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Metabolic engineering holds the promise to transform the chemical industry and to support the transition into a circular bio-
economy, by engineering cellular biocatalysts that efficiently convert sustainable substrates into desired products. However,
despite decades of research, the potential of metabolic engineering has only been realized to a limited extent at the industrial
level. To further realize its potential, it is essential to optimize the synthetic and native metabolic networks of cell factories at
a system and genome-wide level. Here we discuss the tools and strategies enabling system-wide (semi-) rational engineering.
Recent advances in genome-editing technologies enable directed genome-wide engineering in a growing number of relevant
microorganisms. Such system-wide engineering can benefit from machine learning and other in silico design methods, and it
needs to be integrated with efficient screening or selection approaches. These approaches are expected to realize the promise
of next-generation cell factories for efficient, sustainable production of a wide range of products.

icrobial cell factories have long been expected to become

a key platform for the bioconversion of sustainable sub-

strates into valuable products. The field of metabolic engi-
neering emerged in the early 1990s' with the promising potential
to revolutionize production processes in the chemical, fuel, pharma
and food industries. In the past three decades, substantial techno-
logical advancements in DNA synthesis and assembly technologies?,
next-generation DNA sequencing’, as well as genome engineering
techniques’® have greatly expanded the toolkit available to meta-
bolic engineers. A vast amount of fundamental and applied research
has been performed in the field, including the engineering of sub-
strate utilization pathways for a range of cheap, sustainable feed-
stocks as well as of biosynthetic pathways for a broad spectrum of
valuable natural and non-natural products”®. These efforts have led
to an impressive collection of proof-of-principle pathways and engi-
neered strains’. Despite these success stories, however, bioproduc-
tion of commodity chemicals by metabolically engineered strains
has only been realized so far to a limited extent at an industrial scale,
primarily due to the unsatisfactory performance of many biopro-
duction processes that limits their economic feasibility".

A recent review of the industrial production of bio-based com-
modity chemicals and fuels identified approximately 30 different
bio-based chemicals that are produced or are planned to be pro-
duced at commercial scale, which is a tiny number of compounds
relative to the vast product portfolio of the petrochemical indus-
try’. Similarly, the market share of bio-based chemical production
(<US$10 billion in 2020)" is dwarfed by classical chemistry-based
production (US$5.7 trillion per year)'.

The current bio-based market is primarily based on glucose as a
substrate, which raises important sustainability concerns for future
scale-up, as the production of glucose depends heavily on scarce
agricultural resources and competes with food production'". So
far, there are only a handful of bio-based industrial processes that
are fed with more sustainable feedstocks such as lignocellulosic
(residual) biomass, syngas (H,/CO waste gas stream from some

industries) or feedstocks generated with renewable electrical power,
such as H, or reduced one-carbon molecules (for example, metha-
nol and formate)'*-'°.

To truly realize the promise of bio-based production, major
challenges need to be tackled to allow the development of sustain-
able and economically viable bioprocesses. At the strain level, this
includes strategies to realize efficient assimilation of sustainable and
cheap substrates, as well as to increase the performance in terms
of production titres, rates and yields. In addition, undesired effects
related to scale-up from laboratory cultivation to large bioreactors
need to be evaluated and addressed.

A major complication in generating well-performing next-
generation cell factories is the complexity of cellular metabolic
networks. Hence, a desired strategy towards improving production
would be the simultaneous optimization of multiple metabolic bot-
tlenecks and fluxes at a system level'>"”~*. A valuable approach for
system-level engineering is adaptive laboratory evolution (ALE)*,
for example to optimize substrate utilization, growth-coupled pro-
duction and product tolerance. However, because ALE is typically
based on random mutagenesis, the number of possible mutations
is immense and only a small fraction of those will be beneficial.
Hence, a powerful selection strategy is needed (that is, typically,
selection for enhanced growth rates) and, as a result, ALE can often
not be harnessed to optimize growth-competitive production. Even
when it is possible to couple production to growth, the emergence
of escape mutants that uncouple this connection may be a prob-
lem?*'. Moreover, phenotypic improvements of metabolic networks
are often multifactorial problems requiring multiple epistatic muta-
tions, which have a lower probability of occurring together and
sometimes may even be unable to emerge due to evolutionary paths
with local optima.

A promising alternative or complementary approach to ALE is
provided by (semi)-rational, system-level engineering. In recent
years, several genetic engineering techniques have been developed
that allow for highly effective, directed, system-level engineering.
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Advanced tools have been established, especially for the genetic
engineering of the bacterial and eukaryotic model production
organisms, respectively Escherichia coli and Saccharomyces cerevi-
siae, but also in several other less-studied hosts. The application of
targeted system-level engineering can lead to many combinations
of mutations to be tested; hence, these approaches require effec-
tive selection methods or screening strategies to identify variants
with improved phenotypes. In this Review we discuss advances and
emerging possibilities in system-level targeted metabolic engineer-
ing, including in silico target design strategies, high-throughput
genome engineering techniques, as well as suitable screening and
selection approaches.

Target prediction for systems metabolic engineering
Genetic targets for editing should be chosen carefully to limit
the size of mutant libraries and make optimal use of the available
screening capacity. The main difficulty in targeted metabolic engi-
neering approaches is the requirement for prior knowledge about
the metabolic network of the production organism as well as regula-
tion of this network. However, increased understanding of cellular
metabolic networks and in silico tools, such as metabolic modelling
or machine learning, can support rational target selection.

Types of target gene

Metabolic engineering projects generally start with a pathway
design for a product or substrate of interest, often designed or ana-
lysed with the help of in silico tools*’. Subsequently, native and/or
heterologous genes encoding the enzymes in the designed pathway
are overexpressed either from plasmids or from the host chromo-
some. The latter approach is often preferred, as genomically inte-
grated genes and modifications are more stable and avoid the use
of antibiotics for plasmid selection. However, the mere introduc-
tion and overexpression of the pathway genes commonly results
only in proof-of-principle, low-level productivities. Also, for sus-
tainable substrate utilization pathways, full growth on these sub-
strates can rarely be realized after initial pathway introduction
attempts. Improving cell factories towards industrial performance
usually requires extensive and iterative optimization of the flux in
the pathway of interest and throughout the native metabolic net-
work. Production performance can be optimized by preventing
by-product formation and by adjusting metabolic bottlenecks,
which involves targeting of coding and/or non-coding DNA regions
so as to tune the performance of some key players, such as enzymes,
transporters and transcriptional regulators. Targets can be modi-
fied via a range of intervention strategies, such as expression-level
tuning, gene knockouts, as well as protein engineering strategies, in
which (some) amino-acid residues are changed.

Generally, genes encoding the enzymes directly involved in the
pathway of interest (for example, substrate assimilation or product
biosynthesis) provide a straightforward starting point for targeting.
In addition, native host genes may be identified as suitable targets
by rationally inspecting the host metabolic network for pathways
or regulatory mechanisms that can (directly or indirectly) impact
strain performance. For example, metabolites can be converted by
multiple, competing enzymes, often towards biosynthetic routes
required for cellular growth or towards undesired by-products.
The competing enzymes at branching points in a network are key
targets for metabolic engineers. Traditionally, these targets are
often knocked out in a time-consuming, iterative, trial-and-error
process. In a more advanced system-level metabolic engineer-
ing approach, these targets are deleted simultaneously in different
combinations. Alternatively, rather than knocking out these genes,
more refined knockdown strategies allow for tuning enzyme levels
and can potentially lead to an improved balance of production and
growth. In addition to enzymes at branching points, targets include
enzymes involved in biosynthesis or regeneration of cofactors that

are important for cell factory performance, as well as transporters of
relevant molecules (for example, substrates to be taken up from the
medium or products to be excreted).

Another class of useful targets for system-level engineering com-
prises transcription factors. These regulators can control sets of
genes at varying levels, ranging from specific regulators that control
the expression of one or a few genes to global regulators that control
the expression of dozens of genes. Early system-wide approaches
to globally reprogram cells included the introduction of random
mutations in subunits of the RNA polymerase complexes in E. coli
or S. cerevisiae’*'. Such global regulators can change the expres-
sion patterns of many genes, but changes are hard to predict ratio-
nally, and require powerful screening or selection strategies. Still,
targeting such regulators can be a useful approach, especially when
it is poorly understood which specific genes should be targeted for
a certain phenotype of interest, as is, for example, often the case
for increasing host tolerance to toxic substrate compounds or prod-
ucts. Recent studies have targeted several dozens of transcriptional
regulators in E. coli in parallel, trying to increase the tolerance to
substances such as furfural, a toxic compound in lignocellulosic
feedstocks, and styrene, a versatile but toxic monomer for bio-based
plastics. In both studies, mutants of E. coli transcriptional regulators
were identified that increase the tolerance level and hence increase
productivities®*.

Despite the demonstrated successful examples of mutating tran-
scriptional regulators, the complex regulatory effects of these targets
may not necessarily lead to optimal outcomes. Mutations in (global)
regulators may cause both beneficial and adverse alterations in
expression at the same time, leading to unwanted trade-offs in cell
factory optimization. Improved understanding of regulatory net-
works could help to identify promising, more specific regulators.
However, metabolic models accounting for regulation have only
started emerging for a limited number of model organisms, such as
E. coli and S. cerevisiae’**.

In silico tools for target selection

The selection of targets is regularly done in a manual fashion based
on metabolic and regulatory knowledge of the host organism,
often including targets identified in previous engineering attempts.
However, there has been a steady increase in the use of in silico
modelling tools in the metabolic engineering field, which certainly
may contribute to target selection.

The two most popular in silico modelling approaches for meta-
bolic engineering are stoichiometric (or constraint-based) models
and kinetic (or dynamic) models”. Stoichiometric models only
require information on the reaction stoichiometry, and possibly
some reaction constraints like upper or lower bounds of metabo-
lite (in)fluxes, and reaction directionality*". A commonly applied
type of stoichiometric modelling is flux balance analysis (FBA),
in which linear programming is used to find flux distribution
solutions within constraints for a given objective (for example,
maximum growth or maximum productivity)’'. FBA is generally
performed using genome-scale metabolic models, which contain all
stoichiometric reactions assumed to take place within a host based
on enzymes annotated in the genome. As of now, these metabolic
models have been constructed for many relevant microorganisms.
To aid in target selection for metabolic engineering, some dedicated
in silico tools based on FBA have been created. Generally, these
tools predict sets of gene knockouts that are expected to increase
the flux towards the desired product. Examples include OptKnock*?
or Minimal Cut Set (MCS) analysis®. Such tools can be used to limit
the set of genetic knockout targets to be tested*.

However, stoichiometric modelling generally does not consider
factors like kinetics and regulation, so it often does not lead to
the desired full performance. Furthermore, recent progress in the
development of genetic tools allows for more subtle intervention
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Fig. 1| Target sites for gene (expression) editing and available
modification strategies. Potential target sites for genetic modifications

to modify expression levels include the transcription factor binding site
(TFBS), the promoter, the 5'UTR, the RBS (only in prokaryotes) and the
coding sequence (CDS). These different genomic sections can be adjusted
through different modification strategies, each with specific levels of
predictability and impact.

strategies than the creation of gene knockouts. For some microbial
species, genetic tools are now available to modulate the expression
strengths of multiple genes simultaneously, allowing for upregula-
tion or downregulation of enzyme levels, which consequently may
influence related fluxes. FBA-based tools can be used to some extent
to predict such interventions. Ideally, however, models incorpo-
rating kinetics are used to identify potential targets for adjusting
enzyme levels. A range of kinetic models have been proposed for
metabolic engineering, but they mostly require reliable experimen-
tally determined parameters of enzymatic kinetics”**. The poor
availability of such data is a major limitation in the application of
these models.

To solve this problem, kinetic modelling approaches have been
developed that do not rely on exact kinetic parameters. For example,
ensemble modelling for robustness analysis (EMRA) uses a range
of kinetic parameters to estimate which enzymatic reactions are
crucial for the activity of an engineered pathway”’. Such an EMRA
framework has been applied to rationally predict some enzymes
in the E. coli metabolic network that may need to be modulated to
realize growth on methanol, via the non-native ribulose monophos-
phate (RuMP) pathway. Targeting of some of the enzymes predicted
by this framework recently led to the long-awaited breakthrough
of E. coli growing on the alternative substrate methanol as sole car-
bon and energy source via the RuMP cycle®. As suggested by the
model, two reactions in glycolysis draining a key metabolite of the
RuMP pathway (fructose 6-phosphate) were down-tuned by replac-
ing them with slower enzymatic counterparts. However, these two
interventions were insufficient to achieve full growth on methanol
as the sole carbon and energy source. Only after several rounds
of ALE was the full methylotrophic growth phenotype achieved;
this included several more mutations, including mutations in the
central carbon metabolism (for example, in the tricarboxylic acid
cycle) that were not predicted by EMRA. Hence, to increase the suc-
cess of rational metabolic engineering, additional complementary
approaches besides metabolic models are important to help in pre-
dicting targets.

Other promising in silico tools include data-driven statistical
and machine learning approaches, which generally use data from
previous engineering iterations to inform the next round of engi-
neering. One statistical type of method is the design of experiments
(DoE), which designs a limited set of combinations to be tested
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in a first iteration, which can be effective in disentangling factors
that are key to focus on in next iterations. A technical challenge of
this approach is that only specific combinations of target variations
should be generated, which is often not possible with the combi-
natorial genome engineering techniques, which generally vary the
different targets independently. Still, the DoE approach has shown
its power in the efficient optimization of heterologous pathways
for which specific combinatorial libraries were cloned in vitro on
plasmids and then tested in a microbial host*~*'.

Furthermore, machine learning algorithms can be used for target
predictions based on data from previous iterations. Machine learn-
ing requires data for training, for example, productivities linked to
mutant sequences of targets from previously engineered strains.
Generally, machine learning will rely on an initial engineering itera-
tion round with a wide set of selected targets and variants, which in
next iterations can be narrowed down for further optimization. Only
a few examples exist so far of the application of machine learning to
metabolic engineering*~*‘. The potential of this approach for meta-
bolic engineering is extensively reviewed elsewhere~". Although
a potential drawback of machine learning is the requirement for
extensive experimental data to train the model, it also holds prom-
ise for limiting the number of variants that need to be generated and
screened in iterative rounds of system-wide engineering. Recently it
was also demonstrated that machine learning can be used to address
the lack of data for enzyme kinetic parameters, for example, by pre-
dicting enzyme turnover rates*. By using this approach, more accu-
rate metabolic models could be generated for S. cerevisiae.

Genetic sequence targets and modification strategies

After the selection of target genes for modification, a next step is to
identify regions of these genes to edit. The most frequent targets for
editing include promoters, untranslated regions, ribosome binding
sites (RBSs) or coding sequences (Fig. 1).

The promoter sequence is a key region with which to control
expression levels, as it can regulate transcription initiation rates in
both prokaryotic and eukaryotic cell factories. However, despite
extensive studies, it is still poorly understood how natural pro-
moter sequences control transcription levels. Only recently have
some models been developed for predicting promoter strength in
E. coli***. So far, promoter strength modulation in metabolic engi-
neering is mostly performed using small libraries of well-known
promoters with characterized strengths. However, a drawback of
this approach is that the insertion of complete synthetic promot-
ers in the genome requires larger sequence modifications (typically
>30 bases), which are often challenging to realize with the avail-
able high-throughput genome-engineering techniques. An early
example of genome-wide promoter replacement for metabolic engi-
neering was demonstrated for the production of the dye compound
indigo by E. coli"'. Recently, several fundamental studies on pro-
moter activities have shown that, by randomly mutating promoter
regions, a wide, yet unpredictable range of expression strengths can
be reached in, for example, E. coli*>. Hence, making small random
mutations in an existing promoter region can be an alternative
method for system-wide promoter engineering, supported by tools
such as the recombineering-based diversification tool DIVERGE™,
of which more details will be provided below. However, the
trial-and-error nature of such a randomized promoter engineering
approach requires efficient screening or selection of many variants.

Another key region for controlling protein production levels
comprises the untranslated regions (UTRs) of messenger RNA
(mRNA), especially the 5"UTR. This region plays crucial roles in
the stability and degradation of mRNAs™, and can typically cause
variations in the enzyme levels as mRNA is translated into protein
(for example, enzymes). In addition, in prokaryotes, the 5"'UTR
contains the RBS, which is responsible for recruiting ribosomes
to initiate translation. For many bacterial species there is a fair
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understanding of how RBS sequences determine translation ini-
tiation strength. The initiation rate is, amongst other factors,
determined by base-pairing between six to eight bases of the RBS
sequence in the mRNA and the 3’ end of the prokaryotic 16S rRNA,
as well as by the accessibility of the RBS within a folded mRNA
structure™.

Some metabolic engineering efforts rely on libraries of previ-
ously characterized RBS sequences* or on large libraries of degen-
erate sequences covering the RBS and/or the first few codons of
the coding sequence”. However, it must be noted that even short,
degenerate RBS sequences of six bases already lead to a large library
of 4°=4,096 variants for one gene. To reduce library sizes, computer
algorithms such as RBS Calculator®® can be used. This algorithm is
based on a biophysical model that can be used to predict the strength
of an RBS sequence, allowing for the design of smaller degenerate
libraries, typically of a dozen RBS variants that should cover a wide
expression range’®. As an alternative to RBS design based on bio-
physical models, high-throughput experimental RBS characteriza-
tion data can be used to train models to predict RBS activity, as was
recently demonstrated for E. coli®®*. Overall, the relatively strong
predictive power for RBS strengths, as well as the requirement
for only a few mutations within a short sequence window, makes
them an excellent target for efficient, genome-wide optimization of
expression strengths in bacteria. RBS engineering also allows for
independently varying the expression levels of individual genes that
are encoded together in one bacterial operon under the control of a
single promoter.

By contrast, in eukaryotic cell factories such as yeast, genes
are generally transcribed individually, and no RBS muotif is pres-
ent. Usually, the eukaryotic ribosome binds at the capped 5 end
of a transcript, then scans along until it encounters the start codon
within the Kozak sequence to initiate translation®. Especially for
yeast, predictive tools and standardized 5'UTR libraries are emerg-
ing based on secondary mRNA structures, the Kozak sequence
motif and other internal regulatory elements controlling translation
initiation. These advances can facilitate targeted system-wide tun-
ing of expression in eukaryotes with 5"UTR libraries®.

Another prominent target for modification is the protein coding
sequence (CDS). The CDS can also be targeted for expression
tuning by editing the codon usage of a gene (for example, codon
optimization or codon harmonization). Several algorithms for
codon optimizing are available®, but editing the entire length
of genes is often not practical, and also mostly not required for a
system-wide approach. Targeting a shorter sequence like the pro-
moter, the RBS or the influential start of the CDS can therefore be
more attainable in system-wide genome engineering®°.

Apart from tuning expression levels, the CDS can be mutated to
alter the amino-acid sequence of the encoded protein, for example
to modulate enzyme properties such as catalytic rates or substrate
or co-factor specificities. CDS sequences are often optimized via
directed evolution strategies through mutagenesis of the (complete
or partial) CDS, combined with screening or selection for desired
enzyme properties. Directed evolution has, for example, enabled
new-to-nature enzyme activities, such as the enzymatic formation of
carbon-silicon bonds””. However, the variant space of all amino-acid
substitutions (that is, 19 amino acids per position) in a single protein
is astronomical. Hence, the system-level simultaneous engineering
of proteins requires a strict selection of specific amino-acid residues,
which are ideally mutated to only one or a few alternatives to find a
compromise between minimizing the number of variants and cov-
ering potentially relevant residues. Available data on protein struc-
tures or previous characterizations or directed evolution studies
on a specific protein can be used to limit the number of targets.
Such an approach can also be used for the targeting of regulators.
For example, targeted amino-acid modifications covering mul-
tiple regulator proteins have been performed in high-throughput

metabolic engineering efforts to improve substrate or product toler-
ance. In one study, tolerance to hydrolysates from pretreated ligno-
cellulosic biomass was engineered in E. coli*>. The tolerance to acetate
and furfural in the hydrolysate was improved by editing several key
amino acids (mostly DNA-binding residues) of 28 genes, mostly
regulators. This approach has already led to library sizes of >40,000
possible mutants, emphasizing the challenge of co-optimizing
multiple CDS sequences in parallel. In another study, tolerance
to the product styrene was improved through a similar approach,
in which 54 regulators and transcription factors were edited, with
>80,000 mutations tested in parallel”*. Genome editing in both these
studies was achieved through iterative CRISPR-Enabled Trackable
genome Engineering (iCREATE), which will be described in more
detail below.

Available and developing genome editing tools

Recent advances in DNA-editing techniques launched a new era in
which precise genetic manipulation has become more efficient and
feasible across entire genomes in an increasing number of micro-
bial species. This transformation was primarily made possible by
the development of recombination-mediated genetic engineering
(recombineering)® and CRISPR-Cas-based genome editing®. In
recent years, a range of genetic tools have been developed based
on these two approaches, leading to several tools suitable for
high-throughput genome editing for metabolic engineering (Fig. 2
and Table 1). Of general importance for system-wide metabolic
engineering is the targeting of multiple targets in a population in
parallel. In addition, it is important that multiple targeted edits can
be combined within a single cell, which we refer to as multiplexing.
Note that parallel targeting of multiple single edits in a population
can also be referred to as multiplexing, but we will not use this term
for that goal in this Review. Several modern genome editing tools
allow for multiplexing by allowing for simultaneous targeting of two
or more loci during one editing round in a single cell. Alternatively,
multiplexing is achieved by performing iterative editing rounds
(typically short rounds of a few days), by which multiple mutations
can be accumulated in a single cell over time. A key parameter for
both parallel and multiplex genome editing is the editing efficiency.
This efficiency is usually defined as the percentage of edited cells
harbouring a defined type of edit within the total population after
one editing round.

Genome-wide editing based on recombineering tools
Recombineering is one of the most powerful tools that has been
added to the systems metabolic engineering toolbox in recent
decades, although currently it is available only for a few bacterial
hosts. Recombineering harnesses the activity of single-stranded
DNA annealing proteins (SSAPs), originating from bacteriophages,
to anneal an exogenous DNA template to its partially complemen-
tary genomic or plasmid target and thus integrate modifications®®.
Recombineering with double-stranded (ds) DNA templates is a use-
ful method for the insertion of large DNA fragments, up to hun-
dreds of kilobases, which require only short homology flanks (~50
bases), into specific target sites in the genome. This method is rou-
tinely used in E. coli for making knockouts and insertions of genes,
complete pathways and even entire chromosomal segments®’’, and
has substantially accelerated metabolic engineering projects in E.
coli during the past two decades. However, dsDNA recombineering
is generally not suitable for paralllel and multiplex genome editing
due to the low frequency of edited cells (0.01-0.001%) in the popu-
lation after recombineering”.

In recent years, recombineering based on single-stranded DNA
(ssDNA) templates has developed into a transformative tool for
systems metabolic engineering, by enabling parallel and multiplex
editing in multiple bacterial species®’>”". ssDNA recombineer-
ing is typically performed with DNA oligos of 90 bases, with 1-30
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Fig. 2 | Editing ranges of different multiplex engineering tools. Different target types and number of target genes result in different ranges of possible
mutant numbers, which can be achieved by different types of genome editing techniques. The y axis gives the number of genetic variants that
approximately need to be generated per gene (or operon for prokaryotic promoters) for different target types. The x axis indicates the range of numbers

of genes (or operons in the case of targeting prokaryotic promoters) that need to be targeted to perform metabolic engineering at different scales. The
potential size of a strain library containing all possible combinations of mutations for a certain engineering scenario can be determined by the number of
variants per target to the power of the number of target genes/operons. For example, by simultaneously targeting the RBSs of five genes with RBS libraries
of ten RBS variants each, 10° combinations are possible. Coloured boxes indicate the typical coverage that can be provided in this space by specific genetic
tools that are discussed in the text and in Table 1. The space covered by each tool is an approximation based on their currently demonstrated (maximum)

potential in referenced metabolic engineering studies. Faded-gradient boxes indicate the expected potential of some tools based on demonstrated
potential in non-metabolic engineering applications. Additionally, note that most tools can cover a specific mutational space in a population, so full
mutational space is not feasible in a single cell. DIVERGE, directed evolution with random genomic mutations; MAGE, multiplex genome engineering;
eMAGE, eukaryotic MAGE; dsDNA recomb., double-stranded DNA recombineering; CRISPR, clustered regularly interspaced palindromic repeats;
CRISPR HDR, CRISPR (assisted) homology-directed repair; CRISPRi, CRISPR interference; aa, amino acid; RBS, ribosome binding site.

mismatching bases located in the middle of the oligo®’*. Bacterial
cells in which SSAPs have been expressed (for example, by pORT-
MAGE plasmids’™) are electroporated with these oligos to allow for
incorporation of mutations during DNA replication (Fig. 3a). The
electroporation with these oligos can be repeated in iterative cycles
to accumulate mutations in individual cells. This type of iterative,
ssDNA recombineering is commonly referred to as multiplex auto-
mated genome engineering (MAGE®). In practice, this technique
does not necessarily require automation and can also be performed
manually with standard molecular laboratory equipment.

One of the earliest demonstrated applications of MAGE was the
simultaneous, rational targeting of 24 genes (native and non-native)
involved in the biosynthesis of the molecule lycopene in E. coli.
This allowed the generation of a few strains with fivefold-improved
lycopene production within three days®’. More recent demon-
strations of ssDNA recombineering with larger libraries of oligos
have allowed for the targeting of thousands of targets, for exam-
ple, targeting promoters and RBSs of all protein-encoding genes
in E. coli™.

Recent screening efforts identified SSAPs that also allow ssDNA
recombineering in other bacterial hosts besides E. coli. SSAP and
recombineering protocols based on single plasmids carrying all
required recombineering machinery have been established for sev-
eral popular metabolic engineering hosts, such as Pseudomonas
putida™ and Corynebacterium glutamicum’. However, the best edit-
ing efficiencies in the latter two hosts so far are 1-5%. Efficiencies
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of >10%, enabling efficient parallel and multiplex engineering,
have already been demonstrated for some other industrial hosts,
such as the lactic-acid bacteria Lactococcus lactis and Lactobacillus
reuteri’”’*, as well as the emerging bioproduction host Citrobacter
Sfreundii”. In E. coli, efficiencies of up to 50% have been reached
using the best-performing SSAP (CspRecT”) for single-base muta-
tions in one round. This ultrahigh-efficiency recombineering pro-
vides opportunities to integrate many targeted mutations after just
a few rounds of recombineering’. Efficient ssDNA recombineering
will probably be expanded to more, relevant bacterial hosts through
further large screens of SSAPs combined with improved mecha-
nistic understanding of SSAPs and their interactions with the host
genetic machinery”’.

A downside of MAGE is that the editable region is typically
below ~30 bases™*””, which may limit the ability to discover ben-
eficial genotypes for longer window targets, such as larger pro-
moter regions or a complete or partial coding sequence. This can
be resolved by tiling such a region with multiple MAGE oligos.
However, when tackling such larger regions, the number of potential
mutations can be rather high. Therefore, the ssDNA recombineer-
ing variant DIVERGE (directed evolution with random genomic
mutations) can be employed (Fig. 3b)”. DIVERGE employs a set
of soft-randomized oligos to introduce tunable levels of muta-
tions covering a target region. Soft-randomized oligos are custom
oligo mixes that contain a percentage of degeneracy for specific
user-defined bases (for example, at a given native base A, 94% of
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Table 1| Summary of key genome engineering tools for targeted, system-wide metabolic engineering

Name Target type(s) Template and other key features ~ Demonstrated Demonstrated hosts Refs.
multiplexability relevant for metabolic
(= +/—+)? engineering
Recombineering MAGE Insertions and 90-nt-long ssDNA oligos, requires  + (i) E. coli, P. putida, 57,73,78,79,
substitutions <30 bp, organism-specific SSAP. +/—=(s) C. glutamicum, L. lactis, 134,143-145
deletions <30 bp. L. reuteri, C. freundii,
S. enterica, K. pneumonia,
C. crescentus, L. rhamnosus,
M. smegmatis
eMAGE Insertions and 90-nt-long ssDNA oligos, requires ~ + (i) S. cerevisiae 81
substitutions <30 bp, organism-specific SSAP. +(s)
deletions <100 bp. Targets
within ~20 kb from a
co-selectable marker.
DIVERGE Mainly substitutions, 90-nt-long soft randomized +/—=(s) E. coli, S. enterica, C. freundii, 53,80
covering multi- oligos with partially degenerate + (@ K. pneumoniae
kilobasepair regions bases, requires functional SSAP.
via tiling.
CRISPR-Cas Cas9/Casl2a+ Gene knockouts, gene Linear dsDNA of 40 bp-1kb. +/—(s) For example, 86,87
combined with yeast HR insertions. S. cerevisiae, K. lactis,
recombination A. nidulans, Y. lypolytica,
K. phaffi
MAGIC Deletions of 28 bp, as CRISPR array oligos cloned into + (@) S. cerevisiae 89
well as downregulations plasmid libraries, integrated with +/—(s)
(CRISPR) and CRISPRi and CRISPRa.
upregulations (CRISPRa).
ReScribe/ Insertions, substitutions 90-nt-long ssDNA oligos + + (i) E. coli, P. putida 90,91,93
CRAM/ and deletions ~6-20 bp. CRISPR array cloned into plasmid.  +/— (s)
CRMAGE
(i)CREATE Insertions, substitutions Synthetic oligo (max 200 nt) + (@@ E. coli 25,26,96,97
and deletions <35 bp. cloned into plasmid libraries
(including gRNA + repair
template). Allows for trackability
of edits after one round. Can be
iterated (iCREATE).
MAGESTIC Substitutions of 3-6 bp Cloned oligo (170 nt) into plasmid - S. cerevisiae 98
(synonymous codons). libraries (including gRNA and
barcode).
CRISPR-Cas editing  Base editing Substitutions (C to T/G/A, No template, deaminase fusedto  + (s) For example, E. coli, 99,100,102,
or A to G) for 5-7 bp. dead Cas9. P. putida, C. glutamicum, 104,105
B. subitilis, C. beijerinckii,
R. sphaeroides,
Streptomyces sp.
Prime editing Insertions <33 bp, Template integrated in gRNA +/—(s) E. coli 101,106
deletions <97 bp, (pegRNA), reverse transcriptase
substitutions <2 bp. fused to nickase Cas9.
Control of CRISPRi Promoters and gRNAC(s) expressed from plasmid ~ + (s) For example, E. coli, 34,86,107,
transcription/ coding sequences for (for multiplex in arrays) together S. cerevisiae, C. glutamicum, 108,146
translation levels down-tuning/knockout, with a dead Cas variant. Synechocystis PCC6803,
1-14 genes. B. subtilis, Y. lipolytica,
C. ljungdahlii
CRISPRa Promoters for gRNAC(s) expressed from plasmid ~ + (s) For example, E. coli, 86,113,114
upregulation, 1-5 genes. (for multiplex in arrays) together K. oxytoca, Y. lipolytica,
with a dead Cas variant. S. cerevisiae, B. subtilis
RNAIi/RAGE Transcribed regions for Library of mRNA template +(s) S. cerevisiae 109
knockdown (UTRs, coding  reverse-transcribed into DNA and
regions), 1-3 genes in inserted into plasmidlibrary.
one cell.
sRNA Transcribed regions Synthetic short sequences +(s) For example, E. coli, 110,111,147

for knockdown (UTRs,
start coding regions),
1-3 genes in one cell.

(20-120 bp) to act as antisense
RNA expressed from plasmids.

C. acetobutylicum,
C. glutamicum, P. putida,
B. subtilis, Synechocysistis

2+ indicates the tool allows for multiplex targeting of many targets in single cell, +/— for a limited number of targets and — does not allow for multiplexing by respectively (i) =iterative, (s) =simultaneous

targeting protocols.
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Fig. 3 | Single-stranded DNA recombineering allows for efficient multiplex genome engineering. a, MAGE allows for simultaneous editing of many
targets in E. coli and some other bacteria by the introduction of mutagenic ssDNA oligonucleotides (left), which are incorporated at their genomic target
sites during DNA replication (middle). Efficient integration of the oligonucleotides requires expression of suitable SSAPs. After a single round, a diversified
population is generated (right), in which more mutations can be accumulated per cell by iterative rounds of MAGE. b, DIVERGE is a variant of ssDNA
recombineering, which incorporates mutagenic soft-randomized oligos (that is, low percentage of degeneracy for each individual nucleotide-position)
into the target region to increase the incidence of random mutagenesis at the site where the oligos anneal. Tiling of soft-randomized oligos can be used to
cover a larger target site, such as coding sequences. Oligo integration results in a population with genetic diversity at the target site. Iterations can be used

to combine multiple mutations in a single cell.

the oligo populations encodes wild-type A, 2% T, 2% C, 2% G).
These oligos can tile the target’s entire length, thereby maintain-
ing the necessary homology for efficient integration and introduc-
ing a large range of distributed mutations (Fig. 3b). The DIVERGE
approach has been utilized for studying mutations throughout anti-
biotic resistance genes, and for optimizing promoters and 5"'UTRs
for a synthetic (plasmid-based) regulatory circuit in P. putida™*.
DIVERGE could become a strong tool, for example to optimize the
promoter regions or coding regions of enzymes. It is especially use-
ful for cases for which no specific set of target mutations can be
designed, and hence random mutagenesis of one or more specific
regions in the genome is required.

Although the mechanism on which ssDNA recombineering is
based only works in bacterial hosts, similar oligo-based multiplex
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genome engineering tools are under development for eukaryotes,
such as S. cerevisiae®>**. Eukaryotic multiplex genome engineering
(eMAGE) using oligos has been developed for this yeast species by
temporally disabling DNA repair and slowing down replication®'.
To increase editing efficiencies, a selectable marker gene was intro-
duced in a region near the targeted genes, and the design of oligos
was optimized to achieve ultrahigh editing efficiencies of up to 90%
(ref. ®°). However, a major limitation of eMAGE that is hamper-
ing genome-wide optimization is that efficient multiplex editing is
only possible for a region covering ~20kb in the proximity of the
selectable marker,. Still, eMAGE allowed for the multiplex editing
and optimization of a heterologous beta-carotene biosynthetic path-
way in S. cerevisiae, for which all genes were co-localized in close
proximity to a selectable marker®'.


http://www.nature.com/natcatal

NATURE CATALYSIS

REVIEW ARTICLE

CRISPR-Cas-aided genome editing combined with
recombination

The programmable Cas nucleases derived from the natural, bacterial
CRISPR-Cas defence systems have led to a revolution in the genome
editing field in the past decade. A diverse range of CRISPR-Cas
nuclease-based tools have been developed for genome engineer-
ing in both prokaryotic and eukaryotic cells, leading to many pos-
sible applications, including the optimization of next-generation
cell factories***®. DNA-targeting CRISPR-Cas nucleases such as
Cas9 and Casl2a are very effective in many cell types to gener-
ate targeted, double-stranded breaks. After delivery (usually by
expression from a plasmid), these nucleases are targeted to selected
genome sequences by guide RNAs (gRNAs), which contain a vari-
able sequence of ~20 nucleotides that can base-pair with a comple-
mentary target sequence. However, target sites need to be adjacent
to a protospacer adjacent motif (PAM) sequence, such as the typical
5'-NGG PAM-motif for Cas9 or 5'-TTTV for Casl2a.

After the Cas nuclease generates a double-strand break in the
DNA, in some organisms the break can be repaired by non-
homologous end joining (NHE]). NHE] typically leads to random
insertions or deletions (indels), which can, for instance, knock out
genes by creating frame shifts, or to disrupt regulatory sequences.

However, to generate specific edits, the use of Cas nucleases
should be combined with the homology-directed repair (HDR) sys-
tem (Fig. 4a). In such cases, an exogenous ssDNA or dsDNA repair
template should be supplied together with the Cas/gRNA complex.
The repair fragment contains the desired edits between flanking
regions that are homologous to the genomic target site, allowing for
integration through homologous recombination by a HDR system.
This recombination modifies the genomic target sequence, thus pre-
venting subsequent recognition and cleavage by the Cas nuclease,
and leading to the survival of cells with edited genomes.

Cas-based multiplexing requires highly efficient homologous
recombination, which is not present naturally in many industrial
hosts, including most bacteria. However, the most widely used
industrial yeast species, S. cerevisiae, natively harbours highly effi-
cient homologous recombination activity that can well support
high-throughput genome editing. In S. cerevisiae, several studies
have achieved five to ten edits in one editing round***. In addi-
tion to making multiple edits simultaneously in a single cell, the
efficient homologous recombination combined with Cas9 has
allowed for parallel modification of many targets in S. cerevisiae.
Such approaches have been demonstrated in S. cerevisiae to generate
diverse large libraries with 10 to 10° different targets, and by itera-
tion of such workflows many mutations can be accumulated in a
single strain. An example of this was the iterative, CRISPR-mediated
modification of >10° targets in S. cerevisiae (MAGIC approach) to
increase its tolerance to furfural, an inhibitor found in pretreated
lignocellulosic substrates®.

However, in most other organisms, including typical bacterial cell
factories, the native homologous recombination machinery is not
efficient enough to allow for efficient repair during simultaneous,
multiplex CRISPR-Cas genome editing. Still, by combining
CRISPR-Cas counter-selection with recombineering in bacteria,
the apparent editing efficiency can be increased up to 100%. Cas9
nucleases and ssDNA recombineering (MAGE) were integrated to
more efficiently target multiple shorter regions in E. coli in several
CRISPR-assisted MAGE approaches, including CRAM” and
CRMAGE"'. Using CRMAGE, editing efficiencies of up to 98%
have been achieved in a single round of recombineering-and-
CRISPR-selection. By applying only a few cycles of CRISPR-assisted
MAGE, the production of riboflavin in E. coli was enhanced via
multiplex RBS engineering”. Integration of CRISPR and recom-
bineering in more species is expected to improve high-throughput
genome editing in several other promising cell factories in the near

future, as recently demonstrated for P. putida®.

To introduce larger mutations (>>30bp) dsDNA recombineering
is generally used, but this results in very low frequencies of edited
cells. This necessitates the use of either a selectable (antibiotic)
marker or extensive screening of many cells, which prohibits fast
and efficient high-throughput editing. However, by combining
dsDNA recombineering with CRISPR-Cas in E. coli, multiple large
edits (up to three), without the need for selectable markers, can be
made relatively efficiently’***. This can speed up rational metabolic
engineering of larger targets in E. coli, and possibly also in other
hosts that are amenable for recombineering.

The trackability of genomic edits is another challenge during
multiplex genome editing of many targets in parallel. When many
sites are targeted throughout the genome, tracing of the edits
generally requires relatively costly whole-genome sequencing or
laborious screening polymerase chain reactions (PCRs). This
has been tackled in the CRISPR-assisted recombineering plat-
form CREATE (CRISPR-Enabled Trackable genome Engineering;
Fig. 4e)”. CREATE is based on libraries of plasmids, encoding both
the gRNA and the (short) dsDNA repair template, which can be
synthesized as libraries of oligos, which are cloned into the plas-
mid. After one round of editing, the plasmids that created the muta-
tion are still in the mutant strains, and their unique gRNA + repair
template sequences can serve as a barcode to easily identify the tar-
get mutation in well-performing cells after screening or selection.
The CREATE platform, and the use of it in iterative cycles (iCRE-
ATE), has been demonstrated to be very powerful for the parallel,
genome-wide editing of >10° mutations in multiple metabolic
engineering projects in E. coli, including, for example, the earlier
mentioned tolerance to furfural in lignocellulosic substrate and
the toxic product styrene””*””. A similar trackable, CRISPR-based
editing strategy, called MAGESTIC, was also recently developed for
S. cerevisiae®.

Genome editing by CRISPR-Cas without recombination

A general challenge for all Cas-nuclease methods based on the
generation of dsDNA breaks is the need for their efficient repair
through efficient homologous recombination or recombineering.
Such efficient repair is often not available or easy to implement
in many metabolic engineering hosts. Recent developments in
CRISPR-based base editing”'” and prime editing'’' circumvent the
limitations of dsDNA break formation, while allowing for inherit-
able genomic edits. Base editing relies on fusing a nuclease-deficient
non-cleaving ‘dead’ Cas9 (dCas9) to an accessory enzyme that
chemically alters DNA to introduce the desired change (Fig. 4c).
For example, fusing the cytidine deaminase PmCDA1 to dCas9
leads to efficient C-to-T mutagenesis at the target site'*’. In addition
to C-to-T cytosine base editors (CBEs), A-to-G adenine base edi-
tors (ABEs) have been developed, thus enabling several nucleotide
substitutions. However, this tool only allows substitution in short
windows—and no deletions or insertions®'*.

Recently, CBE base editing was used to diversify RBS sequences
in the two metabolic engineering workhorses Corynebacterium
glutamicum and Bacillus subtilis using the BETTER (Base Editor-
Targeted and Template-free Expression Regulation) protocol'*.
In this approach, a synthetic starter RBS (containing a stretch of
eight Gs) preceded by a PAM-sequence was integrated in front of
each target gene. This preparative, multiple integration step was
not efficiently multiplexed, making this approach rather labori-
ous. Nonetheless, the CBE editor could efficiently target all these
synthetic RBSs simultaneously, diversifying them by converting Gs
to As, leading to diverse translation initiation strengths. Another
recently developed base editing protocol for P. putida allowed
for multiplexing of knockouts and modifications for system meta-
bolic engineering'”.

A very recently developed CRISPR-tool is prime editing, which
allows for more versatile, precision genome editing for all types of
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Fig. 4 | CRISPR-Cas based genetic tools. a, CRISPR-Cas genome editing based on double-stranded break generation by a gRNA-guided Cas nuclease.
For example the CRISPR-Cas nuclease Cas9 targeting can facilitate genome editing in two ways. First, induction of a dsDNA break can trigger HDR with
a repair template, leading to insertion or deletion of a custom sequence. Alternatively, homologous recombination (HR) with the template can occur
spontaneously, before Cas-induced double-stranded breaks happen, and hence allow for the counter-selection of non-edited cells in a population.

b, CRISPRI is based on a non-cleaving dead Cas (dCas) variant, which binds upstream or within the gene of interest (GOI) and blocks transcription.

¢, Base editors consist of dCas fused to a DNA-editing protein like cytidine deaminase. The gRNA guides dCas and cytidine deaminase to a selected target
site where the latter induces SNPs in the displaced strand, after which a mismatch repair system can also adjust the other strand. d, Prime editing uses a
nickase Cas (nCas) variant fused to a reverse transcriptase (RT) to first induce a single-stranded nick in the displaced strand. A custom sequence is then
reverse-transcribed into the cleavage site, using the prime editing guide RNA (pegRNA) as a repair template. e, iCREATE uses massively parallel DNA
synthesis to construct a large library of plasmid-encoded CREATE cassettes carrying a gRNA and repair template with mutation of interest (MOI) for a
large variety of targets. This cassette library is introduced in a parental strain expressing Cas9 to construct a large strain library in which individual cells
carry a single plasmid from the library, which results in editing of a single target or cell death by CRISPR-Cas counter-selection. The resulting diversified
strain library can be screened or selected for the desired phenotype, and enrichment of MOlIs can be determined by sequencing the CREATE cassettes.

nucleotide substitutions as well as short deletions and insertions,
encompassing larger editing windows of >30bp (ref. '). Prime
editors were generated by fusing an engineered Cas9 nickase
(nCas9), capable of introducing a single-strand break in dsDNA,
to a reverse transcriptase (Fig. 4d). Prime editing works through
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reverse transcription (RNA to ssDNA) of a desired edit into the
genome at the nicked target site, using a modified prime editing
RNA (pegRNA) as repair template. The pegRNA contains both the
guide sequence complementary to the target site, the reverse tran-
scriptase template carrying the mutation of interest, as well as a
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short primer binding site where reverse transcription starts. Prime
editing has already been performed successfully in a few eukary-
otic and prokaryotic organisms'**'®. Recently, prime editing has
been performed in E. coli, resulting in single-base deletions at 40%
efficiency. This study also described simultaneous editing of two
single base targets, but the multiplex editing efficiency was below
1%. With further development to improve editing efficiencies,
this emerging tool may hold promise for genome-wide metabolic
engineering in a broad range of organisms'®.

Tools for multiplexed gene expression control without
editing

There are also a suite of multiplex tools that do not lead to edits
at the genome level, but rather modify expression at the transcrip-
tion or translation level. This includes the relatively well-established
CRISPR interference (CRISPRIi) tools (Fig. 4b). CRISPRi harnesses
catalytically impaired dead Cas variants (for example, dCas9 or
dCasl12a), which remain capable of sequence-specific DNA-binding.
They can be targeted to several specific promoter or coding regions
on the DNA in a cell in parallel to repress transcription by block-
ing the RNA polymerase complex. This technique has already
found some applications in multiplex, rational metabolic engineer-
ing of up to ten targets simultaneously*'”’, and a recent metabolic
engineering study in P. putida successfully targeted 14 rationally
selected genes simultaneously for knockdown*. CRISPRi seems a
potentially powerful technique, but the design and control of guide
expression to finely tune transcription rates remains challeng-
ing'®. The CRISPRi technique does not lead to inheritable genome
edits, which can be beneficial as it allows for temporary control, for
example, in either the growth or production phase. However, as a
potential disadvantage, it can also be escaped relatively easily, for
example, by a single mutation inactivating the dCas variant.

Other knockdown strategies, such as RNA interference (RNAi),
have some of the same benefits and drawbacks as CRISPRi. RNAi
is based on the silencing of mRNA translation by the binding of
a complementary RNA. RNAi-assisted genome evolution (RAGE)
has been used to identify targets for engineering improved
acetic-acid tolerance in S. cerevisiae. RAGE employs an RNA library
constructed from a fragmented host genome for iterative rounds
of RNAi, combined with high-throughput screening or selec-
tion'””. However, because targets are randomly generated, RAGE is
more suitable for identifying targets than for rational engineering.
Alternatively, rationally designed synthetic small regulatory RNAs
(sRNAs) have, for instance, been used for targeted knockdown of
genes involved in the tyrosine pathway in E. coli to improve tyrosine
titres''?. sSRNAs have been demonstrated to work in multiple bacte-
rial species, but so far the number of targets tackled simultaneously
in one cell has mostly been limited to two''".

As an alternative to gene knockdown, a less developed, but
promising technique based on dCas to activate gene expression is
CRISPR activation (CRISPRa). In this case, dCas is fused to tran-
scription activation domains to recruit them to specific promoters
in the genome and stimulate recruitment of the RNA polymerase,
hence activating transcription of the downstream gene(s)*. This has
been successfully developed in several hosts, including E. coli and
recently P. putida''>'".

Screening and selection strategies
As more powerful high-throughput genome editing tools have
become available, larger diversified strain libraries can be con-
structed, and equally powerful high-throughput screening or
selection strategies are needed to identify desired phenotypes.
Traditional screening methods (Fig. 5a) rely on the isolation and
culturing of individual strains and quantification of a product mol-
ecule by analytical techniques such as spectroscopy, high-pressure
liquid chromatography (HPLC) and gas chromatography-mass
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Fig. 5 | Scales of different screening and selection strategies. a, Traditional
screening assays involve individual strain isolation, cultivation and

analysis (for example, spectroscopy, HPLC and (GC-)MS) and are limited
to throughputs of ~104-10° variants per day when using a commercially
available automated colony-picking machine and high-throughput analytics
equipment. b, Reporter-coupled screening through fluorescence-activated
single cell or droplet sorting does not require isolated strains cultivation
and can reach up to 107-10° cells per day using a commercially available
cell-sorting device. P, product molecule; R, fluorescent reporter protein.

¢, Growth or reporter-coupled selection requires continuous cultivation
over a longer period and is highly dependent on the growth rate advantage
of a selectable trait. Therefore, it is difficult to quantify as a daily
throughput, but can ultimately be used for massive populations (>10°).

spectrometry (GC-MS)'". Technological advances have vastly
increased the throughput of these methods via automation and
massive parallelization of sample processing, and miniaturization
of the culture scale''>''¢.

Spectrophotometric assays are commonly used as high-
throughput screening approaches for measuring product titres in
microtitre plates. Automated colony-picking and sample-processing
systems have enabled high-throughput microtitre plate assays of
up to ~3,000 colonies per hour'”. Some products can be detected
with ultraviolet-visible (UV-vis) spectrometry (such as f-carotene,
lycopene and apigenin), but unfortunately this technique suffers
from poor specificity and limited sensitivity'””. Some products
have intrinsic fluorescence (for example, riboflavin, thiamine,
pyridoxine) that can be detected with high sensitivity and speci-
ficity by fluorescence spectrometry'®. However, most products
of interest cannot be detected directly by colorimetric or fluores-
cent spectrometry, as most products of interest are not sufficiently
spectroscopically active'”’. Mass spectrometry (MS) does not have
this requirement, and is a versatile and widely applied screening
method for quantifying product titres because of its high selectiv-
ity, sensitivity and ability to detect a wide range of compounds'®.
Ultrahigh-throughput MS platforms have been established that
reduce preparation times and enable the measurement of multiple
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samples per second. These include acoustic ejection mass spec-
trometry (AEMS)'*! and acoustic mist ionization MS (AMI-MS)'*.
However, despite these technological advances, high-throughput
MS remains limited by the throughput of microtitre plate-based
culturing and sample processing.

Single-cell-sorting methods have eliminated the need for
individual strain cultivation by directly analysing single cells from
a diversified population. Active-cell-sorting technologies use prin-
ciples of flow cytometry to separate, detect and analyse individual
cells and subsequently sort them based on various characteristics
(for example, fluorescence, size and shape) using electric, magnetic,
acoustic or optical forces to displace the cells'**. Modern fluorescence-
activated cell sorting (FACS) techniques allow for an extremely
high-throughput of up to 50,000 cells per second'*. A limitation
of FACS is that it cannot be used to select high-producing cells
when products are excreted, as is often the case in cell factories.
Droplet-based microfluidics sorting provides a solution to this
problem by compartmentalizing the individual cells in aqueous
droplets emulsified in oil''”'**, but sorting rates are substantially
lower than for FACS, with ~200 droplets per second'*. For example,
fluorescence-activated droplet sorting (FADS) was recently applied
to enhance pyruvic-acid production by Candida glabrata'**. Because
pyruvic acid is not inherently fluorescent, a pH-sensitive fluorescent
protein (pHluorin) was used to link pyruvic-acid levels secreted
by the cells to a fluorescent signal. This illustrates an important
challenge of flow cytometry and FACS/FADS: most products
cannot be directly detected by fluorescent signals or cell morpho-
logical properties.

To circumvent issues with products that are not detectable by
high-throughput analytics like FACS, biosensors can be used to
couple the presence of the product to the expression of an easily
detectable reporter (Fig. 5b). There are many mechanisms for prod-
uct-reporter coupling, including transcription factor-based biosen-
sors, nucleic acid-based biosensors and fluorescent detector proteins
that gain fluorescence upon binding of the product''®'*-'%, Diverse
biosensors have been used successfully for the detection of a variety
of metabolites in E. coli, such as deoxyviolacein'*’, malonyl-CoA"*!
and mevalonate'** biosensors. However, suitable biosensors are not
available for every desired product, and the construction of specific
biosensors has proven highly challenging. For further reading on
other biosensors we recommend a comprehensive review''.

An advantageous versatility of biosensors is that, besides linking
product formation to the expression of a fluorescent or colorimetric
reporter gene, they can also be used in combination with a selectable
marker such as antibiotic resistance'*. Selection of strains based on
the expression of a selectable marker can form a higher-throughput
alternative to screening, while also removing the need for expen-
sive detection and sorting devices. A challenge of biosensor-coupled
selection is the high selective pressure for false-positive ‘cheater
mutants, as mutations can occur that decouple expression of the
selectable marker gene from the product formation'*. Successful
use of a selectable marker coupled to biosensors has been demon-
strated for the high-throughput optimization of naringenin and
glucaric acid production in E. coli (using MAGE). To cope with the
escaper issue, this work coupled the biosensor to both a negative
and a positive selection marker, which were alternately selected for
in iterations, eliminating the escapers'*.

In specific cases, metabolic engineering goals can be directly
aligned with an improved growth phenotype without the assis-
tance of a biosensor (Fig. 5¢). For example, selection can provide
a higher-throughput alternative to screening when high tolerance
to a toxic substrate, product or intermediate metabolite is required,
because improved tolerance will confer improved fitness in the
presence of the toxin. In addition, in cases where the engineered
pathway leads to production of an essential metabolite, auxotrophy
can be artificially created by knockout of alternative pathways,
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creating a growth-coupling between the engineered pathway and
the production of these metabolites. This approach is especially use-
ful for engineering substrate assimilation pathways'*. Several engi-
neering efforts for introducing heterologous substrate utilization
have used such growth-coupled approaches, such as the engineering
of one-carbon assimilation pathways. However, so far, these studies
have most relied on low-throughput rational engineering of a few
targets within the pathway, combined with ALE to optimize host
metabolism™"**'¥7_ Still, some studies have already shown the power
of growth selection for relatively small sets of MAGE-generated, tar-
geted mutations in substrate utilization pathways'*®'*,

Another promising application of engineered auxotrophy is in
Syntrophic Co-culture Amplification of a Production phenotype
(SnoCAP)'. This elegant screening strategy is based on co-culture
of the producer strain with a sensor strain, where both are
co-dependent on an excreted metabolite from the other strain. The
producer strain excretes the product of interest A, but is auxotro-
phic for essential metabolite ‘B and the sensor strain has the inverse
phenotype (that is, auxotrophy for product ‘A’ but excretes metabo-
lite ‘B’). By skewing the required ratio of producer to sensor strain
towards the latter, this approach allows screening for higher product
titres than an individual cell requires to fullfill the flux demand for
its own auxotrophy.

Conclusions and outlook
To realize the true promise of sustainable production by microor-
ganisms, large improvements in both native and engineered meta-
bolic networks are required at a system-wide scale. This will require
(semi-) rational selection of a large number of diverse gene targets
for optimization. In well-known metabolic engineering hosts, such
as E. coliand S. cerevisiae, these targets may be identified based on an
impressive amount of previously gained knowledge on their meta-
bolic networks and their regulation. However, for other less-studied
and emerging hosts for industrial production, acquiring such
detailed knowledge will be time-consuming and costly. Still, genom-
ics and other omics techniques, as well as metabolic modelling and
machine learning, can probably provide suitable, semi-rational sets
of potentially relevant targets without excessive effort. We believe
that the semi-rational selection of targets in many cases will be more
effective for strain improvement than only using the random ALE
approach, as is now often used for genome-wide strain optimization.
Yet, to tackle a larger set of semi-rationally selected targets, effi-
cient high-throughput genome editing tools are crucial. Fortunately,
the current development of recombineering and CRISPR-Cas
genome editing techniques allows for genetic engineering of a
growing number of model and non-model (micro)organisms. The
rapid emergence of CRISPR-tools in a broad range of bacterial and
eukaryotic hosts is encouraging. However, classic CRISPR-Cas tools
based on dsDNA cleavage are often not efficient enough for gen-
erating multiple edits simultaneously or even in iterative cycles. So
far, in bacteria, highly efficient multiplex genome editing based on
CRISPR-Cas nucleases is only well-established in E. coli, in which
CRISPR-Cas is combined with recombineering. In some industri-
ally relevant yeast species such as S. cerevisiae, CRISPR-Cas editing
seems efficient enough for high-throughput iterative genome edit-
ing, as in this species native homologous recombination can be har-
nessed to efficiently incorporate DNA repair templates. However,
for many other bacterial and eukaryotic hosts, CRISPR-Cas edit-
ing systems that make double-stranded breaks are not effective
for high-throughput editing without establishing complementary,
efficient recombineering systems. Encouragingly, recent screening
expeditions to identify efficient phage SSAPs for recombineering
in several bacteria have been successful®. Such efforts can probably
identify SSAPs for efficient recombineering above 10% editing
efficiency, to allow efficient genome editing via recombineering in
more hosts of interest. In addition, further development of
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CRISPR-Cas editing systems will allow tighter control of DNA
cleavage activity and allow for more effective application as a pow-
erful counter-selection tool in more hosts'*.

Alternatively, there are promising, emerging CRISPR-Cas tools
that do not rely on dsDNA breaks and recombineering, but rather
employ dead or nickase variants of the CRISPR-Cas nucleases. This
includes CRISPR interference, base editing and emerging prime
editing techniques, which do not require external DNA templates
and should be explored more for multiplex editing in diverse hosts
relevant for metabolic engineering.

Within the next decade, we expect that metabolic engineers will
gradually gain greater freedom to choose a desired host for pro-
duction, and rapidly apply the available genetic tools for efficient,
genome-wide engineering. In addition, high-throughput strain
engineering will benefit from the automation of iterative, genome
engineering techniques, for example in emerging biofoundries in
industry and academia'*"**2.

Another factor that should be carefully considered when per-
forming genome-wide strain optimization is the availability of
high-throughput screening or selection strategies to identify desired
phenotypes. Matching the number of mutants to be generated with
the number that can be screened or selected is important to con-
sider in the design phase of a system-wide metabolic engineering
project.

Successful integration of the (semi-)rational selection of tar-
gets, high-throughput genome editing, and screening or selection
approaches discussed in this Review provides a strong foundation
towards directed, system-wide metabolic engineering. These devel-
opments seem crucial to move the boundaries of metabolic engineer-
ing towards economically feasible performance indicators, as well as
to implement non-natural biosynthesis for products that could not
be made by biology before. Overall, we anticipate that the develop-
ments discussed here could contribute to a revolution in the sustain-
able production of desired products by next-generation cell factories.
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