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a b s t r a c t

We consider the numerical computation of finite-genus solutions of the Korteweg–de Vries equation

when the genus is large. Our method applies both to the initial-value problem when spectral data can

be computed and to dressing scenarios when spectral data is specified arbitrarily. In order to compute

large genus solutions, we employ a weighted Chebyshev basis to solve an associated singular integral

equation. We also extend previous work to compute period matrices and the Abel map when the

genus is large, maintaining numerical stability. We demonstrate our method on four different classes of

solutions. Specifically, we demonstrate dispersive quantization for ‘‘box’’ initial data and demonstrate

how a large genus limit can be taken to produce a new class of potentials.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Korteweg–de Vries (KdV) equation, written in the form

qt + 6qqx + qxxx = 0, x ∈ [0, L), t > 0, (1)

subject to periodic boundary conditions. A main outcome of this work is an efficient numerical method for the computation of the
inverse scattering transform associated with (1), that is, a numerical inverse scattering transform for the Schrödinger operator with a
periodic, piecewise smooth, potential. We also consider dressing scenarios when spectral data is specified arbitrarily to emphasize that
our formulation can be understood as the evaluation of a special function depending on a large number parameters.

Following [2–4], we formulate a Riemann–Hilbert problem for the so-called Bloch eigenfunctions of the Schrödinger operator. In the
finite-gap case, two eigenfunctions are classically used to construct the associated Baker–Akhiezer function on a hyperelliptic Riemann
surface. A key improvement we make here over the numerical approach in [2] is that through a transformation z2 = λ we pose
Riemann–Hilbert problem with jumps supported on the gaps. This idea was used with limited scope in [5].

The key numerical innovations come from the use of the Chebyshev-V and Chebyshev-W (third and fourth kind) polynomials
and their weighted Cauchy transforms. These weighted Cauchy transforms encode the singularity structure of the solution of the
Riemann–Hilbert problem we pose and allow for an extremely sparse representation of the solution. This is demonstrated in Fig. 13.

The developed numerical method can handle high-genus potentials — Riemann–Hilbert problems with jump matrices supported on
thousands of intervals. This ability stems from the choice of Chebyshev-V and -W basis, which is one of the new ideas in this work. But
there are additional developments that are required to even pose that Riemann–Hilbert problem in the inverse scattering context. These
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Fig. 1. u(x, 1.03π ) and u(x, 0.1) in (174) with (175) solving KdV equation in the form ut − uux + uxxx = 0 (as in [1]). This plot shows dispersive quantization. The

solution appears to be piecewise smooth at rational-times-π times and fractal otherwise. For the KdV equation, this was first observed by Chen and Olver, see [1],

for example. These plots are produced using a genus g = 300 approximation. More details concerning the computation of this solution can be found in Section 5.4.

developments are related to computing the period matrix for a basis of holomorphic differentials when the genus is high. Through a
judicious choice of the basis of holomorphic differentials, we develop an approach that appears stable as g → ∞. Furthermore, our use
of Chebyshev-V and Chebyshev-W polynomials and their weights is predicated on having a potential that produces a Baker–Akhiezer
function with poles at band ends. As this is not the generic setting, following [2], we construct a parametrix Baker–Akhiezer function
to move the poles to the band ends, without loss of generality. A simplification explained in Section 2.3 allows for g to be large with
this approach.

In this paper we do not discuss, in detail, the computation of the direct scattering transform for the Schrödinger operator with a
periodic potential — the computation of the periodic, anti-periodic and Dirichlet spectra. We do accomplish this using existing standard
techniques but consider any improvement on these approaches as important future research topics. In the case of a ‘‘box’’ potential
(see (175) below) we can compute the Bloch eigenfunctions explicitly and apply simple root-finding routines to compute the requisite
spectra. In Fig. 1 we plot the evolution of this infinite-genus box potential to time t = 1.03π using a genus g = 300 approximation.
Realization of dispersive quantization in a nonlinear setting is clear — the solution appears to be piecewise smooth whenever t is a
rational multiple of π [1,6–8].

1.1. Relation to other work

We emphasize that the computation of finite-genus solutions is a nontrivial matter. This paper considers the computation of finite-
genus potentials via the computation of the associated Baker–Akhiezer function. This function can be understood as a special function
depending on a large number of parameters. In a setting with fewer parameters, Lax’s foundational paper [9] includes an appendix by
Hyman, where solutions of genus 2 were obtained through a variational principle. The classical approach to their computation goes
through their algebro-geometric description in terms of Riemann surfaces, see [10] or [11], for instance. While very effective, this
approach has only been applied to relatively small genus Riemann surfaces.

Yet another approach is by the numerical solution of the so-called Dubrovin equations [12,13]. And the finite-genus solution is
easily recovered from the solution of the Dubrovin equations [14,15]. We do not take this approach again because (1) the dimensionality
involved may pose possible stability issues and (2) one has to time-step the solution to get to large times. The Riemann–Hilbert problem
we pose has x and t as explicit parameters, and therefore the complexity associated with computing the solution at any given (x, t)
value is independent of (x, t).

As mentioned above, a numerical Riemann–Hilbert approach was introduced in [2] (see also [4]). While the approach in [2] should
be seen as the precursor to the current work, it was only successful for small genus solutions and was too inefficient when the genus
is larger than, say, 10.

1.2. Outline of the paper

The paper is laid out as follows. In Section 2 we review the inverse spectral theory for the Schrödinger operation with a periodic
or finite-gap potential, connecting it to an underlying Riemann surface (in the finite-gap case) and the associated Baker–Akhiezer
function. In Section 2.3 we discuss the parametrix Baker–Akhiezer function that allows the movement of poles and in Section 2.4 we
begin formulating a Riemann–Hilbert problem satisfied by the planar representation of the Baker–Akhiezer function. In Section 3 we
convert the Riemann–Hilbert problem to a singular integral equation on a collection of intervals. We look for solutions in a weighted L2

space. In Section 4 we discuss the numerical solution of the singular integral equation from the previous section, discussing both
preconditioning and adaptivity of grid points. In Section 5 we discuss the computation of various solutions of the KdV equation.
Specifically, in Sections 5.1 and 5.2 we compute solutions with prescribed spectral data. In Section 5.2 we give a formal universality
result that demonstrates how primitive potentials can be obtained in a large-genus limit. In Section 5.3 we solve the initial-value
problem for the KdV equation with smooth initial data. In Section 5.4, we give an extensive treatment of the numerical solution of the
KdV equation with ‘‘box’’ initial data.

This work gives rise to many interesting questions. The work here, while empirically valid, comes with no rigorous error bounds and
the full numerical analysis of the method is an open problem. Similarly, we provide no error bounds for the approximation of an infinite
genus potential by one of finite genus. The reconstruction formula (55) appears to imply that the errors will be small if one removes
gaps such that αj+1 − βj is small. But this removal has a non-trivial impact on γk(x) for k ̸= j and that error needs to be estimated.
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This leads to the question of understanding both the large g limit of the period matrix of our basis of holomorphic differentials and the
large g limit of the singular integral equation we formulate. These issues will be addressed in future work. There is also some room
for improvement in the complexity of the numerical method. A significant improvement on the complexity would be to put it inside a
matrix-free framework using some incarnation of the fast multiple method [16]. Code used to generate the plots in the current paper
can be found at [17] (see also [18]).

Before we proceed, we give a remark that details our notational conventions.

Remark 1.1 (Notational Conventions). We use capital boldface letters, e.g., M, to denote 1 × 2 row-vectors and to denote matrices, with
the exception of the Pauli matrices,

σ1 :=
[

0 1
1 0

]

, σ2 :=
[

0 −i
i 0

]

, σ3 :=
[

1 0
0 −1

]

, (2)

and denote the identity matrix or identity operator by I. We use lowercase boldface letters, e.g., u to denote column-vectors that are of
arbitrary dimension. We use the capitalized Greek characters, e.g., Ψ , to denote functions defined on a hyperelliptic Riemann surface.
Given such a Ψ , we denote by ψ± the (scalar-valued) components of its planar representation in the form of a row-vector which is
denoted by the boldface version Ψ of Ψ . We use superscripts f ±(z) to denote the boundary values of f at a point z on an oriented
contour taken from the left (+) and the right (−) side of the contour with respect to the orientation. We use fraktur a and b to denote
the cycles on a Riemann surface. Lastly, for a function f : C → C we use f (u) to denote f applied entrywise to the vector u.

2. Inverse scattering transform for periodic solutions

In this section we give a summary of the well-known inverse scattering transform associated with (1) and define the quantities
relevant to the method we develop in this work, along with particular choices we make. The KdV equation in the form (1) is the
λ-independent compatibility condition for the linear problems, i.e., the Lax pair,

L(t)ψ = λψ, (3)

ψt = P(t)ψ, (4)

where is L is the Schrödinger operator

L(t) := − d2

dx2
− q(⋄, t) (5)

with the time-dependent potential −q(⋄, t), and P is the skew-symmetric operator

P(t) := −4
d3

dx3
− 6q(⋄, t) d

dx
− 3qx(⋄, t). (6)

The compatibility condition for the system of linear problems (3)–(4) yields the operator equation, referred to as the Lax equation [19],
in the form

d

dt
L(t) + [L(t),P(t)] = 0, (7)

which is equivalent to the KdV equation (1) in the sense that the left-hand side defines an operator of multiplication by the function
−(qt + 6qqx + qxxx), where [L,P] := LP − PL is the operator commutator. As q evolves in time according to the KdV equation (1), (7)
defines an isospectral deformation of the Schrödinger operator L.

2.1. The spectrum and the Riemann surface

For fixed t ≥ 0, consider the problem (3) for the Schrödinger operator with the time-independent potential −q(⋄, t) = −q(⋄):
−ψxx − qψ = λψ, (8)

for real periodic q with minimal period L > 0: q(x + L) = q(x). The Bloch spectrum σB(q) associated with the periodic potential −q for
the Schrödinger operator (5) is

σB(q) := {λ ∈ C : there exists a solution ψ(⋄; λ) to (8) such that sup
x∈R

|ψ(x; λ)| < ∞}. (9)

For real-valued smooth (and periodic) q, the Bloch spectrum is a countable union of real intervals

σB(q) =
g+1
⋃

k=1

[αk, βk], where g ∈ Z>0 or g = ∞, (10)

with

αk < βk < αk+1, k = 1, 2, . . . . (11)

We refer to the intervals [αk, βk] ⊂ σB(q) as bands and (βk, αk+1) as gaps. If the number of intervals g + 1 is finite, βN := +∞ and the
last interval is [αg+1,+∞), in which case the associated −q is called a finite-gap potential. The endpoints αj and βj, j = 1, 2, . . . ,N ,
remain invariant as q(⋄, t) evolves according to the KdV equation (1), and hence σB(q0) = σB(q) for q(⋄, t) solving (1) with q(⋄, 0) = q0.
The following well-known symmetry transformations associated with the KdV equation play a role in various choices we will make in
this work.

3
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Remark 2.1 (Two Symmetry Groups of KdV). Suppose that q(x, t) is a solution of (1).

• Galilean transformation: The function

q̃(x, t) := q(x − 6ct, t) + c (12)

is also a solution of (1) for any constant c .

• Scaling transformation: The function

q̃(x, t) := c2q(cx, c3t) (13)

is also a solution of (1) for any constant c .

Given q = q(⋄, t) and α1 = min(σB(q)), using the Galilean symmetry transformation (12) with c = α1 lets one map q(⋄, t) to
q̃(⋄ − 6ct, t) + c for which min(σB(q̃)) = 0. Doing so becomes useful in the formulation of a Riemann–Hilbert problem (and of
the associated singular integral equation). This transformation is employed in the numerical implementation of our method: once
α1 ∈ σB(q0) is computed for given q0 at t = 0, we perform the spectral shift described above and then invert it to obtain q(⋄, t) from
q̃(⋄ − 6ct, t) + c at a later time t > 0. Accordingly, we take α1 = 0 without loss of generality in the remainder of this paper.

For our (computational) purposes, we restrict the theory to the finite-gap case. For q0 giving rise to g + 1 bands

σB(q0) = [αg+1,+∞) ∪

⎛

⎝

g
⋃

j=1

[αj, βj]

⎞

⎠ , (14)

and g gaps, g ≥ 2, consider the monic polynomial P(λ) of degree 2g + 1 given by

P(λ) := (λ− αg+1)

g
∏

j=1

(λ− αj)(λ− βj), (15)

and define Σ to be the hyperelliptic (elliptic, if g = 1) nonsingular Riemann surface

Σ := {(λ,w) ∈ C
2 :w2 = P(λ)}, (16)

associated with the zero locus of F (λ,w) := w2 − P(λ). The points (αj, 0), (βj, 0), j = 1, 2, . . . , g , and (αg+1, 0) on Σ are branch points
for the projection (z, w) ↦→ z and there is a single point at ∞ on Σ . For P0 = (λ0, w0) ∈ Σ we have the following choices of a local
coordinate ζ :

• If P0 is not a branch point and not ∞ ∈ Σ , then for (λ,w) near P0 we may take essentially λ to be a local coordinate, so we write
for |ζ | sufficiently small

λ = λ(ζ ) := λ0 + ζ , w = w(ζ ) :=
√

P(λ(ζ )). (17)

• If P0 = Ek = (λk, 0) for some k, then for (λ,w) near P0 we may write

λ = λ(ζ ) := λk + ζ 2, w = w(ζ ) := ζ









√

2g+1
∏

j=1
j̸=k

(ζ 2 + λk − λj). (18)

• Finally, if P0 = ∞ ∈ Σ , then for (λ,w) near P0 we may write

λ = λ(ζ ) := 1

ζ 2
, w = w(ζ ) := 1

ζ







√

2g+1
∏

j=1

(1 − ζ 2λj). (19)

In all three cases λ(ζ ) and w(ζ ) are locally holomorphic functions of ζ in a neighborhood of ζ = 0 with non-zero derivatives at ζ = 0,
making them locally injective, and ζ (P0) = 0.

Define the branch of square root R(λ) of P(λ) to be the (unique) single-valued function that is analytic in C\σB(q0) and that satisfies
R(λ)2 = P(λ) along with the asymptotic behavior

R(λ) = |λ|g+ 1
2

(

(−1)g i + o(1)
)

, λ → −∞. (20)

Importantly, the boundary values R(λ) taken on the bands σB(q) are real-valued and R(λ) is purely imaginary on the gaps, namely for
λ ∈ (βj, αj+1), j = 1, 2, . . . , g . Assuming that the bands constituting σB(q0) are oriented in the increasing direction of the real line, we
define the boundary values R±(λ) of R taken on σB(q0) as:

R±(λ) := lim
ϵ↓0

R(λ± iϵ), λ ∈ σB(q). (21)

We denote by +R(λ) the function that is defined for all λ ∈ C which coincides with R(λ) for λ ∈ C \ σB(q0) and also satisfies
+R(λ) = R+(λ) for λ ∈ σB(q0); and define the sheets Σ± of Σ by

Σ± := {(λ,±R(λ)) : λ ∈ C} . (22)

The Riemann surface Σ is topologically equivalent to a sphere with g handles, which is obtained by gluing the two sheets Σ± along
the edges of the cuts (the bands) [αj, βj], j = 1, 2, . . . , g , and [αg+1,∞]. We define the cycles {aj, bj}gj=1, which constitute a homology

4
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Fig. 2. An illustration of the hyperelliptic Riemann surface Σ and the choices for the a- and the b-cycles.

basis for Σ , as depicted in Fig. 2; and we denote by {ν1, ν2, . . . , νg} the basis of normalized holomorphic differentials on Σ that satisfy
∮

ak

νj = 2π iδjk, 1 ≤ j, k ≤ g. (23)

The g × g matrix B defined by

Bjk :=
∮

bk

νj, 1 ≤ j, k ≤ g (24)

is the Riemann matrix for Σ . To compute b-cycles, the b̃-cycles are often used, see Fig. 3.B is symmetric with Re(B) < 0. Although
finite-gap solutions of (1) have, in principle, representations given in terms Riemann theta functions Θ which are based on the Riemann
matrix B, our method does not require at all any explicit knowledge of the Riemann matrix B.

We will use a particular basis of differentials that is ideal for our computational purposes, so some observations are in order. Let

{ω1, ω2, . . . , ωg} be an arbitrary basis of holomorphic differentials on Σ and define the g × g matrices A and B̃ by

Ajk :=
∮

ak

ωj, B̃jk :=
∮

bk

ωj, 1 ≤ j, k ≤ g. (25)

It is well-known and easy to see that A is nonsingular since otherwise one can find a nontrivial linear combination of {ωj}gj=1 that has
vanishing a-cycles, implying that the resulting holomorphic differential is identically zero, and hence contradicting the independence
of the differentials ωj. Note that there exists scalars Clk, 1 ≤ l, k ≤ g , such that νl =

∑g

j=1 Cljωj. Let C be the matrix of these scalars.
Then we have

2π iδlk =
∮

ak

νl =
g
∑

j=1

Clj

∮

ak

ωj =
g
∑

j=1

CljAjk = [CA]lk, (26)

implying that CA = 2π iI, and hence C = 2π iA−1, which yields the relation
⎡

⎢

⎢

⎣

ν1
ν2
...

νg

⎤

⎥

⎥

⎦

= 2π iA−1

⎡

⎢

⎢

⎣

ω1

ω2

...

ωg

⎤

⎥

⎥

⎦

. (27)

A classical choice for the basis {ω1, . . . , ωg} is

ωj = λj−1

R(λ)
dλ.

But from a computational point-of-view, when g is large, this basis is ill-conditioned. It is better to choose

ωj =
∏g

k=1,k̸=j(λ− αk)

R(λ)
dλ =

⎡

⎣

g
∏

k=1,k̸=j

√

λ− αk

λ− βk

⎤

⎦

dλ
√

(λ− αg+1)(λ− αj)(λ− βj)
. (28)

2.2. The Baker–Akhiezer function

Our approach to compute solutions of (1) is based on numerical solution of a RH problem satisfied by a suitable renormalization
of a Baker–Akhiezer function. We now give a series of definitions and then give construction of the relevant Baker–Akhiezer function
built from certain solutions of the spectral problem

L(0)ψ = λψ. (29)

Definition 2.2. For the hyperelliptic Riemann surface Σ defined by w2 = P(λ), a divisor D on Σ is a formal sum

D = n1P1 + n2P2 + · · · + nmPm, (30)

where nj ∈ Z and Pj ∈ Σ for j = 1, 2, . . . ,m. A divisor is called positive if nj > 0 for all j, and the degree of a divisor is the number
∑m

j=1 nj.

5
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Definition 2.3 (Abel Map). Fix an arbitrary point P0 on the Riemann surfaceΣ defined by w2 = P(λ) and let D = n1P1+n2P2+· · ·+nmPm
be a divisor on Σ . The Abel map A(D) is given by

A(D) =

⎛

⎝

m
∑

j=1

nj

∫ Pj

P0

νℓ

⎞

⎠

1≤ℓ≤g

, (31)

where the path of integration from P0 to Pj is chosen to be the same for each ℓ = 1, 2, . . . , g .

Definition 2.4. For the hyperelliptic Riemann surface Σ defined by w2 = P(λ), let Q1, . . . ,Qn be points on Σ with local parameters
ζj, j = 1, . . . , n, with ζj(Qj) = 0, as in (17)–(19). To each point Qj associate an arbitrary polynomial qj(ζ

−1
j ) of the reciprocal of the

associated local parameter. Next, let D = P1 + P2 + · · · Pg be an arbitrary positive divisor on Σ \ {Q1, . . . ,Qn} of degree g . Then
V(D;Q1, . . . ,Qn; q1, . . . , qn) is the linear space of functions Ψ (P) on Σ satisfying the following properties:

(1) The function Ψ (P) is meromorphic on Σ \ {Q1, . . . ,Qn} and has poles at the points of D.

(2) There exists a neighborhood of every point Qj, j = 1, . . . , n, such that the product

Ψ (P) exp
(

−qj
(

ζj(P)
−1
))

is analytic in this neighborhood.

Such a function Ψ (P) is called a Baker–Akhiezer function.

The following theorem from [12, Theorem 2.24] is quite useful in this work. We do not define all the quantities that arise in its
statement but only highlight the components that are crucial for us to proceed.

Theorem 2.5. The space V(D;Q1, . . . ,Qn; q1, . . . , qn) is one-dimensional for a non-special divisor2 D and polynomials qj with sufficiently
small coefficients. Its basis is described explicitly by

Ψ0(P) = Θ (A(P) + v − d;B)
Θ (A(P) − d;B) eΩ(P) (32)

where Ω(P) is a normalized Abelian integral of the second kind3 with poles at the points Q1, . . . ,Qn, the principal parts of which coincide
with the polynomials qj(zj), j = 1, . . . , n, Θ is Riemann’s theta function, and v is a vector of the b-periods of the integrals of Ω(P):

vj =
∮

bj

dΩ, j = 1, . . . , g. (33)

Further, d = A(D) + k where A(D) is the Abel map and k is a vector of Riemann constants, and the integration path for the integrals

Ω(P) =
∫ P

P0

dΩ and A(P) (34)

is chosen to be the same.

We now focus our attention to solutions of (29). First, fix x0 ∈ R and define a set of fundamental solutions {c(x; λ), s(x; λ)} of (29)
that are determined by

c(x0; λ) = 1, cx(x0; λ) = 0, (35)

s(x0; λ) = 0, sx(x0; λ) = 1. (36)

It is easy to verify that these solutions solve the following Volterra integral equations

c(x; λ) = cos
(√
λ(x − x0)

)

−
∫ x

x0

sin
(√
λ(x − y)

)

√
λ

q0(y)c(y; λ)dy, (37)

s(x; λ) =
sin
(√
λ(x − x0)

)

√
λ

−
∫ x

x0

sin
(√
λ(x − y)

)

√
λ

q0(y)s(y; λ)dy, (38)

where the branch cut for the square root is taken to be [0,+∞) and the branch is chosen so that
√
λ = i|λ|1/2 +o(1) as λ → −∞ with

the branch of the argument [0, 2π ). This demonstrates that these two solutions are entire functions of λ for given x because cosine
and sine are even and odd functions, respectively, and the paths of integration are finite. We omit the parametric dependence of these
solutions on x0 in our notation. Next, we define the monodromy operator T for (29) by (T ψ)(x) := ψ(x+ L) and represent the action of
T on the set of fundamental solutions constructed above. Consider the first-order system equivalent to (29)

d

dx

[

ψ(x; λ)
ψx(x; λ)

]

=
[

0 1
−(λ+ q0(x)) 0

][

ψ(x; λ)
ψx(x; λ)

]

(39)

along with its fundamental solution matrix

F(x; λ) :=
[

c(x; λ) s(x; λ)
cx(x; λ) sx(x; λ)

]

, (40)

2 The divisors D that we encounter in this work will always be of the form D = P1 + P2 + · · · + Pg , Pj = (λj,±R(λj)), λj ∈ R for distinct λj . Such divisors are

non-special [20].
3 A normalized Abelian differential is a meromorphic differential that is normalized to integrate to zero over all the a-cycles.
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which is unimodular (see [20, §1.6]) and satisfies F(x0; λ) = I. As x ↦→ c(x + L; λ) and x ↦→ s(x + L; λ) also define solutions of (29)

thanks to the periodicity of q0,

F(x + L; λ) := F(x; λ)T(λ) (41)

for some x-independent 2 × 2 matrix T(λ), which is called the monodromy matrix. Evaluating both sides at x = x0 yields

T(λ) = F(x0 + L; λ) =
[

c(x0 + L; λ) s(x0 + L; λ)
cx(x0 + L; λ) sx(x0 + L; λ)

]

. (42)

T(λ) is an entire matrix-valued function of λ and det(T(λ, x0, L)) = 1. Then, for a solution ψ(⋄; λ) of (29), we have
[

ψ(x; λ)
ψx(x; λ)

]

= F(x, λ)a(λ), (43)

for some a(λ) ∈ C
2×1, and hence

T
n

([

ψ(⋄; λ)
ψx(⋄; λ)

])

(x) = F(x, λ)T(λ)na(λ). (44)

for any positive integer n. This and the unimodularity of F(x; λ) imply that for given λ, µ(λ) is an eigenvalue of T with an eigenfunction

ψ(⋄; λ) in the (two dimensional) solution space of (29) if and only if µ(λ) is an eigenvalue of T(λ) with an eigenvector a(λ). It can be

shown that λ ∈ σB(q0) if and only if T has an eigenvalue µ(λ) (in the solution space of (29)) with |µ(λ)| = 1, and that |µ(λ)| = 1

implies λ ∈ R (see [20, Lemma 1.6.4, Lemma 1.6.7]). To find eigenvalues µ of the monodromy matrix T(λ), set ∆(λ) := 1
2
tr(T(λ)), which

is an entire function and does not depend on x0. The eigenvalues of T(λ) are the two solutions µ = µ± of

µ2 − 2∆(λ)µ+ 1 = 0. (45)

These solutions satisfy |µ±| = 1 if and only if −1 ≤ ∆(λ) ≤ 1, which corresponds to λ ∈ σB(q0). We let µ+(λ) denote the solution of

(45) that satisfies |µ+(λ)| < 1 for λ ∈ C \ σB(q0). Then, necessarily µ−(λ) = µ+(λ)−1, hence µ− is the solution satisfying |µ−(λ)| > 1

for λ ∈ C\σB(q0), and both µ±(λ) are analytic for λ ∈ C\σB(q0). Since ∆(λ) > 0 for λ < 0 (see [21, pg. 3]), we have from the quadratic

formula the representations

µ±(λ) = ∆(λ) ∓ r(λ), (46)

where r(λ) is a function analytic for λ ∈ C \ σB(q0) that is determined by the conditions r(λ)2 = ∆(λ)2 − 1 and r(λ) > 0 for λ < 0.

Thus, we have µ±(λ) = ∆(λ)∓
√
∆(λ) − 1

√
∆(λ) + 1, where the branch cut for the square root is taken to be [0,+∞) and the branch

is chosen so that
√
λ = i|λ|1/2 + o(1) as λ → −∞ with the branch of the argument [0, 2π ).

The Bloch eigenfunctions ψ±(⋄; λ) are bounded solutions of (29) that are eigenfunctions of T for λ ∈ σB(q0) with the normalization

ψ±(x0; λ) = 1, hence they are obtained by choosing the first row of a(λ) in (43) to be equal to 1 in solving

T(λ)a±(λ) = µ±(λ)a±(λ) (47)

to find

ψ±(x; λ) :=c(x; λ) + µ±(λ) − c(x0 + L; λ)
s(x0 + L; λ) s(x; λ)

=c(x; λ) +
∓

√
∆(λ) − 1

√
∆(λ) + 1 + 1

2
(T22(λ) − T11(λ))

T12(λ)
s(x; λ).

(48)

Setting χ±(x; λ) := −i(∂xψ±(x; λ))/ψ±(x; λ), it follows that χ±(x; λ) are periodic functions of x with period L and are independent of the

choice of x0 (see [22, Lemma 1.1]). Moreover, χ (x; λ) extends as a single-valued algebraic function on the Riemann surface Σ defined

in (16), with

Re(χ±(x; λ)) = ±R(λ)
∏g

j=1(λ− γj(x))
(49)

where γj(x) are located in gaps or their endpoints: βj ≤ γj(x) ≤ αj+1.

For the finite-gap case (i.e., g < ∞) we are considering, ∆(λ)2 − 1 = 0 has finite (and odd) number of simple roots, which are

the band endpoints [22]. Using the asymptotic expansions of ∆(λ) as λ → −∞ and of c(x; λ) and s(x; λ) as λ → ±∞ given in

[21, pp. 1–3], we have that

ψ±(x; λ) = e±i
√
λ
+
(x−x0)(1 + o(1)), λ → +∞, (50)

where the square root again has the branch cut on [0,+∞) using the branch of the argument [0, 2π ) with
√
λ = i|λ|1/2 + o(1) as

λ → −∞. Here
√
λ

+
for λ > 0 denotes the boundary value of this branch of square root from the upper half-plane.

Remark 2.6. Using the independence of the Wronskian Wron(ψ±(x; λ), c(x; λ)) from x yields the formula

ψ±(x; λ) = c(x; λ) + iχ±(x0; λ)s(x; λ). (51)

Then, from χ±(x0; λ) ∼ ±
√
λ, one can also conclude (50) [22].
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One also has the identity

ψ+(x; λ)ψ−(x; λ) =
∏g

j=1(λ− γj(x))
∏g

j=1(λ− γj(x0))
, (52)

see [22, Theorem 2.1], and also [23]. This implies (see [24, Theorem 2.3]) that the function Ψ (x; P) defined on the Riemann surface Σ
by

Ψ (x; P) =
{

ψ+(x; λ), P = (λ,+R(λ)),

ψ−(x; λ), P = (λ,−R(λ)).
(53)

extends as a single-valued meromorphic (for x ̸= x0) function on Σ \ {∞} with poles at locations where χ (x0; λ) has its simple
poles (see (51)), namely, at λ = γj(x0), j = 1, 2, . . . , g . The identity (52) implies that Ψ (x; P) has a pole only on one of the sheets:
Pj := (γj(x0), σjR(γj(x0))), one in each of the gaps, where σj is either 1 or −1, j = 1, 2, . . . , g . Ψ (x; P) also has an essential singularity at
P = ∞ and its behavior for P near ∞ is given by

Ψ (x; P) e−iz(P)(x−x0) = 1 + o(1), (54)

where z(P) denotes the reciprocal of the local coordinate (19) near ∞: z(P)2 = λ. Recalling Definition 2.4, these facts show that Ψ (x; P)
is a Baker–Akhiezer function on Σ with n = 1, Q1 = ∞ with the associated polynomial q1(z) := z, and with the non-special divisor
D = P1 + P2 + · · · + Pg . Moreover, these conditions uniquely determine Ψ (x; P) by Theorem 2.5.

Remark 2.7. The zeros of Ψ (x; P) are at the points where λ = γj(x), and they lie also in the gaps. It is well-known that the potential
q0(x) can be recovered via the formula

q0(x) = 2

g
∑

j=1

γj(x) −
g
∑

j=1

(αj + βj) − αg+1, (55)

see, for example, [23]. Our method for obtaining q0 from Ψ makes no reference to this formula, and hence avoids root-finding.

2.2.1. Time dependence

The Bloch solutions ψ± of (3) can be constructed at a given fixed time t as q(⋄, t) evolves according to the KdV equation. Let ψ
[t]
± (x; λ)

denote these solutions and we have ψ
[0]
± (x; λ) = ψ±(x; λ) which were studied in the previous subsection. While ψ

[t]
± (x; λ) solve (3)

with (50) and the normalization ψ
[t]
± (x0; λ) = 1, they do not provide a set of simultaneous solutions of (3)–(4) as they do not satisfy

(4). A calculation identical to [3, Proposition 6.2] shows that

(L(t) − λ)

(

∂

∂t
ψ

[t]
± (x; λ) − P(t)ψ

[t]
± (x; λ)

)

= 0 (56)

which implies that

∂

∂t
ψ

[t]
± (x; λ) + d±(t; λ)ψ [t]

± (x; λ) = P(t)ψ
[t]
± (x; λ)

= (4λ− 2q(x, t))
∂

∂x
ψ

[t]
± (x; λ) + qx(x, t)ψ

[t]
± (x; λ)

(57)

for x-independent coefficients d±(t; λ) that are given by

d±(t; λ) = (4λ− 2q(x0, t))
µ±(λ) − c(x0 + L; λ)

s(x0 + L; λ) + qx(x0, t). (58)

These are obtained by evaluating (57) at x = x0. Again from [3, Proposition 6.2] (see also [3, Proposition 3.3]) we have the asymptotic
behavior

d±(t; λ) = ±4i(
√
λ)3 + O

(

1√
λ

)

, λ → ∞. (59)

Following [3], one uses the solution φ±(t; λ) of
∂

∂t
φ±(t; λ) = d±(t; λ)φ±(t; λ) (60)

satisfying φ±(0; λ) = 1. Then

ψ±(x, t; λ) := ψ
[t]
± (x; λ)φ±(t; λ) (61)

define a set of simultaneous solutions of (3)–(4). As proved in [3, Proposition 6.3], φ±(t; λ) satisfy

φ±(t; λ) = e±4i(
√
λ)3t

(

1 + O

(

1√
λ

))

, λ → ∞. (62)

Moreover, the product in (61) fixes the poles of ψ± in time, see [3, Proposition 6.3]. Thus, with ψ±(x, t; λ) we introduce a Baker–
Akhiezer function Ψ (x, t; P) on the Riemann surface with all the same properties as (53) with the exception of the replacement of the
asymptotics with

Ψ (x, t; P) = eiz(P)(x−x0)+4iz(P)3t (1 + o(1)), z(P) → ∞. (63)
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2.3. Moving poles to the band endpoints

The procedure described here resembles what was employed in the earlier works [2,25] (see also [4, Chapter 11]). However, we
make an observation that enables the treatment of the case when the genus g is large. For z ∈ C \ [α1,∞) define

∆(λ; d, v) =
[

Θ(A(λ) + v − d;B)
Θ(A(λ) − d;B)

Θ(−A(λ) + v − d;B)
Θ(−A(λ) − d;B)

]

,

where A(λ) = A(λ, R(λ)) is the Abel map restricted to the first sheet. Note that −A(λ) = A(λ,−R(λ)) is then the Abel map restricted
to the second sheet. The following properties of the theta function are now needed

Θ(z + 2π iej;B) = Θ(z;B),

Θ(z + Bej;B) = exp

(

−1

2
Bjj − zj

)

Θ(z;B),

where ej is the jth column of the g × g identity matrix and B is the Riemann matrix. Then note that

A
+(λ) + A

−(λ) =
(

2

j−1
∑

k=1

∫ αk+1

βk

νℓ

)g

ℓ=1

=
(

j−1
∑

k=1

∮

ak

νℓ

)g

ℓ=1

= 2π in, λ ∈ (αj, βj),

for a vector n of ones and zeros. Then we compute

A
+(λ) − A

−(λ) =
(

2

j
∑

k=1

∫ βk

αk

νℓ

)g

ℓ=1

=
(

∮

bj

νℓ

)g

ℓ=1

= Bej, λ ∈ (βj, αj+1).

Note that from (53), for a non-special divisor D =
∑g

j=1 Pj,

Θ(A(P) − A(D) − k;B) = 0 if and only if P ∈ {P1, . . . , Pg}, (64)

where, as before, k is the vector of Riemann constants with base point α1. So, for two non-special divisors D =
∑g

j=1 Pj and D′ =
∑g

j=1 P
′
j

we choose v = v(D,D′) and d = d(D,D′) by

v − d = −A(D) − k, (65)

−d = −A(D′) − k. (66)

For P = (λ,w) ∈ Σ , define π (λ,w) = λ. Then it follows that if Pj is on the first (second) sheet of Σ then ∆(λ; d, v) has a zero at π (Pj)
in its first (second) column. Similarly, if P ′

j is on the first (second) sheet of Σ then ∆(λ; d, v) has a pole at π (P ′
j ) in its first (second)

column.
Now suppose that λ is not a pole of either column of ∆. Then

∆
+(λ; d, v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∆
−(λ; d, v)σ1 λ ∈

(

αg+1,+∞
)

∪
(
⋃g

j=1

(

αj, βj

))

,

∆
−(λ; d, v)

[

e−vj 0

0 evj

]

λ ∈ (βj, αj+1),

∆
−(λ; d, v) λ ∈ (−∞, α1).

Choose the divisor

D′ = (α2, 0) + (α3, 0) + · · · + (αg+1, 0), (67)

and let D be the divisor of the poles of the Baker–Akhiezer function Ψ (P; x, t). Then consider v = v(D,D′) and d = d(D,D′) with these
choices as in (65) and (66). The function

Ξ (P; x, t) := Ψ (P; x, t)∆(∞; d, v)
∆(P; d, v) (68)

now has poles at the right endpoints of the gaps, namely the points where λ = α2, α3, . . . , αg+1. We arrive at the following proposition.

Proposition 2.8. The sectionally analytic vector-valued function

Ξ (λ; x, t) =:
[

ξ+(λ; x, t) ξ−(λ; x, t)
]

(69)

satisfies the following jump conditions away from poles

Ξ
+(λ; x, t) = Ξ

−(λ; x, t)σ1, λ ∈ (αg+1,+∞) ∪

⎛

⎝

g
⋃

j=1

(αj, βj)

⎞

⎠ , (70)

Ξ
+(λ; x, t) = Ξ

−(λ; x, t)
[

evj 0
0 e−vj

]

, λ ∈ (βj, αj+1) (71)

where Ξ±(λ; x, t) = limϵ↓0 Ξ
±(λ± iϵ; x, t). The asymptotics

Ξ (λ; x, t) e−(i
√
λx+4iλ3/2t)σ3 =

[

1 1
]

+ O

(

1√
λ

)

, |λ| → ∞, (72)

9
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Fig. 3. An illustration of the choices for the b- and the b̃-cycles on the hyperelliptic Riemann surface Σ .

also hold.

2.4. The Riemann-Hilbert problem

Let Ψ (⋄; x, t) :C1×2 \σB(q) → C denote the row vector planar representation of the Baker–Akhiezer function associated with q(x, t):

Ψ (λ; x, t) :=
[

ψ+(λ; x, t) ψ−(λ; x, t)
]

, (73)

which satisfies the ‘‘twist’’ jump condition

Ψ
+(λ; x, t) = Ψ

−(λ; x, t)σ1, λ ∈ Σ (74)

and has the asymptotic behavior

Ψ (λ; x, t) =
[

eiλ
1
2 (x+4λt) e−iλ

1
2 (x+4λt)

]

(I + o(1)) , λ → ∞. (75)

Here the power function λ ↦→ λ
1
2 is defined to be analytic on C \ [0,+∞), satisfying λ

1
2 = i|λ| 12 + o(1) as λ → −∞. Set

θ (λ; x, t) := λ
1
2 (x + 4λt) and observe that θ (λ; x, t) has a jump discontinuity across the half-line (0,+∞), which we orient from

λ = 0 to λ = +∞. Based on the considerations in the previous section, we transform Ψ to Ξ so that poles only occur at the points in
the divisor (67).

Define the renormalized row-vector-valued function

M(λ; x, t) := Ξ (λ; x, t) e−iθ (λ;x,t)σ3 . (76)

As θ+(λ; x, t) + θ−(λ; x, t) = 0 for λ ∈ [0,+∞), the jump conditions satisfied by M(λ; x, t) take the form

M+(λ; x, t) = M−(λ; x, t)σ1, λ ∈ (αg+1,+∞) ∪

⎛

⎝

g
⋃

j=1

(αj, βj)

⎞

⎠ , (77)

M+(λ; x, t) = M−(λ; x, t) e(−2iθ+(λ;x,t)+vj)σ3 , λ ∈ (βj, αj+1), j = 1, 2, . . . , g, (78)

and M(λ; x, t) satisfies
M(λ; x, t) =

[

1 1
]

(I + o(1)), λ → ∞. (79)

Remark 2.9. An important calculation to make here is to define

K(z; x, t) =
{

M(z2; x, t) Im z > 0,

M(z2; x, t)σ1 Im z < 0.

Then apply [5, Theorem 2.1] to see that K (and therefore M, and hence Ψ (x, t; P)) is a simultaneous solution of an appropriate version
of the Lax pair for the KdV equation.

To control the oscillatory factors in the jump matrices above, we seek a function G(λ; x, t) that is analytic for λ ∈ C \ [0,+∞)
satisfying

G+(λ; x, t) + G−(λ; x, t) = 0, λ ∈ (αg+1,+∞) ∪

⎛

⎝

g
⋃

j=1

(αj, βj)

⎞

⎠ (80)

G+(λ; x, t) − G−(λ; x, t) + 2θ+(λ; x, t) = Ω̌j, λ ∈ (βj, αj+1), j = 1, 2, . . . , g, (81)

for some constants Ω̌j, and normalized to satisfy G(λ) → 0 as λ → ∞. It is easy to see that

G(λ; x, t) := R(λ)

2π i

g
∑

j=1

∫ αj+1

βj

Ω̌j − 2θ+(ζ ; x, t)
R(ζ )(ζ − λ)

dζ (82)

is analytic for λ ∈ C \ [0,+∞), admits continuous boundary values on [0,+∞) which satisfy the jump conditions (80)–(81).

10
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Lemma 2.10. Let {p0, . . . , pg−1} be a basis of polynomials of degree at most g − 1 and define a matrix A via

A = (Akj)1≤k,j≤g , Akj = −2

∫ αj+1

βj

pk−1(ζ )

R(ζ )
dζ . (83)

Then A is invertible. And if (Ω̌j)
g

j=1 = (Ω̌j(x, t))
g

j=1 satisfy

g
∑

j=1

AkjΩ̌j = −4

g
∑

j=1

∫ αj+1

βj

θ+(ζ ; x, t)pk−1(ζ )

R(ζ )
dζ , k = 1, 2, . . . , g, (84)

then

G(λ)

R(λ)
= O(λ−g−1), λ → ∞.

Moreover, Ω̌j, j = 1, 2, . . . , g are real-valued.

Proof. Observe that

G(λ)

R(λ)
=

g
∑

k=1

mk(x, t)λ
−k + O(λ−g−1), λ → ∞, (85)

where

mk(x, t) := − 1

2π i

g
∑

j=1

∫ αj+1

βj

(

Ω̌j − 2θ+(ζ ; x, t)
) ζ k−1

R(ζ )
dζ , k = 1, 2, . . . , g. (86)

Thus, in order to have G(λ) = o(1) as λ → ∞, we need to have mk ≡ 0 for k = 1, 2, . . . , g , which yields the conditions

g
∑

j=1

Ω̌j

∫ αj+1

βj

ζ k−1

R(ζ )
dζ =

g
∑

j=1

∫ αj+1

βj

2θ+(ζ ; x, t)ζ
k−1

R(ζ )
dζ , k = 1, 2, . . . , g. (87)

This is a linear system of g equations for the constants Ω̌j = Ω̌j(x, t), j = 1, 2, . . . , g . Taking a linear combination of these equations
we can instead consider

g
∑

j=1

Ω̌j

∫ αj+1

βj

pk−1(ζ )

R(ζ )
dζ =

g
∑

j=1

∫ αj+1

βj

2θ+(ζ ; x, t)pk−1(ζ )

R(ζ )
dζ , k = 1, 2, . . . , g, (88)

for any basis {p0, . . . , pg−1} for polynomials of degree at most g − 1. Taking into account the orientation of the a-cycles depicted in
Fig. 2 and the sign change that occurs from passing from one sheet to the other, we have

∫ αj+1

βj

pk−1(ζ )

R(ζ )
dζ =

∫ αj+1

βj

pk−1(ζ )

w
dζ = −1

2

∮

aj

ωk = −1

2
Akj, k = 1, 2, . . . , g, (89)

from (25), choosing pj−1 so that pj(ζ )/R(ζ )dζ = ωj, and hence (87) reads

g
∑

j=1

AkjΩ̌j = −4

g
∑

j=1

∫ αj+1

βj

θ+(ζ ; x, t)pk−1(ζ )

R(ζ )
dζ , k = 1, 2, . . . , g. (90)

The coefficient matrix for the linear system (83) is nothing but a constant multiple of the matrix A of a-cycles of the basis of differentials
{ωk}gk=1, which is nonsingular. Therefore, the system (87) is uniquely solvable.

Now note that because θ+(ζ ; x, t) is real-valued and R(ζ ) is purely imaginary for ζ ∈ (βj, αj+1), j = 1, 2, . . . , g , it follows that Ω̌j,
j = 1, 2, . . . , g in the previous lemma are all real valued. This establishes the lemma. □

Using the basis of differentials in (28) results in a linear system which can be solved in a numerically stable fashion as g becomes
large.

Remark 2.11. The computation of the integrals that appear in this section and the computation of the Abel map is discussed in [2].
There is a numerical subtlety here. If one computes the Abel map A(λ) for λ near a branch point and λ is known to within an error ϵ,
that error may be amplified to be on the order of

√
ϵ. So, if q0 is such that γj(x) is near a branch point, the computation of the of vj in

Proposition 2.8 may suffer increased errors. In practice, one can choose x0 in the initial scattering theory to move this away from the
branch point. Various schemes can be employed to find a good choice of x0. Choosing x0 randomly is often sufficient.

Now define

N(λ; x, t) := M(λ; x, t) e−iG(λ;x,t)σ3 , (91)

and observe that N(λ; x, t) satisfies the following jump conditions:

N+(λ; x, t) = N−(λ; x, t)σ1, λ ∈ (αg+1,+∞) ∪

⎛

⎝

g
⋃

j=1

(αj, βj)

⎞

⎠ , (92)

11
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N+(λ; x, t) = N−(λ; x, t) e(−iΩ̌j(x,t)+vj)σ3 , λ ∈ (βj, αj+1), j = 1, 2, . . . , g. (93)

In what follows, we use the notation Ω(x, t) = Ω̌j(x, t) + ivj.

3. A singular integral equation for the solution of the Riemann–Hilbert problem on cuts

In this section we describe a numerical method to approximate (91). But before we do that, we need to make one more

transformation to remove the non-trivial jump that has infinite extent. Recall from the discussion following Remark 2.1 that we take

α1 = 0 without loss of generality. Define

S(z; x, t) :=
{

N(z2; x, t) Im z > 0,

N(z2; x, t)σ1 Im z < 0.
(94)

For convenience we write

αj =: a2j , aj ≥ 0, j = 1, 2, . . . , g + 1, (95)

βj =: b2j , bj > 0, j = 1, 2, . . . , g. (96)

Note that for Re(z) > 0 if Im(z) > 0 then Im(z2) > 0. Similarly, if Re(z) > 0, Im(z) < 0 implies Im(z2) < 0. And if Re(z) < 0, then these

implications are flipped. From this we find that S(z; x, t) only has jumps on the (symmetric) collection of intervals

(bj, aj+1), (−aj+1,−bj), j = 1, 2, . . . , g, (97)

where it satisfies:

S+(z; x, t) = N+(z2; x, t) = N−(z2; x, t) e−iΩj(x,t)σ3 = S−(z; x, t)σ1 e−iΩj(x,t)σ3 , z ∈ (bj, aj+1), (98)

S+(z; x, t) = N−(z2; x, t) = N+(z2; x, t) eiΩj(x,t)σ3 = S−(z; x, t)σ1 eiΩj(x,t)σ3 , z ∈ (−aj+1,−bj), (99)

where we have reoriented the intervals (−aj+1,−bj) so that all of the intervals in (97) are oriented from their left endpoint to the right

endpoint. Moreover, S(z; x, t) is normalized so that S(z; x, t) =
[

1 1
]

+ O(z−1) as |z| → ∞.

Next, we will want a formula to recover q(x, t), the solution of the KdV equation (1), directly from a representation of S(λ; x, t) as
function of λ. As |z| → ∞, write

S(z; x, t) =
[

1 1
]

+ 1

z

[

s1(x, t) s2(x, t)
]

+ O(z−2). (100)

Supposing this limit is taken in the upper-half of the z-plane, this then implies that

N(λ; x, t) =
[

1 1
]

+ 1√
λ

[

s1(x, t) s2(x, t)
]

+ O(λ−1), λ → ∞. (101)

Then we recall that

N(λ; x, t) = Ψ (λ; x, t) e−i(G(λ;x,t)+θ (λ;x,t))σ3 , (102)

where the entries of the 1 × 2 vector Ψ (λ, x, t) are solutions of L(t)ψ = λψ , see (73). So, consider the function m(λ; x, t) =
ψ+(λ; x, t)e−iθ (λ;x,t):

∂xm(λ; x, t) = ∂xψ
+(λ; x, t)e−iθ (λ;x,t) − i

√
λψ+(λ; x, t)e−iθ (λ;x,t), (103)

∂xxm(λ; x, t) = ∂xxψ
+(λ; x, t)e−iθ (λ;x,t) − 2i

√
λ∂xψ

+(λ; x, t)e−iθ (λ;x,t) − λψ+(λ; x, t)e−iθ (λ;x,t). (104)

Adding these so as to eliminate the ∂xψ
+ term, we find

∂xxm(λ; x, t) + 2i
√
λ∂xm(λ; x, t) = ∂xxψ

+(λ; x, t)e−iθ (λ;x,t) + λψ+(λ; x, t) e−iθ (λ;x,t)

= −q(x, t)m(λ; x, t).
(105)

It follows from (32) that both ∂xxm(λ; x, t) and ∂xm(λ; x, t) decay at infinity, giving the recovery formula

− lim
λ→∞

2i
√
λ∂xm(λ; x, t) = q(x, t). (106)

In other words, we have as λ → ∞

N(λ, x, t) =
[

1 1
]

+ 1

2i
√
λ

[

−
∫ x

q(s, t)ds
∫ x

q(s, t)ds
]

− i√
λ

[

mg+1(x, t) −mg+1(x, t)
]

+ O(λ−1), (107)

where mg+1(x, t) denotes the coefficient of the term proportional to λ−g−1 in the expansion (85). Thus, we arrive at

q(x, t) = −2i∂xs1(x, t) + 2∂xmg+1(x, t). (108)

12
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3.1. Weighted spaces

We now formulate a singular integral equation on a direct sum of weighted L2 spaces. Define

Ij :=
{

(bj, aj+1) j ∈ {1, 2, . . . , g},
(−b|j|,−a|j|+1) j ∈ {−1,−2, . . . ,−g}. (109)

Then set, for y ∈ Ij

wj(y) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

π

√

y − bj

aj+1 − y
j ∈ {1, 2, . . . , g},

1

π

√

−b|j| − y

y + a|j|+1

j ∈ {−1,−2, . . . ,−g},

(110)

where each weight wj(y) is understood to vanish outside its domain of definition. Then define

L2w

⎛

⎝

⋃

j

Ij

⎞

⎠ :=
g
⨁

j=−g
j̸=0

L2wj
(Ij), w :=

∑

j

wj. (111)

It is convenient to order the component functions (each of which is 2 × 1 row-vector-valued) for U ∈ L2w
(
⋃

j Ij
)

as U =
(U1,U−1,U2,U−2, . . . ,Ug ,U−g ). Define the operators

RjU := UJj, (WU)|Ij := w−1
j U|Ij (112)

i.e., right multiplication by the jump matrix

Jj := σ1 e
−sgn(j)Ω|j|(x,t)σ3 , (113)

and division by the weight wj on Ij, respectively.

Suppose4 Γ is a union of line segments. For a weight function w :Γ → [0,∞) supported on Γ , define the weighted Lp space

Lpw(Γ ) :=
{

f : Γ → C :
∫

Γ

|f (z)|pw(z)|dz| < ∞
}

(114)

and the weighted Cauchy transform

CΓ ,wu(z) = 1

2π i

∫

Γ

u
(

z ′)

z ′ − z
w
(

z ′) dz ′, z ∈ C\Γ . (115)

We define the boundary values of (115) whenever the following limits exist:

C
±
Γ ,wu(z) = lim

ϵ↓0
CΓ ,wu(z ± iϵ), z ∈ Γ . (116)

When the domain of the weight w is clear from context we write Cw, C
±
w . When w ≡ 1 we write CΓ , C

±
Γ . These operators are understood

to apply to vectors component-wise.

Definition 3.1. A function S(z; x, t) is a solution of the Riemann–Hilbert problem

S+(z; x, t) = S−(z; x, t)Jj, z ∈ Ij, (117)

S(∞; x, t) = C ∈ C
m×2,

if

S(z; x, t) = C +
g
∑

j=−g
j̸=0

Cwj
uj(z), (118)

for U ∈ L2w
(
⋃

j Ij
)

and the jump condition (117) is satisfied for a.e. z ∈ Ij for each j. Further, for j ̸= k we use the notation

Cwj

⏐

⏐

⏐

Ik

U := (Cwj
U)

⏐

⏐

⏐

Ik

. (119)

Theorem 3.2. Suppose S(z; x, t) satisfies the following5

(1) For some 1 < p < 2

sup
ρ>0

∫ ∞

−∞
∥S(z ± iρ; x, t) − C∥pdz < ∞. (120)

4 This suffices for our purposes, but in general one can consider Carleson curves [26].
5 Here ∥ · ∥ is any norm on C

m×2 .

13
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(2) The jump condition (117) is satisfied for a.e. z ∈ Ij for each j.

(3) U = W(S+ − S−) ∈ L2w
(
⋃

j Ij
)

.

Then S(z; x, t) is a solution of the Riemann–Hilbert problem in the sense of Definition 3.1 with u = W(S+ −S−), where W is defined in (112).

Proof. The first condition imposes that S−C is an element of the Hardy space of the upper-half and lower-half planes [27]. This implies

that the boundary values from above and below exist a.e. Furthermore, it also implies that S(z; x, t) is given by the Cauchy integral of

its boundary values:

S(z; x, t) = C +
g
∑

j=−g
j̸=0

Cwj
Uj(z). □ (121)

Imposing the jump condition S+(z; x, t) = S−(z; x, t)Jj, z ∈ Ij for each j results in the following system of singular integral equations

that are satisfied by Uk, k ∈ {±1,±2, . . . ,±g},

C
+
wk

Uk(z) +
g
∑

j=−g
j̸=0,k

Cwj
Uj(z) −

⎡

⎢

⎣
C

−
wk

Uk(z) +
g
∑

j=−g
j̸=0,k

Cwj
Uj(z)

⎤

⎥

⎦
Jk =

[

1 1
]

(Jk − I), z ∈ Ik. (122)

It is important to note that Cwj
Uj(z) = C

−
wj
Uj(z) = C

+
wj
Uj(z) if z ̸∈ Ij.

Recall the operator Rj in (112) and consider the following block operator on L2w
(
⋃

j Ij
)

S :=
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C
+
w1

− R1 C
−
w1

(I − R1) Cw−1
|I1 (I − R1) Cw2

|I1 (I − R1) Cw−2
|I1 · · · (I − R1) Cw−g |I1

(I − R−1) Cw1
|I−1

C
+
w−1

− R−1 C
−
w−1

(I − R−1) Cw2
|I−1

(I − R−1) Cw−2
|I−1

· · · (I − R−1) Cw−g |I−1

(I − R2) Cw1
|I2 (I − R2) Cw−1

|I2 C
+
w2

− R2 C
−
w2

(I − R2) Cw−2
|I2 · · · (I − R2) Cw−g |I2

(I − R−2) Cw1
|I−2

(I − R−2) Cw−1
|I−2

(I − R−2) Cw2
|I−2

C
+
w−2

− R−2 C
−
w−2

· · · (I − R−2) Cw−g |I−2

...
...

...
...

. . .
...

(I − R−g ) Cw1
|I−g (I − R−g ) Cw−1

|I−g (I − R−g ) Cw2
|I−g (I − R−g ) Cw−2

|I−g · · · C
+
w−g

− R−g C
−
w−g

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that S as an operator is completely described by Ij, 1 ≤ j ≤ g and Ωj(x, t) for 1 ≤ j ≤ g . So, we write

S = S(I1, . . . , Ig ;Ω1, . . . ,Ωg ). (123)

We now state some observations that motivate the preconditioning we employ in solving (122) numerically, which is described in

Section 4.3. The linear system obtained from discretization of (122) upon preconditioning ends up being extremely well-conditioned;

see Fig. 12. First, one can prove the following lemma concerning the block-diagonal matrix diag(S) consisting of the diagonal blocks of S .

Lemma 3.3. The operator W diag(S) is boundedly invertible on L2w
(
⋃

j Ij
)

.

The following is then immediate and is the heuristic that motivates the use of the aforementioned preconditioner in the numerical

procedure.

Lemma 3.4. (W diag(S))−1
WS − I, where I is the identity operator, is a compact operator on L2w

(
⋃

j Ij
)

.

We will present the proof of Lemma 3.3 along with an analytical justification of the preconditioning and the convergence of the

numerical method proposed in this work to solve (122) in a forthcoming paper.

4. Numerical inverse scattering

In this section we develop a numerical method to solve the Riemann–Hilbert problem in Definition 3.1. We consider the Chebyshev-

V and Chebyshev-W polynomials which are also known as the Chebyshev polynomials of the third and fourth kind, respectively. The

polynomials Vn and Wn, n = 0, 1, 2 . . . are of degree n with positive leading coefficients and satisfy

∫ 1

−1

Vn(y)Vm(y)

√

1 + y

1 − y

dy

π
= δn,m, (124)

∫ 1

−1

Wn(y)Wm(y)

√

1 − y

1 + y

dy

π
= δn,m, (125)

for the Kronecker delta, δn,m.

For general a < b we wish to find a basis of polynomials on [a, b] using the transformation Ta,b(y) = b−a
2

y + b+a
2

, Ta,b : [−1, 1] →
[a, b]. Taking into account the singularity structure of the weights wj as defined in (110), for a > 0 define

Pn(y; [a, b]) := Vn(T
−1
a,b (y)), n ≥ 0, (126)

14
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which are orthogonal (but not normalized) polynomials on [a, b] with respect to wa,b(y) = 1
π

√

y−a

b−y
. Similarly, for b < 0 define

Pn(y; [a, b]) := Wn(T
−1
a,b (y)), n ≥ 0, (127)

which are orthogonal polynomials on [a, b] with respect to wa,b(y) = 1
π

√

b−y

y−a
.

This construction has the benefit that for w(y) = 1
π

√

1−y

y+1
defined on [−1, 1] and w̃(y) = 1

π

√

b−y

y−a
defined on [a, b] (for the case

a < b < 0) we have

Cw̃u(z) = Cw(u ◦ Ta,b)(T
−1
a,b (z)), z ̸∈ [a, b]. (128)

The same identity also holds for the case b > a > 0. In other words, Cauchy integrals over general intervals with these weights can

be computed by first mapping a function to the interval [−1, 1], computing the Cauchy integral for the mapped function and then

mapping back. We do note that

∫ b

a

Pn(y; [a, b])2wa,b(y) dy = b − a

2
, n ≥ 0. (129)

4.1. Computing Cauchy integrals

As is well-known, real orthonormal polynomials (pn)n≥0 (with positive leading coefficients), on the real axis, with respect to a

probability measure µ satisfy a three-term recurrence relation

ypn(y) = Anpn(y) + Bnpn+1(y) + Bn−1pn−1, (130)

p−1(y) ≡ 0, p0(y) ≡ 1, B−1 = −1, (131)

for recurrence coefficients (An)n≥0, (Bn)n≥0. What is maybe less well-known is the weighted Cauchy transforms

cn(z) = Cµpn(z) := 1

2π i

∫

R

pn(y)

y − z
µ(dy), n ≥ 0, (132)

satisfy the same recurrence with different initial conditions, and in particular

c−1(z) = 1

2π i
, c0(z) = 1

2π i

∫

R

µ(dy)

y − z
. (133)

For convenience, we have defined c−1 so that it is not the Cauchy integral of p−1.

Remark 4.1. For Chebyshev-V and Chebyshev-W polynomials we have, respectively,

A0 = 1/2, An = 0, n ≥ 1, Bn = 1/2, n ≥ 0, (134)

A0 = −1/2, An = 0, n ≥ 1, Bn = 1/2, n ≥ 0. (135)

There are some subtleties in solving the recurrence for the Cauchy transforms. For z in the complex plane, away from the support of

µ, (pn(z))n≥0 represents an exponentially growing solution of the three-term recurrence while (cn(z))n≥0 is an exponentially decreasing

solution. Thus, evaluating cn(z) by forward recurrence is inherently unstable. Consider the case where µ(dy) has its support on [−1, 1].
In practice, the following is effective [28]:

(1) For z inside a Bernstein ellipse6 with minor axis O(1/n), solve for cn(z) by forward recurrence allowing one to easily compute

the boundary values of cn on [−1, 1] from above and below.

(2) For z outside a Bernstein ellipse with minor axis O(1/n), solve the boundary value problem
⎡

⎢

⎢

⎢

⎢

⎣

A0 − z B0

B0 A1 − z B1

B1 A2 − z
. . .

. . .
. . .

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

c0(z)
c1(z)
...

⎤

⎥

⎦
=

⎡

⎢

⎣

1
2π i

0
...

⎤

⎥

⎦
, (136)

with the adaptive QR algorithm [29].

When µ has a density w and the support of µ is clear from context, we write cn(z;w) = cn(z).

Remark 4.2. It turns out that the recurrence for cn(z) in the case of Chebyshev-V and Chebyshev-W polynomials can be solved explicitly

and this general procedure can be avoided, if necessary [30].

6 The Bernstein ellipse with minor axis ϵ is the image of the circle of radius 1 + ϵ under the Joukowski map z ↦→ 1
2

(

z + z−1
)

.
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4.2. Discretizing (122)

Define the Chebyshev points of the first kind

Cn :=
{

xj = cos

(

j + 1/2

n + 1
π

)

: 0 ≤ j ≤ n

}

⊂ (−1, 1), n ≥ 1. (137)

We also define the column-vector-valued projection operator of evaluation of a function on an ordered set S by

ES f := (f (x))x∈S . (138)

Choose an integer7 m and suppose f : [a, b] → C is a polynomial of degree m:

f (y) =
m
∑

n=0

γnPn(y; [a, b]). (139)

The discretized versions of C±
w with m basis functions, w = wa,b are given by

ETa,b(Cn)C
±
w f =

⎡

⎢

⎢

⎢

⎢

⎣

c±
0 (Ta,b(x0);w) c±

1 (Ta,b(x0);w) c±
2 (Ta,b(x0);w) . . . c±

m (Ta,b(x0);w)

c±
0 (Ta,b(x1);w) c±

1 (Ta,b(x1);w) c±
2 (Ta,b(x1);w) . . . c±

m (Ta,b(x1);w)

...
...

...
...

c±
0 (Ta,b(xn);w) c±

1 (Ta,b(xn);w) c±
2 (Ta,b(xn);w) . . . c±

m (Ta,b(xn);w)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

γ0
γ1
γ2
...

γm

⎤

⎥

⎥

⎥

⎥

⎦

=: C±
[a,b](m, n)

⎡

⎢

⎢

⎢

⎢

⎣

γ0
γ1
γ2
...

γm

⎤

⎥

⎥

⎥

⎥

⎦

,

(140)

and for c < d, [c, d] ∩ [a, b] = ∅, we have

ETc,d(Cn)Cwf =

⎡

⎢

⎢

⎣

c0(Tc,d(x0);w) c1(Tc,d(x0);w) c2(Tc,d(x0);w) . . . cm(Tc,d(x0);w)
c0(Tc,d(x1);w) c1(Tc,d(x1);w) c2(Tc,d(x1);w) . . . cm(Tc,d(x1);w)

...
...

...
...

c0(Tc,d(xn);w) c1(Tc,d(xn);w) c2(Tc,d(xn);w) . . . cm(Tc,d(xn);w)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

γ0
γ1
γ2
...

γm

⎤

⎥

⎥

⎥

⎥

⎦

=: C[a,b]→[c,d](m, n)

⎡

⎢

⎢

⎢

⎢

⎣

γ0
γ1
γ2
...

γm

⎤

⎥

⎥

⎥

⎥

⎦

.

(141)

Note that each row of these matrices can be constructed either by forward recurrence or via the back substitution step of the adaptive
QR algorithm, depending on where the evaluation points are located in the complex plane.

We now demonstrate the discretization of (122) in the case g = 1.

Example 4.3. We seek vector-valued functions U±1 : I±1 → C
1×2. So, write

U±1 =
[

u±1,1 u±1,2

]

. (142)

We write out the full system of equations for scalar-valued functions explicitly: For z ∈ I1

C
+
w1

u1,1(z) + Cw−1
u−1,1(z) − e−iΩ1(x,t)

[

C
−
w1

u1,2(z) + Cw−1
u−1,2(z)

]

= e−iΩ1(x,t) − 1, (143)

C
+
w1

u1,2(z) + Cw−1
u−1,2(z) − eiΩ1(x,t)

[

C
−
w1

u1,1(z) + Cw−1
u−1,1(z)

]

= eiΩ1(x,t) − 1, (144)

and for z ∈ I−1

C
+
w−1

u−1,1(z) + Cw1
u1,1(z) − eiΩ1(x,t)

[

C
−
w−1

u−1,2(z) + Cw1
u1,2(z)

]

= eiΩ1(x,t) − 1, (145)

C
+
w−1

u−1,2(z) + Cw1
u1,2(z) − e−iΩ1(x,t)

[

C
−
w−1

u−1,1(z) + Cw1
u1,1(z)

]

= e−iΩ1(x,t) − 1. (146)

In block-operator form:
⎡

⎢

⎢

⎢

⎢

⎣

C
+
w1

−e−iΩ1(x,t)C
−
w1

Cw−1
|I1 −e−iΩ1(x,t)Cw−1

|I1
−eiΩ1(x,t)C

−
w1

C
+
w1

−eiΩ1(x,t)Cw−1
|I1 Cw−1

|I1
Cw1

|I−1 −eiΩ1(x,t)Cw1
|I−1 C

+
w−1

−eiΩ1(x,t)C
−
w−1

−e−iΩ1(x,t)Cw1
|I−1 Cw1

|I−1 −e−iΩ1(x,t)C
−
w−1

C
+
w−1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

u1,1

u1,2

u−1,1

u−1,2

⎤

⎥

⎦

7 A discussion of how to choose m is given in Section 4.4.
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=

⎡

⎢

⎣

e−iΩ1(x,t) − 1

eiΩ1(x,t) − 1

eiΩ1(x,t) − 1

e−iΩ1(x,t) − 1

⎤

⎥

⎦
. (147)

The discretized version is then

Aγ = ω, (148)

where

A = A(x, t, n,m)

=

⎡

⎢

⎢

⎢

⎢

⎣

C+
I1
(m, n) − e−iΩ1(x,t)C−

I1
(m, n) CI1→I−1

(m, n) − e−iΩ1(x,t)CI1→I−1
(m, n)

− eiΩ1(x,t)C+
I1
(m, n) C−

I1
(m, n) − eiΩ1(x,t)CI1→I−1

(m, n) CI1→I−1
(m, n)

CI−1→I1 (m, n) − eiΩ1(x,t)CI−1→I1 (m, n) C+
I−1

(m, n) − eiΩ1(x,t)C−
I−1

(m, n)

− e−iΩ1(x,t)CI−1→I1 (m, n) CI−1→I1 (m, n) − e−iΩ1(x,t)C−
I−1

(m, n) C+
I−1

(m, n)

⎤

⎥

⎥

⎥

⎥

⎦

,
(149)

and

γ = γ(x, t) =

⎡

⎢

⎣

γ1,1

γ1,2

γ−1,1

γ−1,2

⎤

⎥

⎦
, ω = ω(x, t) =

⎡

⎢

⎣

e−iΩ1(x,t) − 1

eiΩ1(x,t) − 1

eiΩ1(x,t) − 1

e−iΩ1(x,t) − 1

⎤

⎥

⎦
, (150)

where each entry in the right-hand side vector in (148) is a constant vector for given (x, t).

Lastly, we need to consider the computation of ∂xs1(x, t) from (100) in order to use (108). First, we note that if uj,1 in (122) is given
by

uj,1(y) =
∞
∑

n=0

γn,j(x, t)Pn(y; Ij), (151)

then by the orthogonality of the polynomials

s1(x, t) = − 1

2π i

g
∑

j=−g
j̸=0

b|j| − a|j|+1

2
γ0,j(x, t), (152)

implying that we need to solve for the x-derivative of the coefficients in the expansion (151). To do this, the linear system Aγ = ω can
be differentiated to find

A(∂xγ) = ∂xω − (∂xA)γ . (153)

4.3. Preconditioning

The discretization described in Example 4.3 is easily extended to find a discretization of the operators S and diag(S) where we
expect the discretization of diag(S) to become a good preconditioner for S in light of Lemma 3.4. In practice, we find it works well to
use a discretization of

diag(S(I1;Ω1), S(I2;Ω2), . . . , S(Ig ;Ωg )) (154)

as a block-diagonal preconditioner. We find that with this preconditioner, for a fixed tolerance, the GMRES algorithm requires a bounded
number of iterations, independent of x and t . We explore this more in Fig. 12.

4.4. Adaptivity

In the discretization of S following the procedure outlined in Example 4.3, an important question is that of choosing n,m. And, in
general, different choices for n and m should be made for each block of S under the constraint that the resulting matrix is square.

It can be shown that the solution S(z; x, t) can, in an appropriate sense, be analytically continued off the interval [−1, 1] [5]. For
example, one expects the solution uj on Ij of (122) to have an analytic continuation to any ellipse with foci at the endpoints of Ij
provided that ellipse does not intersect any other Iℓ for ℓ ̸= j. And, it is well known that rate of exponential convergence of a Chebyshev
interpolant can be estimated based on this ellipse [31]:

Theorem 4.4. Suppose f : [−1, 1] → C can be analytically continued to the open Bernstein ellipse

Bρ = {(z−1 + z)/2 : |z| < ρ}, ρ > 1, (155)

Then for

γk =
∫ 1

−1

f (y)Tk(y)
dy

π
√

1 − y2
, (156)
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one has

|γk| ≤ 2 sup
z∈Bρ

|f (z)|ρ−k, (157)

and consequently

max
y∈[−1,1]

⏐

⏐

⏐

⏐

⏐

⏐

f (y) −
m
∑

j=1

γjTj(y)

⏐

⏐

⏐

⏐

⏐

⏐

≤ 4Mρ−m

ρ − 1
. (158)

So, if8 j > 1, Ij = [a, b], Ij−1 = [a′, b′] and Ij+1 = [a′′, b′′], we map [a, b] to [−1, 1] using T−1
a,b which, in turn, maps

[a′, b′] →
[

2

b − a
a′ + b + a

b − a
,

2

b − a
b′ + b + a

b − a

]

, (159)

and similarly for [a′′, b′′]. So, set

δ = min

{

−1 − 2

b − a
b′ + b + a

b − a
,

2

b − a
a′′ + b + a

b − a
− 1

}

> 0. (160)

So, we expect uj ◦ Ta,b to have an analytic extension to Bρ for any ρ such that Bρ ∩ R ⊂ [−1 − δ, 1 + δ]. To be conservative in our
estimates, we use δ/2 instead and find that ρ should be chosen to be:

(ρ−1 + ρ)/2 = 1 + δ/2 ⇒ ρ(Ij) = 1

2

(

2 + δ +
√

δ(4 + δ)
)

> 1. (161)

So, given an estimate for M , and a tolerance ϵ > 0, we can choose m so that

4Mρ(Ij)
−m

ρ(Ij) − 1
< ϵ, (162)

and this provides an a priori guide as to how to choose m in the discretizations C±
[a,b](m, n) and C[a,b]→[c,d](m, n).

5. Applications

5.1. Solutions with dressing: Slowly shrinking gaps

With the methodology set out, one can easily specify a finite number of gaps and specify the Dirichlet eigenvalues within each gap,
and compute the associated potential and its evolution under the KdV flow. To demonstrate this we make first make the following
choice for the gaps in the λ-plane.

Choosing α1 = 0.1 we then set for j = 1, 2, . . . , g

αj+1 − βj =
{

j−1 j is odd,

3j−1 j is even,
βj = 2(j − 1)2 + 4

10
. (163)

To fully specify the solution we set γj(x0 = 0) = βj for all j.
While, as we demonstrate in the next section, we can compute the corresponding solution q(x, t) for g large, the solution oscillates

wildly and is difficult to visualize. For this reason we plot the solution for smaller values of g over short time ranges. See Fig. 4.

5.2. High-genus solutions with dressing: Dense gaps and universality

It is also interesting to ask what happens if an increasing number of gaps are put into a fixed interval. Fix, for convenience α1 = 0,

and β1 > 0. Also, suppose that αg+1 → α > β1 as g increases. Now suppose σ (y) =
∫ t

β1
ϱ(y)dy, where ϱ(y) is positive and continuous

on [β1, α], increases from 0 to 1 over the interval [β1, αg+1]. Given a sequence w1, . . . , wg with 0 < wj < 1, define α2, . . . , αg and
β2, . . . , βg through

σ (αj) = j − 1

g
, σ (βj) = j − 1 + wj

g
.

The following lemma will be of use.

Lemma 5.1. The rational function

B(λ) :=
g
∏

j=2

λ− αj

λ− βj

satisfies

log(B(λ)) − 1

g

g
∑

j=2

wj

ϱ(βj)

1

λ− βj

= o(1), g → ∞, (164)

uniformly on compact subsets of C \ [β1, α].

8 If j = 1 we compare with I1 with I−1 and I2 . Then j < 0 is taken care of by symmetry.
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Fig. 4. Numerical solutions of the KdV equation with slowly shrinking gaps, see (163). The number of collocation points per contour is chosen adaptively using the

methodology in Section 4.4.

Proof. Expanding log(z) at z = 1 gives

log

(

λ− αj

λ− βj

)

= βj − αj

λ− βj

+ O((βj − αj)
2). (165)

By the mean value theorem, βj − αj = wj

g
ϱ(ξj)

−1, where αj ≤ ξj ≤ βj. This gives

⏐

⏐

⏐

⏐

⏐

⏐

log(B(λ)) − 1

g

g
∑

j=2

wj

ϱ(ξj)

1

λ− βj

⏐

⏐

⏐

⏐

⏐

⏐

≤ C

g
∑

j=2

w2
j

g2
ϱ(ξj)

−2. (166)

Then because ϱ is uniformly continuous, for any ϵ > 0 there exists a g0 > 0 such that |ϱ(ξj) − ϱ(βj)| < ϵ for all j if g > g0, so that

⏐

⏐

⏐

⏐

1

ϱ(ξj)
− 1

ϱ(βj)

⏐

⏐

⏐

⏐

≤ ϵ

ϱ(ξj)ϱ(βj)
,

and the claim follows. □

Now, if in the above lemma, wj = v(βj) for some continuous function v : [β1, α] → (0, 1) we find that

log(B(λ)) =
∫ α

β1

v(y)

λ− y
dy + o(1), g → ∞.

Thus, the distribution of individual locations αj, βj do not influence the limiting behavior of B(λ) as g becomes large. But rather, the

distribution of the lengths of the bands is the most important quantity.

To see how B(λ) will arise in a Riemann–Hilbert problem consider the above choice for αj and βj, for given functions σ and v.

Previously, we have moved poles in the gap [βj, αj+1] on one sheet of the Riemann surface to the point λ = αj. This was for numerical

convenience. Here, for analytical convenience, we put the poles at λ = βj. We diagonalize the twist jump matrix for Ψ (λ; x, t):

σ1 = Qσ3Q
−1, Q := 1√

2

[

1 −1
1 1

]

, Q−1 = Q⊤. (167)

Then

W(λ) := Q

[

1 0

0 B(λ)1/2
√

λ−α1
λ−β1

√

αg+1 − λ

]

Q⊤,

19



D. Bilman, P. Nabelek and T. Trogdon Physica D 449 (2023) 133715

Fig. 5. Numerical solutions of the KdV equation as g increases with v in Section 5.2 being constant, equal to 1/2 and αg+1 = 2 + 1/g , β = 3/g . Here we also, for

simplicity, take ϱ to be uniform on [β1, α]. The number of collocation points on each interval is obtained adaptively using the methodology in Section 4.4. It is clear

from these panels that the solution converges as g → ∞. The limit may be related to the so-called primitive potentials [32] but the connection is not immediate.

can be used9 to remove the jumps of Ψ. Define

Ψ̌(λ; x, t) =
{

Ψ(λ; x, t)W(λ)−1 λ ∈ Ω,
Ψ(λ; x, t) otherwise,

where Ω is the disk10 centered at λ = α1 = 0 with radius α+ c , c > 0, and we orient the circle ∂Ω counter-clockwise. Then one finds
that Ψ̌ satisfies the following jump condition

Ψ̌
+(λ; x, t) = Ψ̌

−(λ; x, t)W(λ)−1, λ ∈ ∂Ω.
For λ ∈ ∂Ω , supposing that β1 → β , 0 ≤ β < α, one has

W(λ)−1 g→∞−→ W∞(λ)−1 := Q

[

1 0

0 1√
α−λ

√

λ−β
λ

exp
(

− 1
2

∫ α

β

v(s)

s−λds
)

]

Q⊤.

Bringing the jump from ∂Ω back to the real axis, we find the following Riemann–Hilbert problem for a limiting Ψ∞

Ψ
+
∞(λ; x, t) = Ψ

−
∞(λ; x, t)σ1, λ ∈ (0, β) ∪ (α,∞),

Ψ
+
∞(λ; x, t) = Ψ

−
∞(λ; x, t)

[

1+ eiπv(λ)

2
eiπv(λ)−1

2

eiπv(λ)−1
2

1+ eiπv(λ)

2

]

, λ ∈ (β, α),

and has the asymptotic behavior

Ψ∞(λ; x, t) =
[

eiλ
1
2 (x+4λt) e−iλ

1
2 (x+4λt)

]

(I + o(1)) , λ → ∞. (168)

This construction can be immediately generalized to

Ψ
+
∞(λ; x, t) = Ψ

−
∞(λ; x, t)σ1, λ ∈ (αg+1,∞) ∪

g
⋃

j=1

(αj, βj),

Ψ
+
∞(λ; x, t) = Ψ

−
∞(λ; x, t)

⎡

⎣

1+ e
iπvj(λ)

2
e
iπvj(λ)−1

2

e
iπvj(λ)−1

2
1+ e

iπvj(λ)

2

⎤

⎦ , λ ∈ (βj, αj+1),

9 The power function B(λ)1/2 is chosen to have its branch cut on ∪g

j=1[αj, βj] with B(λ)1/2 → 1 as λ → ∞.
10 This domain is taken for concreteness, any other reasonable region containing all finite bands and gaps will suffice.
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Fig. 6. Evolution of the solution of the KdV equation with g = 30 and v in Section 5.2 being constant, equal to 1/2 and αg+1 = 2.

Fig. 7. The error in the computation of u(x, 1) where u is the solution of (169) as measured by comparing the numerical solution with that obtained by direct

integration of the KdV equation using an exponential time integration method, see [33] for a general reference and [34] for the precise method used. The error is

on the order of 10−14 for sufficiently large genus and we are unable to distinguish which numerical solution is giving the dominant contribution to the error. The

number of collocation points per contour is chosen using the methodology in Section 4.4.

where vj : [βj, αj+1] → (0, 1) is continuous and Ψ∞ and has the asymptotic behavior (168). While full exploration of such Riemann–

Hilbert problems is beyond the scope of the current paper, potentials for v(λ) ≡ 1/2 are given in Fig. 5 in the case where β1 → 0 as

g → ∞ and the evolution is plotted in Fig. 6.

5.3. Initial-value problem with smooth data

We consider the classical problem of Zabusky–Kruskal [35]

ut + uux + δ2uxxx = 0, (169)

u(x, 0) = cos(πx), (170)

for x ∈ (−2, 2]. Based on Remark 2.1, since we are set to solve qt + 6qqx + qxxx = 0, we choose

q(x, 0) = a−1u(x/b, 0), b = 1√
6δ
, a = 6c

b
, c = b3δ2,

and then u(x, t) = aq(bx, ct).

We choose δ = 0.08 and use an error tolerance of 10−13 (see Section 4.4) to choose the number of collocation points on each

interval Ij. We then plot the error in computing u(x, 1) as g increases. To estimate the true error we use the exponential integrator

method discussed in [34] motivated from the work in [33] to compute the ‘‘true’’ solution. Exponential convergence is seen in Fig. 7.

The evolution of the corresponding solution is given in Fig. 8.
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Fig. 8. The numerically computed evolution of (169) using a genus g = 12 approximation. The number of collocation points on each contour is chosen adaptively

using the methodology in Section 4.4.

Fig. 9. A test of the convergence of the numerical approximation of u(x, 0; g) of u(x, 0) as g increases. Because of expected non-uniform convergence due to a

Gibbs-like phenomenon, we take a uniform grid x on [0.1, π − .1] and use ∥u(x, 0; g)∥∞ as a proxy for the error (u(x, 0) = 0 on this interval). Due to increased

oscillations as g increases, this can only be thought of as an estimate for the true error. The best fit line is given by ℓ(g) ≈ 0.89 × g−0.93 which appears to be

consistent with O(g−1) convergence.

Remark 5.2. To be able to compute this solution, one needs to be able to compute the spectrum. We use the Fourier–Floquet–Hill
method [36] to compute the periodic/anti-periodic eigenvalues and use a Chebyshev method to compute the Dirichlet eigenvalues. This
latter method can be found implemented in both Chebfun [37] and ApproxFun [38].

5.4. Initial-value problem with ‘‘box’’ data

To be able to solve the initial value problem for the box initial condition, q0(x) = q0(x + L),

q0(x) =
{

0 x ∈ (0, w)

−h x ∈ (w, L)
(171)
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Fig. 10. The evolution of u in (174) with (175). These plots show dispersive quantization where the solution appears to be piecewise smooth at rational-times-π

times and fractal otherwise. This was first observed by Chen and Olver, see [1], for example. These plots are produced using a genus g = 300 approximation and

using 10 collocation points on Ij if |j| ≤ 4 and two collocation points otherwise. This choice is justified by Fig. 13.

we need to compute the forward spectral theory for (5). In this case a basis of solutions c(x; λ) and s(x; λ) to (3) normalized as in (35)

and (36) can be computed explicitly, and these solutions contain all information needed to compute the forward spectral theory. In

particular, when L = 2 and w = 1 we have

∆(λ) = cos(
√
λ) cos(

√
λ− h) − 2λ− h

2
√
λ
√
λ− h

sin(
√
λ) sin(

√
λ− h),

s(x; λ) = 1√
λ
sin(

√
λ) cos(

√
λ− h(x − 1)) + 1√

λ− h
cos(

√
λ) sin(

√
λ− h(x − 1))

The Dirichlet eigenvalues γ1(x0 = 0) < γ2(x0 = 0) < γ3(x0 = 0) < . . . of (5) are then the zeros of

s(2; λ) = 1√
λ
sin(

√
λ) cos(

√
λ− h) + 1√

λ− h
cos(

√
λ) sin(

√
λ− h), (172)

and the band ends α1 < β1 < · · ·αg+1 < βg+1 < · · · are the zeros of

∆(λ)2 − 1. (173)

These are easily computed using standard root-finding techniques. In practice, we find it convenient to use high-precision arithmetic

here so that one is sure where future errors are incurred. Since this is an infinite genus potential, we specify a finite g to truncate

the spectrum, setting βg+1 = ∞, resulting in an approximate solution u(x, t; g). The convergence of this approximation is slow, but

reliable, and this is investigated in Fig. 9.
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Fig. 11. A zoomed view of u(x, 0.1π ) as g increases. These plots indicate that the amplitude of the oscillations decrease as the genus increases. This leads to the

conjecture that the limiting solution profile is piecewise smooth and slowly varying.

Fig. 12. Left panel: The eigenvalues of A(0, 0) from (149) for the potential (175). We use 10 collocation points for Ij if |j| ≤ 4 and 3 collocation points otherwise. Right

panel: The preconditioned matrix Ã(0, 0)−1A(0, 0) where Ã is obtained from a discretization of (154). The eigenvalues become localized near λ = 2. This problem is

extremely well conditioned and GMRES will converge in just a few iterations.

We investigate various aspects of computing q(x, t) with initial data q0 as above. We focus on the case discussed by Chen and

Olver [1]. Specifically, if one chooses w = π/
√
6, L = 2π/

√
6, h = −1/2, then

u(x, t) := −q(6−1/2x, 6−3/2t), (174)

is the solution of ut + uxxx = uux with initial data

u(x, 0) =
{

0 0 < x < π,

1/2 π < x < 2π,
(175)

extended periodically. This allows us to reproduce much of the phenomenon in [1]. In Fig. 10 we demonstrate dispersive quantization.

When t is a rational multiple of π , u(x, t) as a function of x appears to be piecewise smooth and slowly varying. When t is an irrational

multiple of π the solution appears to have a fractal nature. One interesting observation we make here is that while Chen and Olver

remark in [1] that it is not clear from their numerical method if there are truly oscillations between jumps at times that are rational

multiples of π , our numerics in Fig. 11 indicate that these oscillations will disappear as the genus increases.

We also use this problem to illustrate some important aspects of the numerical method we have developed. First, recall the matrix A

in (149). We plot the eigenvalues of A(0, 0) in the left panel of Fig. 12. Here we use 10 collocation points for Ij if |j| ≤ 4 and 3 collocation

points otherwise. Then in the right panel of Fig. 12 we show the preconditioned matrix Ã(0, 0)−1A(0, 0) where Ã is obtained from a
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Fig. 13. The magnitude how of the computed Chebyshev coefficients γi,j , i = 0, 1, 2 in (151) depends on Ij , j = ±1,±2, . . . ,±g , for the potential (175). As i increases

the decay rate with respect to |j| is extremely rapid.

discretization of (154). It becomes clear that the eigenvalues become localized near λ = 2. This problem is extremely well conditioned
and GMRES will converge in just a few iterations.

Lastly, in Fig. 13 we display how the magnitude of the computed Chebyshev coefficients γi,j in (151) depends on Ij. In the top-left
panel of Fig. 13 we see that γ0,j = O(1). This is not unexpected because the recovery formula (152) weights these coefficients by the
gap lengths. What is rather surprising is how, for large |j|, the second coefficient in (151) decays rapidly, see the top-right panel of
Fig. 13. The third coefficient decays even more rapidly, see the bottom panel of Fig. 13.
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