤
∗ ) ·H

)
= 3γ2

t σ
2 ·H+ αγ2

t ∥w∗∥2H ·H+ γ2
t · M ◦At−1 + γt · E

[
ϵt ·
(
(wt−1 −w∗)x

⊤ + x(wt−1 −w∗)
⊤
)]

.

Next, we take diagonal over the above inequality and apply Lemma C.1 and Lemma C.4, then we obtain

N̊ ⪯ 3γ2
t σ

2 ·H+ αγ2
t ∥w∗∥2H ·H+ γ2

t · diag(M◦At−1)
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+ γt · E
[
ϵt · diag

(
(wt−1 −w∗)x

⊤ + x(wt−1 −w∗)
⊤
)]

⪯ 3γ2
t σ

2 ·H+ αγ2
t ∥w∗∥2H ·H+ γ2

t · diag(M◦At−1) +
γt
2

·HÅt−1 + 2γt ·Ξ, (24)

where Ξ is a deterministic diagonal PSD matrix and that tr(Ξ) ≤ OPT.

Combining Two Parts. Combining the diagonal of (23) with (24), we have

Åt = S̊+ N̊

⪯ Åt−1 − γt ·HÅt−1 + γ2
t · diag(M◦At−1) + αγ2

t ∥w∗∥2H ·H

+ 3γ2
t σ

2 ·H+ αγ2
t ∥w∗∥2H ·H+ γ2

t · diag(M◦At−1) +
γt
2

·HÅt−1 + 2γt ·Ξ

⪯
(
I− γt

2
·H
)
· Åt−1 + 2γ2

t · diag(M◦At−1) + 3γ2
t (σ

2 + α∥w∗∥2H) ·H+ 2γt ·Ξ

⪯
(
I− γt

2
·H
)
· Åt−1 + 2αγ2

t · ⟨H, Åt−1⟩ ·H+ 3γ2
t (σ

2 + α∥w∗∥2H) ·H+ 2γt ·Ξ,

where in the last inequality we applied Assumption 4.6(A). We have completed the proof.

Lemma C.4. In the setting of Lemma C.3, it holds that

γt · E
[
ϵt · diag

(
(wt−1 −w∗)x

⊤
t + xt(wt−1 −w∗)

⊤
)]

⪯ γt
2

·HÅt−1 + 2γt ·Ξ,

where Ξ is a fixed diagonal matrix and that tr(Ξ) ≤ OPT.

Proof. Define a fixed vector
a := E[ϵtH− 1

2xt].

Recall that H is a diagonal matrix, so H commutes with any diagonal matrix. Then we have

E
[
ϵt · diag

(
(wt−1 −w∗)x

⊤
t + xt(wt−1 −w∗)

⊤
)]

= E
[
2ϵt · diag

(
(wt−1 −w∗)x

⊤
t

)]
= E

[
2 · diag

(
H

1
2 (wt−1 −w∗) · ϵtx⊤

t H
− 1

2

)]
= E

[
2 · diag

(
H

1
2 (wt−1 −w∗) · a⊤

)]
,

where in the last equation we take (conditional) expectation over the fresh randomness introduced by ϵt and xt. Now use the
fact that: for every two vectors u,v it holds that

uv⊤ + vu⊤ ⪯ uu⊤ + vv⊤,

we then obtain

E
[
ϵt · diag

(
(wt−1 −w∗)x

⊤
t + xt(wt−1 −w∗)

⊤
)]

= E
[
2 · diag

( 1√
2
H

1
2 (wt−1 −w∗) ·

√
2a⊤

)]
⪯ E

[
diag

(
1

2
H

1
2 (wt−1 −w∗)(wt−1 −w∗)

⊤H
1
2 + 2aa⊤

)]
=

1

2
· diag(HAt−1) + 2 · diag

(
aa⊤

)
.

Moreover, notice that

a⊤a = E[ϵtx⊤
t H

− 1
2 a] ≤ 1

2
E[ϵ2t + a⊤H− 1

2xtx
⊤
t H

− 1
2 a] =

1

2
OPT+

1

2
a⊤a,

which implies that a⊤a ≤ OPT, so it holds that

tr(diag
(
aa⊤

)
) = tr(aa⊤) = a⊤a ≤ OPT.

We have completed the proof by setting Ξ := diag(aa⊤) and noting that diag(HAt−1) = HÅt−1.
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C.3. Proof of Theorem 5.2

We will prove the following slightly stronger version.

Theorem C.5 (Risk Bounds for GLM-tron, restated Theorem 5.2). Suppose that Assumption 5.1, Assumption A.1(A) and
Assumption 4.6(A) hold. Let wN be the output of (GLM-tron) with stepsize scheduler (2). Assume that N > 100. Let
Neff := N/ log(N). Then for γ0 < 1/(8α(tr(H))), it holds that

E[R(wN )] ≲ OPT+

∥∥∥∥N−1∏
t=0

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+

(
α
(
OPT+ ∥w∗∥2H +

∥∥w0 −w∗
∥∥2I0:k∗

Neffγ
+Hk∗:∞

)
+ σ2

)
·
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

,

where k∗ ≥ 0 can be any index.

Proof. First of all, by Lemma C.2, it holds that

E[R(wN )] ≤ 2 · E∥wN −w∗∥2H + 2 · OPT

= 2 · ⟨H, Å⟩+ 2 · OPT.

Now consider the recursion of Åt given in Lemma C.3. Note that Åt is related to Åt−1 through a linear operator, therefore
Åt can be understood as the sum of two iterates, i.e., Åt := B̊t + C̊t, where{

B̊t ⪯
(
I− γt

2 ·H
)
· B̊t−1 + 2αγ2

t · ⟨H, B̊t−1⟩ ·H;

B̊0 := diag((w0 −w∗)
⊗2),

and {
C̊t ⪯

(
I− γt

2 ·H
)
· C̊t−1 + 2αγ2

t · ⟨H, C̊t−1⟩ ·H+ 3γ2
t (σ

2 + α∥w∗∥2H) ·H+ 2γt ·Ξ;

C̊0 := 0.

Then we have

E[R(wN )] ≤ 2 · ⟨H, B̊⟩+ 2 · ⟨H, C̊⟩+ 2 · OPT.

Bounding the Bias Error ⟨H, B̊⟩. Note that B̊t is exactly the diagonal of the bias iterate in Wu et al. (2022a;b), ignoring
a difference in constant factors in the stepsizes. So by the proof of the bias part of Corollary 3.3 in Wu et al. (2022b), we
have

⟨H, B̊⟩ ≲
∥∥∥∥ N∏

t=1

(
I− γt

2
H
)
(w0 −w∗)

∥∥∥∥2
H

+ α ·
∥∥w0 −w∗

∥∥2I0:k∗
Neffγ

+Hk∗:∞
·
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

.

Bounding the Variance Error ⟨H, C̊⟩. However C̊t is slightly different from the variance iterate in Wu et al. (2022a;b),
as the noise structure is different due to the appearance of Ξ. But a similar analysis idea applies here.

We first derive a crude upper bound on C̊t in Lemma C.6:

C̊t ⪯ ργ · I+ 4 ·H−1Ξ, where ρ :=
16αOPT+ 6(σ2 + α∥w∗∥2H)

1− 4γα tr(H)
, t ≥ 0.

Then we establish a sharper bound based on Lemma C.6 as follows:

C̊t ⪯
(
I− γt

2
·H
)
· C̊t−1 + 2αγ2

t · ⟨H, C̊t−1⟩ ·H+ 3γ2
t (σ

2 + α∥w∗∥2H) ·H+ 2γt ·Ξ

⪯
(
I− γt

2
·H
)
· C̊t−1 + 2αγ2

t

(
ργ tr(H) + 4OPT

)
·H+ 3γ2

t (σ
2 + α∥w∗∥2H) ·H+ 2γt ·Ξ
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=

(
I− γt

2
·H
)
· C̊t−1 +

(
2αργ tr(H) + 8αOPT+ 3(σ2 + α∥w∗∥2H)

)
· γ2

t ·H+ 2γt ·Ξ

⪯
(
I− γt

2
H

)
C̊t−1 +

(
16αOPT+ 6(σ2 + α∥w∗∥2H)

)
· γ2

t ·H+ 2γt ·Ξ,

where the second inequality is by Lemma C.6; and in the last inequality we use the assumption that

γ <
1

8α tr(H)
,

so that

ρ :=
16αOPT+ 6(σ2 + α∥w∗∥2H)

1− 4γα tr(H)
≤ 32αOPT+ 12(σ2 + α∥w∗∥2H),

which together imply
2αργ tr(H) ≤ ρ

4
≤ 8αOPT+ 3(σ2 + α∥w∗∥2H).

We then solve the recursion and obtain

C̊N ⪯
(
16αOPT+ 6(σ2 + α∥w∗∥2H)

)
·

N∑
t=1

γ2
t

N∏
i=t+1

(
I− γt

2
H

)
·H+ 2

N∑
t=1

γt

N∏
i=t+1

(
I− γt

2
H

)
·Ξ.

Finally we use Lemma C.7 and obtain

C̊N ⪯ 8
(
16αOPT+ 6(σ2 + α∥w∗∥2H)

)
·
(

1

Neff

H−1
0:k +Neffγ

2Hk:∞

)
+ 32H−1Ξ.

So it holds that 〈
H, C̊N

〉
≤ 8
(
16αOPT+ 6(σ2 + α∥w∗∥2H)

)
·
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

+ 32 tr(Ξ)

≤ 8
(
16αOPT+ 6(σ2 + α∥w∗∥2H)

)
·
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

+ 32OPT.

Putting everything together completes the proof.

C.4. Some Auxiliary Lemmas

Lemma C.6 (A crude variance upper bound). Consider a sequence of variance iterates defined as follows:{
C̊t ⪯ C̊t−1 − γt

2 ·HC̊t−1 + 2αγ2
t · ⟨H, C̊t−1⟩ ·H+ 3γ2

t (σ
2 + α∥w∗∥2H) ·H+ 2γt ·Ξ;

C̊0 := 0,

where Ξ is deterministic and tr(Ξ) ≤ OPT. Then for γ < 1/(4α tr(H)), it holds that

C̊t ⪯ ργ · I+ 4 ·H−1Ξ, where ρ :=
16αOPT+ 6(σ2 + α∥w∗∥2H)

1− 4γα tr(H)
, t ≥ 0.

Proof. We show it by induction. For t = 0 the conclusion holds because C̊0 = 0. Now suppose that

C̊t−1 ⪯ ργI+ 4H−1Ξ,

then
⟨H, C̊t−1⟩ ≤ ργ tr(H) + 4 tr(Ξ) ≤ ργ tr(H) + 4OPT.

Then

C̊t ⪯
(
I− γt

2
H

)
C̊t−1 + 2αγ2

t · ⟨H, C̊t−1⟩ ·H+ 3γ2
t (σ

2 + α∥w∗∥2H) ·H+ 2γt ·Ξ
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⪯
(
I− γt

2
H

)(
ργI+ 4H−1Ξ

)
+ 2αγ2

t

(
ργ tr(H) + 4OPT

)
·H+ 3γ2

t (σ
2 + α∥w∗∥2H) ·H+ 2γt ·Ξ

=
(
ργI+ 4H−1Ξ

)
+ γtH ·

(
− ργ

2
+ 2αγt

(
ρ tr(H) + 4OPT

)
+ 3γt(σ

2 + α∥w∗∥2H)

)
≤
(
ργI+ 4H−1Ξ

)
+ γtH ·

(
− ργ

2
+ 2αγ

(
ρ tr(H) + 4OPT

)
+ 3γ(σ2 + α∥w∗∥2H)

)
= ργI+ 4H−1Ξ.

We have completed the proof.

Lemma C.7 (Some technical bounds). It holds that

(A)
∑N

t=1 γ
2
t

∏N
i=t+1

(
I− γt

2 H

)
·H ⪯ 8 ·

(
1

Neff
H−1

0:k +Neffγ
2
0Hk:∞

)
.

(B)
∑N

t=1 γt
∏N

i=t+1

(
I− γt

2 H

)
⪯ 16 ·H−1.

(C) For k∗ := max{k : λk ≥ 1/(γ0Neff)}, it holds that

N∑
t=1

γ2
t

N∏
i=t+1

(
I− γtH

)
·H ⪰ 1

400
·
(

1

Neff

H−1
0:k∗ +Neffγ

2
0Hk∗:∞

)
.

Proof. The first result is from the proof of Theorem 5 in Wu et al. (2022a). The third result is from the proof of Theorem 7
in Wu et al. (2022a). The second result can be proved in a similar manner. By definition, we have

N∑
t=1

γt

N∏
i=t+1

(
I− γt

2
H

)
=

L−1∑
ℓ=0

γ

2ℓ
·
Neff∑
i=1

(
I− γ

2ℓ+1
H

)Neff−i

·
L−1∏

j=ℓ+1

(
I− γ

2j+1
H

)Neff

= 2H−1 ·
L−1∑
ℓ=0

(
I−

(
I− γ

2ℓ+1
H

)Neff

)
·

L−1∏
j=ℓ+1

(
I− γ

2j+1
H

)Neff

⪯ 2H−1 ·
L−1∑
ℓ=0

(
Neff ·

γ

2ℓ+1
H

)
·

L−1∏
j=ℓ+1

(
I− γ

2j+1
H

)Neff

=: 2NeffH
−1 · f(γH),

where

f(x) :=
L−1∑
ℓ=0

x

2ℓ+1
·

L−1∏
j=ℓ+1

(
1− x

2j+1

)Neff

, 0 < x < 1.

We then upper bound f(x) as follows:

• For x ∈ (0, 4/Neff) it holds that

f(x) ≤
L−1∑
ℓ=0

x

2ℓ+1
≤ x ≤ 4

Neff

.

• As for x ∈ [4/Neff, 1], there is an
ℓ∗ := ⌊log(Neffx)⌋ − 2 ∈ [0, L− 1),

such that
2ℓ

∗+2/Neff ≤ x < 2ℓ
∗+3/Neff.
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by which and the definition of f(x) we obtain:

f(x) =
ℓ∗∑
ℓ=0

x

2ℓ+1
·

L−1∏
j=ℓ+1

(
1− x

2j+1

)Neff

+
L−1∑

ℓ=ℓ∗+1

x

2ℓ+1
·

L−1∏
j=ℓ+1

(
1− x

2j+1

)Neff

≤
ℓ∗∑
ℓ=0

x

2ℓ+1
·
(
1− x

2ℓ+2

)Neff

+
L−1∑

ℓ=ℓ∗+1

x

2ℓ+1
· 1

≤
ℓ∗∑
ℓ=0

2ℓ
∗−ℓ+2

Neff

·
(
1− 2ℓ

∗−ℓ

Neff

)Neff

+
L−1∑

ℓ=ℓ∗+1

2ℓ
∗−ℓ+2

Neff

≤ 4

Neff

·
ℓ∗∑
ℓ=0

2ℓ
∗−ℓ · e−2ℓ

∗−ℓ

+
4

Neff

≤ 4

Neff

· 1 + 4

Neff

=
8

Neff

.

In sum we have shown f(x) ≤ 8/Neff for x ∈ (0, 1). Therefore

N∑
t=1

γt

N∏
i=t+1

(
I− γt

2
H

)
= 2NeffH

−1 · f(γH) ⪯ 2NeffH
−1 · 8

Neff

= 16H−1.

We have completed the proof.

C.5. Proof of Corollary 5.3

Proof of Corollary 5.3. According to the stepsize scheduler (2) and the assumptions, we have that

ER(wN ) ≲ OPT+ ∥e−0.5Neffγ0HH(w0 −w∗)∥22 +
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

≲ OPT+
1

Neffγ0
+

k∗ +N2
effγ

2
0

∑
i>k∗ λ2

i

Neff

,

where k∗ can be arbitrary. We then simply choose k∗ = d, and γ0 ≂ 1/ tr(H), then

ER(wN ) ≲ OPT+
tr(H)

Neff

+
d

Neff

≲ OPT+
d

Neff

,

where we use that λ1 ≲ 1.

D. GLM-tron versus SGD
In this section, we compare GLM-tron and SGD in learning well-specified ReLU regression with symmetric Bernoulli data.
We assume that Assumption 4.1 and Assumption 4.4 hold in this part.

Notations. In this section, we assume that H is diagonal. For At := E(wt −w∗)
2, we use Åt to refer to the diagonal of

At. For simplicity, we will use
ϵt := yt − ReLU(w⊤

∗ xt)

to refer to the additive noise in this section.

D.1. Proof of Theorem 6.1

Proof of Theorem 6.1. Consider (SGD).

wt = wt−1 − γt
(
ReLU(x⊤

t wt−1)− ReLU(x⊤
t w∗)− ϵt

)
· xt1[x

⊤
t wt−1 > 0]
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= wt−1 − γt
(
x⊤
t wt−11[x

⊤
t wt−1 > 0]− x⊤

t w∗1[x
⊤
t w∗ > 0]− ϵt

)
· xt1[x

⊤
t wt−1 > 0]

= wt−1 − γtxtx
⊤
t 1[x

⊤
t wt−1 > 0]wt−1 + γtxtx

⊤
t 1[x

⊤
t wt−1 > 0,x⊤

t w∗ > 0]w∗

+ γt1[x
⊤
t wt−1 > 0]ϵtxt

= wt−1 − γtxtx
⊤
t 1[x

⊤
t wt−1 > 0](wt−1 −w∗)− γtxtx

⊤
t 1[x

⊤
t wt−1 > 0,x⊤

t w∗ < 0]w∗

+ γt1[x
⊤
t wt−1 > 0]ϵtxt,

which implies that

wt −w∗ =
(
I− γtxtx

⊤
t 1[x

⊤
t wt−1 > 0]

)
(wt−1 −w∗)

− γtxtx
⊤
t 1[x

⊤
t wt−1 > 0,x⊤

t w∗ < 0]w∗ + γt1[x
⊤
t wt−1 > 0]ϵtxt.

Let us compute the expected outer product:

E
(
wt −w∗

)⊗2

= E
((

I− γtxtx
⊤
t 1[x

⊤
t wt−1 > 0]

)
(wt−1 −w∗)

)⊗2

︸ ︷︷ ︸
quadratic term 1

+ γ2
t · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · (x⊤

t w∗)
2 · x⊗2

t

)︸ ︷︷ ︸
quadratic term 2

− γt · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]x⊤

t w∗ ·
(
I− γtxtx

⊤
t 1[x

⊤
t wt−1 > 0]

)
(wt−1 −w∗)x

⊤
t

)
︸ ︷︷ ︸

crossing term 1

− γt · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]x⊤

t w∗ · xt(wt−1 −w∗)
⊤(I− γtxtx

⊤
t 1[x

⊤
t wt−1 > 0]

))
︸ ︷︷ ︸

crossing term 2

+ γ2
t · E

(
1[x⊤

t wt−1 > 0]ϵ2t · x⊗2
t

)
,

(25)

where the crossing terms involving ϵ has zero expectation because E[ϵt|xt] = 0.

Now we use Assumption 4.4 and compute each part in (25). Notice that under Assumption 4.4, xt ∈ {±ei}i≥1, then one
can verify that

for every u ∈ H, diag(ux⊤
t ) = diag(xtu

⊤) = x⊤
t u · xtx

⊤
t . (26)

By (26) we see that

diag

(
γ2
t · E(quadratic term 2)− γt · E(crossing term 1)− γt · E(crossing term 2)

)
= γ2

t · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · (x⊤

t w∗)
2 · xtx

⊤
t

)
− 2γt · E

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]x⊤

t w∗ · diag
(
(wt−1 −w∗)x

⊤
t

))
+ 2γ2

t · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]x⊤

t w∗ · x⊤
t (wt−1 −w∗) · xtx

⊤
t

)
= γ2

t · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · (x⊤

t w∗)
2 · xtx

⊤
t

)
+ (2γt − 2γ2

t ) · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0]x⊤

t w∗ · x⊤
t (w∗ −wt−1) · xtx

⊤
t

)
,

where in the last equality we use (26). Define

F (w) := Ex

(
1[x⊤w > 0,x⊤w∗ < 0]x⊤w∗ · x⊤(w∗ −w) · xx⊤

)
,
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where the expectation is only taken with respect to the randomness of x. Then by the property of the indicator function,
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0], we observe that

0 ⪯ Ext

(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · (x⊤

t w∗)
2 · xtx

⊤
t

)
⪯ F (wt−1).

So when 0 < γt < 1 it holds that

diag

(
γ2
t · E(quadratic term)− γt · E(crossing term 1)− γt · E(crossing term 2)

)
= γ2

t · E
(
1[x⊤

t wt−1 > 0,x⊤
t w∗ < 0] · (x⊤

t w∗)
2 · xtx

⊤
t

)
+ (2γt − 2γ2

t ) · E[F (wt−1)]{
≤ (2γt − γ2

t ) · E[F (wt−1)] ≤ 2γt · E[F (wt−1)];

≥ (2γt − 2γ2
t ) · E[F (wt−1)] = 2γt(1− γt) · E[F (wt−1)].

(27)

Similarly, we calculate the diagonal of the expectation of (quadratic term 1) in (25):

diag
(
E(quadratic term 1)

)
= diag

(
E(wt−1 −w∗)

⊗2
)
− 2γt · diag

(
E
(
1[x⊤

t wt−1 > 0] · x⊤
t (wt−1 −w∗) · xt(wt−1 −w∗)

⊤
))

+ γ2
t · E

(
1[x⊤

t wt−1 > 0] ·
(
x⊤
t (wt−1 −w∗)

)2 · xtx
⊤
t

)
= Åt−1 + (γ2

t − 2γt) · E
(
1[x⊤

t wt−1 > 0] ·
(
x⊤
t (wt−1 −w∗)

)2 · xtx
⊤
t

)
⪯ Åt−1 − γt · E

(
1[x⊤

t wt−1 > 0] ·
(
x⊤
t (wt−1 −w∗)

)2 · xtx
⊤
t

)
;

⪰ Åt−1 − 2γt · E
(
1[x⊤

t wt−1 > 0] ·
(
x⊤
t (wt−1 −w∗)

)2 · xtx
⊤
t

)
,

where in the second equality we use (26) and in the inequality we use 0 < γt < 1. We now use Assumption 4.4 to obtain
that

E
(
1[x⊤

t wt−1 > 0] ·
(
x⊤
t (wt−1 −w∗)

)2 · xtx
⊤
t

)
=
∑
i

λi

2
· E
(
wt−1[i]−w∗[i]

)2 · ei = 1

2
·HÅt−1.

So we have

diag
(
E(quadratic term 1)

){⪯ (I− γt

2 ·H) · Åt−1;

⪰ (I− γt ·H) · Åt−1.
(28)

Bring (27), (28) and that

E
(
1[x⊤

t wt−1 > 0]ϵ2t · xtx
⊤
t

)
=

σ2

2
·H

into (25) we obtain

Åt = diag
(
E(wt −w∗)

⊙2
)

= diag
(
E(quadratic term 1)

)
+ E

(
1[x⊤

t wt−1 > 0]ϵ2t · xtx
⊤
t

)
+ diag

(
γ2
t · E(quadratic term 2)− γt · E(crossing term 1)− γt · E(crossing term 2)

)
{
⪯ (I− γt

2 ·H) · Åt−1 +
γ2
t σ

2

2 H+ 2γt · E[F (wt−1)],

⪰ (I− γt ·H) · Åt−1 +
γ2
t σ

2

2 H+ 2γt(1− γt) · E[F (wt−1)].

By solving the above recursion we obtain

ÅN ⪯
N∏
t=1

(I− γt
2

·H) · Å0 +
σ2

2

N∑
t=1

γ2
t

N∏
k=t+1

(1− γk
2
H)H+ 2

N∑
t=1

γt

N∏
k=t+1

(1− γk
2
H)E[F (wt)],

29



Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron

ÅN ⪰
N∏
t=1

(I− γt ·H) · Å0 +
σ2

2

N∑
t=1

γ2
t

N∏
k=t+1

(1− γkH)H+ 2
N∑
t=1

γt(1− γt)
N∏

k=t+1

(1− γkH)E[F (wt)].

The remain efforts are taking inner product with H and using Lemma C.7 to show that

⟨H, ÅN ⟩ ≲
〈
H,

N∏
t=1

(
I− γt

2
·H
)
· Å0

〉
+ σ2

〈
H,

N∑
t=1

γ2
t

N∏
k=t+1

(
1− γk

2
H
)
H
〉

+
〈
H,

N∑
t=1

γt

N∏
k=t+1

(
1− γk

2
H
)
E[F (wt)]

〉
≲
∥∥w0 −w∗

∥∥2∏N
t=1(I−

γt
2 H)H

+ σ2 ·
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

+
N∑
t=1

〈
γt

N∏
k=t+1

(
1− γk

2
H
)
H,E[F (wt)]

〉
,

and

⟨H, ÅN ⟩ ≳
〈
H,

N∏
t=1

(I− γtH) · Å0

〉
+ σ2

N∑
t=1

γ2
t

N∏
k=t+1

(1− γkH)H

+

N∑
t=1

γt(1− γt)

N∏
k=t+1

(1− γkH)E[F (wt)],

≳
∥∥w0 −w∗

∥∥2∏N
t=1(I−γtH)H

+ σ2 ·
k∗ +N2

effγ
2
0

∑
i>k∗ λ2

i

Neff

+
N∑
t=1

〈
γt(1− γt)

N∏
k=t+1

(
1− γkH

)
H,E[F (wt)]

〉
.

We have completed the proof.

D.2. Proof of Theorem 6.2

Proof of Theorem 6.2. We now compare the risk upper bound for (GLM-tron) shown in Theorem 4.5 and the risk lower
bound for (SGD) shown in Theorem 6.1. Denote γsgd

0 < 1 as the initial stepsize for (SGD), and

BIASsgd(γ0) :=
∥∥(w0 −w∗)

∥∥2∏N
t=1(I−γtH)H

,

VARsgd(γ0) := σ2 ·
#{i : λi ≥ 1

Neffγ0
}+N2

effγ
2
0

∑
λi<

1
Neffγ0

λ2
i

Neff

,

then Theorem 6.1 implies that for every γsgd
0 < 1,

E∆(wsgd
N ) ≳ BIAS(γsgd

0 ) + VAR(γsgd
0 ) + Ψ,

where Ψ ≥ 0. Similarly, denote γtron
0 < 1/2 as the initial stepsize for (GLM-tron), and

BIAStron(γ0) :=
∥∥(w0 −w∗)

∥∥2∏N
t=1(I−

γt
2 H)H

, VARtron(γ0, k) := σ2 ·
k +N2

effγ
2
0

∑
i>k λ

2
i

Neff

,

then Theorem 4.5 implies that for every γtron
0 < 1/2,

E∆(wtron
N ) ≲ BIAS(γtron

0 ) + VAR(γtron
0 , k),

where k ≥ 0 can be an arbitrary index.

We prove the theorem by discussing two cases on whether or not the (SGD) initial stepsize is large or not.
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SGD with Small Initial Stepsize. If the initial stepsize for (SGD) is γsgd
0 < 1/8, then one can choose an initial

stepsize γtron
0 = 2γsgd

0 < 1/4 for (GLM-tron). Then we have BIAStron(γtron
0 ) = BIASsgd(γsgd

0 ). Moreover by choosing
k := #{i : λi ≥ 1/(Neffγ

sgd
0 )}, we have VARtron(γtron

0 , k) = VARsgd(γsgd
0 ). These together imply that

E∆(wtron
N ) ≲ E∆(wtron

N )

holds if γsgd
0 < 1/8.

SGD with Large Initial Stepsize. Now we discuss the case when γsgd
0 > 1/8. In this case we choose γtron

0 = 1/8 < 1/4.

• If Neff < 1
8λ1

, i.e., γsgd
0 λi ≤ γsgd

0 λ1 ≤ 1
8Neff

, which implies that (I − γsgd
0 H)2Neff ⪰ (1 − 1

8Neff
I)2Neff ⪰ 0.01 · I,

then

BIASsgd(γsgd
0 ) =

∥∥(w0 −w∗)
∥∥2∏N

t=1(I−γtH)H
≥
∥∥(w0 −w∗)

∥∥2
(I−γsgd

0 H)2NeffH

≥ 0.01 ·
∥∥(w0 −w∗)

∥∥2
H
.

So we have BIAStron(γtron
0 ) ≲ BIASsgd(γsgd

0 ). Similarly we choose k := #{i : λi ≥ 1/(Neffγ
sgd
0 )}, we have

VARtron(γtron
0 , k) ≲ VARsgd(γsgd

0 ), because γtron
0 = 1/8 ≤ γsgd

0 .

• If Neff >
1

8λ1
, then it holds that λ1 > 1/(8Neff) = 1/(Neffγ

tron
0 ) then we must have

VARtron(γtron
0 , k) = σ2 ·

k +N2
eff(γ

tron
0 )2

∑
i>k λ

2
i

Neff

≥ σ2

Neff

,

for every k ≥ 0. But we also have
(
I− γtron

0

2 H
)Neff ≤ 2

γtron
0 Neff

H−1 = 16
Neff

H−1, which implies that

BIAStron(γtron
0 ) =

∥∥(w0 −w∗)
∥∥2∏N

t=1(I−
γt
2 H)H

≤
∥∥(w0 −w∗)

∥∥2(
I− γtron

0
2 H

)Neff
H

≤ 16

Neff

· ∥w0 −w∗∥22 ≲ VARtron(γtron
0 , k),

for every k ≥ 0. Therefore we have

E∆(wtron
N ) ≲ BIAS(γtron

0 ) + VAR(γtron
0 , k) ≲ VAR(γtron

0 , k) ≲ VAR(γsgd
0 ) ≲ E∆(wsgd

N ),

where the third inequality is by choosing k := #{i : λi ≥ 1/(Neffγ
sgd
0 )} and the fact that γtron

0 = 1/8 ≤ γsgd
0 .

Putting everything together, we have completed the proof.

D.3. Proof of Theorem 6.3

Proof of Theorem 6.3. We only need to show that for SGD (SGD) it holds that

Ew∗EalgR(wN ) ≥ 1

2
· R(w0).

According to the SGD iterate (SGD) and the noiseless assumption (σ2 = 0), we can write the gradient as

gt :=
(
ReLU(x⊤

t wt−1)− yt
)
· 1[x⊤

t wt−1 > 0] · xt

=
(
x⊤
t wt−11[x

⊤
t wt−1 > 0]− x⊤

t w∗1[x
⊤
t w∗ > 0]

)
· 1[x⊤

t wt−1 > 0] · xt.

Let us focus on the i-th component from now on. Without loss of generality, we assume for now that w∗[i] ≥ 0. We use
Assumption 4.4 to obtain

gt[i] =


0, xt /∈ {±ei} or x⊤

t wt−1 ≤ 0;

wt−1[i]−w∗[i], wt−1[i] ≥ 0 and xt = ei;

w[i], wt−1[i] < 0 and xt = −ei.
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So the i-th component of the SGD iterate is updated by

wt[i] =


wt−1[i], xt /∈ {±ei} or x⊤

t wt−1 ≤ 0;

wt−1[i]− γ(wt[i]−w∗[i]), wt−1[i] ≥ 0 and xt = ei;

wt−1[i]− γwt−1[i], wt−1[i] < 0 and xt = −ei.

Recall that γ < 1/ tr(H) = 1. We next show that: if w0[i] ≤ 0, then wt[i] ≤ 0 for all t. This is done by induction: when
wt−1[i] ≤ 0, two possible updates happen: wt[i] = wt−1[i] ≤ 0 or wt[i] = (1 − γ)wt−1[i] ≤ 0. In both cases, it holds
that wt[i] ≤ 0. We have completed the induction. Moreover, recall that we assume w∗[i] ≥ 0, so if wt[i] ≤ 0, it holds that

(wt[i]−w∗[i])
2 ≥ (w∗[i])

2, t ≥ 0.

Similarly we can prove that when w∗[i] ≤ 0, if wt[i] ≥ 0, it holds that

(wt[i]−w∗[i])
2 ≥ (w∗[i])

2, t ≥ 0.

Now recall that w∗[i] is initialized with a uniformly random sign, so with half probability w∗[i] and w[i] will have different
signs. Therefore we have

Ew∗Ealg

[
(wt[i]−w∗[i])

2
]
≥ Ew∗Ealg

[
(wt[i]−w∗[i])

2 · 1[w0[i] ·w∗[i] ≤ 0]
]
≥ 1

2
· (w∗[i])

2, t ≥ 0.

Therefore we have shown that for every t ≥ 0,

Ew∗EalgR(wt) = Ew∗

∑
i

λi(wt[i]−w∗[i])
2 ≥ 1

2

∑
i

λi(w∗[i])
2 =

1

2
· ∥w∗∥2H ≥ 1

2
· R(0),

where the last inequality is due to Lemma 4.2.

E. Additional Experiments
Figures 2, 3 and 4 show the additional experimental results, where we compare the excess risk achieved by (GLM-tron) and
(SGD) on Bernoulli and Gaussian data. Figure 2 provides the experimental results on Bernoulli data in the noiseless setting.
We can clearly see that SGD finally reaches a point with constant risk, while GLM-tron achieves nearly zero excess risk.
This backs up our Theorem 6.3. Figures 3 and 4 visualize the learning performance of GLM-tron and SGD on Gaussian
data. We can also see that GLM-tron achieves smaller excess risk than SGD, which also supports our claim that GLM-tron
is preferable to SGD for high-dimensional ReLU regression.
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Figure 2. Excess risk comparison between SGD and GLM-tron on Bernoulli Distribution. The problem dimension d = 1024, and
the regression model is well-specified without noise. We consider two different symmetric Bernoulli distributions and set true model
parameters w[i]∗ = i−1. For each algorithm and each sample size, we do a grid search and report the best excess risk achieved by
γ0 ∈ {0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01}. The plots are averaged over 20 independent runs.
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Figure 3. Excess risk comparison between SGD and GLM-tron on Gaussian Distribution. The regression model is well-specified with
noise variance σ = 0.1. Other problem parameters and algorithm designs are the same as those in Figure 2.
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Figure 4. Excess risk comparison between SGD and GLM-tron on Gaussian Distribution. The regression model is well-specified without
noise. Other problem and algorithm parameters are the same as those in Figure 3.
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