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Abstract
In this paper, we propose a nonlocal adaptive biharmonic regularization term for image restoration, combining the advan-
tages of fourth-order models (preserving slopes) and nonlocal methods (preserving textures). Besides the image deblurring
and denoising, we apply the proposed nonlocal adaptive biharmonic regularizer to image inpainting, and a weight matrix
normalization method is developed to cover the shortage of information loss of the nonlocal weight matrix and accelerate the
inpainting process. The existence and uniqueness of the solution are proved. The mathematical property such as mean invari-
ance is discussed. For the numerical solution, we employ the L2 gradient descent and finite difference methods to design
explicit and semi-implicit schemes. Numerical results for image restoration are shown on synthetic images, real images,
and texture images. Comparisons with local fourth-order models, nonlocal second-order models, and other state-of-the-art
methods are made, which help to illustrate the advantages of the proposed model.

Keywords Nonlocal method · Fourth-order · Image deblurring and denoising · Image inpainting
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1 Introduction

Image restoration has always been an essential and chal-
lenging task in the fields of image processing and computer
vision. The image degradation model is

f = Hu + n, (1)

where H is a linear operator accounting for some blurring,
subsampling, or missing pixels, n is additive noise, f is the
observed image, and u is the image we want to restore. The
restoration problem (1) is ill-posed. Image deblurring and
denoising is a problem of recovering the image from the
blurred imagewith noise pollution [8,12,16,35,45,49], which
is the fundamental problem generally arising in the field of
image processingwith several applications. Image inpainting
[4,13,30,38,43,46,53] is one of the common restoration tasks.
It is the process of reconstructing lost or corrupted parts of an
image, which is a technique of removing undesirable objects
from the image without leaving traces like artifacts ghosts
[15]. An excellent inpaintingmethodmust restore coherently
both texture and structure components of the image. Usually,
the undesired object we want to remove is scratch, texture,
signature, mask, block, noise, etc.

Until now, there are a variety of methods developed to
deal with the restoration problem in the variational set-
ting. Rudin, Osher, and Fatemi proposed the total variation
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regularization [42] which is remarkably effective at simul-
taneously preserving edges while smoothing away noise in
flat regions, and it is widely applied to various research
fields of computer vision. Perona and Malik proposed a par-
tial differential equation based model for image denoising
[41] which consists of a forward–backward diffusion pro-
cess controlled by a diffusion coefficient to smooth noise
and preserve edges. To overcome the staircase effect of
edge-preserving second-order partial differential equation
methods, fourth-order equations for image denoising have
been employed. We mention the earlier work of Chambolle
and Lions [7], of Chan, Marquina, and Mulet [9], of You and
Kaveh [52], of Lysaker et al. [36], and of Hajiaboli [19,20].
These models can better preserve smooth regions and ramps,
thus diminishing the staircase effect. Kim et al. [27] proved
that the solution of a fourth-order PDE model converges to
a piecewise harmonic function under a specific condition.
Some diffusion-based methods [3,29,43] inpaint images by
propagating higher-order derivatives of local pixel intensity
continuously along the lines of equal intensity values, toward
the interior of the missing region. Diffusion-based inpaint-
ing performs well in achieving consistent intensity. These
image restoration methods are based on local image oper-
ators. However, texture is nonlocal in nature and requires
nonlocal information for efficient image restoration.

Buades, Coll, and Morel proposed the nonlocal means fil-
ter by weighted averaging the nonlocal similar pixels [6].
The similarity between pixels is measured by the similarity
between their patches. Following the nonlocal means fil-
ter and inspired by the gradient and Laplacian on graphs,
Gilboa and Osher [17,18] defined the nonlocal gradient, non-
local Laplacian, etc., and extended the nonlocal method to
the variational framework. They formulated the nonlocal
total variation regularization for image denoising, inpaint-
ing, anomaly detection, and image-texture separation.

The variational nonlocal framework is widely utilized for
various image processing tasks. Based on theMumford-Shah
framework, Jung et al. [24] extended theAmbrosio-Tortorelli
[1] and Shah [44] approximations to the nonlocal version,
and applied it to color image restoration. In the work of
Lou et al. [34], the authors extended the nonlocal total vari-
ation model to image restoration (simultaneous denoising
and deblurring). Liu et al. [33] employed the nonlocal total
variation as the regularization and Gabor functions as the
fidelity for image denoising and decomposition. Nie et al.
[39] proposed the nonlocal total variation-based variational
model of complex-valued fourth-order tensor data for the
polarimetric synthetic aperture radar data speckle reduction.
For despeckling of synthetic aperture radar images, based on
the variational nonlocal framework and statistical properties,
Ma et al. [37] proposed two models from both transformed
domain and original domain with different similarity mea-
surements. Besides noise removal, nonlocal models could

better preserve details and repetitive structures such as tex-
ture, edges, and polarimetric scattering characteristics. For
image dehazing, Liu et al. [31] proposed the nonlocal total
variation-basedmodel with an adaptive function to overcome
halo effects and artifacts amplification. Jin et al. [23] pro-
posed an adaptive nonlocal total variationmodel by replacing
the constant regularization parameter with an adaptive func-
tion that could recognize flat areas and non-flat areas. We
also mention the other nonlocal first-order variation-based
works [22,28]. Corresponding to the local case, the nonlo-
cal p-Laplacian has been proposed for image restoration to
preserve fine structures [21,25,26].

Due to the nonlocal property, the fractional-order deriva-
tive is suitable to deal with edges and textures. Recently,
fractional derivative-based variational and diffusion equation
models were proposed for image restoration. The fractional-
order TV-L2 model was constructed for image denoising
[10] and numerically obtained improved denoising results
over the total variation model [42]. Zhang and Chen [54]
studied a total fractional-order variationalmodelwith nonho-
mogeneous boundary conditions for image restoration, and
analyzed the theoretical properties. Yao et al. [51] proposed
an adaptive anisotropic fractional diffusion equation for mul-
tiplicative noise removal, and a gray level indicator was
introduced for the construction of the diffusion coefficient.
Based on the fractional Laplacian, researchers designed cor-
responding diffusion equations for image processing [2,32].

Here, we propose a nonlocal fourth-order regularizer for
image restoration, which can be seen as a nonlocal version of
the biharmonic operator. Also, isotropic and anisotropic ver-
sions are considered. Compared with the nonlocal harmonic
model, the nonlocal biharmonic model can better preserve
slopes andmaintain contrast. In the anisotropic case, adaptive
coefficients, depending on the input image, help to preserve
edges while smoothing out homogeneous regions. We apply
the regularizer to image denoising, image deblurring in the
presence of Gaussian noise (image deblurring and denois-
ing), and image inpainting. For the gradient descent flow of
the functionals, the uniqueness and existence of the solution
are proved. We also prove the mean value invariance of the
proposed image denoising model. In terms of the numeri-
cal implementation, two finite difference schemes, explicit
and semi-implicit are investigated. A weight matrix normal-
ization is developed to accelerate the inpainting process by
removing the weight value of each pixel itself and normaliz-
ing each rowof theweightmatrix. Experiments of restoration
of synthetic, natural, and texture images show the effective-
ness of our models.

The paper is organized as follows: In Sect. 2, we intro-
duce the background of high-order models and nonlocal
methods. The nonlocal adaptive biharmonic model is pro-
posed in Sect. 3, and also we apply the proposed regularizer
to image deblurring and denoising and image inpainting. In
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Sect. 4, the theoretical analysis of the proposed model is dis-
cussed. Finite difference schemes are designed for numerical
implementation in Sect. 5, and also the construction details
of the weight matrix are presented. In Sect. 6, experiments
for image restoration of our method are shown, and the pro-
posed method is compared with other methods. Finally, the
work is summarized in Sect. 7.

2 Background

For the image restoration problem, let Ω ⊂ R
2 be the image

domain, f : Ω → R the observed image, and u : Ω → R

the restored image.

2.1 Local Fourth-Order Models

We recall several local fourth-order models previously intro-
duced in [36,52].

The You-Kaveh (YK) regularizer [52] is

EYK (u) =
∫

Ω

g(|Δu|)dx,

where the authors require g(·) ≥ 0, g′(·) > 0, and its corre-
sponding time-dependent Euler–Lagrange equation is

∂u

∂t
= −Δ

(
g′(|Δu|) Δu

|Δu|
)

= −Δ(c(|Δu|)Δu).

Usually, set c(·) = 1
1+(·/k)2 = g′(·) and k is a modulatory

parameter, which is the edge-preservation function from [41]
(the independent variable being now |Δu| instead of |∇u|).

The Lysaker–Lundervold–Tai (LLT) regularizer [36] min-
imizes the total variation norm of ∇u, and it is

ELLT (u) =
∫

Ω

(|ux1x1 | + |ux2x2 |)dx .

These fourth-order models encourage piecewise planar
solutions [52]. Thus, these models can preserve edges with-
out the staircase effect.

2.2 Nonlocal Operators

Nonlocal methods are well adapted to texture preservation
and denoising. Referred to [17,18], we first review nonlocal
differential operators. The nonlocal gradient vector∇wu(x) :
Ω → Ω × Ω , is defined by

(∇NLu)(x, y) := (u(y) − u(x))
√

w(x, y),

where w : Ω × Ω → R is a nonnegative and symmetric
weight function, such as

w(x, y) = exp

{
−Gσ ∗ (‖u(x + ·) − u(y + ·)‖2)(0)

2h2

}
,

(2)

where Gσ = 1
2πσ 2 e

− ‖x‖2
2σ2 . And the magnitude of nonlocal

gradient at x ∈ Ω is

|∇NLu|(x) =
√∫

Ω

(u(y) − u(x))2w(x, y)dy.

The nonlocal divergence divNLv : Ω×Ω → Ω of the vector
v : Ω × Ω → R is defined as the adjoint of the nonlocal
gradient

(divNLv)(x) :=
∫

Ω

(v(x, y) − v(y, x))
√

w(x, y)dy.

The nonlocal LaplacianΔNLu : Ω → R of u can be defined
by

ΔNLu(x) := 1

2
divNL(∇NLu(x))

=
∫

Ω

(u(y) − u(x))w(x, y)dy.

2.3 Variational Nonlocal Methods

Based on the above nonlocal operators, the nonlocal har-
monic (NLH) regularization [17] is

ENLH(u) =
∫

Ω

|∇NLu|2dx,

and the associated time-dependent Euler–Lagrange equation
is

∂u

∂t
=

∫
Ω

(u(y) − u(x))w(x, y)dy,

and it can also be expressed as ∂u
∂t = ΔNLu.

The nonlocal total variation (NLTV) regularization [18] is

ENLTV(u) =
∫

Ω

|∇NLu|dx,

and the associated time-dependent Euler–Lagrange equation
is

∂u

∂t
=

∫
Ω

(u(y) − u(x))w(x, y)
(

1

|∇NLu(x)| − 1

|∇NLu(y)|
)
dy,
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(a) Original (b) Noisy (c) NLH (d) NLBH (e)

(f) Original (g) Noisy (h) NLH (i) NLBH (j)

Fig. 1 Compared with the NLH model, the proposed nonlocal biharmonic model can better preserve slopes and maintain contrast. e Signals at the
red line of a. j Signals at the red line of f (Color figure online)

which can also be expressed as ∂u
∂t = divNL

( ∇NLu|∇NLu|
)
.

3 The ProposedModel

Inspired by the local fourth-order models and the nonlocal
gradient and Laplacian, we propose the following nonlocal
adaptive biharmonic regularizer for image restoration,

E(u) =
∫

Ω

α( f )|ΔNLu|2dx, (3)

where |ΔNLu(x)| = | ∫
Ω

(u(y) − u(x))w(x, y)dy|, α( f )
is an adaptive coefficient function to distinguish edges and
smooth areas and thus to adaptively guide the image restora-
tion process.

3.1 Choices of˛

In the following, several choices of α( f ) are given.
The first one is α( f ) = 1. The model (3) is isotropic,

and the regularization term becomes a nonlocal biharmonic
(NLBH) model. Fourth-order linear diffusion damps oscil-
lations at high frequencies much faster than second-order
diffusion [5]. At the same time, different from second-

order methods, fourth-order methods can efficiently preserve
slopes and creases in the image. In Fig. 1, compared with the
NLH model, the contrast of the NLBH denoising results are
higher (Fig. 1e, j). It verifies the slope preservation property
of the NLBHmodel. We also illustrate that the NLBHmodel
has better contrast maintenance than the NLH model by the
following deduction. The explicit scheme of the NLH equa-
tion with time step τ is

(uNLH)n+1
i = uni + τΔNLdu

n
i .

The time-dependent Euler–Lagrange equation of the pro-
posed NLBH model is

∂u

∂t
= −ΔNL(ΔNLu),

and when the time step is τ 2, its explicit scheme is

(uNLBH)n+1
i = uni − τ 2ΔNLd(ΔNLdu

n
i )

= uni − τΔNLd(uNLH)n+1
i + τΔNLdu

n
i

= (uNLH)n+1
i − τΔNLd(uNLH)n+1

i

= (uNLH)n+1
i + ((uNLH)n+1

i − (uNLH)n+2
i ).
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The above equation shows that the NLBH model can com-
pensate for the differences caused by the NLH model
(smoothed features, ((uNLH)n+1

i −(uNLH)n+2
i )),whichmeans

that NLBH can better preserve structure and obtain finer
results. It is consistent with the experiments in Fig. 1.

The second one is

α( f ) = 1

1 + |∇ fσ |2/k2 , (4)

where k is a modulatory parameter, and fσ = Gσ ∗ f with
Gσ = 1/(2πσ 2) exp{−‖x‖2/(2σ 2)} is a smoothed version
of f . Using eq. (4), model (3) becomes anisotropic, and α( f )
provides a guidance for the degree of diffusion. With coeffi-
cient (4), the functional (3) is a nonlocal adaptive biharmonic
(NLABH)model.We use fσ to first roughly remove the noise
and then utilize the gradient ∇ fσ as an edge detector. Thus,
α( f ) has the ability of distinguishing edges and smooth areas
of the original image. From the coefficient (4),α( f ) ∈ [0, 1].
On or near edges, |∇ fσ | is large and thus α( f ) is small
approaching 0. On the contrary, on flat areas or away from
edges, |∇ fσ | is small and α( f ) is large approaching 1. Using
this coefficient (4) in the proposed high-order functional (3),
we have that α( f ) induces less diffusion when |∇ fσ | is large
for preserving structures, and bigger diffusion when |∇ fσ |
is small for smoothing out the noise. Besides, we can also
employ the nonlocal gradient to guide the diffusion,

α( f ) = 1

1 + |∇NL fσ |2/k2 . (5)

We verify the effectiveness of the adaptive coefficient for
the nonlocal methods through the following denoising exper-
iments. The nonlocal adaptive harmonic (NLAH) model is

∂u

∂t
= 1

2
divNL(αNL( f )∇NLu) + λ( f − u).

And the comparison experiments are displayed as follows,
and all of parameters are tuned for best restoration perfor-
mance.We show the denoising results in Fig. 2, and the PSNR
[14] values between the noisy image and restored image in
Table 1. In the PSNR measurement, the adaptive models are
better than the models without adaptive coefficient.

3.2 Image Deblurring and Denoising

The image deblurring and denoising degradation model is

f = Ku + n,

where K : L2(Ω) → L2(Ω) models the blur kernel which
is a linear and continuous operator, Ω ⊂ R

2 is the image
domain, and f is the given noisy blurred image. Note, if the

blur kernel is identity matrix, it represents the image denois-
ing problem. For image deblurring and denoising problem,
if the noise n is the Gaussian noise, the data fidelity term is

FGau = λ

2

∫
Ω

( f − Ku)2dx,

where λ > 0 is the parameter to balance the regularization
term and data fidelity term. The functional we proposed for
image deblurring and denoising problem is

E(u) = 1

2

∫
Ω

α( f )|ΔNLu|2dx + λ

2

∫
Ω

( f − Ku)2dx . (6)

The corresponding Euler–Lagrange equation associatedwith
eq. (6), in a time-dependent fashion, is

∂u

∂t
= −ΔNL(α( f )ΔNLu) + λK ∗( f − Ku), (7)

with initial condition u(x, 0) = f (x), x ∈ Ω , where K ∗ is
the adjoint operator of K .

Note that, the anisotropic adaptive coefficient functions
work better than the isotropic one for image deblurring
and denoising, because they can adaptively guide the image
restorationprocess bydistinguishing edges and smooth areas.

3.3 Image Inpainting

Thenonlocal-basedmethods are good at texture preservation.
At the same time, high-order methods have the advantage
of preserving weak slopes. Thus, we employ the proposed
nonlocal adaptive biharmonic model for image inpainting.
The mathematical model of image inpainting is

f = u on Ω − D,

where D is the damaged region in the image.
The data fidelity term for image inpainting is

F Inp = λ

2

∫
Ω

χΩ−D(x)( f − u)2dx,

whereχΩ−D is a characteristic function onΩ (i.e.,χΩ−D(x)
= 1, if x ∈ Ω − D, 0 otherwise), and λ > 0 is a parameter.

To summarize, the functional we proposed for image
inpainting is

E(u) = 1

2

∫
Ω

α( f )|ΔNLu|2dx

+λ

2

∫
Ω

χΩ−D(x)( f − u)2dx . (8)

Besides, in the noiseless case, we constrain λ to be very
large to ensure that the image is unchanged in the undamaged
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(a) (b) (c) (d) (e)

Fig. 2 Comparison results between the NLH, NLAH, NLBH, and NLABH for image denoising

Table 1 Comparison of PSNR
values of the different models

Model PSNR

NLH (Fig. 2b) 29.584

NLAH (Fig. 2c) 29.591

NLBH (Fig. 2d) 30.800

NLABH (Fig. 2e) 30.804

regionΩ−D. The Euler–Lagrange equation associatedwith
the functional (8), in a time-dependent fashion, is

∂u

∂t
= −ΔNL(α( f )ΔNLu) + λχΩ−D( f − u). (9)

We initialize u(x, 0) = f (x), x ∈ Ω − D, and u(x, 0) could
be any value in the damaged region D. For simplicity, we set
u(x, 0) = 255, x ∈ D in this paper.

For the image inpainting, we utilize the isotropic coeffi-
cient functionα( f ) = 1.Because of themissing information,
the adaptive coefficient function (4) may be not correct
around the damaged region.

4 Mathematical Properties

In this section, we study the mathematical properties of the
gradient descent scheme of E(u), i.e.,

{
∂u
∂t = −ΔNL(α( f )ΔNLu) + λK ∗( f − Ku), (x, t) ∈ ΩT ,

u(x, 0) = f (x), x ∈ Ω,

(10)

where f (x) is the initial condition, ΩT = Ω × (0, T ).
Throughout this section, we assume that Ω ⊂ R

M (M ≥
2) is a bounded domain, 0 < α0 ≤ α( f ) ≤ α1 < 1, K :
L2(Ω) → L2(Ω) is a linear continuous operator and K ∗
denotes its adjoint operator. The nonlocal weight w(x, y) is
a nonnegative continuous symmetric function with compact
support.

Theorem 1 Let f (x) ∈ L2(Ω). Problem (10) admits a
unique solution u ∈ C([0, T ]; L2(Ω)), such that

∂u

∂t
= −ΔNL(α( f )ΔNLu) + λK ∗( f − Ku),

a.e. in ΩT and u(x, 0) = f (x), a.e. in Ω .

Proof 1. Uniqueness. By the symmetry of w(x, y), it is
straightforward to verify that

∫
Ω

ΔNLu(x)ϕ(x)dx

= −1

2

∫
Ω

∫
Ω

w(x, y) (u(y) − u(x))

× (ϕ(y) − ϕ(x)) dydx

=
∫

Ω

u(x)ΔNLϕ(x)dx,

(11)

for any functions u, ϕ ∈ L2(Ω).
Assume that u1 and u2 are two solutions of the prob-

lem (10) and v = u1 − u2. For a.e. t ∈ [0, T ], we have
∂v

∂t
= −ΔNL(α( f )ΔNLv) − λK ∗Kv.

Multiplying the above equality by v, integrating over Ω

and utilizing (11), we get

1

2

∫
Ω

∂v2

∂t
dx = −

∫
Ω

α( f )|ΔNLv|2dx

− λ

∫
Ω

|Kv|2dx ≤ 0.

It follows from the initial condition v(x, 0) = 0 that

∫
Ω

|u1 − u2|2dx =
∫

Ω

|v|2dx ≤ 0.

Consequently, u1(x, t) = u2(x, t), a.e. in ΩT .
2. Existence. For any u ∈ C([0, t]; L2(Ω)), we define an

operator L as
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Lu = f (x)−
∫ t

0
ΔNL(α( f )ΔNLu)ds+λ

∫ t

0
K ∗( f −Ku)ds.

Notice that

∫
Ω

|Lu − f (x)|2dx ≤ 2
∫
Ω

∣∣∣∣
∫ t

0
ΔNL(α( f )ΔNLu)ds

∣∣∣∣
2

dx

+ 2λ2
∫
Ω

∣∣∣∣
∫ t

0
K ∗( f − Ku)ds

∣∣∣∣
2

dx

≤ Ct max
s∈[0,t]

∫
Ω

|u(x, s)|2dx

+ Ct
∫
Ω

| f |2dx .

We select a small t0 such that L maps from

X := {u ∈ C([0, t0]; L2(Ω)) : ‖u‖C([0,t0];L2(Ω)) ≤ M}

into itself, where M > 0 is a constant.
For u1, u2 ∈ X , by direct calculation,

∫
Ω

|Lu1 − Lu2|2dx

≤ Ct max
s∈[0,t]

∫
Ω

|u1(x, s) − u2(x, s)|2dx .

We reselect t0 such that Ct0 < 1. Then L is a strict
contraction in X , which means that problem (10) has a
solution u(x, t) for t ∈ [0, t0]. By repeating, we can find
a solution u(x, t) for any t ∈ [0, T ].

Remark 1 Theorem 1 is also valid for the model of image
inpainting Eq. (9) with the corresponding initial condition
from the above proof process. Note, here the theorem is valid
for the inpainting model (9) but not for the inpainting algo-
rithm in Sect. 5.4 which is an iterative application of (9) with
decreasing occlusion.

Next, we state that the solution of problem (10) preserves
the mean value for image denoising.

Proposition 1 If K is an identity operator, then

1

|Ω|
∫

Ω

u(x, t)dx = 1

|Ω|
∫

Ω

f (x)dx,

for any t ≥ 0.

Proof Integrating the equation in (10) over Ω and recalling
(11) to find

∫
Ω

∂u

∂t
dx = −

∫
Ω

ΔNL(α( f )ΔNLu)dx + λ

∫
Ω

( f − u)dx

= λ

∫
Ω

( f − u)dx .

Multiplying both sides by eλt , we have

d

dt

(
eλt

∫
Ω

(u − f )dx

)
= 0.

Then, the result follows from the initial condition u(x, 0) =
f (x).

5 Numerical Implementation

Let uni denotes the value of a pixel i in the image with time
level n, where i ∈ Ωd and Ωd = {1, 2, · · · , N } is the dis-
cretization of the image domain. The time step is τ , t = nτ ,
n = 0, 1, · · · . Let wi, j be the sparsely discrete version of
w = w(x, y) : Ω × Ω → R, and the construction details
are given in Sect. 5.2 and 5.3. We use the neighbors set Ni

defined by Ni := { j : wi, j > 0}. Then, as in [18], the dis-
cretizations of the nonlocal gradient ∇NLd(ui ) and nonlocal
Laplacian ΔNLd(ui ) are

∇NLd(ui ) := (u j − ui )
√

wi, j , j ∈ Ni ,

ΔNLd(ui ) :=
∑
j∈Ni

(u j − ui )wi, j ,

and the magnitude of the discrete nonlocal gradient is

|∇NLd(ui )| :=
√∑

j∈Ni

(u j − ui )2wi, j .

5.1 Finite Difference Schemes

To numerically solve the proposed models (6) and (8),
we design two different finite difference schemes for their
gradient descent schemes. Before that, we reformulate the
equations (7) and (9) into same form,

∂u

∂t
= −ΔNL(α( f )ΔNLu) + λ(F1 f − F2u),

where F1 = K ∗, F2 = K ∗K for image deblurring and
denoising and F1 = χΩ−D, F2 = χΩ−D for image inpaint-
ing.

We first give the finite difference explicit scheme, as fol-
lows:

un+1
i − uni

τ
= −ΔNLd(α( fi )ΔNLd(u

n
i ))

+ λ(F1 fi − F2u
n
i ). (12)
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For the semi-implicit scheme, we first expand the pro-
posed fourth-order regularizer as

−ΔNL(α( f )ΔNLu) = −
∫

Ω

(α( f )(y)ΔNLu(y)

− α( f )(x)ΔNLu(x)) w(x, y)dy,

whereΔNLu(y)=∫
Ω

(u(z)−u(y))w(y, z)dz andΔNLu(x)=∫
Ω

(u(z′) − u(x))w(x, z′)dz′. Thus, the regularization term
is equal to

−
∫

Ω

α( f )(y) ·
∫

Ω

(u(z) − u(y))w(y, z)dz · w(x, y)dy

+
∫

Ω

α( f )(x) ·
∫

Ω

u(z′)w(x, z′)dz′ · w(x, y)dy

− α( f )(x) · u(x)
∫

Ω

∫
Ω

w(x, z′)dz′ · w(x, y)dy.

Notice, the u in the last term of the above formula is inde-
pendent of the integration, and we discretize it in the n + 1
level. Therefore, the semi-implicit scheme is

un+1
i − uni

τ
+ α( fi ) · un+1

i

∑
j∈Ni

⎛
⎝wi, j

∑
k′∈Ni

wi,k′

⎞
⎠

= −
∑
j∈Ni

α( f j )ΔNLd(u
n
j ) · wi, j

+α( fi )
∑
j∈Ni

∑
k′∈Ni

(unk′ · wi, j · wi,k′) + λ(F1 fi − F2u
n
i ).

(13)

For the explicit scheme (12) and semi-implicit scheme
(13), un+1

i can be expressed explicitly.

5.2 Construction of theWeight Matrix

We construct the weight matrix w = (wi, j )N×N of the dis-
crete image ui , i ∈ Ωd . For each pixel, compare the distances
to all the patches in the search window. Denote the patch
centered at the pixel i as Pi , and the size is lp × lp. And,
extend the image with periodic boundary condition to get all
of the patches. Besides, denote the set of the pixels in the
search window as S(i), and the size of the search window is
lw × lw.

First, we need to calculate the weighted Euclidean dis-
tance. For the image deblurring and denoising, the distance
is d(u)i, j = ‖Pi − Pj‖22,a , j ∈ S(i), where a > 0 is the stan-
dard deviation of the Gaussian kernel. For image inpainting,
with the un-recovered region R ⊂ Dd (Dd is the discretiza-
tion of the damaged region D), the patch distance for each
pixel i is

dR(u)i, j =
∑

i+k∈Pv
i , j+k∈Pv

j

(ga)c+k · ‖ui+k − u j+k‖2,

where Pv
i = Pidx

i ∩ (Ωd − R), Pv
j = Pidx

j ∩ (Ωd − R),

Pidx
i and Pidx

j are the sets of pixels (location) of patches Pi
and Pj , respectively, and ga is the Gaussian kernel (c is the
central location).

We construct the neighbors set Ni by taking the m most
similar and the four nearest neighbors of the pixel i , where
m ≥ 0 is a parameter. In this paper,we setm to the half-length
of the searchwindow, that is,m = 
lw/2�. Especially, setting
the coordinate of pixel i to (ix , iy), the four nearest neighbors
are (ix −1, iy), (ix +1, iy), (ix , iy −1), and (ix , iy +1). The
nonlocal weights are defined as follows:

wi, j =
⎧⎨
⎩ e− d(u)i, j

2h2 , i ∈ Ωd , j ∈ Ni ,

0, others,
(14)

for image deblurring and denoising, and

wi, j =
⎧⎨
⎩ e− dR (u)i, j

2h2

0,
,

i ∈ Ωd , j ∈ Ni , Pv
i �= ∅,

Pv
j �= ∅, (Pv

i −{i})∩(Pv
j −{ j}) �=∅,

others.

(15)

for image inpainting,where h > 0 is amodulation parameter.
It is worth noting that set u as the observed f in (14) corre-
sponding to the model (7), and for inpainting the choice of u
in (15) depends on the inpainting algorithm(Sect. 5.4). Espe-
cially, for image inpainting, after obtaining the normalweight
functionwi, j ,weutilize theweightmatrix normalization (18)
to get w′, and the details are presented in Sect. 5.3. Besides,
to confirm the symmetry constraint, for image deblurring and
denoising, set

wi, j = max(wi, j , w j,i ), ∀i, j ∈ Ωd , (16)

and for image inpainting, set

w′
i, j = max(w′

i, j , w
′
j,i ), ∀i, j ∈ Ωd . (17)

Correspondingly, we need to update the neighbors set Ni for
i ∈ Ωd .

For the image deblurring and denoising, the weight matrix
w is calculated by the degradation image f without updating
during the evolution. The reason is that if we update the
weight matrix during the restoration process, it is not easy to
choosewhen to update, and also the parameters for theweight
matrix calculation are not easy to tune for better restoration
results than the case without updating. For image inpainting,
the weight matrix w′ has to be updated to recover the whole
image. The detailed algorithm is presented in Sect. 5.4.
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Fig. 3 Inpainting result by the proposed nonlocal biharmonic model
with original method ofw and normalizedw′ (finite difference scheme,
semi-implicit one). a Damaged image. b w × 1, 1N×1 is the one vec-

tor, parameters of w: patch size lp = 7, search window lw = 11. c
Inpainted with w in 1000th iteration. d Inpainted with w in 10000th
iteration. e Inpainted with normalized w′ in 50th iteration

5.3 Weight Matrix Normalization

For image inpainting, if there are few similar patches for
the damaged patch, its corresponding sum of weights is very
small and very large iterations are needed to recover the pixel,
which means different inpainting rates for different pixels.
Figure 3b shows the map of w × 1 which is the sum of
each row of w. If we employ the weight matrix w (Eq. 15),
the relative weight of the effective similar block would be
very small for these dark blue pixels in Fig. 3b. As shown in
Fig. 3c, d, it needs very large iterations to inpaint in the gray
box regions.

To solve this, we develop a weight matrix normalization
method to obtain the normalizedweightsw′ for the inpainting
process. In detail, for each row of weight matrix w,

w′
i, j =

⎧⎪⎪⎨
⎪⎪⎩

0, j = i,
wi, j∑

k,k �=i
wi,k

, j �= i, (18)

for ∀i, j ∈ Ωd . In this case, the sum of all weights of each
row is 1.We do not employ theweight for the block itself. For
image inpainting, the main point is to find similar blocks and
inpaint the damaged area according to these similar blocks
and the corresponding similarity values. Thus, the weight of
itself is not necessary. And, averaging every row makes the
similarity values of the same magnitude. At the same time,
if we apply the finite difference scheme, the largest time step
confirming stability can be larger. The inpainting result with
normalized weight w′ is shown in Fig. 3e. It only need 50
iterations which is much less than the one using the original
weight w.

5.4 Algorithm of Inpainting

The inpainting procedure by the proposed model produces
the discrete un-recovered regions Dk

d , k = 1, 2, · · · , with
D0
d = Dd and D0

d ⊃ D1
d ⊃ D2

d ⊃ · · · . Similar to [24],
we update the weight matrix w′ after the current inpainting
process reaches a steady state. The inpainting procedure is
as follows:

(1) Compute weights matrix w′ by Eqs. (15), (18), and (17)
with damaged region Ω0

d and initial image u0.
(2) Iterate k = 1, 2, · · · to obtain the steady state of the

proposed inpainting method, the inpainted image uk and
un-recovered region Ωk

d . Update the weight matrix w′
with Ωk

d and uk until Dk = ∅.

The above inpainting algorithm is an iterative application
of the model (9) with decreasing occlusions. Usually, there
is no noise in the damaged image f , and we take a hard
constraint to ensure that uk = f in the undamaged region
Ωd − Dd and only update the image in Dd for each iteration
of the scheme (12) or (13).

6 Experiments

In order to quantify the restoration effect, for the original
clean image uo and its restored image u, the restoration per-
formance is measured in terms of peak signal-to-noise ratio
(PSNR)[14],

PSNR = 10log10
M1N1|maxuo − minuo|2

‖u − uo‖2
L2

dB,

and mean absolute deviation error (MAE),
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MAE = ‖u − uo‖L1

M1N1
,

where M1 × N1 is the size of the image. Besides, we also
use the structural similarity (SSIM) [47]. All of the image
restoration results by the proposed model are obtained using
the semi-implicit scheme (13). And all of the other parame-
ters in the methods are tuned to reach maximal PSNR values.

6.1 Comparison Between the Two Schemes

We compare the difference between the explicit scheme (12)
and semi-implicit scheme (13), taking the denoising problem
(K is the identity) as an example. The comparison results are
shown in Fig. 4. All of the parameters of the two schemes
are same except the time step τ . The test noisy image is
Fig. 4a, and we set λ = 10 for the proposed model (6). The
denoising results are almost the same by different schemes
and time step τ . From the simulation, the maximal time step
τ of the explicit scheme (12) is 0.0005, but the time step of
the semi-implicit scheme could be any large value (λ = 10).
We show the energy changes over time and over iterations in
Fig. 4e, f, respectively. As the evolution over time, the energy
value decreases until it stabilizes by each scheme. And from
Fig. 4f, we only need small number of iterations to reach the
steady state by the semi-implicit scheme (13).

However, the time step size that the semi-implicit scheme
(13) allows may be not arbitrary if the parameter λ is larger
(or with other weight matrix parameters), such as that if we
set λ = 20, the maximal τ is 0.0004 for the the explicit
scheme (12) and 0.3 for the semi-implicit scheme (13).

All of these indicate that the semi-implicit scheme (13)
has better stability and allows a larger time step size than
the explicit scheme (12). Because these two schemes evolute
totally same numerical results, we only employ the semi-
implicit scheme (13) for the following experiments.

6.2 Image Deblurring and Denoising

We first apply our proposed model to image denoising, and
thus, this is when the blur kernel K is the identity. To study
the performance of our method, we compare the proposed
model with the local fourth-order diffusion model AFD [20],
NLTV, and BM3D [11], and results are shown in Table 2
and Figs. 5 and 6. About the choice of parameter λ for image
denoising, for both the NLTV and proposed model, we set
λ = 0 and stop the iteration when achieve best PSNR values
to clearly show the smoothing and edge preservation abil-
ities of the regularizer. Besides, restoration results by two
adaptive coefficients Eqs. (4) and (5) are similar, and the
nonlocal version is a little bit better. Thus, we employ the
nonlocal gradient-based adaptive coefficient function (5) in
the following experiments.

For the synthetic image Fig. 5b containing smooth sur-
faces and sharp edges, the local fourth-order model AFD
[20] can restore the smooth areas while preserving edges
very well. The BM3D [11]method generates artifacts around
edges. ComparedwithNLTV, the proposedmodel can restore
homogeneous regions smoothly, and the lines restored more
sharp and clean. For the real image Lena, the proposed
model can better preserve both sharp and blunt lines in the
image. Figure6 shows denoising results of the texture image
(Barbara). Because the local method does not work well in
textured regions, we only show the results of the BM3D [11],
NLTV, and proposedmodel. The denoised images by the pro-
posedmodel are smoother; simultaneously, texture and edges
are preserved. Moreover, the homogeneous areas and lines
recovered by the NLTV are not smooth enough. From Fig. 6,
compared with NLTV, the proposed model can restore these
blunt texture at the upper part of the tablecloth. The BM3D
[11] method can preserve textures very well, but artificial
effects show again around the arm. The denoising results of
our proposed model are more natural visually, especially in
homogeneous regions. All of these verify the effectiveness
of the proposed model for image denoising.

And then, we compare the IVM [50], MSPB [40],1 NLIP
[34], 2 and proposed model for image deblurring and denois-
ing. The IVM [50] is a variational model based on local
second-order variation and splitting technique. The MSPB
[40] extends the expected patch log likelihood by consider-
ing amulti-scale prior. TheNLIP [34] is aNLTV-based image
restoration method which utilizes the Tikhonov regulariza-
tion as the preprocessor. For the proposed model, employ
the nonlocal gradient-based coefficient (5), stop the iteration
of the semi-implicit scheme when reaching the energy sta-
ble status, and tune the regularization parameter λ to achieve
the best performance. Also, the choices of parameter λ for
the NLIP [34] and proposed model are listed in Table 3.
Simulation experiment results are shown in Fig. 7. The cor-
responding comparison of PSNR, MAE, and SSIM is listed
in Table 3.

From the synthetic, compared with the NLIP [34] model,
the proposed model has a good performance at restoring the
curved surface. The NLIP [34] model restores sharp jumps
better. Moreover, from the natural image Lena and the other
two texture images, the restored images obtained using the
proposed model are cleaner than the ones obtained by the
NLIP [34], and the lines restored by the proposed model
are more fluent without serrated edges. The local derivative-
based model IVM [50] restore the rough structure, but can
not restore flowing lines and fine texture. The patch-based
method MSPB [40] smooth the noise very well, but can
not restore sharp edges and textures. The comparison of the

1 https://github.com/ngcthuong/Image-Denoising-Benchmark.
2 https://math.sjtu.edu.cn/faculty/xqzhang/NLIP_v1.zip.
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(a) Noisy (b) Explicit(12) (c) Semi-implicit(13) (d) Semi-implicit(13)

(e) Energy (log scale) versus time (f) Energy (log scale) versus iterations

Fig. 4 Comparison of the explicit scheme and semi-implicit scheme
with parameter λ = 10, lp = 11, lw = 31, and h = 70.71. a Test noisy
image. b Denoising result by the explicit scheme with τ = 0.0005
(PSNR 28.672). c Denoising result by the semi-implicit scheme with

τ = 0.1 (PSNR28.672).dDenoising result by the semi-implicit scheme
with τ = 1 (PSNR 28.672). e Energy versus time t of different schemes
with common logarithm scale on energy. f Energy versus iterations of
different schemes with common logarithm scale on energy

Table 2 Comparison of PSNR,
MAE, and SSIM of the different
models with Gaussian noise,
and noise level σn = 10, 20, 30

σn PSNR MAE SSIM

10 20 30 10 20 30 10 20 30

Synthetic

AFD [20] 40.156 36.103 34.096 1.546 2.501 3.355 0.484 0.455 0.437

BM3D [11] 43.110 38.411 35.494 0.997 1.850 2.749 0.498 0.456 0.415

NLTV 42.074 36.921 35.042 0.964 1.906 2.419 0.765 0.481 0.450

Proposed 42.775 38.224 35.323 0.824 1.531 2.273 0.752 0.470 0.439

Lena

AFD [20] 32.892 29.542 27.769 4.054 5.874 7.183 0.747 0.649 0.586

BM3D [11] 35.456 31.735 29.623 3.067 4.572 5.792 0.775 0.683 0.606

NLTV 34.562 30.820 28.802 3.458 5.151 6.455 0.743 0.630 0.559

Proposed 34.992 31.464 29.348 3.250 4.735 6.045 0.768 0.663 0.583

Barbara

BM3D [11] 35.410 32.116 30.013 3.245 4.607 5.870 0.752 0.669 0.591

NLTV 34.371 30.377 28.575 3.633 5.648 6.863 0.724 0.601 0.521

Proposed 35.046 31.729 29.619 3.359 4.803 6.164 0.757 0.661 0.572

Bold values indicate the best results in the comparison experiment
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5 Denoising results of synthetic and Lena. The noise level of the noisy synthetic and Lena is 20 and 10, respectively. Weight matrix parameters
of the proposed model are lp = 11, lw = 51, h = 20 for synthetic and lp = 9, lw = 51, h = 20 for Lena

(a) (b) (c) (d) (e)

Fig. 6 Denoising results of Barbara with enlarged part of corresponding red boxes. The noise level of the noisy Barbara is 20. Weight matrix
parameters of the proposed model are lp = 13, lw = 41, h = 25 (Color figure online)

image quality measurement index in Table 3 also verifies the
effectiveness of the proposed method.

6.3 Image Inpainting

In this subsection, we compare the inpainting performance of
our proposed model with the NLTV, NLH, local biharmonic
model (BH), and nonlocal patch-based method (NLPB)
[38]. 3 Here, the BH model means utilizing the purely bihar-
monic regularization. We employ the semi-implicit scheme
for image inpainting. And all of the parameters are tuned to
confirm best performances for the NLPB [38], BH, NLTV,

3 https://www.ipol.im/pub/art/2017/189/Inpainting_ipol_code.tar.gz.

NLH, and proposedmodel. Note the inpainting framework in
Sect. 5.4 are also applied to the NLTV and NLH. The PSNRs
of inpainting results are shown in Table 4. As shown in Figs.
8, 9, 10, 11 and 12, we utilize the proposed regularizers to
recover images with rectangle, scratch, and words missing
regions. From Table 3, the NLTV method does not perform
as well as the NLH model, so for simplicity, we only show
its results for Figs. 8 and 9.

In Figs. 8 and 9, we show the inpainting results of the com-
parison methods and the process of the proposed inpainting
with a rectangle missing region. From Table 4, the PSNR
values of our proposed model are the highest. Visually, the
proposed model performs better than the other methods in
the texture, edge and homogeneous regions inpainting. The
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Table 3 Comparison of PSNR, MAE, and SSIM of the different models with different blur and noise

Gaussian blur σb Gaussian noise σn Model λ PSNR MAE SSIM

Synthetic 2 7 IVM [50] – 34.500 3.951 0.974

MSPB [40] – 34.050 4.014 0.979

NLIP [34] 20 34.502 3.869 0.978

Proposed 50 33.545 4.116 0.971

Lena 2 7 IVM [50] – 28.506 6.543 0.858

MSPB [40] – 28.249 6.611 0.845

NLIP [34] 20 28.341 6.586 0.853

Proposed 2000 28.562 6.417 0.863

Barbara1 1 7 IVM [50] – 23.755 12.572 0.626

MSPB [40] – 21.426 16.347 0.369

NLIP [34] 100 23.180 13.510 0.575

Proposed 10,000 23.797 12.181 0.631

Barbara2 1 10 IVM [50] – 27.398 8.155 0.805

MSPB [40] – 26.152 9.250 0.664

NLIP [34] 60 27.296 8.327 0.812

Proposed 1000 27.502 7.918 0.830

Bold values indicate the best results in the comparison experiment

(a) (b) (c) (d) (e) (f)

Fig. 7 Deblurring and denoising results of synthetic, Lena, Barbara1,
and Barbara2 utilizing the IVM [50], MSPB [40], NLIP [34] and pro-
posed model. From top to bottom: synthetic, σb = 2, σn = 7; Lena,
σb = 2, σn = 7; Barbara1, σb = 1, σn = 7; Barbara2, σb = 1,

σn = 10. Weight matrix parameters of the proposed model are lp = 3,
lw = 11, h = 10 for synthetic, lp = 9, lw = 25, h = 10 for Lena,
lp = 9, lw = 37, h = 10 for Barbara1, and lp = 9, lw = 37, h = 10
for Barbara2.
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Table 4 Comparision of PSNR
of the different methods for
inpainting

NLPB [38] BH NLTV NLH Proposed

Figure8 37.230 34.833 36.115 37.513 38.676

Figure9 35.204 33.2433 37.955 38.079 38.608

Figure10 first row 32.667 35.337 34.482 35.159 35.523

Figure10 second row 30.662 31.015 30.146 30.945 31.087

Figure11 first row 39.355 39.157 38.582 39.219 39.945

Figure11 second row 32.706 33.440 31.169 32.032 32.960

Figure12 first row 20.641 21.266 20.628 21.101 21.522

Figure12 second row 27.891 23.338 21.197 21.458 22.108

Figure12 third row 24.760 24.097 23.043 24.047 24.164

Bold values indicate the best results in the comparison experiment

(a) (b) (c) (d) (e)

(f) (g)

Fig. 8 Inpainting results of image with 183 × 16 missing part. Weight matrix parameters of the proposed model are lp = 7, lw = 11, h = 8.

patch-based method NLPB [38] generates shocks and unde-
sired artifacts near the medial axis of the occlusion as shown
in Fig. 9c. On the other hand, the NLPB [38] can produce a
consistent and plausible continuation of the texture as shown
in Fig. 9b. The local biharmonic model BH can not recover
lines and results in blur. The inpainting results of the pro-
posed model are more consistent and contain richer details,
especially in the areas with weak texture and edge.

We give a group of experiments with scratch damage in
Fig. 10. These visually seem to produce very similar results,
but from the PSNRvalues in Table 4 our proposedmodel per-
forms better than the othermethods.Word damage inpainting
results are shown in Fig. 11. The proposed method can
recover images with more flowing lines and smooth regions

from the hair and the bridge of the nose of the girl. The local
method BH can inpaint homogeneous parts very well, but it
can not restore lines clearly. The NLPB [38] method would
destroy fluent lines, and it can not maintain consistency.

At last, we illustrate the effectiveness of our method for
texture image inpainting (Fig. 12). We choose three texture
images and destroy themwith three different damage regions,
respectively. For the NLPB [38] method, it has the advan-
tage of recovering images with rich repeated structures. The
recovered images by the proposed method are more natural
than ones by the BH and NLH methods. We still can see the
shape of the damaged region in the recovered image by the
BH and NLH methods, especially the last row of Fig. 12.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 9 Inpainting results of image with 19 × 74 missing part. Weight matrix parameters of the proposed model are lp = 7, lw = 11, h = 8.

(a) (b) (c) (d) (e) (f)

Fig. 10 Inpainting results of images with scratch damage. Weight matrix parameters of the proposed model are lp = 7, lw = 11, h = 8 for the
first row and lp = 5, lw = 11, h = 7 for the second row
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(a) (b) (c) (d) (e) (f)

Fig. 11 Inpainting results of image with word damages. Weight matrix parameters of the proposed model are lp = 7, lw = 11, h = 8 for the first
row and lp = 5, lw = 11, h = 8 for the second row

(a) (b) (c) (d) (e) (f)

Fig. 12 Inpainting results of texture images with three different damages. Weight matrix parameters of the proposed model are lp = 5, lw = 11,
h = 25 for the first row, lp = 7, lw = 11, h = 28 for the second row, and lp = 5, lw = 11, h = 30 for the third row

7 Conclusion

We have proposed in this paper an anisotropic nonlocal
fourth-order biharmonic regularizer for image restoration,
and we have shown through experiments and deduction that
the nonlocal biharmonic model is better than the nonlocal
harmonic model at slope preservation. We have applied
the proposed regularizer to image deblurring and denois-
ing and image inpainting. A weight matrix normalization
has been proposed to speed up the image inpainting pro-
cess. The uniqueness and existence of the solution and the

mathematical property of the proposed model have been
proved. We have discretized the model using finite differ-
ence schemes that are stable in practice. We have presented
numerous experimental results on synthetic and real images
that show the advantages of the proposed model, by compar-
ison with local fourth-order models, nonlocal second-order
models, and other state-of-the-art methods.
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