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Researchers have pinpointed recognition from others as one of the most important dimensions of
students’ science and engineering identity. Studies, however, have found gender biases in students’
recognition of their peers, with inconsistent patterns across introductory science and engineering courses.
Toward finding the source of this variation, we examine whether a gender bias exists in students’
nominations of strong peers across three different remote, introductory physics courses with varying
student populations (varying demographics, majors, and course levels). We also uniquely evaluate possible
racial or ethnic biases and probe the relationship between instructional context (whether lecture or
laboratory) and recognition. Some of our results replicate previous findings (such as the association of
course grade and small class section enrollment with nominations), while others offer contradictions.
Comparing across our three courses and the prior work, results suggest that course level (whether first-year
students or beyond-first-year students) might be more associated with a gender bias in peer recognition than
other variables. Surprisingly, we also find instances of racial or ethnic biases in favor of students from
backgrounds historically underrepresented in science. Finally, we find that the nomination patterns differ
when students nominate individuals strong in the lecture material versus the laboratory material. This work
serves as an important step in determining which courses and contexts exhibit biases in peer recognition, as
well as how students’ perceptions of one another form in remote teaching environments.
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I. INTRODUCTION

Introductory science, technology, engineering, and
math (STEM) courses are particularly critical transition
periods for students. These courses impact students’
retention and persistence in their subsequent courses,
their majors, and their future careers [1,2]. Retention
rates, however, are lowest for students from marginalized
groups, including women and underrepresented racial
minorities [(URM); taken as any racial or ethnic group
other than White and Asian/Asian American from here
on] [3–11]. Research suggests that these retention issues
are in part due to societal stereotypes that position women
and URM students as less suitable to scientific fields than
men and non-URM individuals, respectively [12–22].
This positioning leads underrepresented students to

experience low sense of belonging and low self-efficacy
in their science and engineering courses [19,23–29].
These stereotypes manifest in many ways, including
students’ perceptions of their peers’ abilities related to
the course material [30–32].
Prior work has found conflicting results with regard to

whether there is a gender bias in introductory STEM
students’ perceptions of their peers [30–32]. These studies
observed that students disproportionately nominated
men over women as strong in their biology and physics
courses [30,32], but that men and women received com-
parable numbers of nominations in mechanical engineering
courses [31]. Whether these discrepant results are due to
varying student populations (e.g., students’ majors, aca-
demic years, and demographics) in the observed courses,
the scientific discipline of the course, or some other factor
is still unresolved. We advance this body of work by
collecting and analyzing students’ nominations of strong
peers in three different remote physics courses serving
various student populations. We aim to determine how the
student population of and context within a course (lecture
or laboratory) are related to students’ perceptions of their
peers. We also expand previous work by considering
possible racial or ethnic biases, in addition to gender
biases, in students’ nominations.
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A. Recognition in STEM

We situate our study in the theoretical framework of
identity. An individual’s identity refers to their being a
“certain kind of person” in a given context [33]. Science
identity, therefore, is the degree to which an individual
believes they are a “science person.” Researchers have
conceptualized a model of science and engineering identity
containing four dimensions: performance, competence,
interest, and recognition [18,34]. Studies show that recog-
nition is one of the most important of these dimensions in
predicting students’ participation, persistence, and career
intentions in science and engineering [18,34–41]. Recogni-
tion is the degree to which meaningful others (e.g., peers,
teachers, and family) perceive and acknowledge an indi-
vidual as a science person. When a student receives
ample recognition from others, they are likely to see
themselves as a science person and develop a strong
science identity [37,42].
Given the importance of recognition, it stands a

reasonable desire for all students to feel recognized by
their peers in a science classroom. Recognition, however,
is ‘culturally produced’–it is influenced by sociohistorical
norms and stereotypes [18,39,43]. For physics in particu-
lar, stereotypes often position men and non-URM students
as more suitable to the field than women and URM
students [12–22,28,29]. In turn, empirical work shows
that men and non-URM students report higher senses of
recognition in their physics classes than women and URM
students, respectively [36,39,44]. Close examinations of
women andwomen of color in physics [18,43,45] also affirm
that high-achieving or “exceptional” women in the field
hinge on recognition from others to succeed. Thus, students’
gender and race or ethnicity are closely related to their
recognition and identity in physics. Previous work, however,
has not analyzed racial or ethnic bias in students’ nomina-
tions of strong peers (they analyze gender bias only) [30–32].
To contribute to this gap, we measure both gender and racial
or ethnic bias in the current study.
Prior research also suggests that recognition may vary

within different disciplines, instructional formats, and
student populations. Grunspan and colleagues [30] exam-
ined three iterations of a large, introductory biology course
(the second in the course sequence) with gender-balanced
enrollment. They found in all semesters that men received
significantly more nominations as strong in the course
material than women. The extent to which this bias
occurred, however, varied between instruction types: they
observed that women nominated other women more
frequently when the instructor employed “random call”
during class. Salehi and colleagues [31] later performed a
similar analysis of two offerings (one with traditional
instruction and one with active learning instruction) of a
medium-sized, gender-balanced mechanical engineering
course taken by second and third-year students planning
to major in engineering. They expected that the nature of

the engineering discipline would lead to more gender
bias in peer recognition than that found in biology.
Instead, they found no gender bias in their observed
nominations in either course offering. Lastly, Bloodhart
and colleagues [32] analyzed peer perceptions across many
introductory life science and physics courses. They do not
report the student populations of each course, but, in
aggregate, students in the life science courses were mostly
non-URM women in their first year of study and the
physical science courses were mostly non-URM men
across all four academic years. The researchers found in
the two disciplines that both men and women under-
nominated women as knowledgeable in the course material
in comparison to women’s actual final grades in the class.
To examine whether the different results across these three
studies are attributable to varying disciplines and/or student
populations, we analyze three physics courses serving
different populations of students.
The studies above also suggest that instruction type, such

as a traditionally taught lecture versus an active learning
course with frequent group work, may influence recog-
nition. In physics, furthermore, recognition likely varies
between the instructional contexts of lecture and laboratory
(lab) work. Not only do these two contexts involve very
different pedagogies (lectures contain many students who
focus on the instructor and labs contain a small number of
students who collaborate on tasks), but they also cover
distinct content and aim to develop different sets of
skills [46–51]. Correspondingly, research has shown that
students relate knowledge of mathematics or theoretical
physics with lectures, while they view “doing lab” as
handling machinery and using technical skills [12,13].
Such differences in relevant skill sets suggest that different
students may be recognized as strong in lecture and lab
contexts. Thus, we probe and analyze students’ recognition
of peers in the two contexts separately in the current study.

B. Current study

We collected students’ nominations of peers they
believed were strong in the lecture and lab material in
three different remote, introductory physics courses at
Cornell University. These data allowed us to compare peer
recognition across instructional contexts (within our study)
as well as across disciplines (comparing our study of
physics courses to prior research on courses in other
disciplines). Each of the three physics courses also con-
tained varying student populations in terms of students’
major, academic year, gender, and race or ethnicity. This
variation allowed us to examine whether gender and racial
or ethnic biases in peer recognition depend on features of
student population as suggested by prior studies [30–32].
The following two research questions guided our study:
(1) To what extent do gender and racial or ethnic biases

exist in students’ recognition of strong peers across
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three different introductory physics courses serving
distinct student populations?

(2) How does introductory physics students’ recognition
of strong peers differ in lecture and lab contexts?

Comparing the three courses in our study to previous
studies [30–32], we find that whether students’ percep-
tions of strong peers in lecture exhibit a gender bias
might depend on course level over other variables (e.g.,
student populations or scientific discipline of the course).
Courses serving first-year students exhibit a gender bias
in lecture perceptions, while those serving the beyond-
first-year level do not. Surprisingly, we also find in some
cases that URM students tend to receive more nomina-
tions than their non-URM peers. With regard to instruc-
tional context, we observe that both the general patterns
of nominations and whether a gender or racial or ethnic
bias exists in nominations differ between the lecture and
lab contexts.

II. METHODS

In this section, we first characterize the courses and
students we analyzed. Then, we describe our data collec-
tion and analysis methods.

A. Courses and participants

Our data come from three introductory physics courses at
Cornell University, which we call Courses A, B, and C.
These courses were held during the Fall 2020 semester,
when about three-quarters of students at the institution
resided on campus but most courses were held online due to
the COVID-19 pandemic. Course A was an introductory,
calculus-based mechanics course aimed at first-year stu-
dents intending to major in engineering or other STEM
disciplines. Course B was also an introductory, calculus-
based mechanics course, but primarily served first-year
students intending to major in physics. Course C was an
introductory, calculus-based electromagnetism course
intended for first- and second-year students majoring in
engineering or other STEM disciplines. Course C is
typically taken after Course A in a course sequence, so
it is reasonable to assume that students were familiar with
one another to some extent before entering the course.
Students in our data set for Courses A and C are different,
however, because we examine the two courses during one
semester. Only data for Course C provide a snapshot of
this familiarity as many of those students took mecha-
nics during the previous semester, but that offering of
Course A is not analyzed here.
As summarized in Table I, each course had lecture, lab,

and discussion sections. Most course components were
held online (synchronously), with a few held in person.
Lectures for all three courses were instructed by a male
faculty member in the physics department. Courses A and
C were “flipped,” such that students read relevant sections

of the textbook and took a reading quiz before coming
to class. Lectures for Course A used conceptual iClicker
questions and instructor demonstrations, while lecture
time in Course C was spent on problem-solving questions
through Learning Catalytics [52]. In both courses, students
answered questions both individually and in groups.
Course B was more traditional in that, during lectures,
the instructor presented new content and asked iClicker
questions that students answered individually. Courses B
and C (but not Course A) used an online discussion forum
where both students and teaching staff could post questions
and answers related to course content at any time.
In all three courses, lab and discussion sections were led

by graduate teaching assistants. Lab sections met once per
week for 2 h and discussion sections met twice per week for
50 min. Each section contained approximately 20 students
who worked together in small groups of two to four. The
labs and most of the discussion sections took place online
through Zoom and students worked in groups in virtual
breakout rooms. In the few discussion sections held in
person, students worked together at round tables. Labs
were nontraditional [46–51], where students performed
open-ended investigations using objects at home or in their
dorm rooms. They submitted their lab work as a group,
rather than individually. During discussion sections, stu-
dents solved problems related to the lecture content.
Despite working as a group, students submitted their
discussion work individually in Course C. Students were
not required to submit discussion work in Courses A and B.
We collected students’ self-reported gender, race or

ethnicity, intended major, and academic year via a survey
at the beginning of the semester. We grouped race or
ethnicity by URM status, where non-URM students are
those solely identifying as White and/or Asian/Asian
American and URM students are those identifying as at
least one of any other race or ethnicity (including Black or
African American, Hispanic/Latinx, and Native Hawaiian
or other Pacific Islander). These student populations and
average final course grades are summarized in Table I.
Similar proportions of men (42%) and women (47%) were
enrolled in Course A and roughly three-quarters of the
students in this course identified as non-URM (71%). Men
and women received comparable final course grades on
average in this course, as did URM and non-URM students.
Most students in Course B identified as men (70%) and
more than three-quarters of the students identified as non-
URM (81%). Men and non-URM students on average
received higher final course grades in this course than
women and URM students, respectively. Course C con-
tained similar proportions of men (45%) and women (51%)
and two-thirds of the students identified as non-URM
(66%). Men and women on average received comparable
final course grades in this course, while non-URM students
on average received higher final course grades than
URM students.
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B. Data collection

In all three courses, we administered an online survey
during the eighth week of the 15-week semester as part
of a lab homework assignment about students’ group work
experiences. On the survey, we asked students to nominate
peers whom they believed were knowledgeable in the
course with the following two prompts adapted from prior
work [30–32]:

Please list any students in this physics class that you
think are particularly strong in the lecture or discussion
section material.

Please list any students in this physics class that you
think are particularly strong in the lab material.

We refer to the first prompt as “lecture perceptions” and the
second prompt as “lab perceptions.”
The survey was in an open response format (one text

box) and students could respond with an unlimited number

of names. This format avoids students feeling obligated to
fill a quota and writing down extra names of peers they may
not actually perceive as strong [53]. Students were also not
given a class roster from which to choose or look up names.
This resulted in some listings being hard to match to the
class roster during analysis, as there were instances of
students misspelling peers’ names and reporting just a first
or a last name. Thus, text processing of the responses was
necessary. We compared each name reported on the survey
to the class roster and matched up names for which the
number of corrections needed to match the full name on the
roster was fewer than 0.3 times the length of someone’s full
name. We chose the constant 0.3 via trial and error, finding
that this worked best for capturing as many close matches
as possible without producing false negatives. If a name
(either first or last) appeared multiple times in the dataset,
then we did not match on listings of just that name itself and
only matched listings of the other half of the name or the
full name.

TABLE I. Summary of the modality, student demographics, and student final course grades for the three courses
we analyzed. All online meetings were synchronous. Percentages are relative to the number of students included in
the analysis. We denote students’ gender or race or ethnicity as “unknown” if they preferred not to disclose this
information on the survey or if they did not complete the survey (but did consent to other parts of the research).
Grades are provided on a 4.0 scale, with standard deviations (SD) of the means given in parentheses.

Course A Course B Course C

Modality
Lecture Online Online Online
Lab sections Online Online Online
Discussion sections 12 Online, 2 In-person 3 Online, 2 In-person Online

Total enrollment 208 89 433
Students in analysis 198 84 404
Gender

Men 84 (42%) 59 (70%) 182 (45%)
Women 92 (47%) 23 (28%) 206 (51%)
Nonbinary 0 1 (1%) 3 (1%)
Unknown 22 (11%) 1 (1%) 13 (3%)

Race or ethnicity
Non-URM 140 (71%) 68 (81%) 268 (66%)
URM 32 (16%) 12 (14%) 107 (27%)
Unknown 26 (13%) 4 (5%) 29 (7%)

Major
Physics or Engineering Physics 11 (5%) 58 (69%) 14 (3%)
Engineering 128 (65%) 14 (17%) 331 (83%)
Other (STEM) 19 (10%) 7 (8%) 24 (6%)
Unknown 40 (20%) 5 (6%) 35 (8%)

Year
First-year 166 (83%) 78 (93%) 10 (2%)
Second-year 24 (12%) 3 (4%) 374 (93%)
Third-year 6 (3%) 1 (1%) 12 (3%)
Other or unknown 2 (2%) 2 (2%) 8 (2%)

Grades
Mean (SD) final course grade (men) 3.6 (0.6) 3.5 (0.6) 3.4 (0.5)
Mean (SD) final course grade (women) 3.6 (0.4) 3.2 (0.6) 3.4 (0.4)
Mean (SD) final course grade (non-URM) 3.5 (0.6) 3.5 (0.6) 3.4 (0.4)
Mean (SD) final course grade (URM) 3.6 (0.6) 3.2 (0.5) 3.2 (0.5)
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As summarized in Table II, survey response rates were
reasonably high (all above 75%) and students in each
course on average listed one or two peers for each prompt.
Our analysis included all students who responded to the
survey and/or were listed by at least one peer. We also
only included the nominations made by students who
consented to participate in research (more than 95% of
survey responders). If a consenting student nominated a
non-consenting student, we included the nomination, but
removed all information (demographics, etc.) about the
nonconsenting student. In all courses, at least 93% of the
enrolled students are included in our analysis (see Table I).
We note that prior studies [30,31] used surveys late in

the semester, which formed highly centralized networks
(many nominations were concentrated to a few students)
for course-level perceptions. In our study, two of the three
courses exhibited highly centralized lecture perception
networks at the mid-semester mark, so there is no reason
to believe our results are impacted by the timing of survey
administration.
At the end of the semester, we collected discussion and

lab section enrollment for all courses. For Courses B and C,
we also collected the number of student contributions
to the course’s online discussion forum (sum of their
posted questions and posted answers to others’ questions).
Course A did not use a discussion forum. We used these
discussion forum contributions as a measure of students’
outspokenness because it quantifies students’ communica-
tive engagement during an online course. This is a
similar, but distinct, measure to that of Grunspan and
colleagues [30], who determined outspokenness by asking
the instructor to name actively participating students after
each class meeting. Some students had no discussion forum
data, indicating that they likely did not ever register for or
use the forum. For these students, we imputed their
contributions to the discussion forum as zero, which was
also the mode of each course’s distribution of contributions.
We imputed one student’s and 55 students’ discussion
forum data in Courses B and C, respectively.

C. Analysis of nominations

We converted the survey responses into directed net-
works for each course (A, B, and C) and each context

(lecture and lab). Nodes represented students and edges (or
ties) represented all nominations made between students.
To first gain a sense of each network’s overall structure, we
calculated two network-level statistics: density and inde-
gree centralization. Density measures the proportion of all
possible edges in the network that we observed. Indegree
centralization measures the extent to which the nominations
are concentrated around a single student or a small subset of
students (i.e., whether there are emergent celebrities who
receive most of the nominations). Higher indegree cen-
tralization indicates higher concentration around one or a
few students. We determined the standard errors of each of
these statistics via bootstrapping: resampling the observed
networkmany times, calculating the statistic of each sampled
network, and then determining the standard deviation of the
statistic among all of the sampled networks [54,55]. The
bootstrappingwas performedwith 10 000 bootstrap trials for
each network using the snowboot package in R [56].
We then used exponential random graph models

(ERGMs) to statistically determine the salient structural
characteristics of our networks. ERGMs assume that the
observed network is a realization from a random graph that
comes from a distribution belonging to the exponential
family [57,58]. They allow us to perform many statistical
tests at once, determining whether the frequency of certain
patterns or configurations in our observed network is
significantly different than if the ties were formed ran-
domly. To formulate such a model, we first choose a
principled set of predictor variables (i.e., configurations)
that might explain the formation of the observed network.
These variables may be structural (e.g., measuring the
tendency for mutual nominations) or nodal (e.g., measuring
the extent to which students of a certain gender are more
likely to receive a nomination). The goal is to use these k
network statistics gkðyÞ and their corresponding coeffi-
cients θk to predict the formation of the random network Y.
The model takes the form

Pθ½Y ¼ y� ¼ 1

ψ
exp

�X
k

θkgkðyÞ
�
;

where y is a realization of the random network Y and
ψ ¼ P

y exp ½
P

k θkgkðyÞÞ� is a normalization constant that
ensures that the probability sums to one. Given an observed
network y, the coefficients of the model are estimated using
maximum likelihood estimation (MLE). Because of the
dependence between the network ties, the MLE is com-
monly approximated with Markov chain Monte Carlo
(MCMC) techniques [59], which we used to fit all models
in our analysis.
There are two different ways to interpret the coefficients

of ERGMs. In general, the coefficients weight the impor-
tance of each modeled configuration for the formation of
the realized network, where positive (negative) coefficients
indicate that the configuration is observed more (less)

TABLE II. Survey response rates and mean number of nom-
inations made per student. The survey response rate is the percent
of enrolled students who completed the survey. The mean number
of nominations is the average number of peers’ names that each
student listed.

Course A Course B Course C

Survey response rate 79% 92% 83%
Mean nominations (lecture) 1.2 1.9 1.0
Mean nominations (lab) 1.2 1.3 0.9
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frequently than by chance after accounting for all other
configurations that are modeled. The second way to
interpret the coefficients is to focus on specific ties of
the network. In this “change statistics” interpretation, the
coefficient θk of the kth configuration shows how much the
log-odds of a tie being present changes if the formation of
the tie increases the kth configuration by one unit, holding
the rest of the network constant. For instance, if the
predictor variable measures the number of mutual ties in
the network, its coefficient represents how much the log-
odds of a tie being present increases when the addition of
this tie would reciprocate an existing tie.
We initially fit ERGMs with the same set of predictor

variables used by Grunspan and colleagues [30] for each of
our observed networks. Our model contained one additional
variable for discussion section homophily (the tendency for
students to nominate peers enrolled in their same discussion
section) because discussion was an extra structural compo-
nent in our courses.We also added three variables to measure
the effects of race or ethnicity, which exactly mirrored the
structure of the gender variables in the original model of
Grunspan and colleagues [30]. Inspection of the goodness-
of-fit diagnostics, however, revealed a significant inadequacy
in this model: we were not appropriately capturing the
presence of triadic closure. Triadic closure is the tendency
for three nodes to be connected, given pairwise connections.
That is, if ties exist between nodes A and B and between
nodes B and C, then a tie between nodes A and C forms
triadic closure. In some cases, we were also not adequately
capturing the network’s outdegree distribution (the propor-
tion of nodes making a certain number of nominations). Our
model did sufficiently account for each network’s indegree
distribution (the proportion of nodes receiving a certain
number of nominations).
In response, we altered the original model from

Grunspan and colleagues [30]. We added a geometrically
weighted edgewise shared partner (GWESP) variable,
which is typically used to account for triadic closure.
The more ties two nodes have in common (i.e., the more
shared partners they have), however, the higher the prob-
ability of an edge forming between them. Thus, a decay
parameter for the GWESP variable determines the extent to
which the probability of tie formation decreases for each
additional partner already shared between two nodes [60].
This parameter can take on a value between 0 and 1, with
lower values creating larger decreases in tie probability
per subsequent shared partner. We used a fixed decay
parameter of 0.25 as is commonly used in ERGM
literature [61–63]. Because incorporating both a GWESP
term and an isolates term (for students receiving zero
nominations; used in the original model) produced degen-
eracy in the model, we removed the isolates term. We also
changed the structure of the gender and race or ethnicity
variables to allow for easier and more meaningful

interpretations. Specifically, we added a variable to the
model for each possible directed tie for the gender and race
or ethnicity attributes (e.g., man nominating a man, man
nominating a woman, etc.) as in Ref. [64]. These network
statistics allowed for a more direct comparison of ties by
using common base terms for gender and race or ethnicity
variables and thus an easier interpretation of gender and
racial or ethnic biases. We note that in creating these
variables, we fit models with each possible base term for
gender and race or ethnicity to the observed networks. We
ultimately chose to use nominations between majority
demographic groups as the base terms, however the results
are consistent with those of all the possible models.
These modifications resulted in an improved model fit

for every observed network. For all six observed networks,
the goodness-of-fit diagnostics showed that we were
capturing the distributions of indegree, outdegree, and
triadic closure well with the revised model. Coefficient
estimates using the original model of Ref. [30] and an
example of goodness-of-fit diagnostics for both models are
provided in the Appendix. We report in the main text our
results using the revised model, which contained the
following predictor variables:
(1) Edges: intercept term equal to the number of edges

in the network
(2) Mutuality: number of reciprocated or mutual nom-

inations
(3) Geometrically weighted edgewise shared partners

(GWESP): triadic closure
(4) Woman → woman: number of edges for which a

woman nominates another woman (base term is
man → man)

(5) Woman → man: number of edges for which a
woman nominates a man (base term isman → man)

(6) Man → woman: number of edges for which a man
nominates a woman (base term is man → man)

(7) URM → URM: number of edges for which a URM
student nominates a URM student (base term
is non-URM → non-URM)

(8) URM → non-URM: number of edges for which a
URM student nominates a non-URM student (base
term is non-URM → non-URM)

(9) Non-URM → URM: number of edges for which a
non-URM student nominates a URM student (base
term is non-URM → non-URM)

(10) Final course grade of nominee: correlation between
final course grade and indegree

(11) Discussion forum contributions of nominee (only for
Courses B and C): correlation between discussion
forum contributions and indegree

(12) Homophily on lab section: number of edges con-
necting students enrolled in the same lab section

(13) Homophily on discussion section: number of edges
connecting students enrolled in the same discussion
section
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We determined the coefficient estimates of these variables
for each of our six observed networks using MCMC MLE
and then compared the results across courses and contexts.

III. RESULTS

We first compare the structures and network-level
statistics of each observed network. Then, we present
the results of the exponential random graph models.

A. Structure of peer perception networks

Figures 1 and 2 show the network diagrams of lecture
and lab perception networks, respectively, for each course.
In each diagram, edges point from the nominator to the
nominee and larger nodes represent students who received
more nominations (i.e., higher indegree). Nodes are colored
by gender and nodes with bold outlines indicate celebrities.
These same network diagrams with nodes colored by race
or ethnicity can be found in the Supplemental Material [65].

FIG. 1. Lecture perception networks. Nodes are colored by self-reported gender and sized proportional to indegree (number of
received nominations). Nodes with bold outlines indicate celebrities (three in Course B and two in Course C). Edges point from the
nominator to the nominee.
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Table III summarizes the density and indegree centrali-
zation of each observed network. Within each course, the
network densities of the lecture and lab perception net-
works are similar to one another. We see this as similar
levels of connectedness (proportion of possible edges
present) in Figs. 1 and 2 for lecture and lab perception
networks within each course. This similarity in network
density, however, is despite the very different structures of
these connections across contexts. That is, students nom-
inate similar numbers of peers in each context, but the

distribution of who receives the nominations is different
between lecture and lab contexts.
In Course A, the indegree centralization (the extent to

which the network is concentrated around just a few
students) is similarly low for both lecture and lab percep-
tions. Correspondingly, we see in Figs. 1 and 2 that there
are no emergent celebrities in either network for this course
(no nodes are drastically larger than the others). In Courses
B and C, however, the indegree centralization of the lecture
perception network is larger than that of the lab perception

FIG. 2. Lab perception networks. Nodes are colored by self-reported gender and sized proportional to indegree (number of received
nominations). Edges point from the nominator to the nominee.
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network by an order of magnitude. This suggests that
the lecture perception networks of these two courses are
much more concentrated around a few prominent students
(celebrities) than the lab perception networks. We observe
in Fig. 1 that the lecture perception networks of Courses B
and C contain three and two celebrities (nodes with bold
outlines that are much larger than the rest, having received
many more nominations), respectively. On the other hand,
we see in Fig. 2 that there are no central nodes receiving
many nominations in either of the two lab perception
networks (all nodes are similar in size). Thus, for Courses B
and C, despite the similar density measures, the lecture
perception networks are much more concentrated around a
few celebrities, with no outstanding celebrities in the lab
perception networks.

B. Evaluating gender and racial or ethnic bias
in peer recognition

Table IV shows the coefficient estimates for our revised
exponential random graph model fit to all observed net-
works. We interpret the coefficient estimates as the log-
odds of tie formation. For example, the coefficient estimate
for the homophily on discussion section variable for Course
A’s lecture perception network is 1.59. This means that the
log-odds of a tie forming in the network increases by 1.59
for each additional tie connecting students in the same
discussion section, holding the rest of the network the
same. In other words, ties connecting students in the same
discussion section are more probable than ties connecting
students in different discussion sections, even after
accounting for the other configurations included in the
model.
For five out of six analyzed networks, the coefficient

estimates for the woman → woman and woman → man
variables, shown in light and medium green dots in Fig. 3,
are not statistically significant. This means the frequency
with which women nominate either a woman or man is not
significantly different than the frequency with which men
nominate other men (the base term) after adjusting for
the other variables in the model. In other words, women
proportionately nominate their female and male peers in
these five networks. In the lecture perception network of
Course C, however, women nominate other women sig-
nificantly more than men nominate other men.

The coefficient estimates for the man → woman vari-
able, shown in dark green dots in Fig. 3, indicate that men
significantly undernominate women in the lecture percep-
tion network of Course A and both networks of Course B.
The lecture and lab perception networks of Course B,
moreover, have the largest and second-largest coefficient
magnitudes for this variable, respectively. This suggests
that the strongest gender bias occurs in Course B’s lecture
perception network. Making direct comparisons of ERGM
coefficients across different networks, however, has limi-
tations [66], so we consider this claim preliminary.
We note that the coefficient estimate for the man →

woman variable is not statistically significant in the lecture
perception network of Course C, however this might be
due to one of the two celebrities having unknown gender.
If we impute this celebrity’s gender as a man, the man →
woman variable becomes negative and statistically signifi-
cant (implying a gender bias against women), though the
other gender variables are not statistically significant. If we
impute this celebrity’s gender as a woman, the results
related to gender are the same as when this celebrity’s
gender is unknown. The dependency of the statistical
results on this one celebrity’s gender offers an important
caveat to our interpretations discussed in the next section.
The gender patterns suggested by our model fits are

illustrated in Figs. 1 and 2. Despite there being no clear
celebrities in the lecture perception network of Course A
(the top-nominated man and woman received five and four
nominations, respectively), our statistical model indicates a
gender bias in this network. Therefore, men, on average,
receive more nominations than women (the average size of
the blue nodes is greater than the average size of the yellow
nodes). For the lab perception network of Course A, men
and women have an even distribution of nominations (the
average size of the blue nodes is similar to the average size
of the yellow nodes) as indicated by our statistical analysis.
On the other hand, all three emergent celebrities in
Course B’s lecture perception network are men (the three
largest nodes, outlined in bold, are blue). In this network,
the top-nominated man received ten times as many
nominations (30) as the top-nominated woman (three).
Course B’s lab perception network is less centralized
around a few celebrities, but we see that, on average,
men receive more nominations than women (the average
size of the blue nodes is greater than the average size of

TABLE III. Network-level statistics for all observed networks. Density is the proportion of observed to possible
edges. Indegree centralization is the extent to which the nominations are concentrated around one or a few students.
Standard errors of the last digit are shown in parentheses.

Course A Course B Course C

Lecture Lab Lecture Lab Lecture Lab

Density 0.005(7) 0.005(6) 0.02(6) 0.01(2) 0.002(3) 0.002(2)
Indegree centralization 0.02(9) 0.02(8) 0.3(8) 0.06(2) 0.08(2) 0.008(3)
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the yellow nodes). For Course C, the lecture perception
network has one male celebrity and a second celebrity with
unknown gender (these two nodes are outlined in bold and
overlap in the diagram). As mentioned above, the latter
might explain why we did not resolve any gender bias in
our model fit. Finally, Course C’s lab perception network is
similar to that of Course A in that there is a relatively even
distribution of nominations across men and women, in line
with our quantitative findings above.
We examine the coefficient estimates for the race or

ethnicity variables in a similar manner. These results are
summarized in Fig. 4. In both networks of Course A and the
lab perception network of Course C, none of the coefficient
estimates for the race or ethnicity variables are statistically
significant after adjusting for the remaining variables in
the model. This means that no particular nomination type
(e.g., URM student nominating URM student) occurs
more frequently than another—both URM and non-URM

students proportionately nominate their URM and non-
URM peers (no racial or ethnic bias). In both networks of
Course B, however, URM students disproportionately over-
nominate URM peers, even after controlling for the other
network configurations in the model (yellow dots in Fig. 4).
Similarly, in Course C’s lecture perception network, URM
students significantly undernominate non-URM peers
(orange dots in Fig. 4) and non-URM students dispropor-
tionately overnominate URM peers (brown dots in Fig. 4).
Accordingly, one of the two prominent celebrities in this
particular network (shown in Fig. 1) is a URM student.
Similar to the results related to gender, we note that the

results vary for the lecture perception network of Course C
if we impute the race or ethnicity of the second celebrity
whose race or ethnicity is unknown. If we impute this
student as non-URM, we find that URM students dispro-
portionately overnominate URM peers in this network,
with no change to the other two race or ethnicity variables.

TABLE IV. Exponential random graph model results. We fit models with all possible permutations of the gender and race or ethnicity
variables serving as the base terms, but here we show results using nominations between majority demographic groups as the base terms
(man → man for gender and non-URM → non-URM for race or ethnicity). Standard errors of the coefficient estimates are in
parentheses. Asterisks indicate statistical significance (�p < 0.05; ��p < 0.01).

Course A Course B Course C

Lecture Lab Lecture Lab Lecture Lab

Edges −9.09 �� −7.85 �� −12.04 �� −7.88 �� −8.85 �� −8.67 ��
(0.72) (0.54) (1.11) (0.86) (0.31) (0.53)

Mutuality 2.92 �� 1.82 �� 0.96 � 1.21 � 3.30 �� 1.90 ��
(0.40) (0.35) (0.45) (0.51) (0.19) (0.31)

GWESP (triadic closure; decay parameter ¼ 0.25) 1.21 �� 1.06 �� 1.05 �� 0.96 �� 1.91 �� 0.98 ��
(0.17) (0.14) (0.15) (0.19) (0.07) (0.11)

Woman → woman 0.06 0.08 −0.70 0.47 0.46 �� 0.01
(0.17) (0.15) (0.73) (0.28) (0.09) (0.18)

Woman → man −0.03 −0.04 −0.13 −0.16 0.22 −0.16
(0.21) (0.21) (0.19) (0.28) (0.14) (0.18)

Man → woman −0.52 � −0.23 −1.45 �� −0.77 �� 0.07 −0.31
(0.24) (0.24) (0.55) (0.37) (0.14) (0.19)

URM → URM −0.17 0.11 1.73 �� 1.08 � 0.23 −0.19
(0.55) (0.43) (0.43) (0.54) (0.13) (0.29)

URM → non-URM 0.34 0.24 0.31 −0.04 −0.40 �� −0.24
(0.24) (0.28) (0.22) (0.33) (0.14) (0.19)

Non-URM → URM −0.02 −0.52 −0.07 −0.22 0.53 �� −0.16
(0.27) (0.34) (0.40) (0.38) (0.11) (0.17)

Final course grade of nominee 0.86 �� 0.29 � 1.91 �� 0.46 � 0.54 �� 0.29 �
(0.19) (0.14) (0.28) (0.22) (0.08) (0.15)

Discussion forum contributions of nominee N=A N=A 0.02 �� 0.008 0.02 �� −0.003
(0.003) (0.006) (0.005) (0.01)

Homophily on lab section 1.01 �� 3.37 �� 0.59 �� 2.97 �� 1.01 �� 4.19 ��
(0.17) (0.21) (0.17) (0.32) (0.12) (0.16)

Homophily on discussion section 1.59 �� 0.20 0.66 �� 0.09 1.76 �� 0.27
(0.17) (0.25) (0.18) (0.24) (0.09) (0.20)
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If we impute this student as URM, we find that both URM
and non-URM students disproportionately overnominate
URM peers. In both cases, therefore, we still find a
tendency for URM students to receive more nominations
than their non-URM peers.

C. Roles of final course grade, outspokenness, and
section enrollment in shaping peer recognition

The remaining predictor variables in the model lend
insight into the association between final course grade,

outspokenness on the online discussion forum, and section
enrollment and the structure of our observed perception
networks. All coefficient estimates for the final course
grade of nominee variable, summarized in Table IV, are
positive and statistically significant. That is, in all three
courses and in both contexts, students with higher final
course grades receive significantly more nominations than
students with lower final course grades. The magnitudes of
the coefficients also suggest that final course grade is a
stronger predictor of receiving nominations in the lecture
context than the lab context in every course, though again

FIG. 4. ERGM coefficient estimates for the race or ethnicity nomination variables. The base term (i.e., coefficient estimate of zero) is
nominations from non-URM to non-URM. Error bars are the standard errors of the coefficient estimates (values shown in Table IV) and
asterisks indicate statistical significance.

FIG. 3. ERGM coefficient estimates for the gender nomination variables. The base term (i.e., coefficient estimate of zero) is
nominations from man to man. Error bars are the standard errors of the coefficient estimates (values shown in Table IV) and asterisks
indicate statistical significance.
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such comparisons should be considered tentative [66]. We
provide plots comparing the indegree distributions to final
course grade in the Supplemental Material [65].
With regard to outspokenness (the discussion forum

contributions of nominee variable, which was only meas-
urable for Courses B and C), we find that students who
contribute more to the discussion forum are significantly
more likely to receive nominations as strong in the lecture
context. Contributions to the discussion forum, however,
are not a significant predictor of receiving nominations as
strong in the lab context. We provide plots comparing the
indegree distributions to number of discussion forum
contributions in the Supplemental Material [65].
We observe similar patterns across courses regarding the

relationship between lab and discussion section enrollment
and recognition among peers. Coefficient estimates for the
homophily on lab section variable are positive and sta-
tistically significant in every observed network, meaning
that students are more likely to nominate peers in their lab
section than peers outside of their lab section as strong in
both lecture and lab content. Viewing the magnitude of the
coefficients [66], this effect is, unsurprisingly, more pro-
nounced in lab perception networks than lecture perception
networks. On the other hand, coefficient estimates for the
homophily on discussion section variable are positive and
statistically significant in all three lecture perception net-
works, but they are not statistically significant in any of the
three lab perception networks. This suggests that students
tend to nominate peers in their discussion section as strong
in the lecture material, but they do not systematically
nominate discussion peers as strong in the lab material.

IV. DISCUSSION

In this study, we collected students’ nominations of
strong peers in three different remote, introductory physics
courses with varying student populations. We advance
previous work by measuring both gender and racial or
ethnic biases and differentiating perceptions related to
lecture and lab contexts. The remainder of this section
synthesizes our findings for each research question and
concludes by noting recommendations for instruction and
limitations to the study.

A. Mixed evidence of gender and racial
or ethnic biases in recognition

Our analyses found mixed results regarding the presence
or absence of a gender bias in students’ recognition of their
peers. After adjustments for various measures reflecting
structural tendencies of tie formation, women proportion-
ately nominated their male and female peers in all courses
and contexts (lecture and lab) except Course C’s lecture
perception network. In this network, women dispropor-
tionately nominated other women over men as strong in
the lecture material. In contrast, men proportionately

nominated their male and female peers in three out of
six observed networks (lab perception network of Course A
and both networks of Course C) after controlling for other
network configurations. Men significantly undernominated
their female peers in Course A’s lecture perception network
and in both perception networks of Course B. Recall that if
we impute the second celebrity in Course C’s lecture
perception network as a man, men also significantly
undernominated their female peers in this network.
The results related to gender bias in lecture peer percep-

tions add insight to those found in prior work [30–32].
Across these studies, the courses vary by student population
(majors, course level, and gender), instructional type (tradi-
tional and interactive lectures or nontraditional labs), and
institution. This variability, understandably, leads to differ-
ent conclusions in each study (including across the courses
examined in our study). Contrary to expectations, a course’s
gender composition (whether gender-balanced, majority
men, or majority women) and discipline (whether physical
sciences and engineering or biology) do not seem to predict
the presence or absence of a gender bias in students’
recognition of their peers. Neither does the instructional
style—whether traditional lecture, interactive lecture, or
lab instruction—or class size (whether the course contains
90 or 400 enrolled students).
One common factor that is consistently associated with

gender bias across different studies, however, is the course
level. Across the four studies, courses at the first-year level
(those in Ref. [30], Courses A and B in our study, and
those in Ref. [32], assuming the student populations in the
lower level courses are primarily first-year based on typical
course enrollments) all exhibit a gender bias in peer
recognition, whereas those at the beyond-first-year level
(those in Ref. [31] and Course C in our study) do not.
We posit that developing familiarity and friendship with
peers in previous semesters allows for a more diverse set
of students to gain recognition in subsequent courses.
Students in beyond-first-year courses, for example, likely
have had more opportunities to showcase their knowledge
or skills in front of their peers during prior courses they take
together. In students’ first introductory courses, in contrast,
a gender bias in peer recognition aligned with socio-
historical stereotypes [12–17] endures before the students
get to know each other. Alternatively, this pattern could be
due to selection effects where only those women who
received substantial recognition in their first course
enrolled in subsequent courses. Thus, all of the gender
bias may have occurred in the first year courses, creating
unequal representation of students in the subsequent
courses where we no longer find a bias. We note that this
relationship between course level and gender bias in peer
recognition is a tentative claim given the celebrity of
unknown gender in Course C’s lecture perception network.
The modified analyses used in our study also add to

the understanding of the nature of the gender bias in
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introductory STEM courses. As in the perceptions study in
biology [30], we found that, when a gender bias in peer
recognition existed, men undernominated women, but
women proportionately nominated both men and women.
This result differs from that ofBloodhart and colleagues [32],
however, who found that both men and women under-
nominated women in introductory life sciences and physics
courses. More details about their analyzed courses are
necessary to determine which, if any, course features may
have led to these different results.
Our study also uniquely evaluated whether a racial or

ethnic bias exists in students’ recognition of peers. Race or
ethnicity was not a significant predictor of nominations in
either network of Course A or the lab perception network of
Course C. In both networks of Course B and the lecture
perception network of Course C (even when imputing the
second celebrity of the latter network as a URM or non-
URM student), however, URM students were more
likely to receive nominations than their non-URM peers.
This suggests that, when the nomination probabilities are
adjusted for other variables in the model, URM students
received more recognition than their non-URM counter-
parts, despite the documented stereotypes against URM
students in science [18–22,67] and indications that URM
students report significantly lower senses of recognition
than non-URM peers in their physics courses [36,39,44].
We discuss several possible explanations that may have

influenced these surprising findings. First, for the networks
where we found no racial or ethnic bias (both networks of
Course A and the lab perception network of Course C), one
might expect low statistical power would explain the lack
of a measurable effect: URM students made up less than
30% of each analyzed course. This explanation is unlikely,
however, given that we were able to statistically discern an
effect in the other networks with comparable proportions of
URM and non-URM students. Alternatively, we note that
this study was fielded in the aftermath of the Black Lives
Matter protests following the murder of George Floyd.
Students (especially at Cornell University) were aware of
the political climate [68,69], which might have created
more awareness of racial or ethnic bias (compared to
gender bias) and thus social desirability biases in the
responses. We note the plausibility of this explanation
given that the effect on URM students’ nominations is
either unbiased or in the opposite direction to what research
would have predicted. Another explanation, particularly
for the tendency for URM students to nominate URM
peers in Course B, is friendship tie homophily. A host of
research suggests that friendship serves as a mechanism for
recognition [70,71] and that students tend to form friend-
ships with peers of their same race or ethnicity [72,73].
URM students in Course B, therefore, might have formed
friendships with one another and in turn recognized one
another as strong in the course. Finally, in this study we
measured actual recognition, whereas some prior work

measures perceived recognition [36,39,44]. Students’
actual recognition may differ from their perceptions of
recognition, resulting in these different outcomes. For
example, students from underrepresented groups may
perceive lower recognition than they are actually given
based on their awareness of existing stereotypes. We
recommend for future research to directly compare per-
ceived and actual recognition across demographic groups to
examine this viable phenomenon.

B. Recognition differs between lecture and lab contexts

Different from previous studies, we probed peer percep-
tions related to lecture and lab contexts separately. We
observed very different network structures across these
contexts, with celebrities emerging in two out of three
lecture perception networks but in none of the lab percep-
tion networks. We suspect that the structure of coursework
in each context impacted the distribution of nominations. In
the courses we analyzed, lectures contained half or all of
the enrolled students (depending on whether there were one
or two lecture sections). The few highly motivated students
(i.e., the celebrities) who frequently participated in lecture
by answering or asking questions in front of the rest of the
class likely gained considerable recognition from peers as
strong in the lecture context. Because lectures were held
on Zoom, students could also readily see the names of
these celebrities and recall them on the survey. A similar
phenomenon may have also occurred during online office
hours, which were (anecdotally) very busy. By contrast,
labs were held on Zoom and used breakout rooms, so
students were restricted to interacting with and seeing the
names of just a few peers. Lab groups were also held stable
throughout the semester, allowing for meaningful yet
limited recognition [37,74]. We note that while discussion
sections also used online breakout rooms, they did not
necessitate interaction between students (students submit-
ted individual work, if at all, and some groups would leave
their cameras and microphones off and work independ-
ently). Labs, on the other hand, required students to set up
their experiments, collect and analyze data, and coordinate
lab notes for a weekly group submission, all of which were
negotiated through conversations.
Our findings pertaining to gender, moreover, suggest

that students perceive male and female peers’ expertise
with lecture and lab material differently. The presence or
absence of a gender bias in peer recognition varied between
contexts in Course A, with a gender bias in lecture
perceptions but not in lab perceptions. In Course B, there
was a stronger gender bias in lecture perceptions than lab
perceptions. The lecture, but not lab, perception results
mostly agree with prior work, which has found a gender
bias in course-level perceptions [30,32]. We speculate
that, as was the case in the study of Grunspan and
colleagues [30], men may have been more verbally out-
spoken than women in the lecture sections (though we did
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not measure this). Indeed, it has been shown in introductory
science courses that women are less comfortable partici-
pating in whole-class discussions than men [75] and that
women respond less frequently than men to instructor-
posed questions to the class [28,76]. In remote courses in
particular, research has found that men participate more
than women both verbally and in the chat window and that
students acknowledge chat messages from male peers more
than female peers [77]. Recognition in labs, on the other
hand, likely occurs among students working together in
their lab groups. In our observed courses, lab groups were
created based on a group-forming survey where students
could indicate their preferences related to group work, for
instance if they wished to work with (or not work with)
certain peers. Instructors intentionally created lab groups
based on the survey and also avoided groups with isolated
women. One possible explanation for observing less
gender bias in labs, therefore, is that women had sufficient
opportunities for recognition within their majority-women or
all-women lab groups. Alternatively, students may hold
different conceptions of what it means to be “strong in the
lecture/discussion section material” and “strong in the lab
material.” This seems plausible given that we found more
gender bias in the lecture context than the lab context, yet
stereotypes typically associate physics and masculinity with
technical skills (lab) and natural brilliance (lecture) [12–17].
To explore this possibility, we have modified the perceptions
survey to also ask students to briefly explain their nomina-
tions. We will use these data to unpack the traits or behaviors
students attribute to being strong in each context and
determinewhether this explains the difference in gender bias.
We also found that higher final course grades predict

more received nominations from peers across all courses
and contexts, in agreement with prior work [30,31]. Results
related to discussion forum contributions and section
enrollment, however, varied by context. We found that
students’ contributions to the course discussion forum was
a significant predictor of receiving nominations in lecture,
but not in lab, perception networks. We suspect that this
difference occurred because most content posted on the
discussion forum was related to lecture material rather than
lab material. Participation in the discussion forum likely
served as a means of becoming more visible to and
recognized by peers, but only in regard to the content
being discussed. The lecture perception networks, more-
over, contained emergent celebrities in the two courses
using a discussion forum, Courses B and C, but not in
Course A. Frequent visibility in the discussion forum,
where students’ names are explicitly tied to their contri-
butions, might be a mechanism for students receiving many
nominations as strong in their course. Similar to previous
studies [30,31], we also observed that lab section enroll-
ment is important for shaping peer perceptions in both
contexts, while discussion section enrollment is only a
strong predictor of lecture perceptions. In other words,

students learn about one another’s strengths and acquire
recognition related to lecture material in both discussion
and lab sections, while they learn about each other’s
strengths related to lab material only in lab section.

C. Recommendations for instruction

Together, our results related to gender and racial or ethnic
bias in peer recognition point to courses (first-year level) and
contexts (both lecture and lab) in which students from
underrepresented backgrounds (mostly women)may receive
less recognition than their peers and, therefore, may be at a
disadvantage for developing their physics identity [37,42].
Because recognition is one of themost important dimensions
of physics identity [18,34–41], instructors may support all
students’ identity development by facilitatingmore equitable
peer recognition.
Our findings suggest that instructors, particularly of

STEM courses at the first-year level, should aim to create
opportunities for meaningful recognition in all aspects of a
course. For example, research suggests that friendship and
collaboration with peers is one mechanism for recognition:
interacting with others allows for students to showcase
their knowledge and skills and acquire validation from
others [70,78]. Opportunities for recognition, therefore,
may be achieved through more student-centered instruc-
tional styles, where students work closely with one another
in small groups [37]. Though small group work is already
common in labs, lectures often place emphasis on indi-
viduals answering questions in front of the class. Poll
questions and other active learning activities implemented
in lectures may be turned into group discussions and group
submissions rather than individual work. Further, if stu-
dents are presenting group work in front of the whole class,
instructors can create opportunities for positive recognition
by allowing groups to discuss the ideas before asking them
to share, increasing the likelihood of groups landing on the
correct answer [79].
In terms of forming groups, prior research suggests that

historically underrepresented students (women and URM
students) benefit from working in groups where they are
not isolated [80,81]. One study, for example, found that
gender homogeneous and majority-women groups per-
formed better when solving physics problems than major-
ity-men groups [80]. The researchers observed in these
majority-men groups that the men dominated the conver-
sation, ignoring suggestions from their female peer. Our
results agree with this work from a different perspective,
namely recognition. We found that the gender bias in peer
recognition was weaker in the lab context (where groups
intentionally avoided isolated women) than the lecture
context (where any group work was completed in uninten-
tionally formed groups). Our results, therefore, support the
prior work recommending that underrepresented students
(based on both gender and race or ethnicity) be placed in
groups where they are not the minority. Previous research

SUNDSTROM, HEIM, PARK, and HOLMES PHYS. REV. PHYS. EDUC. RES. 18, 020148 (2022)

020148-14



also suggests that students tend to become friends with, and
therefore may be more prone to recognize, peers of similar
academic achievement [71]. Intentionally forming hetero-
geneous groups of students based on performance, there-
fore, might enable students of different levels of academic
achievement to recognize each other.
As to whether groups should be held the same or

changed throughout the semester, our study cannot make
a strong recommendation one way or another. Close and
consistent collaboration with group members seems to
allow students to overcome any implicit biases with which
they enter the course [74]. Meanwhile, altering groups may
be beneficial in allowing students to gain recognition from
many of their peers.
Outside of group work, instructor-posed questions to the

whole class can still provide many students with oppor-
tunities to gain recognition. For a given question, an
instructor may ask for multiple volunteers to share their
thinking before hearing from any individual student (“many
hands”) or randomly select individuals to share (“warm” or
cold call) [82]. The instructor can also explicitly ask for
different volunteers each time. Instructors should also be
cautious when allotting praise to students’ answers to the
whole class. If a student’s answer is followed by “Perfect!”
there is little room for other students to contribute or ask
questions, limiting exposure to peers to just the one student
who volunteered.

D. Limitations

We end this section by acknowledging multiple limi-
tations of our study. First and foremost, we collected our
data during a global pandemic. Students’ learning experi-
ences were certainly impacted by this event [83–87] and, as
a result, our findings may not be generalizable to physics
instruction during normal circumstances. In addition, the
courses analyzed here were almost entirely held online.
While our results align with some of the previous work
from in-person courses, future work should perform a more
systematic comparison of peer perceptions in face-to-face
and remote courses.
With regard to our methods, our perceptions survey may

not have captured all nominations. We did not provide
students with a list of names to look at when filling out the
perceptions survey, so students may not have remembered
the names of individuals they perceived as strong in the
material. Additionally, we only collected survey responses
at the midpoint of the semester. Other work administered
surveys either both at the middle and end of the course [30]
or just at the end point of the course [31]. Future work
comparing physics students’ perceptions at multiple points
in the course or just at the end of the course may add nuance
to our findings.
We also performed text processing on the surveys to

match the reported names to the class roster. This process
dropped fewer than 5% of the reported nominations

(for instance, due to students misspelling a peer’s name).
We note the possibility for bias in the text processing
because certain kinds of names might be less likely to be
matched and thus more likely to be dropped from analysis.
On one hand, students with common first or last names in the
class might be less likely to be matched, particularly if only
their first or last name is listed. Complicated names might be
more prone to misspelling and, therefore, may also have a
low probability of being matched. Rare first or last names, on
the other hand, are more likely to be matched because they
are unique. Whether certain kinds of students, for instance
non-URM and URM students, have common or rare names
might influence the representation of demographic groups in
the data. Becausewewere able to match a high percentage of
the data (more than 95%), however, we do not believe this
potential bias impacted our study’s results.
In addition, we categorized race or ethnicity in terms of

URM status because the number of students in each racial
or ethnic group was too small for our quantitative analysis
to produce useful and interpretable results. However, this
inevitably masks differences in recognition between stu-
dents of individual racial or ethnic groups. Future research
should seek to study more diverse student populations
with statistically sufficient representation from all racial or
ethnic groups. We also treated gender and race or ethnicity
separately. It seems valuable for future work to determine
whether gender and race or ethnicity are separately impor-
tant for peer perceptions or whether it is the intersection
between gender and race or ethnicity that significantly
explains recognition patterns.
Finally, peer recognition might depend on other variables

that we did not measure or analyze in this study. For
example, research suggests that students view their friends
as strong in the course [70,71]. To determine whether this is
the case, students’ friendship ties could be collected and
added as a predictor variable in the statistical model.
Students’ majors might also be related to recognition:
perhaps students view peers in particular majors (e.g.,
STEM majors or physics majors in particular) as stronger
in physics than peers in other majors (e.g., life sciences or
non-STEM majors). We did not examine the relationship
between student majors and recognition in this study because
the courses were quite homogeneous on major (either most
students were studying engineering or most students were
studying physics), many students did not report their subfield
within the engineering school, and some students did not yet
declare a major. Future work should investigate whether
and how friendship ties, students’majors, and other variables
relate to students’ perceptions of strong peers.

V. CONCLUSION

Examining students’ nominations of strong peers, we
found variation in gender and racial or ethnic biases across
three different remote, introductory physics courses.
We observed that courses primarily serving first-year
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students exhibited a gender bias in lecture perceptions,
while those serving beyond-first-year students did not.
Additionally, URM students were either more or equally
likely to receive nominations than their non-URM peers,
contrary to what prior research would predict. Recognition
also varied between lecture and lab contexts. Lecture
perception networks contained a few central students
receiving many nominations, however no outstanding
celebrities emerged in the lab perception networks.
These results suggest that recognition varies within differ-
ent student populations and instructional contexts. Findings
also point to advantages of instruction that emphasizes
small group work and allows for many different students to
speak up in front of the class. These instructional efforts are
hopefully the first steps toward creating more widespread,
rather than skewed, distributions of peer recognition, such
that all students can develop their physics identities—a
critical predictor of participation, persistence, and career
intentions in physics and other science disciplines.
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APPENDIX: ORIGINAL MODEL RESULTS AND
GOODNESS-OF-FIT COMPARISON

Table V shows the coefficient estimates using the
original model from Ref. [30] with our data. We include
four additional variables to measure discussion section
homophily and racial or ethnic bias. Figure 5 compares the
goodness-of-fit diagnostics of the original model and our
revised model (presented in the main text) for Course A’s
lecture perception network. The horizontal axis represents
a network measure—outdegree (number of nominations

TABLE V. ERGM coefficient estimates using the original model of Grunspan and colleagues [30]. Standard errors of the coefficient
estimates are in parentheses. Asterisks indicate statistical significance (�p < 0.05; ��p < 0.01). For every network, the goodness-of-fit
diagnostics for the revised model are better than those for the original model (shown in Fig. 5).

Course A Course B Course C

Lecture Lab Lecture Lab Lecture Lab

Edges −9.00 �� −8.12 �� −13.90 �� −9.07 �� −7.69 �� −9.79 ��
(0.76) (0.63) (1.57) (1.04) (0.45) (0.56)

Mutuality 3.38 �� 2.50 �� 2.23 �� 1.76 �� 4.26 �� 2.54 ��
(0.32) (0.29) (0.36) (0.43) (0.29) (0.24)

Isolates (0-indegree) 0.53 � 0.23 0.68 0.03 1.02 �� 0.02
(0.25) (0.24) (0.49) (0.38) (0.18) (0.19)

Female nominator 0.20 0.14 0.65 0.41 0.29 0.16
(0.24) (0.25) (0.42) (0.45) (0.18) (0.21)

Woman-woman bias 0.23 0.30 −0.56 0.67 0.09 0.10
(0.21) (0.21) (0.71) (0.44) (0.14) (0.18)

Man-man bias 0.52 � 0.48 � 1.01 �� 0.70 � 0.307 0.52 ��
(0.21) (0.20) (0.37) (0.35) (0.16) (0.178)

URM nominator 0.06 0.14 −0.37 −0.01 −0.61 �� 0.11
(0.25) (0.25) (0.31) (0.46) (0.21) (0.21)

URM-URM bias −0.26 −0.07 1.52 �� 1.19 0.82 �� −0.13
(0.55) (0.47) (0.56) (0.64) (0.23) (0.26)

Non-URM—non-URM bias 0.04 −0.03 −0.73 �� 0.08 −0.26 � 0.35 �
(0.15) (0.15) (0.23) (0.31) (0.12) (0.15)

Final course grade of nominee 0.79 �� 0.29 2.41 �� 0.58 � 0.41 �� 0.43 ��
(0.18) (0.15) (0.37) (0.26) (0.12) (0.14)

Discussion forum contributions of nominee N=A N=A 0.03 �� 0.01 � 0.01 0.007
(0.004) (0.006) (0.006) (0.009)

Homophily on lab section 1.20 �� 3.68 �� 0.64 �� 3.20 �� 1.13 �� 4.37 ��
(0.15) (0.20) (0.18) (0.34) (0.15) (0.16)

Homophily on discussion section 1.84 �� 0.14 0.61 �� 0.13 1.77 �� 0.46 �
(0.15) (0.21) (0.19) (0.24) (0.14) (0.18)
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made), indegree (number of nominations received), and
edge-wise shared partners (measure of triadic closure)—
and the vertical axis represents the proportion of students or
edges in the network. Each plot shows the distribution of
the network measure in the observed data (thick black line)

and in 10 networks simulated using the estimated model
coefficients (boxplots). While the original model captures
the outdegree and indegree distributions sufficiently, the
revised model significantly improves how well the model
captures the distribution of edge-wise shared partners.

FIG. 5. Goodness-of-fit diagnostics for both the original ERGM model [30] and the revised ERGM model for the lecture perception
network of Course A.
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