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1. Introduction

Consider the Korteweg-de Vries (KdV) equation, written in the form
qr +64qx + gux =0, x€[0,1), t >0, (1)

subject to periodic boundary conditions. A main outcome of this work is an efficient numerical method for the computation of the
inverse scattering transform associated with (1), that is, a numerical inverse scattering transform for the Schrodinger operator with a
periodic, piecewise smooth, potential. We also consider dressing scenarios when spectral data is specified arbitrarily to emphasize that
our formulation can be understood as the evaluation of a special function depending on a large number parameters.

Following [2-4], we formulate a Riemann-Hilbert problem for the so-called Bloch eigenfunctions of the Schrédinger operator. In the
finite-gap case, two eigenfunctions are classically used to construct the associated Baker-Akhiezer function on a hyperelliptic Riemann
surface. A key improvement we make here over the numerical approach in [2] is that through a transformation z2 = A we pose
Riemann-Hilbert problem with jumps supported on the gaps. This idea was used with limited scope in [5].

The key numerical innovations come from the use of the Chebyshev-V and Chebyshev-W (third and fourth kind) polynomials
and their weighted Cauchy transforms. These weighted Cauchy transforms encode the singularity structure of the solution of the
Riemann-Hilbert problem we pose and allow for an extremely sparse representation of the solution. This is demonstrated in Fig. 13.

The developed numerical method can handle high-genus potentials — Riemann-Hilbert problems with jump matrices supported on
thousands of intervals. This ability stems from the choice of Chebyshev-V and -W basis, which is one of the new ideas in this work. But
there are additional developments that are required to even pose that Riemann-Hilbert problem in the inverse scattering context. These
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Fig. 1. u(x, 1.037) and u(x, 0.1) in (174) with (175) solving KdV equation in the form u; — uuy 4t = 0 (as in [1]). This plot shows dispersive quantization. The
solution appears to be piecewise smooth at rational-times-7 times and fractal otherwise. For the KdV equation, this was first observed by Chen and Olver, see [1],
for example. These plots are produced using a genus g = 300 approximation. More details concerning the computation of this solution can be found in Section 5.4.

developments are related to computing the period matrix for a basis of holomorphic differentials when the genus is high. Through a
judicious choice of the basis of holomorphic differentials, we develop an approach that appears stable as g — oo. Furthermore, our use
of Chebyshev-V and Chebyshev-W polynomials and their weights is predicated on having a potential that produces a Baker-Akhiezer
function with poles at band ends. As this is not the generic setting, following [2], we construct a parametrix Baker-Akhiezer function
to move the poles to the band ends, without loss of generality. A simplification explained in Section 2.3 allows for g to be large with
this approach.

In this paper we do not discuss, in detail, the computation of the direct scattering transform for the Schrédinger operator with a
periodic potential — the computation of the periodic, anti-periodic and Dirichlet spectra. We do accomplish this using existing standard
techniques but consider any improvement on these approaches as important future research topics. In the case of a “box” potential
(see (175) below) we can compute the Bloch eigenfunctions explicitly and apply simple root-finding routines to compute the requisite
spectra. In Fig. 1 we plot the evolution of this infinite-genus box potential to time t = 1.037 using a genus g = 300 approximation.
Realization of dispersive quantization in a nonlinear setting is clear — the solution appears to be piecewise smooth whenever ¢ is a
rational multiple of 7 [1,6-8].

1.1. Relation to other work

We emphasize that the computation of finite-genus solutions is a nontrivial matter. This paper considers the computation of finite-
genus potentials via the computation of the associated Baker-Akhiezer function. This function can be understood as a special function
depending on a large number of parameters. In a setting with fewer parameters, Lax’s foundational paper [9] includes an appendix by
Hyman, where solutions of genus 2 were obtained through a variational principle. The classical approach to their computation goes
through their algebro-geometric description in terms of Riemann surfaces, see [10] or [11], for instance. While very effective, this
approach has only been applied to relatively small genus Riemann surfaces.

Yet another approach is by the numerical solution of the so-called Dubrovin equations [12,13]. And the finite-genus solution is
easily recovered from the solution of the Dubrovin equations [ 14,15]. We do not take this approach again because (1) the dimensionality
involved may pose possible stability issues and (2) one has to time-step the solution to get to large times. The Riemann-Hilbert problem
we pose has x and t as explicit parameters, and therefore the complexity associated with computing the solution at any given (x, t)
value is independent of (x, t).

As mentioned above, a numerical Riemann-Hilbert approach was introduced in [2] (see also [4]). While the approach in [2] should
be seen as the precursor to the current work, it was only successful for small genus solutions and was too inefficient when the genus
is larger than, say, 10.

1.2. Outline of the paper

The paper is laid out as follows. In Section 2 we review the inverse spectral theory for the Schrédinger operation with a periodic
or finite-gap potential, connecting it to an underlying Riemann surface (in the finite-gap case) and the associated Baker-Akhiezer
function. In Section 2.3 we discuss the parametrix Baker-Akhiezer function that allows the movement of poles and in Section 2.4 we
begin formulating a Riemann-Hilbert problem satisfied by the planar representation of the Baker-Akhiezer function. In Section 3 we
convert the Riemann-Hilbert problem to a singular integral equation on a collection of intervals. We look for solutions in a weighted L?
space. In Section 4 we discuss the numerical solution of the singular integral equation from the previous section, discussing both
preconditioning and adaptivity of grid points. In Section 5 we discuss the computation of various solutions of the KdV equation.
Specifically, in Sections 5.1 and 5.2 we compute solutions with prescribed spectral data. In Section 5.2 we give a formal universality
result that demonstrates how primitive potentials can be obtained in a large-genus limit. In Section 5.3 we solve the initial-value
problem for the KdV equation with smooth initial data. In Section 5.4, we give an extensive treatment of the numerical solution of the
KdV equation with “box” initial data.

This work gives rise to many interesting questions. The work here, while empirically valid, comes with no rigorous error bounds and
the full numerical analysis of the method is an open problem. Similarly, we provide no error bounds for the approximation of an infinite
genus potential by one of finite genus. The reconstruction formula (55) appears to imply that the errors will be small if one removes
gaps such that «j; — Bj is small. But this removal has a non-trivial impact on yi(x) for k # j and that error needs to be estimated.
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This leads to the question of understanding both the large g limit of the period matrix of our basis of holomorphic differentials and the
large g limit of the singular integral equation we formulate. These issues will be addressed in future work. There is also some room
for improvement in the complexity of the numerical method. A significant improvement on the complexity would be to put it inside a
matrix-free framework using some incarnation of the fast multiple method [16]. Code used to generate the plots in the current paper
can be found at [17] (see also [18]).

Before we proceed, we give a remark that details our notational conventions.

Remark 1.1 (Notational Conventions). We use capital boldface letters, e.g., M, to denote 1 x 2 row-vectors and to denote matrices, with
the exception of the Pauli matrices,

N T N R

and denote the identity matrix or identity operator by I. We use lowercase boldface letters, e.g., u to denote column-vectors that are of
arbitrary dimension. We use the capitalized Greek characters, e.g., ¥, to denote functions defined on a hyperelliptic Riemann surface.
Given such a ¥, we denote by . the (scalar-valued) components of its planar representation in the form of a row-vector which is
denoted by the boldface version ¥ of ¥. We use superscripts f*(z) to denote the boundary values of f at a point z on an oriented
contour taken from the left (+) and the right (—) side of the contour with respect to the orientation. We use fraktur a and b to denote
the cycles on a Riemann surface. Lastly, for a function f : C — C we use f(u) to denote f applied entrywise to the vector u.

2. Inverse scattering transform for periodic solutions
In this section we give a summary of the well-known inverse scattering transform associated with (1) and define the quantities

relevant to the method we develop in this work, along with particular choices we make. The KdV equation in the form (1) is the
A-independent compatibility condition for the linear problems, i.e., the Lax pair,

Lt =1y, (3)
Ve = P(t)y, (4)
where is £ is the Schrodinger operator
d2

L(t) =——— —q(o, ¢t 5
(1)=—25 —q(o.0) 5)

with the time-dependent potential —q(¢, t), and P is the skew-symmetric operator

3 d

P(t) = —4@ — 6q(o, f)& — 3qx(0, t). (6)

The compatibility condition for the system of linear problems (3)-(4) yields the operator equation, referred to as the Lax equation [19],
in the form

d
L0+ 120, PO =0, )

which is equivalent to the KdV equation (1) in the sense that the left-hand side defines an operator of multiplication by the function
—(qr + 6qqx + Gxxx), Where [£, P] := LP — PL is the operator commutator. As q evolves in time according to the KdV equation (1), (7)
defines an isospectral deformation of the Schrédinger operator L.

2.1. The spectrum and the Riemann surface

For fixed t > 0, consider the problem (3) for the Schrédinger operator with the time-independent potential —q(o, t) = —q(¢):

—Yx — Q¥ =AY, (8)
for real periodic g with minimal period L > 0: q(x + L) = g(x). The Bloch spectrum og(q) associated with the periodic potential —q for
the Schrédinger operator (5) is

og(q) := {A € C: there exists a solution r(¢; A) to (8) such that sup | (x; 1)| < oo}. 9)

XxeR

For real-valued smooth (and periodic) g, the Bloch spectrum is a countable union of real intervals

g+1
o(q) = | Jlow, Bil, where g € Z.q or g = o0, (10)
k=1
with
ok < Pk < a1, k=1,2,.... (11)

We refer to the intervals [oy, Br] C og(q) as bands and (B, ox+1) as gaps. If the number of intervals g + 1 is finite, By := 400 and the
last interval is [ag1, +00), in which case the associated —q is called a finite-gap potential. The endpoints j and Bj, j = 1,2,..., N,
remain invariant as q(o, t) evolves according to the KdV equation (1), and hence og(qo) = og(q) for (¢, t) solving (1) with g(¢, 0) = qo.
The following well-known symmetry transformations associated with the KdV equation play a role in various choices we will make in
this work.
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Remark 2.1 (Two Symmetry Groups of KdV). Suppose that q(x, t) is a solution of (1).
e Galilean transformation: The function
q(x, t) == q(x — 6¢t, t) + ¢ (12)

is also a solution of (1) for any constant c.
e Scaling transformation: The function

G(x, t) :== c?q(cx, c3t) (13)
is also a solution of (1) for any constant c.

Given ¢ = q(o, t) and o; = min(og(q)), using the Galilean symmetry transformation (12) with ¢ = «; lets one map q(¢, t) to
q(¢ — 6¢t, t) 4+ ¢ for which min(og(q)) = 0. Doing so becomes useful in the formulation of a Riemann-Hilbert problem (and of
the associated singular integral equation). This transformation is employed in the numerical implementation of our method: once
a1 € og(qo) is computed for given qo at t = 0, we perform the spectral shift described above and then invert it to obtain g(¢, t) from
q(¢ — 6ct, t) + c at a later time t > 0. Accordingly, we take «; = 0 without loss of generality in the remainder of this paper.

For our (computational) purposes, we restrict the theory to the finite-gap case. For qq giving rise to g + 1 bands

g
o8(do) = [ag 41, +00) U | | JIey. B1 | . (14)
j=1
and g gaps, g > 2, consider the monic polynomial P(1) of degree 2g + 1 given by

g
P() = (h — agy) [ [ = a)x — By). (15)

Jj=1
and define X to be the hyperelliptic (elliptic, if g = 1) nonsingular Riemann surface

¥ = (A, w) e C*:w? = P(L)}, (16)
associated with the zero locus of F(A, w) := w? — P(A). The points (@;,0),(B,0),j=1,2,...,g, and (ag41, 0) on X are branch points
for the projection (z, w) + z and there is a single point at oo on X. For Py = (Ag, wg) € X we have the following choices of a local
coordinate ¢:

e If Py is not a branch point and not co € X, then for (A, w) near Py we may take essentially A to be a local coordinate, so we write
for |¢| sufficiently small

A=ME) =x+  w=w(l):=PAL)). (17)

e If Py = Ex = (), 0) for some k, then for (A, w) near Py we may write

2g+1

=M =ac+ w=w@)=¢ | @+ 0= ). (18)
j=1
J#k

e Finally, if Py = co € X, then for (A, w) near Py we may write

(19)

In all three cases A(¢) and w(¢) are locally holomorphic functions of ¢ in a neighborhood of ¢ = 0 with non-zero derivatives at ¢ = 0,
making them locally injective, and ¢(Py) = 0.

Define the branch of square root R()) of P(A) to be the (unique) single-valued function that is analytic in C\ 0p(qo) and that satisfies
R(1)? = P(1) along with the asymptotic behavior

ROV = [AEF2 (=1 +0(1)), & — —oc. (20)

Importantly, the boundary values R()) taken on the bands og(q) are real-valued and R()) is purely imaginary on the gaps, namely for
A e (B ajr1).j=1,2,...,g Assuming that the bands constituting og(qo) are oriented in the increasing direction of the real line, we
define the boundary values R¥() of R taken on og(qo) as:

RE(A) = 11?312@ +ie), A e op(q). (21)

We denote by +R()) the function that is defined for all A € C which coincides with R(A) for A € C \ op(qo) and also satisfies
+R(A) = R™()) for A € op(qo); and define the sheets X1 of X by

Xy o= {(A, £R(X)): A € C}. (22)

The Riemann surface X' is topologically equivalent to a sphere with g handles, which is obtained by gluing the two sheets X, along
g

the edges of the cuts (the bands) [}, Bl j = 1,2, ..., g, and [ag1, 0o]. We define the cycles {q;, bj}j:], which constitute a homology

4
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Fig. 2. An illustration of the hyperelliptic Riemann surface ¥ and the choices for the a- and the b-cycles.

basis for X, as depicted in Fig. 2; and we denote by {vq, v, ..., vg} the basis of normalized holomorphic differentials on X that satisfy
% Vj = Zﬂiajk, 1 f], k <3g. (23)
ag
The g x g matrix B defined by
Bjk = f v, 1<j,k<g (24)
by

is the Riemann matrix for X. To compute b-cycles, the b-cycles are often used, see Fig. 3.B is symmetric with Re(B) < 0. Although
finite-gap solutions of (1) have, in principle, representations given in terms Riemann theta functions ® which are based on the Riemann
matrix B, our method does not require at all any explicit knowledge of the Riemann matrix B.

We will use a particular basis of differentials that is ideal for our computational purposes, so some observations are in order. Let
{w1, @y, ..., wg} be an arbitrary basis of holomorphic differentials on X and define the g x g matrices A and B by

Aj = f wj, Bjk = f wj, 1<j,k<g. (25)

ak bk
It is well-known and easy to see that A is nonsingular since otherwise one can find a nontrivial linear combination of {a)j}}g:l that has
vanishing a-cycles, implying that the resulting holomorphic differential is identically zero, and hence contradicting the independence

of the differentials w;. Note that there exists scalars Cy, 1 < I, k < g, such that v, = Zle Cjwj. Let C be the matrix of these scalars.
Then we have

g g
27Ti51k = % V= chj¢ wj = Z CUA]'/{ = [CA]lk, (26)
ag j=1 Ak j=1

implying that CA = 2il, and hence C = 27iA~!, which yields the relation

141 w1
1%) wy
=2miA~ | | |. (27)
Vg Wg
A classical choice for the basis {w1, ..., g} is
M1
a)j = ——dA.
R(%)
But from a computational point-of-view, when g is large, this basis is ill-conditioned. It is better to choose
Fet st (2 — ) £ a- da
w = Meris® =), I1 a . (28)
R() e | A= B | O = g0 — ) — B)

2.2. The Baker-Akhiezer function

Our approach to compute solutions of (1) is based on numerical solution of a RH problem satisfied by a suitable renormalization
of a Baker—Akhiezer function. We now give a series of definitions and then give construction of the relevant Baker-Akhiezer function
built from certain solutions of the spectral problem

L(0) = A (29)
Definition 2.2. For the hyperelliptic Riemann surface X defined by w? = P(1), a divisor D on X is a formal sum

D = nyPy + 3Py + - - - + NPy, (30)
where n; € Z and P; € X forj = 1,2,...,m. A divisor is called positive if n; > 0 for all j, and the degree of a divisor is the number
ij:1 1.
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Definition 2.3 (Abel Map). Fix an arbitrary point Py on the Riemann surface X defined by w? = P(X) and let D = n{P;+n,Py+- - -+n,Pp,
be a divisor on X. The Abel map A(D) is given by

m P
A(D) = an/ Ve , (31)
=1 7P

1<t<g
where the path of integration from Py to P; is chosen to be the same foreach £ =1,2,...,g.
Definition 2.4. For the hyperelliptic Riemann surface X defined by w? = P(1), let Q4, ..., Q, be points on X with local parameters
g, j =1,...,n, with (Q;) = 0, as in (17)-(19). To each point Q; associate an arbitrary polynomial qj(gj’1) of the reciprocal of the
associated local parameter. Next, let D = P; 4+ P, + ---P; be an arbitrary positive divisor on ¥ \ {Qs, ..., Q,} of degree g. Then
V(D; Q1,...,Qn;q1, ..., qn) is the linear space of functions ¥(P) on X satisfying the following properties:

(1) The function ¥(P) is meromorphic on X \ {Qq, ..., Q,} and has poles at the points of D.
(2) There exists a neighborhood of every point Q;, j = 1, ..., n, such that the product
w(P)exp (—q; (¢(P)")) is analytic in this neighborhood.

Such a function ¥ (P) is called a Baker-Akhiezer function.
The following theorem from [12, Theorem 2.24] is quite useful in this work. We do not define all the quantities that arise in its

statement but only highlight the components that are crucial for us to proceed.

Theorem 2.5. The space V(D; Qy, ..., Qu: q1, ..., qn) is one-dimensional for a non-special divisor> D and polynomials q; with sufficiently
small coefficients. Its basis is described explicitly by

_ @(A(P)+V—d;B) 2(P)

Yy(P) = 32
o(P) © (AP)—d: B) (32)
where §2(P) is a normalized Abelian integral of the second kind> with poles at the points Qs, . .., Qn, the principal parts of which coincide
with the polynomials qj(z), j = 1,...,n, ® is Riemann’s theta function, and v is a vector of the b-periods of the integrals of $2(P):
vj=?§d.(2, ji=1,...,8. (33)
bj
Further, d = A(D) 4+ k where A(D) is the Abel map and K is a vector of Riemann constants, and the integration path for the integrals
P
(P) = / d$2 and A(P) (34)
Py

is chosen to be the same.

We now focus our attention to solutions of (29). First, fix xo € R and define a set of fundamental solutions {c(x; A), s(x; A)} of (29)
that are determined by

c(xo;A) =1, cx(x0;A)=0, (35)
S(xg; A) =0, sx(xo; A)=1. (36)

It is easy to verify that these solutions solve the following Volterra integral equations

X 1 )\' _
c(x; 1) = cos («/X(x - Xo)) - / qu(yk(y; A)dy, (37)
st 1) = 0 (ﬁg_"‘”) - / sin (fj;_y ) 6o(3)s05: A, (38)

where the branch cut for the square root is taken to be [0, +00) and the branch is chosen so that +/A = i|x|"/2+0(1) as A — —oo with
the branch of the argument [0, 277). This demonstrates that these two solutions are entire functions of A for given x because cosine
and sine are even and odd functions, respectively, and the paths of integration are finite. We omit the parametric dependence of these
solutions on xg in our notation. Next, we define the monodromy operator T for (29) by (T )(x) := ¥(x + L) and represent the action of
T on the set of fundamental solutions constructed above. Consider the first-order system equivalent to (29)

d [y _ 0 1| [ w(x;4) (39)
dx [Ux( )| 7 | —(A+qo(x)) O [ ¥u(x; 1)

along with its fundamental solution matrix

c(x; &) s(x; A):|

Fix 1)= [cx(x; 2) sdx 2) (40

2 The divisors D that we encounter in this work will always be of the form D = Py + P, +--- + Py, P; = (;, £R(};)), A; € R for distinct A;. Such divisors are
non-special [20].
3 A normalized Abelian differential is a meromorphic differential that is normalized to integrate to zero over all the a-cycles.

6
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which is unimodular (see [20, §1.6]) and satisfies F(xo; A) = I. As x > c(x 4+ L; ») and x — s(x + L; 1) also define solutions of (29)
thanks to the periodicity of qo,

F(x + L; 1) == F(x; M\)T(A) (41)

for some x-independent 2 x 2 matrix T(X), which is called the monodromy matrix. Evaluating both sides at x = x, yields

oy | o+ Ly A)  s(xo+L;A)
T4 = Foxo 1 2) = [cx(x?) FLA) s+ x)} ' (42)
T(A) is an entire matrix-valued function of A and det(T(X, xo, L)) = 1. Then, for a solution y/(¢; A) of (29), we have
I:K((();” ))i))] = F(x, L)a(A), (43)
for some a(A) € C**1, and hence
n Y(o; A) _ n
T <[1/fx(<>; A):|> (x) = F(x, L)T(A)"a(A). (44)

for any positive integer n. This and the unimodularity of F(x; A) imply that for given A, @(A) is an eigenvalue of 7 with an eigenfunction
¥ (o; A) in the (two dimensional) solution space of (29) if and only if u(A) is an eigenvalue of T()1) with an eigenvector a()). It can be
shown that A € og(qp) if and only if 7 has an eigenvalue w(X) (in the solution space of (29)) with |u(A)| = 1, and that |u(A)] = 1
implies A € R (see [20, Lemma 1.6.4, Lemma 1.6.7]). To find eigenvalues u of the monodromy matrix T(A), set A(A) := 2 tr(T(1)), which

)
is an entire function and does not depend on xy. The eigenvalues of T(A) are the two solutions u = p4 of
wr =240 +1=0. (45)

These solutions satisfy |u+| = 1 if and only if —1 < A()A) < 1, which corresponds to A € og(qp). We let u (1) denote the solution of
(45) that satisfies | (1)] < 1 for A € C \ op(qo). Then, necessarily _(1) = u,(1)~!, hence p_ is the solution satisfying |u_(1)| > 1
for » € C\ 0g(qo), and both w4 (X) are analytic for A € C\ op(qp). Since A(A) > 0 for A < 0 (see [21, pg. 3]), we have from the quadratic
formula the representations

px(A) = A) Fr(d), (46)

where (1) is a function analytic for A € C \ op(qq) that is determined by the conditions r(1)*> = A(A)*> — 1 and r(A) > 0 for A < O.
Thus, we have ui(A) = A(A)F /A(L) — 1/A(A) + 1, where the branch cut for the square root is taken to be [0, +00) and the branch
is chosen so that v/A = i|A|'"/? + 0(1) as A — —oo with the branch of the argument [0, 277).

The Bloch eigenfunctions yr(¢; 1) are bounded solutions of (29) that are eigenfunctions of 7 for A € op(qo) with the normalization
W(X0; &) = 1, hence they are obtained by choosing the first row of a()) in (43) to be equal to 1 in solving

T(AM)aL(A) = pne(r)ax(n) (47)
to find
Vrals 1) (s 2) 4 HERI TG0 LAY s
S(xo +L; A) (48)
FVAR) = IVAR) + 1+ 3 (T(h) — Tn(A)
=c(x; A) + Tl s(x; A).
12

Setting x.(x; A) := —i(0x¥+(x; 1))/ ¥+(x; 1), it follows that x.(x; A) are periodic functions of x with period L and are independent of the
choice of xy (see [22, Lemma 1.1]). Moreover, x(x; 1) extends as a single-valued algebraic function on the Riemann surface X defined
in (16), with
+R(1)
E LG — 1(0)

where y;(x) are located in gaps or their endpoints: g; < yj(x) < ajt1.

For the finite-gap case (i.e., g < oo) we are considering, A(L)> — 1 = 0 has finite (and odd) number of simple roots, which are
the band endpoints [22]. Using the asymptotic expansions of A(A) as A — —oo and of c(x; A) and s(x; ») as A — oo given in
[21, pp. 1-3], we have that

Re(x+(x; A)) = (49)

Ya(x: A) = eV )1 4 o(1)), A — +o0, (50)

where the square r(iot again has the branch cut on [0, +00) using the branch of the argument [0, 27r) with VA =AY + 0(1) as
A — —oo. Here +/A" for A > 0 denotes the boundary value of this branch of square root from the upper half-plane.

Remark 2.6. Using the independence of the Wronskian Wron(v..(x; A), c(x; A)) from x yields the formula
Ye(x; &) = c(x; 1) + ix(x0; A)s(x; A). (51)
Then, from x(Xo; ) ~ £+/A, one can also conclude (50) [22].



D. Bilman, P. Nabelek and T. Trogdon Physica D 449 (2023) 133715

One also has the identity
[T, (h — %)
£ 00— yi(x0))]

see [22, Theorem 2.1], and also [23]. This implies (see [24, Theorem 2.3]) that the function ¥ (x; P) defined on the Riemann surface X
by

Y MY (1) = (52)

Vi(xa), P = (% +R()),
Y_(x:4), P =(x, —R(2)).

extends as a single-valued meromorphic (for x # xp) function on X \ {oco} with poles at locations where x(xo; A) has its simple
poles (see (51)), namely, at A = yj(x), j = 1,2, ..., g. The identity (52) implies that ¥(x; P) has a pole only on one of the sheets:

U(x; P) = { (53)

P; := (yi(X0), ojR(¥j(X0))), one in each of the gaps, where o; is either 1or —1,j = 1,2, ..., g. ¥(x; P) also has an essential singularity at
P = 0o and its behavior for P near oo is given by
W(x; P)e “P0) = 1 4 o(1), (54)

where z(P) denotes the reciprocal of the local coordinate (19) near oo: z(P)?> = A. Recalling Definition 2.4, these facts show that ¥ (x; P)
is a Baker-Akhiezer function on X with n = 1, Q; = oo with the associated polynomial q1(z) := z, and with the non-special divisor
D =Py + P, + - - - + P,. Moreover, these conditions uniquely determine ¥ (x; P) by Theorem 2.5.

Remark 2.7. The zeros of ¥(x; P) are at the points where A = y;(x), and they lie also in the gaps. It is well-known that the potential
qo(x) can be recovered via the formula

g g
G(X) =2 %(X)— Y (&+ ) — gi1, (55)
Jj=1 j=1
see, for example, [23]. Our method for obtaining qo from ¥ makes no reference to this formula, and hence avoids root-finding.
2.2.1. Time dependence
The Bloch solutions 1. of (3) can be constructed at a given fixed time t as q(¢, t) evolves according to the KdV equation. Let wf(x; A)

denote these solutions and we have w[iol(x; A) = ¥+(x; 1) which were studied in the previous subsection. While w[it](x; A) solve (3)

with (50) and the normalization w[it](xo; A) = 1, they do not provide a set of simultaneous solutions of (3)-(4) as they do not satisfy
(4). A calculation identical to [3, Proposition 6.2] shows that

()= ) (% 106 2) — PO x A)) —0 (56)
which implies that

0
o7 VEIGe 0) + da(t )9 ) = POYE (x: 2)

) (57)
= (4 — 2q(x, )7 Y0 1) + gulx, YL e 2)
for x-independent coefficients d.(t; A) that are given by
A)—c(xo+L;A)
a8 1) = (41 — 2q(x, ) 2L =0 +gulx0. ). (58)

s(xo +L; )

These are obtained by evaluating (57) at x = xo. Again from [3, Proposition 6.2] (see also [3, Proposition 3.3]) we have the asymptotic
behavior

1
do(t; 1) = +4i(v/2)° +0 <—> , A — o0. (59)
A

Following [3], one uses the solution ¢ (t; A) of

a

54&(& A) = dx(t; Mo=(t; ) (60)
satisfying ¢.(0; A) = 1. Then

Valx, 1) = w06 2)ga(t; 1) (61)
define a set of simultaneous solutions of (3)-(4). As proved in [3, Proposition 6.3], ¢.(t; A) satisfy

. 1
bu(t; 1) = eHiVR’t (1 +0 (—)) , A — o0. (62)
NAY

Moreover, the product in (61) fixes the poles of 1. in time, see [3, Proposition 6.3]. Thus, with y¥.(x, t; A) we introduce a Baker-
Akhiezer function ¥(x, t; P) on the Riemann surface with all the same properties as (53) with the exception of the replacement of the
asymptotics with

W(x, £ P) = eZPxolt 4Pt 1 4 o(1)) 2(P) — oo, (63)
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2.3. Moving poles to the band endpoints
The procedure described here resembles what was employed in the earlier works [2,25] (see also [4, Chapter 11]). However, we
make an observation that enables the treatment of the case when the genus g is large. For z € C \ [, 00) define
O(AA)+v—d;B) O(—AL)+v—d;B)
O(A(L) —d; B) O(—AN) —d;B) |’

where A(L) = A(X, R(1)) is the Abel map restricted to the first sheet. Note that —A(L) = A(A, —R(1)) is then the Abel map restricted
to the second sheet. The following properties of the theta function are now needed

O(z + 2rmiej; B) = O(z; B),

A(d,v) = [

1
©(z + Bej; B) = exp <—§Bjj - zj> O(z; B),

where e; is the jth column of the g x g identity matrix and B is the Riemann matrix. Then note that

i1 A1 & j—1 &
.A+()\.) + .A_()\) = (2 Z[ U@) = (Z% w) =2min, X\€ (Oéj, ﬂj),
Bk =1 k=1 v % =1

k=1
for a vector n of ones and zeros. Then we compute
g

j B £
A+()u) — Ai()n) = (2 Z/ \)g) (% V@) = Be]‘, AE (,3]', Olj+1).
k=1 % b

=1 =1

Note that from (53), for a non-special divisor D = Zf:l p;,

O(A(P)— AD)—k;B)=0 ifandonly if P e {Py,...,Pg}, (64)

where, as before, Kk is the vector of Riemann constants with base point «;. So, for two non-special divisors D = Zle Pjand D' = Z;":l P!
we choose v=v(D,D’) and d = d(D, D’) by

v—d=—-AD)—-Kk, (65

—d=—-AD) -k (66

For P = (A, w) € X, define w(A, w) = A. Then it follows that if P; is on the first (second) sheet of X then A(;d, v) has a zero at 7 (P;

in its first (second) column. Similarly, if Pj/ is on the first (second) sheet of X then A(}; d, v) has a pole at n(Pj’) in its first (second

column.
Now suppose that A is not a pole of either column of A. Then

DL D O

A=(1; d, v)oy A € (orga1, +00) U (UL, (o, )
AtOsdv) = { A (h:d.v) [601 eouj] e (B ),
A~ (A d,v) A€ (—o00, aq).

Choose the divisor
D’ = (o2, 0) + (a3, 0) 4 - - - + (g 41, 0), (67)

and let D be the divisor of the poles of the Baker-Akhiezer function ¥ (P; x, t). Then consider v = v(D, D’) and d = d(D, D’) with these
choices as in (65) and (66). The function

A(o0; d, v)
EP;x,t) =w¥(P;x, t)———— 68
( ) ( ) AP d.V) (68)
now has poles at the right endpoints of the gaps, namely the points where A = o, a3, ..., ag11. We arrive at the following proposition.

Proposition 2.8. The sectionally analytic vector-valued function
EOux,t)= [ (Lx ) & (hxt)] (69)

satisfies the following jump conditions away from poles

g
ET(ixt)=E (hx 0o, A€ (g +oo)U | (e )] (70)
j=1
_ _ el 0
ET(x )= E (M 1) [ 0 e_uj] . A e (B o) (71)
where EX(x; x, t) = lim, o E*(\ tie; x, t). The asymptotics
a1 TR 00 1
E(;x t)e (ivAx+4ir 3=[1 1]+o0 () . A = oo, (72)
ol

9
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Fig. 3. An illustration of the choices for the b- and the b-cycles on the hyperelliptic Riemann surface X.

also hold.

2.4. The Riemann-Hilbert problem

Let ¥(o; x, £): C1*?\ 0p(q) — C denote the row vector planar representation of the Baker-Akhiezer function associated with q(x, t):

B x )= [P x ) Y_(ix )], (73)
which satisfies the “twist” jump condition

TrOgx,t)= O (A x,t)o;, AeX (74)
and has the asymptotic behavior

T(hx, t)= [eik%(x+4kt) e—ik%(x+4kt):| T+ o(1)), A — oo. (75)
Here the power function A +— A7 is defined to be analytic on C \ [0, +00), satisfying AT = i|A|% 4+ o(1) as A, — —o0. Set

O(A; x,t) = A%(x + 4At) and observe that 6(A; x, t) has a jump discontinuity across the half-line (0, +00), which we orient from
A =0 to A = 4o00. Based on the considerations in the previous section, we transform ¥ to = so that poles only occur at the points in
the divisor (67).

Define the renormalized row-vector-valued function

M(; X, t) = B(A; x, t)e 7007, (76)
As Ot (A; x,t)+ 07 (A; x,t) = 0 for A € [0, +00), the jump conditions satisfied by M(A; x, t) take the form

g

M*(1; x, t) = M~ (A; x, t)oy, % € (ag 1, +00) U [ | . 8) |- (77)
j=1
M* (A X, £) = M™(A; x, ) e 20 x040s -5 e (B ap), j=1,2,...,8, (78)
and M(2; x, t) satisfies
M(k;x, t)=[1 1]T+0(1)), 1 — oo. (79)

Remark 2.9. An important calculation to make here is to define

M(z%;x,t) Imz >0,
M(z%; x,t)o; Imz < 0.

K(z; x,t) = {

Then apply [5, Theorem 2.1] to see that K (and therefore M, and hence ¥(x, t; P)) is a simultaneous solution of an appropriate version
of the Lax pair for the KdV equation.

To control the oscillatory factors in the jump matrices above, we seek a function G(A; x, t) that is analytic for . € C \ [0, 400)
satisfying

g
GrAx 0 +G (X 0)=0, e (agr,+00)U | [ 8) (80)
j=1
Grux, t) =G (X, t) +207(0x, t) = 2, A e(Bpaj1), j=1,2,....8, (81)

for some constants .(VZ]-, and normalized to satisfy G(A) — 0 as A — oo. It is easy to see that

%+ .Q —207(g; %, t)
G(A; x, t) == —d 82
(3.0 Z ) e (52

is analytic for A € C\ [O, +00), admits continuous boundary values on [0, +o00) which satisfy the jump conditions (80)-(81).

10
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Lemma 2.10. Let {po, ..., pg—1} be a basis of polynomials of degree at most g — 1 and define a matrix A via
41 prea(8)
A = (Ayi<kj<g» A= —2/ e (83)
B R(¢)
Then A is invertible. And lf(.Q )J 1= (fzj(x, t))f:1 satisfy
s . g +1
> A = —42/ 9+(;;x,t)p’“(§)dg, k=1,2,....g, (84)
— — [ R(¢)
j=1 j=1 )
then
G(A
) _ or~¢ 1, A — oo
R(%)
Moreover, §2;,j=1,2, ..., g are real-valued.
Proof. Observe that
G(r
RE) kaxtk +0(A5), A — oo, (85)
where
1 g Q1 . g-k—l
M(x, ) = ——— (Q-—Z@* ;x,t)—d, k=1,2.....8. 86
(5. 1) MZ]/j - 20 (6i0) e s (56)
Thus, in order to have G(A) o(1) as A — oo, we need to have my =0 for k=1, 2, ..., g, which yields the conditions
1 k= ;
;— / 29+;xt)—dg k=1,2,...,8. (87)
2 T z ©
This is a linear system of g equations for the constants éj = .éj(x, t),j=1,2,...,g. Taking a linear combination of these equations
we can instead consider
71 pr—1( / Pr-1(¢)
207 (¢ x, 1) de, k=1,2,...,8, (88)
Z TR o3 Z o)
for any basis {po, ..., pg—1} for polynomlals of degree at most g — 1. Taking into account the orientation of the a-cycles depicted in
Fig. 2 and the sign change that occurs from passing from one sheet to the other, we have
Y1 _ Y1 -~ 1 1
f p;ﬂ;)ck _ / Peal®)y, _ —574 o= —3Ag k=128, (89)
B (¢) B w g
from (25), choosing pj_; so that p;j(¢)/R(¢)d¢ = wj, and hence (87) reads
a’“ Pk—1(§)
Ak.Q_—4 / T x, ) de, k=1,2,...,8. (90)
Z J Z R(?)

The coeff1c1ent matrix for the linear system (83) is nothing but a constant multiple of the matrix A of a-cycles of the basis of differentials
{a)k}f:l, which is nonsingular. Therefore, the system (87) is uniquely solvable.

Now note that because 6%(¢; x, t) is real-valued and R(¢) is purely imaginary for ¢ € (Bj, aj41),j = 1,2, ..., g, it follows that fzj,
j=1,2,...,g in the previous lemma are all real valued. This establishes the lemma. O

Using the basis of differentials in (28) results in a linear system which can be solved in a numerically stable fashion as g becomes
large.

Remark 2.11. The computation of the integrals that appear in this section and the computation of the Abel map is discussed in [2].
There is a numerical subtlety here. If one computes the Abel map .A(2) for A near a branch point and X is known to within an error e,
that error may be amplified to be on the order of \/e. So, if qq is such that y;(x) is near a branch point, the computation of the of v; in
Proposition 2.8 may suffer increased errors. In practice, one can choose xp in the initial scattering theory to move this away from the
branch point. Various schemes can be employed to find a good choice of x. Choosing xo randomly is often sufficient.

Now define
N(A; x, t) := M(A; x, t) e~ 60sx 003 (971)

and observe that N(A; x, t) satisfies the following jump conditions:

g
Nt x, £) = N~ (A x, t)or, A€ (agi1,+oo) U [ | ey, 8 ] (92)
j=1
11
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NF(hsx, £) = N7(hs x, £) T 9®0Ts 5 e (B agpq), j=1,2,....8. (93)

In what follows, we use the notation £2(x, t) = éj(x, t) +iv;.

3. A singular integral equation for the solution of the Riemann-Hilbert problem on cuts

In this section we describe a numerical method to approximate (91). But before we do that, we need to make one more
transformation to remove the non-trivial jump that has infinite extent. Recall from the discussion following Remark 2.1 that we take
a1 = 0 without loss of generality. Define

2502 {8 X oy ms 20 o
For convenience we write

g=a, >0, j=12,....g+1, (95)

Bi=b}, bj>0, j=12..¢g (96)

Note that for Re(z) > 0 if Im(z) > 0 then Im(z?) > 0. Similarly, if Re(z) > 0, Im(z) < 0 implies Im(z%) < 0. And if Re(z) < 0, then these
implications are flipped. From this we find that S(z; x, t) only has jumps on the (symmetric) collection of intervals

(bj, aj1), (=ajp1,—by), j=1,2,....g, (97)
where it satisfies:

St(z;x, t) = N (2% x, £) = N7(z%; x, £) e 403 = §7(z; x, t)o e 403 7 € (by, ajy1), (98)

Stz x, t) = N7 (2% x, t) = NT (2%, x, £) 9003 = §7(z; x, t)oy &40 7 € (—aj4, —by), (99)

where we have reoriented the intervals (—a;,1, —b;) so that all of the intervals in (97) are oriented from their left endpoint to the right
endpoint. Moreover, S(z; x, t) is normalized so that S(z; x, t) = [l 1] +0(z7") as |z| = oo.

Next, we will want a formula to recover q(x, t), the solution of the KdV equation (1), directly from a representation of S(A; x, t) as
function of A. As |z| — oo, write

1
Siz;x, t)=[1 1]+ > [s1(x. 1) sa(x.£)] +0(z72). (100)
Supposing this limit is taken in the upper-half of the z-plane, this then implies that
1
Noxt)=[1 1]+ 7 [s106. £)  s2(x, )] +0(A71), A — oo. (101)

Then we recall that
N(&; x, £) = W(A; x, ) e (CxOH0Gx D03 (102)

where the entries of the 1 x 2 vector ¥(A,x,t) are solutions of L(t)yy = Ay, see (73). So, consider the function m(A; x,t) =
w#—()\; X, t)e—ie(x;x,t):

Am(h; x, £) = g T (A x, £)e R0 _ i ayt(A; x, £)e D, (103)
Bam(A; X, ) = O (A; x, £)e 00D 21/ Aa, t (A x, £)e PR _ pyt(a; x, £)e D), (104)

Adding these so as to eliminate the 3,y * term, we find

B X, £) + 2iVA0M(A; X, 1) = By (A3 x, e VD 2y, (g x, £) e R

(105)
= —q(x, t)m(A; x, t).
It follows from (32) that both d,xm(A; X, t) and 9,m(A; x, t) decay at infinity, giving the recovery formula
~ lim 2iVA0,m(%; x, t) = q(x, t). (106)
—00
In other words, we have as A — oo
NA, x, t) =11 1 (s, t)d (s, t)ds
[0 1] o[- St ot 0a]
i
7 [Me1(x.t)  —mg(x, )] +0(7"), (107)
where mg1(x, t) denotes the coefficient of the term proportional to A7¢~! in the expansion (85). Thus, we arrive at
q(x, t) = —210xs1(X, t) + 20,mg1(x, ). (108)

12
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3.1. Weighted spaces

We now formulate a singular integral equation on a direct sum of weighted L? spaces. Define

i 4j j 1,2,...
= {(b],am) jell.2.....g) (109)
(=Dbyj, —aj+1) je{-1,-2,...,—g}
Then set, fory € [;
b;
IO jetz...g)
Gj+1 —
(110)
—bm -y .
je{-1,-2,...,—g},
T\y+ aum
where each weight wj(y) is understood to vanish outside its domain of definition. Then define
g
Ui | = @szj(lj), wi= Y w;. (111)
j j=-g j
j#0

It is convenient to order the component functions (each of which is 2 x 1 row-vector-valued) for U € L2 (U I) as U =
(U1,U_-1,Up,U_;, ..., Ug, U,). Define the operators

RjU =Uj;, (WU)|]] = wa U|IJ (112)
i.e., right multiplication by the jump matrix
Jj = oy e B0y 03 (113)

and division by the weight w; on [;, respectively.
Suppose? I' is a union of line segments. For a weight function w: I" — [0, co) supported on I', define the weighted L? space

(r) = {f r ¢ [ epue < oo} (114)
r
and the weighted Cauchy transform
1 u(z
Cr o u(z) = 7/ ( )w(z/) dz, zeC\I. (115)
' 271 Jp 2 —2

We define the boundary values of (115) whenever the following limits exist:
cE  u(z) = liilgcnwu(z +ie), zel. (116)
: €
When the domain of the weight w is clear from context we write C,,, Cuij. When w = 1 we write Cr, C,J—S. These operators are understood
to apply to vectors component-wise.
Definition 3.1. A function S(z; x, t) is a solution of the Riemann-Hilbert problem
ST(z;x, t) =S (z;x, t), z €, (117)
S(00; x, t) = C € C™2,
if
g
S(z:x, 1) =C+ Y _ Cyu(2). (118)
j}':#Bg

forU e [} (Uj Ij) and the jump condition (117) is satisfied for a.e. z € [; for each j. Further, for j # k we use the notation

Cuy

U= (cij)‘ . (119)
Ix I

Theorem 3.2. Suppose S(z; x, t) satisfies the following®
(1) For some 1 <p < 2

o0
sup/ IS(z £ip; x,t) — C||Pdz < oo. (120)
p>0

4 This suffices for our purposes, but in general one can consider Carleson curves [26].
5 Here Il - | is any norm on C™2,

13
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(2) The jump condition (117) is satisfied for a.e. z € I; for each j.
(3) U=w(s* —s7) e LZ (U;])

Then S(z; x, t) is a solution of the Riemann-Hilbert problem in the sense of Definition 3.1 with u = W(ST —S™), where W is defined in (112).

Proof. The first condition imposes that S—C is an element of the Hardy space of the upper-half and lower-half planes [27]. This implies
that the boundary values from above and below exist a.e. Furthermore, it also implies that S(z; x, t) is given by the Cauchy integral of
its boundary values:

g
S(zix,t)=C+ Y _c,Uj(z). O (121)
g

Imposing the jump condition S*(z; x, t) = S™(z; x, t)];, z € I; for each j results in the following system of singular integral equations
that are satisfied by Uy, k € {£1, £2, ..., +g},

g
¢ Uk(2) + Z V@) — [ Cn U@ + Y cyUi@) | k=[1 1]0—1D. zekh (122)
2ok oy

It is important to note that ijUj(z) = C,;J_Uj(z) =chUjz)ifz ¢1;.

U}

Recall the operator R; in (112) and consider the followmg block operator on sz (U] Ij)

S =
B C;T1 R1C,y, (I —R1)Cuw_, 1 (- R])Cw2|l1 I=R1)Cuyly -+ (=R1)Cu_ly 7
(I - ) w]|1 1 clt—l —R-1 C;—l (I - ) wzll 1 ( —R- 1) w_ 2|L1 e (I - R*l)cwfgh,]
(I - RZ)CUJ1 |’2 (I - RZ)Cw 1|l2 C;ltz - RZ sz (I - R2) w_ 2|l2 e (I - RZ)waghz
(I - ) w1|1 2 (I - ) w_ 1|l 2 (I - ) wy |1 2 Cw,z - 72—2 C;72 e (I - R—Z)Cw_gh,z
_(1 - R—g)cw1 |I,g (1 - R—g)cw,l |Lg (1 - R—g)cwz |Lg (1 - R—g)cw,z |Lg e C,-E ¢ - R—g C;;,g _

Note that S as an operator is completely described by I;, 1 <j < g and £;(x, t) for 1 <j < g. So, we write
325(11,...,Ig;.91,...,.Qg). (]23)

We now state some observations that motivate the preconditioning we employ in solving (122) numerically, which is described in
Section 4.3. The linear system obtained from discretization of (122) upon preconditioning ends up being extremely well-conditioned;
see Fig. 12. First, one can prove the following lemma concerning the block-diagonal matrix diag(S) consisting of the diagonal blocks of S.

Lemma 3.3. The operator W diag(S) is boundedly invertible on sz (Uj Ij).

The following is then immediate and is the heuristic that motivates the use of the aforementioned preconditioner in the numerical
procedure.

Lemma 3.4. (Wdiag(S))"'WS — T, where T is the identity operator, is a compact operator on Lﬁ,, (Uj Ij).
We will present the proof of Lemma 3.3 along with an analytical justification of the preconditioning and the convergence of the
numerical method proposed in this work to solve (122) in a forthcoming paper.

4. Numerical inverse scattering

In this section we develop a numerical method to solve the Riemann-Hilbert problem in Definition 3.1. We consider the Chebyshev-
V and Chebyshev-W polynomials which are also known as the Chebyshev polynomials of the third and fourth kind, respectively. The
polynomials V,, and W,, n =0, 1,2... are of degree n with positive leading coefficients and satisfy

1
yd
[ v |1 ny = bum, (124)
y dy
Wiy = n.m, 125
/ l+y b4 o (125)

for the Kronecker delta, 8, n.
For general a < b we wish to find a basis of polynomials on [a, b] using the transformation T, 5(y) = 2 2y 4 b*" yTap 1 [—1,1] =
[a, b]. Taking into account the singularity structure of the weights wj; as defined in (110), for a > 0 define

Py(y; [a, b]) = Va(T, ;(¥)). n >0, (126)
14
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which are orthogonal (but not normalized) polynomials on [a, b] with respect to wq ,(y) = % % Similarly, for b < 0 define
Py(y; [a, b]) = Wi(T,,(¥)). n >0, (127)
which are orthogonal polynomials on [a, b] with respect to wq,(y) = % ’y’%ﬁ

1

This construction has the benefit that for w(y) = 1 ;% defined on [—1, 1] and w(y) =

- f,%ﬁ defined on [a, b] (for the case
a < b < 0) we have

Copt(z) = Cy(u o Ty T, 5(2)),  z & [a, b]. (128)

The same identity also holds for the case b > a > 0. In other words, Cauchy integrals over general intervals with these weights can
be computed by first mapping a function to the interval [—1, 1], computing the Cauchy integral for the mapped function and then
mapping back. We do note that

b—a
2

b
/ Pa(y; [a, b)Y wap(y)dy = , n>0. (129)

4.1. Computing Cauchy integrals

As is well-known, real orthonormal polynomials (p,).>0 (with positive leading coefficients), on the real axis, with respect to a
probability measure u satisfy a three-term recurrence relation

¥ypn(y) = Anpn(¥) + BuPnt1(¥) + Ba—1Pn—1, (130)
p-1¥)=0, py)=1, B_1=-1, (131)
for recurrence coefficients (Ap)n>0, (Bn)n=0. What is maybe less well-known is the weighted Cauchy transforms

_ i pa(y)
271 Jgpy — 2

cn(z) = Cupn(z) : u(dy), n=0, (132)

satisfy the same recurrence with different initial conditions, and in particular

c1(z) = Zim colz) = Zim i ;‘(ih;). (133)
For convenience, we have defined c_; so that it is not the Cauchy integral of p_;.
Remark 4.1. For Chebyshev-V and Chebyshev-W polynomials we have, respectively,
Ay=1/2, A,=0, n>1, B,=1/2, n>0, (134)
Ap=-1/2, Ay=0, n>1, B,=1/2, n>0. (135)

There are some subtleties in solving the recurrence for the Cauchy transforms. For z in the complex plane, away from the support of
W, (Pn(2))n>0 represents an exponentially growing solution of the three-term recurrence while (c,(z))s>0 is an exponentially decreasing
solution. Thus, evaluating c,(z) by forward recurrence is inherently unstable. Consider the case where p(dy) has its support on [—1, 1].
In practice, the following is effective [28]:

(1) For z inside a Bernstein ellipse® with minor axis O(1 /n), solve for c,(z) by forward recurrence allowing one to easily compute
the boundary values of ¢, on [—1, 1] from above and below.
(2) For z outside a Bernstein ellipse with minor axis O(1/n), solve the boundary value problem

Ag—z Bo
By A] —Z B4 CO(Z) o

27i
) a)| 1| 0
B4 A —z . . - | (136)

with the adaptive QR algorithm [29].

When p has a density w and the support of p is clear from context, we write c,(z; w) = cx(z).

Remark 4.2. It turns out that the recurrence for c,(z) in the case of Chebyshev-V and Chebyshev-W polynomials can be solved explicitly
and this general procedure can be avoided, if necessary [30].

6 The Bernstein ellipse with minor axis € is the image of the circle of radius 1+ € under the Joukowski map z % (z +z’1),

15



D. Bilman, P. Nabelek and T. Trogdon
4.2. Discretizing (122)

Define the Chebyshev points of the first kind

+1

i+ 1/2
Cn::{xj:cos(1+/n>: ijfn}c(—l,l), n>1.
n

We also define the column-vector-valued projection operator of evaluation of a function on an ordered set S by

Esf = (f(X))xes-

Choose an integer’ m and suppose f : [a, b] — C is a polynomial of degree m:

F) =" yaPu(y: la, b).
n=0

The discretized versions of ¢ with m basis functions, w = w, are given by

¢ (Tap(xo); w) ¢ (Tap(X0); w) ¢ (Tap(Xo); w)
CE(Tap(X1); w)  CE(Tap(x1); w) S (Tap(xa); w)
ErpenCaf =

¢ (Tap(n) w) ' (Tap(Xn)i w) €3 (Tap(n): w)
Yo
4!
=: G py(m.n) | 72|,
Vm
and for ¢ < d, [c, d] N [a, b] = @, we have

Co(Te,a(X0); w)  C1(Te,a(X0); w)  C2(Te,a(X0); w)
co(Te.a(x1); w)  c1(Tealx1); w)  ca(Te.a(x1); w)
ch.d(Cn)CWf = . . .

CO(Tc,d(Xn); w) Cl(Tc,d(Xn); w) CZ(Tc,d(Xn); w)

Yo
14!

=: Clapisfe.ai(m, n) | 12

Ym

(Tap(x0); w)] [ Y0

+

m

(T ); w) | | 11
Y2

C
C

C;(Ta,b(xn)Q w) Ym

. Yo
Cm(Tc,d(xl ) w) ))2

Ym

Physica D 449 (2023) 133715

(137)

(138)

(139)

(140)

(141)

Note that each row of these matrices can be constructed either by forward recurrence or via the back substitution step of the adaptive
QR algorithm, depending on where the evaluation points are located in the complex plane.

We now demonstrate the discretization of (122) in the case g = 1.

Example 4.3. We seek vector-valued functions Uy : I.; — C!*2. So, write

Uiy = [Uz11 Usr2].

We write out the full system of equations for scalar-valued functions explicitly: For z € I
o U11(2) + Cup_ u11(2) — e inlxo [Co, U1.2(2) + Cu_u12(2)] = e D _q,

C;f]ul,z(l) + Cy_U_12(2) — elilt) [C;lul,l(l) + Cw,lu—l,l(l)] = el 1,

and forz e I_4

C;L] U_1,1(z) + Cyyu11(2) — elilet) [C;Au—l,z(l) + Cwlul,z(l)] = el 1,

Chu12(2) 4 Cuy U 2(2) — €70 [C;ﬁlu_l,l(Z)+Cw1u1,1(Z)] = e 0 7,

In block-operator form:

Cztl _e—i.Q1(x,t)c;1 Co_, I _e—i(l](x,[)cllL] I )
—eim("*[)CUj] ij'] —eim(x’[)cw,l |4 Cw71 I u:;
Cuy 1121 —el1xOc, |14 el —elikte U 1,1
_e—ifz](x¢t)cwl I, Cu 11 _e—i.Q](x,t)C];q U_12

7 A discussion of how to choose m is given in Section 4.4.
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e—i?106t) _ 1

o] (147
e-ifix0) _
The discretized version is then
Ay = o, (148)
where
A =A(x,t,n,m)
G (m,n) —e e (m, n) Cry—1_,(m, n) —e $hlxig  (m,n)
- eml(x't)cﬁ(m n) G, (m,n) —elOc, ; (m, n) Ciy—»1_,(m, n) (149)
- C_,—1,(m, n) —eiOc_ _ (m,n) C,:(m, n) —eml("*”C,i](m, n |’
—e ¥nkOG L (m,n) G_,1,(m,n) — e OCT (m,n) G (m,n)
and
Yis eilxt) _ 1
y=ryxt)= f; . e=ot)= Sﬁﬂ:} : (150)
Yois e-i2i(x0) _

where each entry in the right-hand side vector in (148) is a constant vector for given (x, t).

Lastly, we need to consider the computation of d,s1(x, t) from (100) in order to use (108). First, we note that if u; ; in (122) is given
by

(o]
W) =D yuj(x OPu(y; 1), (151)
n=0
then by the orthogonality of the polynomials
13~ by — age
si06 £) = —o— Z — i b, (152)
Jj—#og

implying that we need to solve for the x-derivative of the coefficients in the expansion (151). To do this, the linear system Ay = @ can
be differentiated to find

A(3xy) = 0x@ — (0,A)y. (153)
4.3. Preconditioning

The discretization described in Example 4.3 is easily extended to find a discretization of the operators S and diag(S) where we
expect the discretization of diag(S) to become a good preconditioner for S in light of Lemma 3.4. In practice, we find it works well to
use a discretization of

diag(S(Iy; §21), S(I; $22), - - -, S(lg; $2¢)) (154)
as a block-diagonal preconditioner. We find that with this preconditioner, for a fixed tolerance, the GMRES algorithm requires a bounded
number of iterations, independent of x and t. We explore this more in Fig. 12.

4.4. Adaptivity

In the discretization of S following the procedure outlined in Example 4.3, an important question is that of choosing n, m. And, in
general, different choices for n and m should be made for each block of S under the constraint that the resulting matrix is square.

It can be shown that the solution S(z; x, t) can, in an appropriate sense, be analytically continued off the interval [—1, 1] [5]. For
example, one expects the solution u; on I; of (122) to have an analytic continuation to any ellipse with foci at the endpoints of [;
provided that ellipse does not intersect any other I, for £ # j. And, it is well known that rate of exponential convergence of a Chebyshev
interpolant can be estimated based on this ellipse [31]:

Theorem 4.4. Suppose f : [—1, 1] — C can be analytically continued to the open Bernstein ellipse
By={z""+2)/2: [z <p}. p>1. (155)
Then for

1 dy
= T(y) —F—, 156
ne= [ Somor (156)

17
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one has
Il < 2sup [f(2)lp ", (157)

z€B,

and consequently

4Mpm
ZVJT, <P (158)

ye{ll] p—1

So,if8 j> 1, Iy =[a,b], [y =[d, b'] and Ij1; = [a”, b"], we map [a, b] to [—1, 1] using Ta’b1 which, in turn, maps

2 b+a 2 b+a
', b / , / 159
La ]_>|:b—aa+b—a b—a +b—ai| (159)
and similarly for [a”, b”]. So, set
2 b+a 2 b+a
d=min{—1— b’ s ! -1 0. 160
mm{ b—a +b—a b—a" +b—a }> (160)

So, we expect u; o Ty, to have an analytic extension to B, for any p such that B, "R C [—1 — 4, 1 4 §]. To be conservative in our
estimates, we use §/2 instead and find that p should be chosen to be:

(0 4+ p)2=1+8/2= p(l}) = <2+5+‘/ 4+5)>1 (161)
So, given an estimate for M, and a tolerance ¢ > 0, we can choose m so that
AM p(L;)~™
A <€, (162)
o) — 1

and this provides an a priori guide as to how to choose m in the discretizations C[jb](m, n) and Cig p)—[c,q)(m, N).
5. Applications
5.1. Solutions with dressing: Slowly shrinking gaps
With the methodology set out, one can easily specify a finite number of gaps and specify the Dirichlet eigenvalues within each gap,
and compute the associated potential and its evolution under the KdV flow. To demonstrate this we make first make the following

choice for the gaps in the A-plane.
Choosing «; = 0.1 we thensetforj=1,2,...,¢g
4
Bi=20-17+ (163)

a1 — B = { 10"

To fully specify the solution we set yj(xo = 0) = g; for all j.
While, as we demonstrate in the next section, we can compute the corresponding solution q(x, t) for g large, the solution oscillates
wildly and is difficult to visualize. For this reason we plot the solution for smaller values of g over short time ranges. See Fig. 4.

j~1  jis odd,

3~ jis even,

5.2. High-genus solutions with dressing: Dense gaps and universality

It is also interesting to ask what happens if an increasing number of gaps are put into a fixed interval. Fix, for convenience oy = 0,

and B; > 0. Also, suppose that oz 1 — o« > B as g increases. Now suppose o(y fﬂ y)dy, where o(y) is positive and continuous
on [B4, o], increases from 0 to 1 over the interval [B1, ag11]. Given a sequence wl, ,wg With 0 < w;j < 1, define ay, ..., oz and
B2, ..., Bg through
] -1 1+ wj
(051) s (ﬂ]) 7]
g g

The following lemma will be of use.

Lemma 5.1. The rational function

ﬁk—a
B(}A) == )
j= 2 A
satisfies
Ton w1
log(B(%)) — Z ] =o(1), g— oo, (164)

B A — B

uniformly on compact subsets of C \ [B1, «].

8 If j = 1 we compare with I; with I_; and I,. Then j < 0 is taken care of by symmetry.

18
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=5 AN .y
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Fig. 4. Numerical solutions of the KdV equation with slowly shrinking gaps, see (163). The number of collocation points per contour is chosen adaptively using the
methodology in Section 4.4.

Proof. Expanding log(z) at z = 1 gives

A—oi\ _ Bi—q e
IOg(A—ﬂj)_ k—ﬂj+0((ﬁ] o)) (165)

By the mean value theorem, §; — o = %Q(sj)”, where o < & < g;. This gives
g 2

PETOS (166)

j=2

1S, w1
log(B(A) — = Y —L
og(B(%)) g,-;@(%)k—ﬂj

Then because o is uniformly continuous, for any € > 0 there exists a g > 0 such that |o(&;) — o(B;)| < € for all j if g > go, so that

1 1 €

o&)  oB)| T elEeB)

and the claim follows. O

=

Now, if in the above lemma, w; = v(g;) for some continuous function v : [81, o] — (0, 1) we find that

log(B(A))zf YW 4y o(1), g — oo.

A1 A=y

Thus, the distribution of individual locations «;, §; do not influence the limiting behavior of B(A) as g becomes large. But rather, the
distribution of the lengths of the bands is the most important quantity.

To see how B(A) will arise in a Riemann-Hilbert problem consider the above choice for «; and g;, for given functions o and v.
Previously, we have moved poles in the gap [f;, ;1] on one sheet of the Riemann surface to the point A = «;. This was for numerical
convenience. Here, for analytical convenience, we put the poles at A = ;. We diagonalize the twist jump matrix for ¥(A;x, t):

1 {1 -1

01=QmnQ, Q= A |:] 1 ] . Q'=q". (167)

Then

1 0
Wik = Q[o SN Ji—x] e

19
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Fig. 5. Numerical solutions of the KdV equation as g increases with v in Section 5.2 being constant, equal to 1/2 and «g1 = 2+ 1/g, B = 3/g. Here we also, for
simplicity, take o to be uniform on [, «]. The number of collocation points on each interval is obtained adaptively using the methodology in Section 4.4. It is clear
from these panels that the solution converges as g — oo. The limit may be related to the so-called primitive potentials [32] but the connection is not immediate.

can be used? to remove the jumps of ¥. Define

w(h; x, OWA)T e 2,

\ilk; )=
;% 0) {\If(k;x,t) otherwise,

wherg £ is the disk'? centered at A = oy = 0 with radius @ +c¢, ¢ > 0, and we orient the circle 82 counter-clockwise. Then one finds
that W satisfies the following jump condition

T x, ) =T (A x, OWA)™L, A edf.
For A € 9£2, supposing that 8; — 8,0 < 8 < «, one has

0
-
1 = 1 e us) Q.
W Tﬁ exp (—5 p %ds)
Bringing the jump from 92 back to the real axis, we find the following Riemann-Hilbert problem for a limiting ¥ .,

Ulxt)= W (Axthor, Ae(0,B)U(a,00),

1+Ei7ru(k) einv(A)_l

_1 8-
—>

1
W) Weo()) = Q|

+ . _ - . 2 2
CLosx =0 x| L2 2 ae(Ba),
2 2

and has the asymptotic behavior
WA x, t) = I:eik%(x+4xt) e—ik%(X+4)\t)] (@T+o(1)), A— oo. (168)

This construction can be immediately generalized to

TLxt)= O (Ax thor, A€ (ager, 00)U| J(o, B),

-

1

J
1+Ei”Uj(A) einvj()»)_]

+(3- — = (- 2 2 .
Woo(}\,, X, t) - !poo()“v X, t) ST _q 1+eim’j()“) , A€ (ﬁjs Ajt1 )7
2 2

172

9 The power function B(x)"/? is chosen to have its branch cut on UE,[oy, B] with B(2)"2 — 1 as A — oo.

10 This domain is taken for concreteness, any other reasonable region containing all finite bands and gaps will suffice.
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Fig. 6. Evolution of the solution of the KdV equation with g = 30 and v in Section 5.2 being constant, equal to 1/2 and g1 = 2.

(<)
(5]
1072} s
(5}
1074}
o (<]
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E10%t
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1078+ 5
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2 3 4 5 6 7 8 9 10 11 12

Fig. 7. The error in the computation of u(x, 1) where u is the solution of (169) as measured by comparing the numerical solution with that obtained by direct
integration of the KdV equation using an exponential time integration method, see [33] for a general reference and [34] for the precise method used. The error is
on the order of 10~'* for sufficiently large genus and we are unable to distinguish which numerical solution is giving the dominant contribution to the error. The
number of collocation points per contour is chosen using the methodology in Section 4.4.

where v; : [}, ;1] — (0, 1) is continuous and ¥, and has the asymptotic behavior (168). While full exploration of such Riemann-
Hilbert problems is beyond the scope of the current paper, potentials for v(A) = 1/2 are given in Fig. 5 in the case where 8; — 0 as
g — oo and the evolution is plotted in Fig. 6.

5.3. Initial-value problem with smooth data

We consider the classical problem of Zabusky-Kruskal [35]

Up + utly + 8%t = 0, (169)
u(x, 0) = cos(mx), (170)
for x € (—2, 2]. Based on Remark 2.1, since we are set to solve q; + 6qqx + gxxx = 0, we choose
1 6¢
q(x,0)=a 'u(x/b,0), b= —, a=—, c=Db3s
/ V68 b

and then u(x, t) = aq(bx, ct).

We choose § = 0.08 and use an error tolerance of 1073 (see Section 4.4) to choose the number of collocation points on each
interval I;. We then plot the error in computing u(x, 1) as g increases. To estimate the true error we use the exponential integrator
method discussed in [34] motivated from the work in [33] to compute the “true” solution. Exponential convergence is seen in Fig. 7.
The evolution of the corresponding solution is given in Fig. 8.
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Fig. 8. The numerically computed evolution of (169) using a genus g = 12 approximation. The number of collocation points on each contour is chosen adaptively
using the methodology in Section 4.4.
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8

Fig. 9. A test of the convergence of the numerical approximation of u(x, 0; g) of u(x,0) as g increases. Because of expected non-uniform convergence due to a
Gibbs-like phenomenon, we take a uniform grid x on [0.1, 7 — .1] and use |lu(x, 0; g)[l« as a proxy for the error (u(x,0) = 0 on this interval). Due to increased

oscillations as g increases, this can only be thought of as an estimate for the true error. The best fit line is given by £(g) =~ 0.89 x g~%9 which appears to be
consistent with O(g~') convergence.

Remark 5.2. To be able to compute this solution, one needs to be able to compute the spectrum. We use the Fourier-Floquet-Hill
method [36] to compute the periodic/anti-periodic eigenvalues and use a Chebyshev method to compute the Dirichlet eigenvalues. This
latter method can be found implemented in both Chebfun [37] and ApproxFun [38].

5.4. Initial-value problem with “box” data

To be able to solve the initial value problem for the box initial condition, qo(x) = qo(x + L),

_J0 xe(0,w)
QO(X)—{_h xe(w.l) (171)
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Fig. 10. The evolution of u in (174) with (175). These plots show dispersive quantization where the solution appears to be piecewise smooth at rational-times-
times and fractal otherwise. This was first observed by Chen and Olver, see [1], for example. These plots are produced using a genus g = 300 approximation and
using 10 collocation points on [; if |j| < 4 and two collocation points otherwise. This choice is justified by Fig. 13.

we need to compute the forward spectral theory for (5). In this case a basis of solutions c(x; A) and s(x; A) to (3) normalized as in (35)
and (36) can be computed explicitly, and these solutions contain all information needed to compute the forward spectral theory. In
particular, when L = 2 and w = 1 we have

2L —h . .
AL) = cos(«/X) cos(v'A —h) — m sm(«/X)sm( A —h),
s(x; A) = % sin(«/X) cos(v'A —h(x — 1)) + \/ﬁ cos(«/X) sin(+/A — h(x — 1))
The Dirichlet eigenvalues y(xg = 0) < y2(%o = 0) < y3(x9 = 0) < ... of (5) are then the zeros of
s(2; ) = % sin(«/X) cos(v'A —h) + ﬁ cos(ﬁ) sin(~/A — h), (172)

and the band ends a1 < B1 < -+ - @gq1 < Bgy1 < --- are the zeros of
A = 1. (173)

These are easily computed using standard root-finding techniques. In practice, we find it convenient to use high-precision arithmetic
here so that one is sure where future errors are incurred. Since this is an infinite genus potential, we specify a finite g to truncate
the spectrum, setting 8,41 = oo, resulting in an approximate solution u(x, t; g). The convergence of this approximation is slow, but
reliable, and this is investigated in Fig. 9.
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Fig. 11. A zoomed view of u(x, 0.1) as g increases. These plots indicate that the amplitude of the oscillations decrease as the genus increases. This leads to the
conjecture that the limiting solution profile is piecewise smooth and slowly varying.
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Fig. 12. Left panel: The eigenvalues of A(0, 0) from (149) for the potential (175). We use 10 collocation points for I; if |j| < 4 and 3 collocation points otherwise. Right
panel: The preconditioned matrix A(0, 0)~'A(0, 0) where A is obtained from a discretization of (154). The eigenvalues become localized near A = 2. This problem is
extremely well conditioned and GMRES will converge in just a few iterations.

We investigate various aspects of computing q(x, t) with initial data go as above. We focus on the case discussed by Chen and
Olver [1]. Specifically, if one chooses w = 7 /+/6, L = 27 /+/6, h = —1/2, then

u(x, t) == —q(6~%x, 673/%¢), (174)
is the solution of u; + uyw = ut, with initial data
u(x,O):{O 0<x<, (175)

1/2 m <x<2m,

extended periodically. This allows us to reproduce much of the phenomenon in [1]. In Fig. 10 we demonstrate dispersive quantization.
When t is a rational multiple of 7, u(x, t) as a function of x appears to be piecewise smooth and slowly varying. When ¢t is an irrational
multiple of 7 the solution appears to have a fractal nature. One interesting observation we make here is that while Chen and Olver
remark in [1] that it is not clear from their numerical method if there are truly oscillations between jumps at times that are rational
multiples of 7, our numerics in Fig. 11 indicate that these oscillations will disappear as the genus increases.

We also use this problem to illustrate some important aspects of the numerical method we have developed. First, recall the matrix A
in (149). We plot the eigenvalues of A(0, 0) in the left panel of Fig. 12. Here we use 10 collocation points for [; if |j| < 4 and 3 collocation
points otherwise. Then in the right panel of Fig. 12 we show the preconditioned matrix A(O, 0)~'A(0, 0) where A is obtained from a
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Fig. 13. The magnitude how of the computed Chebyshev coefficients y;j, i = 0, 1,2 in (151) depends on I;, j = £1, &2, ..., £g, for the potential (175). As i increases
the decay rate with respect to |j| is extremely rapid.

discretization of (154). It becomes clear that the eigenvalues become localized near A = 2. This problem is extremely well conditioned
and GMRES will converge in just a few iterations.

Lastly, in Fig. 13 we display how the magnitude of the computed Chebyshev coefficients y;; in (151) depends on I;. In the top-left
panel of Fig. 13 we see that y; = O(1). This is not unexpected because the recovery formula (152) weights these coefficients by the
gap lengths. What is rather surprising is how, for large |j|, the second coefficient in (151) decays rapidly, see the top-right panel of
Fig. 13. The third coefficient decays even more rapidly, see the bottom panel of Fig. 13.
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