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Animals are often faced with time-critical decisions without prior information about
their actions’ outcomes. In such scenarios, individuals budget their investment into the
task to cut their losses in case of an adverse outcome. In animal groups, this may be
challenging because group members can only access local information, and consensus
can only be achieved through distributed interactions among individuals. Here, we
combined experimental analyses with theoretical modeling to investigate how groups
modulate their investment into tasks in uncertain conditions. Workers of the arboreal
weaver ant Oecophylla smaragdina form three-dimensional chains using their own
bodies to bridge vertical gaps between existing trails and new areas to explore. The
cost of a chain increases with its length because ants participating in the structure
are prevented from performing other tasks. The payoffs of chain formation, however,
remain unknown to the ants until the chain is complete and they can explore the new
area. We demonstrate that weaver ants cap their investment into chains, and do not
form complete chains when the gap is taller than 90 mm.We show that individual ants
budget the time they spend in chains depending on their distance to the ground, and
propose a distance-based model of chain formation that explains the emergence of this
tradeoff without the need to invoke complex cognition.Our study provides insights into
the proximate mechanisms that lead individuals to engage (or not) in collective actions
and furthers our knowledge of how decentralized groups make adaptive decisions in
uncertain conditions.

self-assembly | collective behavior | collective decision-making | uncertainty | swarm intelligence

Making adaptive decisions in the face of the unknown is a difficult task. From capital
investment in the stock market to time spent looking for food patches, decision-making
almost always involves some degree of uncertainty. Indeed, any choice made without
complete knowledge of the possible outcomes may be deemed as uncertain (1–3).
Traditional economic and ecological theories predict that individuals make choices that
are rational, that is, choices that maximize the payoffs and/or minimize the costs of an
action (4, 5). Maximizing the outcomes of a decision, however, implies that individuals
possess some knowledge about the quality of available options, or their probability
distribution. Individuals may then choose to perform an action only when the predicted
probability of success is higher than the probability of failure, or if the quality of the
payoffs is worth paying the costs associated with the task.

In real-life contexts, however, individuals are routinely faced with time-critical
decisions where both the probability and quality of the possible outcomes are unknown.
In such scenarios, individuals can limit their investment (or risk-taking) in order to
obtain economic efficiency (6–9). Decision-making under uncertainty could be an even
more difficult challenge for animal groups because information about a task’s quality
is scattered among many individuals and can only be integrated through dispersed
interactions between group members (10–13). This challenge is routinely faced by social
insect colonies, where sophisticated group-level coordination emerges solely from locally
mediated interactions among insects without centralized control (10, 14). Social insects
exhibit impressive performance in complex collective tasks such as task allocation (15),
cooperative transport (16), and nest construction (17, 18). In particular, social insects
represent optimal model systems for studying how self-organized animal groups make
optimal decisions under uncertainty. Collective decision-making has been widely studied
in social insects, especially in the contexts of colony emigrations (19–21) and foraging
(22, 23). These studies have highlighted how optimal decisions can emerge from simple
behavioral rules and feedback mechanisms among group members. In most of these
studies, however, the insects could access information about the quality of one or more
of the available options and modulate their behavior accordingly. It remains unclear how
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social insects deal with situations in which the payoffs of their
collective decisions are unknown.

Weaver ants of the genus Oecophylla routinely modify the sur-
rounding environment by forming complex three-dimensional
structures with their own joined bodies (24–27). This behavior,
termed “self-assembly,” is rare in multicellular organisms and
mostly confined to invertebrates (28–31). Examples of self-
assembly behavior include the rafts built by fire ants during
inundations (32), swarm clusters formed by honeybees during
colony fission (33), and the bridges and scaffolds of foraging army
ants (34, 35). Weaver ants form “chains” for bridging vertical gaps
along the ground and reaching new territories (27, 36). Chains
are usually initiated by one or a few ants spontaneously hanging
from a supporting structure, and their growth is promoted by the
arrival of nestmates at the structure (27). Feedback mechanisms
regulate chain formation: The number of ants in the chain acts
as positive feedback by increasing the probability that other
individuals will join the structure, but also as negative feedback
by reducing the number of ants leaving the chain. Ants will thus
prefer to join and remain in larger chains, allowing the colony to
concentrate their efforts into a single structure rather than several
unsuccessful ones (36).

Previous models of hanging chain formation (27, 36) predict
that, at large population size, chains should grow indefinitely.
Chains do, however, come at a cost to the colony: Ants
participating in chain formation cannot contribute to other
essential colony tasks such as foraging and territorial defense.
The number of ants necessary to build a chain increases with
its length, and so does the time needed to reach the target
area (27). In addition, the payoff of chain building cannot be
discovered until the structure is complete and ants can explore
the new area. A chain is beneficial only if the connected area
contains profitable resources for the colony. This makes chain
formation akin to a gamble: the colony must invest a proportion
of its capital (number of ants) to perform a task with unknown
outcomes. Since the cost of building a chain increases with the
length of the structure, but the payoff remains unknown, we
hypothesize that weaver ants may have evolved a behavioral
mechanism that prevents them from investing in costly chains.
Humans manage the pitfalls of unknown payoffs via “mental
budgets,” that is, limits on the amount of resources (e.g., time,
money) that an individual is comfortable spending in a given

context (37, 38). This is especially common in gambling (39–
41): A poker player may decide to gamble until their total losses
amount to a certain sum, or until a given hour, at which point
they will stop playing. Similarly, animals at both the individual-
and group-level budget the time that they allocate to various
activities such as feeding, foraging, traveling, or mating (42). We
hypothesize that weaver ants use a similar budgeting strategy to
avoid allocating an excessive number of workers to costly chains.

Previous work suggested that ants use visual information
when building hanging chains (25, 27, 43). Ants may thus
modulate their behavior depending on their visual assessment
of the distance from their target. We hypothesize that ants will
build chains over a range of vertical gap sizes, but will cease
building chains if the gap distance exceeds a certain threshold.
We used a combined behavioral and modeling approach to
test our hypothesis. In particular, we developed an analytical
model in which ants modulate their behavior based on their
distance to the ground and parameterized it using data extracted
from our experiments (“distance-dependent model”). We also
developed an alternative model that did not include active mod-
ulation of behavior by the ants (“distance-independent model”).
While the distance-dependent model accurately reproduced our
experimental results, its performance did not differ from that
of the distance-independent model in the parameter space of
the experiments. We then used the two models to simulate
chain growth over a wide range of traffic conditions and gap
heights. Our simulations showed that the two models predict
identical chain growth for gap heights lower than 90 mm, but
gradually diverged as the distance from the ground was increased.
Additional behavioral experiments demonstrated that ants were
unable to build complete chains over gap heights of 11 cm as
predicted by the distance-dependent model, but still built long
chains (>90 mm) when the distance from the visual target was
kept constant as the structure grew, validating our understanding
of the behavioral rules underlying chain formation.

Results

Pilot experiments and previous studies (27, 44) demonstrated
that ants can successfully build chains over gaps up to 50 mm.
Using a simple apparatus (Fig. 1), we analyzed the individual-level
behavior of ants joining and leaving chains during their formation

Gap height Food

Sub-colony

A B

Fig. 1. (A) Experimental apparatus. (B) Growth of a chain over a 50-mm gap. The area highlighted in red shows the section of the structure considered for our
detailed behavioral analysis (tip of the chain).
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over gaps of 25 mm, 35 mm, and 50 mm, to reach a platform
with a food source (Movie S1). Ants were thus required to build
a complete chain before they could assess and communicate the
value of the food source. We conducted a total of 10 trials
for each condition, and calculated the average time needed by
ants to reach the platform. We then selected 5 replicates for
each condition (total = 15) in which ants reached the platform
within one SD from the average time for performing the detailed
behavioral analyses described below. If more than 5 replicates
met this condition, we randomly selected 5 of these replicates for
further analyses.

Joining and Leaving Position of Ants. We investigated whether
ants join the chain at random positions along its length, or
preferentially join certain regions. We randomly selected 96
joining individuals across all trials and treatments, manually
tracking the location of their mandibles using Fiji (45). We
then measured the distance between each ant’s mandibles and
the lowest point of the chain at the moment of joining. Our
analysis revealed that 92% of ants (Fig. 2A and SI Appendix,
section 1) chose to join the chain in the bottommost 10 mm
of the chain (hereafter called the “tip”). We also observed that
43% of ants protruded over the end of the structure after joining,
lengthening the chain, and thereby attaining a negative distance
from the chain tip in our analyses (blue area in Fig. 2A). The mean
of the distribution is 1.83 mm, indicating a strong preference for
joining the chain at or near the tip.

Ants that join the chain at its tip may leave the structure else-
where along its length, potentially causing structural instabilities
or even failure. To investigate the location at which ants leave
chains, we tracked N = 41 randomly selected individuals that
were observed joining the chain at its tip until they left the chain.
Individuals that did not leave the chain were discarded from
this analysis. For each leaving event, we measured the distance
between the ant’s mandibles and the lowest point of the chain
at the moment of leaving using Fiji (45). Selected ants remained
in the chain from a minimum of 3.3 s to a maximum of 117.8 s
(mean = 23.2, s.d. = 26.3). As shown in Fig. 2B, 88% of the
leaving events were observed in the bottommost 10 mm of the
structure. We also observed that 12% of ants left the chain from
regions other than the tip. Ants leaving from the center of the
chain may cause structural instabilities, for instance, if the ants
remaining in the structure are unable to fully support the weight
of the nestmates beneath them. We explored this hypothesis by
testing whether leaving events outside of the chain tip cause an
instantaneous change in the length of the structure. We averaged
measurements of chain length in the 24 frames (1 s) preceding
and following each of these leaving events (N = 5), and found
negligible impact on the length of the structure (average change
in chain length = 0.21 mm, s.d. 0.27 mm).

We also documented a behavior that we called “reaching,”
where ants stretched their body beyond the chain tip and
rapidly waved their anterior legs toward the platform. This
behavior could be easily distinguished from a joining event,

0.00

0.03

0.06

0.09

0 10 20
Distance from chain tip (mm)

de
ns

ity

Percentage of ants
43%
49%
8%

Joining positions along chainA

0.00

0.05

0.10

0.15

00 10 20
Distance from chain tip (mm)

de
ns

ity

Percentage of ants
88%
12%

Leaving positions along chainB

Experimental condition*
Distance from platform

Traffic up

Traffic down

Experimental condition

Distance from platform

0.1 1 2 3
Odds Ratios

C

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ +++ + ++++ + ++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ +++ + ++++ + ++ +

0.00

0.25

0.50

0.75

1.00

0 25 50 75
Time

Su
rv

iva
l p

ro
ba

bi
lit

y

+ +0 ants/s 0.57 ants/s

Traffic leaving chain's tipD
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++ + + ++++ + ++ +
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++ + + ++++ + ++ +

0.00

0.25

0.50

0.75

1.00

0 25 50 75
Time

+ +0 ants/s 0.59 ants/s

Traffic arriving at chain's tip
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++ +++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++ +

0.00

0.25

0.50

0.75

1.00

0 25 50 75
Time

+ +5.29mm 39.29mm

Distance from target platform

Fig. 2. Experimental results. (A) Probability density function (PDF) of the distance between ants’ attachment point and position of chain tip at the moment
of joining. Negative values represent instances in which ants joined beyond the tip of the structure, while positive values indicate joining positions along the
chain. The area outlined in red indicates 90% of the data, and the dashed line indicates the median of the distribution. (B) Probability density function (PDF)
of the distance between ants’ leaving position and position of chain tip at the moment of leaving. The blue dashed line indicates the mean of the distribution.
(C) Results from the linear mixed-effects model, showing the relative effects of predictors on the probability of observing an ant joining the chain. (D) Survival
analysis of the time spent by ants in the structure during chain formation. Survival curves are plotted using predictions extracted from the Cox model for the
first (orange) and fifth (purple) quantiles of each predictor.
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where ants would become motionless (Movie S2). In line with
our hypothesis, a GLMM indicated that ants are more likely to
show reaching behavior when the platform is closer (N = 327,
z =−2.626, P < 0.01) (SI Appendix, section 2).

Overall, these results suggest that ants may employ the simple
behavioral rule of walking down the chain as far as they can
before joining. Tactile stimulation provided by nestmates and/or
the load of the structure sustained by the ant may then act as
inhibitory mechanisms that prevent ants in regions other than
the tip to leave the structure, in line with what is observed in
other self-assemblages (28, 32, 46).

Constant Probability of Joining. Informed by our previous anal-
ysis, we focused our behavioral analysis on the ants arriving at
the lowest 1 cm of the chain (N = 322). We defined a joining
event as any event in which the focal ant remained motionless
for at least 3 s (N = 180). This threshold allowed us to rule out
stopping events caused by other factors, such as traffic congestions
or difficulty walking on the chain. Ants that joined the chain tip
were followed until they either left the chain or until the tip of
the chain grew beyond their position, in which case they were
censored. Censored ants may have decided to stay in the chain
until the end of the replicate or may have left their position after
we stopped tracking them. However, censoring is unlikely to
impact our results as our behavioral analyses (Fig. 2B) showed
that most ants leave the chain at its tip. In addition, ants that leave
from other regions of the chain have no impact on the length of
the structure. We considered an ant to have left the chain when
it resumed walking after a joining event (N = 42).

We investigated whether the probability of an ant joining
the chain was influenced by the current conditions of the
structure using a GLMM with a binomial distribution. The
model included the experimental condition (25 mm, 35 mm,
and 50 mm), the distance to the platform (mm), and the traffic
volume and directionality (ants/s) as fixed effects. The effect of
chain length was estimated by including the interaction between
the experimental condition and the distance to the platform in
the model. All predictors were averaged over the time window
starting from the moment in which the focal ant arrived at the tip
of the chain until the moment of joining. Trial ID was included
as a random effect. We performed residual diagnostics through a
simulation-based approach using the DHARMa package in R.

Our model shows that the probability of ants to join the chain
is not influenced by the traffic conditions (traffic down: N = 322,
z = 0.286, P = 0.775; traffic up: N = 322, z = −1.05,
P = 0.293), the length of the chain (N = 322, z = −1.308,
P = 0.191), or the distance from the platform (N = 322,
z = 1.051, P = 0.293) (Fig. 2C ). As expected, the experimental
condition did not influence the behavior of the ants (N = 322,
z = −0.226, P = 0.821). We also found no significant effect of
these predictors on ants’ latency to join the chain (SI Appendix,
section 3). Overall, our results indicate that ants join chains with
a constant probability that is not affected by the current state,
position, or utility of the structure.

Modulated Probability of Leaving. The time spent by ants as part
of the structure was analyzed using a Cox proportional hazard
survival model. The model included the distance to the platform
(mm), the traffic volume and directionality (ants/s), and the rate
of joining of other ants (ants/s) as fixed effects. Chain size was not
included in the model because this information is not available
to ants once they have attached to the chain tip, and because we
found no effect of this predictor on the probability of joining the

chain or on the latency to do so (Discussion). All measurements
were averaged over the time period in which the ant was tracked
as part of the structure. We stopped measurements when the ant
left the chain or when we stopped tracking it because the chain
tip grew beyond her position. All ants that joined chains were
included in the analysis. The proportional hazard assumptions
were checked using the cox.zph function in the R survival package.

Our model shows that ants spent more time as part of the
chain when the platform was closer (N = 180, z = 3.436,
P < 0.001). The ants’ behavior was also modulated by traffic
flow and directionality. Ants remained longer in chains when
the traffic flow arriving at the chain tip was high (N = 180,
z = −4.225, P < 0.0001). Traffic flow leaving the tip of the
chain had the opposite effect, decreasing the amount of time
spent by ants as part of the structure (N = 180, z = 3.772,
P < 0.001) (Fig. 2D). We found no effect of the joining rate of
other individuals on the leaving decision of ants in the structure
(N = 180, z = −0.277, P = 0.782).

Theoretical Model

Model Description. Informed by our experimental results, we
formulated a theoretical model for the relationship between
individual-level behavior and chain formation. The model aims to
predict the number of joining and leaving events at the tip of the
structure by using parameters extracted from our experimental
results. This allows us to validate our hypothesis, and further
explore the tradeoffs of chain formation.

We define chain size as the number of ants in the chain at a
given time, and calculate it as the cumulative sum of the difference
between the number of ants joining the chain at its tip and the
number of ants leaving the structure per unit time:

dS
dt

= Nj − Nl , [1]

where S represents chain size, Nj represents the number of ants
joining the chain at its tip per time unit, and Nl represents the
number of ants that leave the chain at its tip per time unit.

Our experimental results indicate that the probability Pj that
an ant joins the chain at its tip is constant and independent of
the current state of the structure (Fig. 2C ). We assume that the
number of ants joining the chain Nj per time unit is influenced
solely by the traffic rate of ants that can potentially join the
chain. The product of these terms therefore describes the total
number of ants joining the chain per unit time, or Nj. We define
Nj = TPj, where T is the traffic rate (number of ants that arrive
at the chain tip per time unit) and Pj is the time-independent
probability that each ant will join the chain tip. Since traffic
flow naturally varies over the time frame of each experiment, our
model uses the traffic rate of ants experimentally measured and
averaged over 10-s intervals.

Since our survival analyses included not only ants that were
observed leaving the chain but also censored ants, the number of
ants Nl that can leave the chain is limited by the current size of
the chain S rather than by the number of ants at the tip of the
structure. We denote the proportion of ants leaving the chain per
unit time as W . The product of these terms therefore describes
the total number of ants leaving the chain per unit time, or Nl .
We thus define Nl = SW and reformulate our model as

dS
dt

= TPj − SW . [2]

Our experimental results indicate that ants adjust their leaving
decisions based on their distance from the platform and on the
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perceived traffic conditions. Given the relatively small magnitude
of the effect of traffic on the ants’ behavior (Fig. 2D), and for the
sake of model simplicity, we model the leaving decisions of ants
as only dependent on the distance d to the platform, which varies
over the duration of the experiment. We model leaving the chain
as a memoryless process: Each ant has a constant probability of
leaving the chain per unit time, which is independent of the
time already spent in the chain. This assumption is validated
by the survival curves shown in Fig. 2D as the proportion of
ants remaining in the chain per unit time can be reasonably
approximated as an exponentially decaying curve (47). The
proportion of ants leaving the chain W per unit time can thus be
defined as the decay rate of the exponential curve f (t) = e−Wt ,
where t = 0 represents the time at which ants joined a chain.
We can obtain the decay rate of the curve by performing a linear
regression on the proportion of ants remaining in the structure
against time on a log-linear scale (SI Appendix, Fig. S3) (48).
To model the change of W as a function of d , we calculate the
decay rate of survival curves for several values of d by extracting
predictions from our Cox survival model (Fig. 2D). This allows
us to represent the relationship between W and d (SI Appendix,
Fig. S4) as W = PL0eRd , where PL0 is the decay rate of ants when
the chain is complete (d = 0) and R is a constant that represents
the growth or decay of the curve as a function of d . We lastly
need to characterize the relationship between the number of ants
in the chain and its length. This allows us to calculate d from the
current size of the chain S. We use a linear model (lme4 package
in R) to represent this relationship based on our experimental
data (SI Appendix, Fig. S5).

Our theoretical model hypothesizes that the leaving decisions
of ants are influenced by the distance to the platform. We
henceforth refer to our model as the “distance-dependent”
model. To validate our understanding of the individual-level
behavior of ants, we formulate an alternative model of chain
formation which considers the probability of ants leaving the
chain to be independent of d , so that ants have a constant
probability of leaving the chain for the duration of the experiment
(henceforth the “distance-independent” model). This probability
was calculated using the predictions of our Cox survival model
for an average chain in the behavioral experiments (SI Appendix,
Fig. S4).

In summary, at each time step t, our model calculates the
number of ants joining (Nj) and leaving (Nl ) the chain to find
the current size of the chain S. S is then used to estimate the
distance from the platform d and its corresponding value of W
from the fit presented in SI Appendix, Fig. S4 for the next time
step. This process is then repeated until the chain fully bridges
the simulated gap.

The model thus contains three fitting parameters—Pj, PL0,
and R—all of which are derived from our experimental data. Pj
is a constant that specifies the time-independent probability that
an ant will join the chain, which is estimated from the full range
of empirical data on the joining decisions of ants. PL0 and R are
estimated from the survival analysis on the leaving decisions of
ants, and describe the relationship between W and d as shown
in SI Appendix, Fig. S4.

Model Solution. In Eq. 2, we have three parameters that vary with
time: chain size S(t), ants’ traffic rate T (t), and the proportion
of ants leaving the chain per unit time W (t). This makes our
equation unsolvable analytically. We thus obtain a discrete form
of Eq. 2 by using Euler’s forward step approximation (49):

St = St−1 + (PjT − St−1W )1t, [3]

where St−1 is the chain size at the time step t − 1 and 1t is the
difference between any two consecutive time steps t and t + 1.
This method consists of approximating the solution St for any
time step t by fitting a tangent line to the solution St−1 at the
previous time step. The accuracy of this approximation improves
as the distance 1 between consecutive time steps decreases.

Model Simulations. For each experimental trial (N = 15), we
ran one simulation with matching duration and traffic rate T
grouped at 10-s intervals. Since the two models do not contain
stochastic variables, additional simulations would return exactly
the same result. We calculate the proportion of ants leaving per
unit time at every time step by estimating the length of the
chain at the previous time step. We then extract the estimated
number of ants joining or leaving at the tip of the chain at all
time steps and compare it to the experimental observations. We
find a close agreement between modeling and behavioral data
across all experimental conditions (Fig. 3 A and B; SI Appendix,
Fig. S6). The plots in Fig. 3 show that both models accurately
predict the number of ants participating in chain formation. This
suggests that incorporating a local mechanism for ants to adjust
their leaving decisions based on the distance to the platform may
not be necessary to improve the predictive accuracy of the model
within the range of our experimental conditions.

Extension of Model Simulations. We thus decided to investigate
whether the two models differed in their predictions across a
wider range of gap heights and traffic conditions. Indeed, in
their natural habitat, weaver ants can build hanging chains much
longer than those observed in our experiments (>5 cm). If
ants modulate their building decisions depending on the cost
of forming a chain, as per our hypothesis, we should find that
the likelihood of observing chains decreases with the length of
the gap to be bridged. This is because the cost of building a
chain (number of ants in the structure) increases with the length
of the structure, whereas its benefit remains unknown until the
platform is reached.

We simulated chain formation over a wide range of gap heights
(from 10 mm to 120 mm, at 2.75-mm increments) and traffic
conditions (from 0 to 2 ants/s, at 0.05 increments) using the
distance-dependent and distance-independent models. Model
parameters were estimated using predictions from our statistical
models as described in the “Theoretical model” section. We ran
100 simulations for each combination of traffic and gap height
over a time window of 500 s, corresponding to twice the longest
duration recorded in our behavioral experiments, or until the
chain reached the platform, whichever happened first. To include
variability in our simulations, traffic flow T was randomly drawn
from a gamma distribution at every time step. The shape and
scale parameters of the distribution were obtained using the
selected average traffic value and the experimentally measured
traffic variance. For each unique combination of traffic flow and
gap height (N = 1,681), we averaged the length of the chains
from all 100 simulations at every time step and calculated their
median growth rate by estimating the change in chain length
between every two consecutive time steps.

As expected, the two models differ in their predictions about
the growth of chains when a wider range of gap heights and traffic
conditions is considered (Fig. 4). Predictions from the distance-
dependent and distance-independent models are shown in Fig. 4
A and B, respectively (SI Appendix, Fig. S7). White dots represent
our experimental trials and confirm that our behavioral data fall
in an area where the predictions of the models do not differ. The
distance-dependent model clearly predicts that ants stop investing
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Fig. 3. Comparison of modeling predictions and experimental data. (A) Growth in the number of ants participating in chain formation as a function of time
for experimental data (purple), distance-dependent model predictions (orange), and distance-independent model predictions (green). The number of ants in
the chain is calculated as the difference between the number of ants joining the chain and the number of ants leaving the chain. Measurements are given for
each experimental condition: 25 mm, 35 mm, and 50 mm. (B) Number of ants in the chain predicted by the distance-dependent model (orange dots) and the
distance-independent model (green dots) as a function of the number of ants measured experimentally. Solid lines and confidence intervals are calculated
using a total least square regression. Comparison is given for each experimental condition: 25 mm, 35 mm, and 50 mm.

in chains when the gap is taller than 89 mm (Fig. 4A). To gain
insight into the origin of this cap, we extracted the parameters
from the distance-dependent model for various values of gap
length. This revealed that 89 mm is the distance at which W = 1,
that is, all ants joining the chain quickly leave before the structure
can grow. The probability of forming a chain decreases with the
length of the gap to be covered, and no complete chains are
observed when the platform is farther than 89 mm even at very
high levels of traffic. This is in stark contrast with the predictions
from the distance-independent model, which indicates that ants
always build chains regardless of the distance from the platform
(Fig. 4B). In addition, the distance-dependent model predicts
that the traffic flow necessary for a chain to grow at some given
rate increases nonlinearly with gap height. Indeed, for a given

traffic flow rate, the growth rate of chains rapidly decreases as a
function of gap height. This suggests that longer chains may be
costlier to build as they require a higher traffic flow to grow at
the same rate as smaller chains. A similar prediction is generated
by the distance-independent model, although in this case the
necessary increase in traffic flow to maintain the same growth
rate is linear and lower in magnitude. This effect may, however,
arise from the fact that ants have more chances to leave during
the formation of longer chains, as they inherently require more
time to be built.

Model Validation. The most evident difference between the two
models is that the distance-dependent model predicts that ants
should never build complete chains when the gap distance to
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A

B

C

Fig. 4. (A and B) Growth rate of chains predicted by modeling simulations for several combinations of gap height (x-axis) and traffic flow (y-axis). The color
of each square indicates the median growth rate of chains calculated from 100 simulations. Black regions indicate the absence of chain formation. White
dots indicate the position on the graph of our behavioral experiments. Areas of equal growth rate are indicated by white dashed lines. The dashed green
line indicates the level of traffic for which chain growth is nil. (A) Growth rate predicted by the distance-dependent model. (B) Growth rate predicted by the
distance-independent model. Full range of simulations shown in SI Appendix, Fig. S7. (C) Growth in chain length as a function of time for experimental data
(points) and model predictions (line) when the distance from the platform is kept constant. The red shaded area shows 95% confidence intervals of the modeling
predictions.

be covered exceeds 89 mm (Fig. 4A). To test which of the two
models more accurately describes the behavior of the ants, we
performed additional behavioral experiments. We prepared ten
queenless subcolonies of 200 adult foragers each, selected from
four master colonies. For consistency with the previous set of
experiments, ants were starved for 24 h and tested the following

day using an identical experimental set-up (Fig. 1A). We set the
distance to the platform at 110 mm, a distance at which the two
models clearly differ in their predictions (Fig. 4). In our previous
behavioral experiments, we measured an average traffic flow rate
of 0.12 ants/s. The distance-independent model predicts that at
this traffic flow rate, ants should take 32 min to complete the
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chain, whereas the distance-dependent model predicts no chain
growth. We video recorded the behavior of ants for 30 m after
the first individual was observed walking on the horizontal stick.
We then returned all ants to their container and let them rest
for 30 min. We then allowed the same subcolonies of ants to
form chains over a gap of 35 mm to ensure that the lack of chain
building in the first experiment was not due to other reasons
such as lack of motivation or low colony activity. Four out of ten
subcolonies were discarded through this screening procedure.

Only the distance-independent model predicted the formation
of complete chains over a gap of 110 mm, and we observed no
complete chains in our experimental test (N = 6). In 5 out of
6 replicates, ants initiated small chains, with only two replicates
containing chains that exceeded 20 mm in length. These quickly
disassembled before reaching 50 mm (maximum length = 4.71
cm). These results are clearly in contrast with the predictions of
the distance-independent model (Fig. 4B), indicating that the
integration of a local mechanism that allows ants to modulate
their behavior based on the distance from a platform is necessary
to accurately predict chain formation over longer gap heights.

Tricking Ants into Forming Longer Chains. The experiments
described in the previous section validated the predictions of the
distance-dependent model, confirming that weaver ants use visual
cues to make decisions when forming chains. If our hypothesized
mechanism is correct, we can trick ants into forming long (>9
cm) chains by keeping the distance to the platform constant as the
chain grows. This mechanism would deceive ants into thinking
that the gap is always easy to fill, causing them to remain in the
structure for longer periods of time. We validate this prediction by
running additional simulations with our theoretical model where
the platform distance is kept constant at 2 cm. As expected,
the model predicts chain growth beyond the 9-cm cap for all
traffic conditions (SI Appendix, Fig. S8). We therefore tested this
prediction using 3 subcolonies of ants extracted from 2 queen-
right colonies. We increased colony size to 500 individuals to
ensure sufficient traffic levels and starved ants for 24 h prior to
experiments to increase foraging motivation. The experimental
apparatus was identical to that shown in Fig. 1A, except that the
platform was placed on a sliding rail that allowed the experimenter
to lower it down using a handle as the chain grew in length. No
food was placed on the platform to avoid potential confounding
effects and confirm that ants primarily rely on visual cues when
forming chains.

We set the distance to the platform at approximately 3.5 cm
at the beginning of each experimental trial, and started video
recording from the moment in which ants formed a chain of at
least 1 cm. As the chain grew, the platform was slid down so
that its distance from the chain tip was maintained between 0.5
and 2 cm. Experimental trials were terminated when the chain
disassembled or broke down. At the end of each experimental
trial, ants were left resting for 30 min before being tested again.
Maximum chain length was measured for each replicate (N =
8) using the image-processing software Fiji (45). As predicted
by our theoretical model, ants formed chains longer than 9 cm
in all the experimental trials, with a maximum recorded chain
length of 12.5 cm (Movie S3). To further validate our model,
we performed additional simulations (N = 1,000) keeping the
distance from platform d below 2 cm. We measured the traffic
flow of ants arriving at the chain tip in our behavioral experiments
and found the average traffic rate to be 0.21 ants/s. We included
traffic variability in our simulations by randomly drawing traffic
flow T at each time step from a gamma distribution, with scale

and shape parameters were calculated using the experimentally
extracted average traffic rate and variance. The distance from
platform d was randomly drawn at each time step from values
between 2 mm and 20 mm. We found a good agreement between
the model’s predictions and empirical data (Fig. 4C ), further
demonstrating the accuracy of our model in predicting chain
growth. These results indicate that chains can easily exceed 9 cm
without being limited by physical limitations, and confirm that
ants use visual proximity as a cue for deciding to remain in the
chain or leave their position. These experiments also open up the
path for exploring which characteristics of visual stimuli are more
salient to ants when making these decisions.

Discussion

In the current study, we used the chain-building behavior of
the weaver ant O. smaragdina as a model system to investigate
how animal groups make adaptive decisions under uncertainty,
in particular when no information is available about payoff.
We combined detailed behavioral analyses with mathematical
modeling to describe the behavioral rules underlying chain
formation and showed that weaver ants cap their collective
investment into chains when the payoff of building is not known.
In our experiments, ants consistently formed chains over vertical
gaps up to 50 mm in length, but never formed complete chains
when this length was increased to 110 mm. Our results are in
contrast with a previous model of chain formation (27, 36),
which predicts that chains should grow indefinitely if the initial
population of ants is large enough. We here propose a distance-
based model for chain formation in weaver ants, which predicts
the emergence of a cost–benefit tradeoff from local decisions of
ants without requiring global knowledge, complex cognition, or
communication among ants.

Informed by our experimental analyses, our model integrates a
simple behavioral rule that allows ants to modulate their leaving
decisions according to their distance from a platform. We showed
that this rule suffices not only to accurately reproduce chain
growth within the parameter space of our experiments but also
to predict the building decisions of ants when confronted with
large gaps. Previous studies on O. smaragdina and its sister species
O. longinoda (27, 36) reported that the individual-level decisions
of ants to join or leave a chain were dependent on the number
of individuals already in it. In short, the larger the chain the
higher the joining probability of ants arriving at the chain and
the lower the leaving probability of ants already in it. However,
these studies failed to identify the local stimuli that would allow
ants to estimate chain size before joining or leaving. A candidate
mechanism is that ants estimate chain size by measuring the
distance walked over the chain before joining. Both our current
results (Fig. 2A) and previous reports (27) showed that ants
tend to walk down the entire length of the chain before joining,
suggesting that ants may be using the length walked as a cue to
join chains. Our results, however, showed no impact of chain
length on the probability of joining the chain or on the latency
to do so. In contrast, we found that the probability of observing
an ant joining a chain was independent of the instantaneous
conditions of the structure and/or traffic flow. It is, however,
unlikely that ants that are already in the chain can assess chain
size using local cues. Our experimental analyses revealed that
ants tune their leaving decisions according to their distance from
the platform, remaining longer in chains when closer to it. It
is important to note here that our analyses were restricted to
the leaving dynamics at the tip of the chain. Leaving events
in other regions of the chain are rare (Fig. 2B), suggesting the
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existence of a behavioral rule that prevents ants from leaving their
positions if other individuals are hanging from them. Anderson
et al. (28) suggested that ants participating in a chain should join
and leave only at its extremity because individuals in the middle
may be constrained in the structure and unable to leave. Studies
on Eciton army ants’ bridges demonstrated that the probability
of an ant to leave its position decreases with the number of
neighboring individuals and that the traffic passing over the ant
further increases its probability to remain motionless (50). Our
behavioral analyses revealed that weaver ants are more likely to
remain in chains when the traffic flow arriving at the chain’s
tip is high, suggesting that a similar behavioral mechanism may
be at play here. This mechanism may also be mediated by the
load sustained by ants while in the chain, but further studies are
necessary to confirm this hypothesis.

A major assumption of the model is that ants are able to
perceive and estimate their distance from the platform. Previous
research demonstrated that the presence of visual stimuli is
necessary for the initiation of chain formation and that chains
are never formed when no stimulus is present (25, 27, 43).
It is possible therefore that our results could be explained by
perceptual constraints, specifically an inability to detect the
platform from a distance. This is unlikely, however, as we
observed chain initiation in all our experimental conditions and
even when the distance from the target was set at 110 mm. O.
smaragdina major workers are visual predators and navigators
with highly developed eyes that are well-tuned for diurnal
light conditions (43, 44, 51–53). Although no comprehensive
study on the visual capabilities of O. smaragdina workers exists,
comparisons of O. smaragdina eye anatomy with that of other ants
(52–54) suggest that weaver ants should easily detect the platform
stimulus in all of our experimental conditions. Our results also
show that ants were more likely to lengthen a chain with their
bodies when closer to the platform and that the probability of
observing “reaching” behavior also increased with the proximity
to the target. Taken together, these results indicate that the
modulation of chain building is driven by “voluntary” individual-
level decisions of ants rather than by perceptual limitations.

Our model also ignores the effect of traffic flow and direc-
tionality on the behavior of ants in the chain. This decision is
motivated by the relatively small impact of these factors on the
leaving decisions of ants (Fig. 2D), and by our effort to maintain
model simplicity. Responsiveness to traffic information has been
shown to underlie the stability and adaptiveness of the structures
built by Eciton army ants (35, 46, 50) and Solenopsis fire ants
(32, 55, 56). In these ant genera, individuals within structures
use the tactile cues provided by nestmates walking over them to
modulate their behavior. Our experimental results suggest that
weaver ants may use a similar mechanism during chain formation.
Traffic flow descending chains may promote chain stability by
keeping ants within the structure motionless during extended
foraging periods. On the other hand, ants walking up the chain
may signal the presence of danger at the far end of the structure
and trigger ants within the structure to leave their position.
This may explain the rapid disassembly of chains when a visual
stimulus is removed from below the structure (27). Investigating
the impact of traffic cues on chain formation may provide useful
insights for comparing the mechanisms governing self-assembly
structures in diverse ant genera and shed further light on the local
stimuli that regulate decision-making at the individual level.

Similar to observations of individual animals (1, 6, 8, 9,
40, 41), O. smaragdina colonies modulate their investment
into tasks with unknown payoff. The collective decision of
building a chain emerges from the individual-level budgeting

decisions of ants already in the chain, without the need to invoke
sophisticated communication or complex cognition. Each ant
modulates the time spent within a chain in response to locally
available information on target distance, and these decisions lead
to a collective-level outcome that limits the overall investment
into costly chains. While our work focused on the behavioral
mechanisms that ants use in the absence of payoff information,
future studies should investigate how access to this knowledge
modifies the decision-making of maintaining a chain after
exploring the new area (i.e., when payoff information becomes
available). Payoff information may be encoded in the traffic flow
walking over the structure. The weak effect of traffic flow detected
in our behavioral analyses during chain formation (Fig. 2D)
may have a major effect on maintaining stability in established
chains, as it has been observed in the bridges built by Eciton army
ants (50).

Our findings also reveal the possibility that noise in the system
and/or the motivational state of the ants may regulate chain-
building decisions. We observed the initiation of chain formation
when the distance from the platform was set at 110 mm,
suggesting that some individuals may possess different thresholds
for initiating or remaining in chains. Threshold models are
common in social insect research (15, 57–59), and interindividual
variation in response thresholds has been shown to enhance
group performance in various tasks (15, 57, 60–62). Longer than
expected chains may also spontaneously emerge in the case of
traffic congestions, where ants that are walked over by nestmates
may remain locked in position and form small temporary clusters
that may seed chain formation.

Research on social insect behavior has led to important
advances in our understanding of complex systems (63), and
inspired several solutions for the optimization of real-life prob-
lems such as traffic formation (64), protein folding (65), and
DNA sequencing (66). Our proposed model offers insights for
algorithmic solutions to collective decision-making in artificial
multiagent systems, especially for cases where information about
the outcomes of the decision is unavailable. This is especially
relevant for swarm robotics, where scalability, energetic effi-
ciency, and low-cost production are pivotal elements for real-
world applications of the swarms (67, 68). The behavioral
algorithm presented here requires agents to modulate their
behavior depending on their energetic or motivational budget,
without the need for active communication or sophisticated
cognitive abilities. In scenarios such as search and rescue (69),
these behavioral rules may aid robots in navigating unknown en-
vironments and make cost-effective decisions without knowledge
of the possible outcomes.

The current study improves upon the previous model of chain
formation (27) by describing a simple sensory-based mechanism
that allows ants to modulate their behavior using only locally
available information. The model presented here aligns with the
self-organized nature of chain formation, in that a sophisticated
group-level behavior can be explained by simple behavioral rules
followed by individuals without the need to invoke complex
cognition or communication among individuals (10, 14). Our
study furthers our knowledge of collective decision-making in
animal groups and sheds light on the processes that allow groups
to deal with uncertainty in real-life scenarios.

Materials and Methods

Biological Material. Six queenright weaver ant (O. smaragdina) colonies were
collected from Townsville (QLD, Australia) and maintained in a temperature-
controlled room (27 ± 1 ◦C) under a 12- × 12-h photoperiod at Macquarie
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University (Sydney, NSW, Australia). We used a total of 20 queen-less subcolonies
of 200 adult workers each, housed in small plastic containers (255 mm× 175
mm × 117 mm) with Fluon-coated walls to prevent ants from escaping. No
food was given to ants 24 h prior to the experiments to increase foraging and
exploration motivation. A retort stand base was placed in the containers as
support for the vertical bar during the experiments. The platform consisted of a
white Corflute strip placed on top of a plastic support cylinder (height = 150
mm, diameter = 65 mm) (Fig. 1). We coated the cylinder’s walls in talcum
powder (70) and immersed its base into a water-filled large petri dish to prevent
the ants from escaping.

Experimental Procedure. A vertical iron bar (height = 570 mm, diameter =
10 mm) was placed within the subcolony using the retort stand base as support.
We attached a 10-cm-long wooden stick perpendicularly to the vertical bar to
provide ants with support from which they could form hanging chains. The free
end of the stick was positioned directly above the center of the foraging arena.
The distance between the wooden stick and the platform was adjusted according
to the experimental condition (25 mm, 35 mm, and 50 mm). Preliminary
observations and previous studies showed that ants reliably formed chains
across this range of heights (27, 36). Generally, ants started forming a chain
within 15 min from the beginning of the experiment.

We recorded all trials in FullHD resolution (1,920 × 1,080 pixels) at 24
frames per second using a Panasonic Lumix GH-4 video camera. Filming started
when the first ant was observed hanging from the wooden stick and stopped
when the first ant left the chain through the platform at the bottom (i.e., before
information about the food source could travel back to the colony).

All ants were returned to their container at the end of each experimental
trial. We removed chemical traces left by ants by cleaning the vertical bar, the
horizontal wooden stick, and the platform with 100% ethanol between trials.
Ants were left to rest for at least 1 h before being tested again. After a bout of
experiments, the vertical bar was removed from the subcolony, and ants were
left to rest overnight in a temperature-controlled room (27± 1 ◦C) before being
tested again on the following day. All ants were returned to the main colony
after a maximum of 4 d of testing.

Video Analysis. We quantified the proportion of chain length walked by ants
before joining using the free image processing software Fiji (45). Ants (N =
96) were randomly selected using a custom random number generation (RNG)
code developed in R using the randomizr package (71). For each ant, we noted
the coordinates of the ants’ mandibles and of the chain tip at the moment of
joining. We chose to use the mandibles as the reference point for consistency
across ants and to gather information about the joining choices of ants (see Data
manipulation and Results sections).

The individual-level behavior of ants at the chain’s tip was analyzed using
the open-source event-logging software BORIS (72). We defined the chain’s tip
as the bottommost 1 cm of the chain (1.5 ant-body lengths). A virtual line was
overlaid on the videos to separate the chain’s tip from the rest of the chain. For
each ant crossing the line in the direction of the tip, we noted the following:
1) time of crossing; 2) time and duration of joining behavior (if any); 3) time
of leaving the structure (if the ant joined the chain); 4) time and duration of
extension behavior (if any); and 5) time of crossing back over the virtual line (if
any). We kept track of all ants joining the chain’s tip until they either left the
structure (i.e., started walking again after joining) or until the line defining the
chain’s tip passed beyond them, in which case they were considered as having
remained as part of the structure until the end of the replicate. Traffic volume
and directionality at the chain’s tip were quantified by counting the number of
ants that crossed the virtual line in each direction.

The length of the chain was detected using a custom image subtraction
algorithm in R (version 4.2.1). The algorithm compared each frame with
the subsequent ones to detect only ants that remained stationary for at
least 3 s. Measurements were scaled through a known distance recorded
in-frame.

Data Manipulation and Statistical Analyses. All data manipulation and
statistical analyses were performed in R (73) (version 4.2.1) using the packages
glmmTMB (74) (version 1.1.4), lme4 (75) (version 1.1-30), lmerTest (76) (version
3.1-3), DHARMa (77) (version 0.4.5), ggplot2 (78) (version 3.3.6), tidyr (79)
(version 1.2.0), dplyr (80) (version 1.0.10), readr (81) (version 2.1.2), ggeffects
(82) (version 1.1.3), survminer (83) (version 0.4.9), data.table (84) (version
1.14.2), viridis (85) (version 0.6.2), scales (86) (version 1.2.1), and survival (87)
(version 3.4-0). All data manipulation was performed using the dplyr, tidyr,
scales, and data.table packages. Statistical models only included predictors that
we had an a priori reason for including (88). Residual diagnostics for all GLMMs
were performed using the simulation-based approach implemented in DHARMa
unless otherwise stated.

The probability of an ant joining the chain’s tip when it arrives in the
area was analyzed with a generalized linear mixed effect model (GLMM) with
binomial distribution and “Nelder Mead” optimizer using the lme4 package.
The model tested whether this probability was influenced by traffic volume and
directionality, by the length of the chain, or by the distance from the platform.
Since the latter two variables inevitably covary, we used the interaction between
the experimental condition and the distance from the platform as proxy for
the length of the chain in the model. A significant interaction term would thus
indicate that the behavior of ants is influenced by the length of the chain. The
full model included traffic down, traffic up, experimental condition and distance
from the platform as continuous fixed predictors, and the interaction between
experimental condition and distance from the platform. We averaged traffic
down, traffic up, and distance from the platform over the time window starting
when the ant crossed the virtual line at the chain’s tip until either the moment of
joining (if the ant joined the chain) or until the ant walked away from the chain’s
tip. Traffic up and traffic down were then divided by the duration of the time
window to obtain traffic rates in ants/s. We scaled and centered experimental
condition and distance from the platform using the inbuilt R function scale for
easier data interpretation. Trial ID was included as a random factor.

The time spent by ants as part of the chain was analyzed using a Cox
proportional hazards model (CPHM) using the survival package. The model
tested whether the probability of leaving the chain was influenced by traffic
volume and directionality, by the distance from the platform and/or by the
number of ants that joined the chain during the time window in which the ant
was part of the structure. We averaged traffic up, traffic down, and distance from
the platform over the time spent by the focal ant as part of the chain until it either
left the chain or was censored. Traffic up and traffic down were then divided by
the duration of the time window to obtain traffic rates in ants/s. We found no
significant deviations from the proportionality assumption at the local and at
the global level using the cox.zph function in the survival package.
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