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Abstract

Cells receive enormous amounts of information from their environment.
How they act on this information—by migrating, expressing genes, or re-
laying signals to other cells—comprises much of the regulatory and self-
organizational complexity found across biology. The “parts list” involved
in cell signaling is generally well established, but how do these parts work
together to decode signals and produce appropriate responses? This fun-
damental question is increasingly being addressed with optogenetic tools:
light-sensitive proteins that enable biologists to manipulate the interaction,
localization, and activity state of proteins with high spatial and temporal pre-
cision. In this review, we summarize how optogenetics is being used in the
pursuit of an answer to this question, outlining the current suite of optoge-
netic tools available to the researcher and calling attention to studies that
increase our understanding of and improve our ability to engineer biology.
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1. INTRODUCTION

Traditionally, cellular phenomena are studied at the level of their primary components. Genes
and proteins are the language of biological inquiry, and by understanding the parts we hope to
gain insight into the functioning of the whole. While this approach has led to an overflowing
encyclopedia detailing the cell’s constituent pieces, it is a poor level of abstraction to understand
the operation of a cell, like trying to parse the output of a computer program by observing the
changing states of the computer’s transistors. One must also study higher levels of abstraction,
looking not only at the carriers of information but also at the patterns of information flow and at
the actions these patterns execute (1).

David Marr, in his seminal 1982 book on visual perception, proposed analyzing information-
processing systems by subdividing them into three tiers: computation, algorithm, and implementa-
tion (2). The highest level of abstraction in this framework is the computation, that is, the desired
outcome of a given operation. For example, bacterial chemotaxis may be said to operate under
the computation “if the concentration of chemoattractant is increasing, stay the course” (3). The
middle level, the algorithm, consists of the specific input–output relationship that achieves the
computation. To move toward a chemoattractant, bacteria incorporate an integral feedback con-
troller that maintains flagellar motor activity if chemoattractant concentrations are transiently
increasing (4, 5). The most concrete level, the implementation, describes the physical elements
that are carrying out the prescribed algorithm. This is the so-called wetware of biological sys-
tems, the chemotaxis receptors and downstream components that chemically interact to elicit the
computational goal. Each level of this hierarchy can be specified somewhat independently; several
physical instantiations can manifest the same algorithm, and several algorithms can manifest the
same computation.

A significant barrier to the study and rational engineering of biological systems is our inade-
quate understanding of the computations and algorithms of cellular information processing. This
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is predominantly because, throughout much of the history of cell biology, researchers have lacked
the necessary tools to deliver time- and space-varying inputs to living cells (bacterial chemotaxis
is one notable exception, where ramps and sinusoidal chemoattractant stimuli have long been part
of the experimental toolbox) (6). The optogenetics revolution of the last decade has changed this
situation. We now have an abundance of engineered photocontrollable proteins that allow for
direct and near-instantaneous regulation of a cellular process, providing the control required to
interrogate cell behavior at different levels of abstraction. To understand the computation that
cells perform, we can deliver light inputs to photoactivatable signaling pathways and monitor the
resultant cellular response. To narrow down the algorithm used to perform this cellular compu-
tation, we can systematically probe individual signaling steps to deduce the architecture of more
complex networks. After generations of studying the biological equivalent of transistors, we are
now poised to read and write the code of the cell.

In this review, we both cover the current experimental paradigms in the optogenetic analysis of
natural cellular systems and explain how this analysis can be coupled with traditional engineering
principles to design biological entities de novo. Neuronal control using light-sensitive ion chan-
nels, which transformed the field of neuroscience more than a decade ago, has been extensively
reviewed in the literature and so is not discussed here (7). We begin by summarizing the pho-
tosensitive proteins found in nature and detailing how these proteins can be used to generate a
diverse range of optogenetic tools. We then transition into mammalian cell biology, highlighting
how optogenetics can be used to uncover and control the processing mechanisms that translate
extracellular signals into cell fate decisions. We next call attention to the discoveries in develop-
mental biology that have been afforded by optogenetic control, namely the interpretation of cell
fate decisions and the sculpting of embryological form. Finally, we describe some emerging appli-
cations: how optogenetics can be used to engineer multicellular structures and combined with in
silico feedback control to direct cellular processes.

2. THE OPTOGENETIC TOOLBOX

Numerous optogenetic tools have been engineered from naturally occurring photosensitive pro-
tein domains. These domains, adopted from plants, bacteria, and fungi, have been extensively
engineered to allow for the manipulation of protein activity, subcellular localization, and protein–
protein interactions with high spatiotemporal precision.Here,we present a brief overview of some
of the major classes of photosensitive proteins and the resulting optogenetic tools. For readers
who are interested in learning more, we highly recommend browsing the OptoBase website, a
continually updated database of optogenetic tools and the studies that use them (8).

2.1. Photosensitive Proteins

2.1.1. Rhodopsins. Likely the best-known photosensitive building blocks, channelrhodopsins
were among the first proteins to be used in optogenetic studies. Channelrhodopsin-1 (ChR1)
and channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii are blue light–gated channels
that mediate the transfer of cations across the cell membrane. Although these and other light-
controlled opsins have revolutionized neuroscience and our understanding of neurological dis-
eases and treatments by enabling researchers to activate specific populations of neurons and mon-
itor changes in behavior (7, 9), they have seen limited application in nonexcitatory cells where
transmembrane voltage plays a less prominent signaling role. As a result, they are not extensively
reviewed here, and we refer the reader to past reviews for further information (10, 11). Neverthe-
less, the success of the neuronal optogenetics program opened the door to using light-controlled
proteins to manipulate cell behavior across broad cellular contexts.
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2.1.2. Light-oxygen-voltage sensing proteins. One of the first families of photosensitive pro-
teins other than rhodopsins to be widely applied in cell biology research was the family of light-
oxygen-voltage (LOV) sensing proteins. LOV proteins are naturally found in several plant, fungal,
and bacterial species, where they regulate diverse cellular processes in response to blue light (12).
One LOV domain that has been the subject of particularly detailed study, the second LOV domain
fromAvena sativa phototropin 1 (AsLOV2), is instructive to examine to better understand the fam-
ily as a whole. In addition to a folded core of approximately 100 amino acids, AsLOV2 includes
a C-terminal α-helical domain, the Jα-helix (13). After illumination with blue light, a cysteine
residue on AsLOV forms a covalent bond with an associated flavin mononucleotide cofactor, ini-
tiating a structural change in the folded domain that propagates to the Jα-helix and results in its
displacement away from the core. The covalent bond thus formed is energetically unfavorable
(14), causing the Jα-helix to return to its dark-state conformation over time. Although the de-
tails vary, all of the pieces described here—folded domain, flavin cofactor, and light-dissociated
helix—are broadly conserved across the LOV family.

LOV domains have two important characteristics. The first is their capacity for extreme vari-
ation in the time required for dark-state reversion: Depending on mutations around the chro-
mophore, the lifetime of the light-activated state can be tuned from seconds to days. This varia-
tion can be found in both natural (15) and engineered (16) LOV domains. Second, LOV domains
are widespread in nature, where they are found coupled to diverse protein functions. Naturally
occurring LOV domains have been described that undergo light-induced dimerization (17), ki-
nase activation (18), intercalation into the plasma membrane (19), DNA binding (20), and even
RNA hairpin binding (21). It is very likely that additional light-coupled functions of LOV domains
remain to be discovered.

2.1.3. Cryptochromes. Like LOV domains, cryptochromes incorporate a flavin cofactor and
are photoactivated by blue light (400–500 nm). Relatives of cryptochromes occur in many dif-
ferent cellular contexts (DNA repair in bacteria, phototropism in plants, the metazoan circa-
dian clock). Hints of their utility as optogenetic tools came from observations of the Arabidopsis
thaliana flavoprotein Cryptochrome 2 (Cry2), wherein Liu et al. (22) found that Cry2 binds to the
transcriptional regulator, CIB1 (cryptochrome-interacting basic helix-loop-helix), in a blue light–
dependent manner. Cry2 also clusters in response to blue light, forming so-called photobodies in
the nucleus that are thought to regulate transcription (23). Although Cry2 has been widely de-
ployed as an optogenetic tool, its active-state structure and photochemistry are still the focus of
intense study (24–28). Nevertheless, the 498-amino-acid photolyase homology domain of Cry2
can be reliably used for light-induced heterodimerization (with CIB1) or homo-oligomerization
in many cellular contexts, making it one of the most widely used components in the optogenetic
toolbox.

2.1.4. Phytochromes. What about optogenetic control with activation wavelengths other than
blue light? This capability is provided by a third major superfamily of light-sensitive proteins: the
phytochromes. Phytochromes convert between two stable forms, one red absorbing (Pr) and one
far red absorbing (Pfr), upon illumination with two wavelengths. Photoconversion arises from the
light-induced isomerization of a bilin chromophore that is covalently ligated to the phytochrome.

Three features make phytochromes very different from cryptochromes and LOV domains.
First, they are photochromic: Both states of a phytochrome (Pr and Pfr) are photosensitive, and
photon absorption in either state causes isomerization of the chromophore that can occur many
times per second and scales with the administered magnitude of light intensity. Thus, it is possible
to control the rate of on/off photoswitching with these two wavelengths. Second, the extended,
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flexible structure of the bilin chromophore endows it with the ability to absorb light at very dif-
ferent wavelengths, depending on the identity of the specific amino acid contacts holding it in
place (29, 30). As a result, natural phytochrome variants exist that span the entire visible spectrum,
and engineered phytochrome-based optogenetic systems are beginning to be developed that sense
wavelengths ranging from blue to far red (31). Finally, unlike cryptochromes and LOV domains
that harness ubiquitous flavin chromophores, the bilin cofactors required by phytochromes are
often found only in particular organisms and must be purified or synthesized to function in other
contexts.

An important phytochrome in optogenetics research has been the Arabidopsis thaliana Phy-
tochromeB (PhyB) protein and its binding partners phytochrome interaction factors 3 and 6 (PIF3
and PIF6) (32, 33). Ni et al. (34) demonstrated that activation of PhyB with red light results in
binding to the transcriptional regulator PIF3 and that conversion to the inactive isoform with far
red light results in dissociation; analogous logic applies to PIF6.Other phytochromes exhibit simi-
lar light-regulated binding: A bacterial phytochrome, BphP1, binds to PpsR2 in a light-dependent
manner (35), and the cyanobacterial phytochrome 1 forms homodimers predominantly in the Pfr
state (36).

2.1.5. Beyond LOV, Cry, and Phy: other photosensitive domains in the optogenetics tool-
box. The suite of optogenetic tools has expanded well beyond this core triad of photosensitive
proteins. Here, we remark on a few additional families of light-sensitive domains that have been
harnessed to control cellular processes. The aptly named blue light using flavin (BLUF) domains
are small (∼100-amino-acid) light-sensitive domains with rapid activation and deactivation ki-
netics. One member of this family, PixD, is well suited for controlling protein oligomerization.
PixD forms multimeric complexes with its non-light-sensitive binding partner PixE in the dark
(37). Upon blue light exposure, this complex breaks apart into PixD dimers and PixE monomers
that reassemble into oligomers within seconds after returning to darkness. Other light-sensitive
domains undergo irreversible transitions, which can be desirable in certain contexts where light
delivery or phototoxicity proves challenging. Notable examples include the UV receptor UVR8,
which dissociates from a homodimeric to monomeric state upon UV light exposure (38), and the
cobalamin binding domain of CarH,which dissociates from a tetrameric to monomeric state upon
chromophore cleavage by green light (540 nm) (39). Photoactive yellow protein, a light-sensitive
protein from Halorhodospira halophila, undergoes a profound yet reversible unfolding event in re-
sponse to blue light (40) that is beginning to be repurposed for optogenetic control (41).

A final recent development has been the emergence of engineered fluorescent proteins as opto-
genetic tools. Photoswitchable and photoconvertible fluorescent proteins exhibit conformational
changes in response to specific wavelengths of light.While these oriteubs have traditionally been
harnessed to change spectral characteristics, they can also be used to control other biochemical
events. The engineering of the proteins Dronpa (42), which changes from dark to green fluores-
cent upon illumination with violet light, and mMaple (43), which changes from green fluorescent
to red fluorescent upon illumination with violet light, are discussed in Sections 2.2.1 and 2.2.2,
below.

2.2. From Photosensitive Proteins to Optogenetic Tools

Of course, cataloging the diverse repertoire of light-sensitive domains is not enough—each of
these natural photosensitive protein domains must be repurposed (and sometimes altered) to
create a functional optogenetic tool. Over the past decade, many light-sensitive proteins have
been refined through two or three cycles of design, enabling precise control over the activity
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AsLOV2 (uncaging) CRY2 (homo-oligomerization)PhyB/PIF (dimerization)

PhoCl (cleavage)PixD/PixE (hetero-oligomerization)Dronpa145N (homotetramerization)

Jα-helix

AsLOV2

Protein of
interest

450 nm PhyB

PIF

650 nm

750 nm

Cry2
450 nm

Dronpa145N 500 nm

400 nm

400 nm

PixD

PixE PhoCl

450 nm

Figure 1

Schematics illustrating several mechanisms of action achievable with optogenetic tools including uncaging (AsLOV2), dimerization
(PhyB/PIF), homo-oligomerization (Cry2), homotetramerization (Dronpa145N), hetero-oligomerization (PixD/PixE), and
photocleavage (PhoCl).

and localization of a vast catalog of proteins (Figure 1) (Table 1). Here we describe some of the
most useful classes of tools: those that enable light-dependent uncaging, photocleavage, protein
dimerization, higher-order clustering, and allosteric control.

2.2.1. Uncaging. Photo-uncaging occurs when a light-dependent conformational change ex-
poses an active region of the photosensitive protein (either a folded surface or a disordered linear
motif ). Introducing mutations at the exposed site makes it possible to trigger responses rang-
ing from changes in subcellular localization to specific protein interactions. AsLOV2 has been a
runaway success in optogenetic uncaging applications because its Jα-helix switches from a folded
domain to a disordered 20-amino-acid peptide upon illumination.Crucially, the sequence of those
20 amino acids can be altered to encode a wide variety of linear motifs if key α-helical contacts
are retained. In this manner, variants of AsLOV2 have been engineered for many applications, in-
cluding light-triggered nuclear import (44, 45), nuclear export (46, 47), protein degradation (48),
and protein binding (49, 50).

Photo-uncaging can also be adapted to regulate the activity of proteins of interest if light-
sensitive domains can be switched between occluding and exposing a functionally required sur-
face. Zhou et al. (42) described such a general strategy for protein kinases, flanking an ac-
tive kinase domain with N- and C-terminal fusions of the photodissociable dimeric Dronpa1
(pdDronpa1) homo-dimerization domains. In response to cyan light, pdDronpa1 dissociates to ex-
pose the protein’s kinase domain,whereas magenta light reverses activation.This approach proved
to be broadly applicable and has led to photoactivatable alleles of the kinases MEK1, MEK2,
RAF1, and CDK5, variants of which have been successfully deployed in many cellular contexts
(51).

2.2.2. Photocleavage. To date, only one optogenetic tool, PhoCl, has been developed to un-
dergo photocleavage of the peptide sequence upon illumination. PhoCl is based on an engineered
variant of the green-to-red photoconvertible protein mMaple (43). The mMaple chromophore
undergoes a β-elimination reaction upon illumination with violet light that results in cleavage of
the polypeptide backbone. This cleavage produces N- and C-terminal fragments that, in mMaple,
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Table 1 Summary of optogenetic tools

Mechanism Tool λ on/off
Activation/reversion

time Notes
Channel opening ChR2 480 nm Milliseconds/

milliseconds
Used extensively in neuroscience

Uncaging AsLOV2 450 nm <1 s/tens of seconds Functionalized by mutating the
Jα-helix to present various motifs

PYP 450 nm <1 s/seconds

Heterodimerization Cry2/CIB1 450 nm <1 s/minutes Cry2 can also homo-oligomerize
iLID/SspB 450 nm <1 s/tens of seconds iLID nano-, micro-, and millivariants

available with tunable affinity
TULIPs 450 nm <1 s/tens of seconds
Magnets 450 nm <1 s/variable For all LOV domains, mutations can

tune kinetics from seconds to hours
FKF1/GI 450 nm <minutes/tens of

hours
LOVTRAP Dark/450 nm <1 s/tens of seconds Binds AsLOV2 in dark state
PhyB/PIF 650 nm/750 nm <1 s/<1 s Requires addition of exogenous bilin

chromophore (PCB or PΦB)
BphP1/PpsR2 760 nm/640 nm <1 s/< 1 s Reversion in the dark state also occurs

spontaneously in minutes
UVR8/COP1 300 nm <1 s/none Dimerization is irreversible

Homodimerization VVD 450 nm <1 s/hours
pdDronpa1 500 nm/400 nm <1 s/<1 s
EL222 450 nm <1 s/<1 s Homodimers bind specific DNA

sequence
Cph1 660 nm/740 nm <1 s/<1 s Requires addition of exogenous bilin

chromophore (PCB or PΦB)

Oligomerization Cry2PHR 450 nm <1 s/minutes Rapid photoactivation, but clustering
kinetics depend on expression level

Dronpa145N 500 nm/400 nm <1 s/<1 s Proteins form tetramer after light
activation; Dronpa145N also forms
heterodimer with Dronpa145K

PixD/PiXE Dark/450 nm <1 s/tens of seconds Forms ∼10:4 stoichiometry oligomers
in the dark

Cleavage PhoCl 400 nm Minutes/none Cleavage is irreversible

Abbreviations: iLID, improved light-induced dimer; LOV, light-oxygen-voltage; pdDronpa1, photodissociable dimeric Dronpa domain; TULIPs, tunable,
light-controlled interacting protein tags.

remain associated. However, by circularly permuting this protein sequence, the authors of this
study (43) generated an mMaple variant wherein the N- and C-terminal fragments spontaneously
and irreversibly dissociate upon violet light irradiation. By creating fusion proteins that include a
localization tag, PhoCl, and a protein of interest, they redistributed proteins throughout the cell
in a light-dependent manner.
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2.2.3. Dimerization. Many optogenetic tools rely on light-induced dimerization between
natural or engineered domains. Indeed, one of the first optogenetic tools ever reported (even
predating the term optogenetics) was constructed from PhyB and PIF3, each fused to one half
of a split Gal4p transcription factor, for light-inducible gene expression in Saccharomyces cerevisiae
(52). Several years later, a series of studies developed light-switchable dimerization in mammalian
cells using Cry2/CIB1 (53), PhyB/PIF6 (54), and an engineered interaction between AsLOV2 and
a cognate PDZ domain (50). Since then, all of these light-inducible dimerization systems have
seen numerous improvements, extending their dynamic range between dark and lit states (49, 55),
preventing off-pathway interactions such as Cry2 clustering (56), and enabling biosynthesis of the
PCB chromophore required for PhyB photoswitching (57). Light-induced dimerization systems
have been employed for a variety of applications, including the creation of split transcription
factors and enzymes (e.g., Cre recombinase) (58, 59), as well as the translocation of proteins on
and off the plasma membrane (50, 53, 54).

2.2.4. Oligomerization. Protein clustering plays a crucial role in many biological events, rang-
ing from the activation of cell-surface receptors to the assembly of transcription factors for driving
gene transcription. By taking an analogous approach to the dimerization systems described above,
researchers have developed light-sensitive oligomerization systems by fusing proteins of interest
to photosensitive domains that reversibly oligomerize upon light stimulation.

Cry2 has long been at the center of the optogenetic clustering universe. Bugaj et al. (60) showed
that Cry2 forms light-induced punctae at the cell surface that can be used to control receptor
clustering, and subsequent studies expanded this platform to other receptors and cytosolic cargo
(61). Point mutations in Cry2 that enhance this clustering effect in the Cry2olig and Cry2clust
systems were also discovered (62, 63). The success of Cry2 optogenetic clustering has spurred
approaches using other naturally occurring domains that undergo light-sensitive oligomerization,
including the PixD/PixE system (64). Another useful strategy has been to colocalize multiple op-
togenetic heterodimerization domains, either as head-to-tail domain fusions in the iPOLYMER
system (65) or as fusions to a naturally oligomeric protein in the LARIAT system (61). The ability
to oligomerize proteins in a light-dependent manner has enabled studies of cell-surface receptor
signaling, which is often triggered by clustering (66, 67).

Protein phase separation has recently emerged as a fundamental process in many cellular con-
texts. Reflecting this development, one important direction in optogenetic protein clustering has
been the development of tools that combine nucleation of small oligomeric seeds with the growth
of liquid-like protein droplets. The first optogenetic tool designed specifically to address protein
phase separation was the optoDroplet system developed by Shin et al. (68). Intrinsically disordered
protein regions (IDRs) known to phase separate were fused to Cry2, dramatically increasing the
rate and overall extent of clustering upon illumination. IDR fusions continued to show remark-
able efficacy when combined with PixD/PixE- or ferritin-based clusters (69, 70), and have since
been combined with CRISPR/Cas9 technology to engineer light-controlled protein condensates
that form at predefined genetic loci (71). Yet another approach for light-activated biomolecular
condensate formation is the stable protein coacervation using a light-induced transition (SPLIT)
system developed by Reed et al. (72). The SPLIT system uses the photocleavable protein, PhoCl,
for triggered removal of a solubilization tag from a phase-separating IDR.

2.2.5. Allosteric control by optogenetic domain insertion. Another exciting development
in optogenetic control, pioneered by the Hahn laboratory (73), involves inserting a light-sensitive
domain into a solvent-exposed loop in a target protein of interest. AsLOV2 is ideally suited
for this application, as its N and C termini lie very near one another in the dark state but are
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displaced upon illumination, providing a light-induced hairpin that can be opened to potentially
alter the conformation of the loop in which AsLOV2 is fused. This approach was originally
applied across a range of protein families (a kinase, a G protein, and two GTP exchange factors),
with subsequent reports suggesting that it generalizes further to additional contexts. For instance,
two recent reports (74, 75) demonstrated that AsLOV2 insertion can be used to regulate binding
between nanobodies/monobodies and their cognate targets, achieving up to a 330-fold change in
affinity upon illumination.

3. OPTOGENETICS FOR DECONSTRUCTING CELLULAR
SIGNAL PROCESSING

Even though optogenetic control is more than a decade old, the idea of using light to control
intracellular processes in living cells still has a ring of science fiction to it. The practical appeal is
straightforward: Light is a near-ideal stimulus, as most cellular processes are not naturally sensitive
to light (provided that photoxicity limits are not exceeded), and it can be turned on and off rapidly
or focused with high spatial precision.Here,we describe how optogenetic inputs at different nodes
can reveal information about cellular algorithms and network architecture, how time-varying light
inputs can be used to define dynamic cellular computation, and how optogenetics has impacted
our understanding of spatially regulated cellular processes.

3.1. Light Inputs for Dissecting the Algorithms of Cellular Signal Processing

Molecular studies of cell signaling networks have revealed a tangled web of cross-talk, feedback,
and feed-forward connections through which information is processed and cell fate decisions are
made (Figure 2a).Exposure to a single extracellular ligandmight activate half a dozen intracellular
pathways, each turning on and off with its own dynamics. While these experiments can be highly
informative of which nodes are involved in a cellular response,we are left without intuition for how
pathways are organized (i.e., what overall network architecture dictates each pathway’s observed
response). Moreover, the standard tools of genetic manipulation, knockout or overexpression at
specific signaling steps, are of limited utility because they tend to cause long-term changes in
signaling levels that trigger compensatory processes or fundamentally alter the cell’s state. Ideally,
a cell biologist would like to deliver precise, acute, and reversible stimuli to specific nodes to map
network responses.

One promising approach to solving this problem is to be able to “walk up and down” a path-
way, applying activating inputs at successive nodes. Then, by mapping response dynamics as the
input node is varied, one might define where regulatory interactions are connected to regulate
signaling (Figure 2b). A series of recent studies have adopted this strategy for various mammalian
cell signaling networks. For instance, Graziano et al. (76) compared signaling dynamics in neu-
trophil chemotaxis after receptor stimulation or optogenetic phosphatidylinositol 3-kinase (PI3K)
activation, revealing an adaptation module that functions downstream of PI3K and that is masked
by additional, redundant circuits when the cell is stimulated at the receptor level. More recently,
DeFelice et al. (77) studied nuclear factor κB (NF-κB) signaling downstream of Toll-like recep-
tor 4 and interleukin-1 receptor in mouse embryonic fibroblasts. In both cases, prior stimulation
of either receptor prevents activation by a subsequent stimulus, but where in the pathway does
this inhibitory effect occur? To address this question, the authors developed Cry2 fusions of the
intracellular proteins MyD88 and TRAF6 (tumor necrosis factor receptor–associated factor 6)
that could be activated by light-dependent clustering. Combinations of light and ligand stimula-
tion revealed that inhibition occurred downstream of MyD88 but upstream of TRAF6, leading
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the authors to identify a dose-sensing autoinhibitory feedback loop through IRAK1 (interleukin-
1 receptor–associated kinase 1) that limits signal transmission to NF-κB. As additional signal-
ing nodes are brought under optogenetic control, we can envision many future studies that take
analogous approaches to determine which feedback and feed-forward connections dictate each
pathway’s combinatorial and dynamic responses.
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Figure 2 (Figure appears on preceding page)

(a) As information processing systems, cells can be viewed through the lens of Marr’s hierarchy: Molecular interactions
(implementation) make up the signaling networks (algorithm) that cells employ to regulate cellular processes (computation).
(b) Systematically stimulating signaling nodes along a pathway enables the identification of regulatory mechanisms that influence
signaling outputs. (c) Alterations in Ras/Erk signal encoding can result in slow Erk activation kinetics, leading to increasingly sustained
Erk activation and increased proliferation. (d) Light-regulated ligand–receptor interactions can be used to tune ligand binding half-life,
independently of other aspects of ligand–receptor interactions, a strategy that was used to dissect mechanisms of T cell receptor
activation. (e) The dynamics of gene expression regulate cell fate decisions, such as in neural progenitor cells, which proliferate in
response to oscillatory Ascl1 expression and differentiate in response to sustained Ascl1 expression. Panel c adapted from Reference 87.
Panel d adapted from References 89 and 90. Panel e adapted from Reference 93.

3.2. Cellular Computation: Time-Varying Inputs Reveal the Role
of Signaling Dynamics

Cells are exposed to constantly varying external environments; perhaps unsurprisingly, their in-
tracellular life is similarly dynamic. The recent development of live-cell signaling biosensors re-
vealed that many major metazoan signaling pathways undergo complex time-varying responses
(e.g., pulses, oscillations, or traveling waves) in response to certain stimuli (78, 79). These states
were long invisible to the experimentalist, as population-level measurements at a single time point
tend to average together asynchronous responses between individual cells.What is now missing is
a “codebook” for determining which signaling dynamics trigger each cellular response. Is a pulse
of activity interpreted differently than a constant input, and if so, is it the duration, the amplitude,
or the area under the curve that matters? This is essentially a question at the level of Marr’s (2)
computation: We must define the logic with which signaling pathway activity triggers different
responses.

Onemodel signaling pathway has served as a hub for optogenetic studies of signaling dynamics:
the Erk/MAPK cascade downstream of receptor tyrosine kinases. It is one of the first-identified
examples of signaling dynamics: Different durations of Erk signaling have long been proposed to
drive distinct cellular responses (80, 81), and live-cell biosensors have revealed complex, pulsatile
dynamics in many cellular contexts (82, 83). It has also been a hub for optogenetic control, with
light-sensitive tools available to activate the pathway at virtually every node, including the path-
way’s cell-surface receptors, the small G protein Ras, and the kinases Raf andMEK that culminate
in Erk phosphorylation and activation (42, 84, 85).

In 2013, Ras was first placed under optogenetic control using the OptoSOS system, where a
red illumination drove a PIF-tagged Ras activator (SOScat) to a membrane-localized PhyB an-
chor (85). The authors of this study then applied dynamic light inputs to define which stimuli
were transmitted and which were filtered out by this intracellular pathway. They found that the
pathway faithfully transmitted dynamics from 4 min to at least 2 h, suggesting that any complex
dynamic filtering is performed outside of the core Ras-to-Erk module. But if the Erk pathway is
a simple low-pass filter, transmitting all inputs across a broad range of timescales, where might
dynamic discrimination be carried out? In a follow-up study, Wilson et al. (86) hypothesized that
dynamic filtering might be implemented downstream of Erk, by transcription factors and target
genes. To test this hypothesis, they tagged five immediate-early genes with live-cell biosensors of
transcription and protein accumulation to compare their induction kinetics with the dynamics of
the upstream Erk pathway. This experiment revealed that even long-term, constant Erk stimuli
resulted in only a transient pulse of target gene expression, adapting back to baseline within 1 h.
In contrast, short repeated pulses of Erk activation were able to bypass adaptation, resulting in
repeated pulses of transcription. Thus, while the Ras/Erk pathway faithfully transmits a broad
range of dynamics, its target genes can act as band-pass filters, activated strongly at certain pulse
frequencies.
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Several optogenetic studies have gone further to directly test whether the frequency of Erk
pulses is important for orchestrating cellular responses. A study of non-small-cell lung carcinoma
cell lines revealed that signal transmission through the Ras/Erk pathway is altered by cancer-
associated BRAF mutations and BRAF-activating drugs, extending the time spent active in re-
sponse to transient light inputs (Figure 2c) (87). Under drug-induced BRAF activation, even brief
Ras-level input pulses lead to sustained responses, increasing the expression of Cyclin D and trig-
gering cell proliferation. Most recently, a drug screen for kinase inhibitors that modulate Erk
dynamics revealed that increasing Erk pulse frequency also increases cell proliferation in primary
epidermal stem cells (88). On the basis of the observation that pulsatile Erk patterns drive phe-
notypic changes in both normal and diseased cells, it is likely that a deeper understanding of the
gene regulatory networks that decode Erk dynamics will provide further valuable insights.

Optogenetics has also driven insights in a second classic model system for stimulus dynam-
ics: dissecting kinetic proofreading downstream of T cell receptors (TCRs). T cells are tasked
with sensing foreign antigens presented as peptide–MHC complexes on antigen-presenting cells
(pMHCs). Although foreign pMHCs bind with higher affinity to the TCR, they are vastly out-
numbered by native pMHCs, raising an open question: How do T cells rapidly respond to rare
foreign peptides while ignoring a potentially much larger number of receptor interactions with
self peptides?Onemodel suggests that T cell activation is determined by the duration of individual
pMHC–TCR complexes rather than by overall levels of receptor occupancy, so even a small num-
ber of high-affinity binding events could robustly and specifically driveT cell activation.As a direct
test of this hypothesis, two separate groups recently engineered optogenetic TCRs whose dura-
tion in complex could be directly varied using pulsed or constant-intensity light (89, 90). Their
strategies differed: One laboratory used the PhyB/PIF system, where the intensity of red light
changed the rate of PhyB photoconversion between PIF-bound and PIF-unbound states, and the
other used a light-dissociable dimer between AsLOV2 and an engineered dark-state binder, Zdk
(91). Both studies reached consistent conclusions: Increasing the ligand binding half-life drove
a corresponding increase in downstream signaling, even while controlling for overall receptor
occupancy (Figure 2d). Whether similar principles might hold for other classes of cell-surface
receptors, and what steps in the T cell response network sense the duration of ligand binding,
remains to be determined.

Signaling dynamics are widespread, and optogenetic approaches are gaining traction across
an ever-broader range of contexts. Intracellular calcium release also occurs in brief pulses, and
Hannanta-anan & Chow (92) used melanopsin for light-gated calcium release to determine how
dynamics regulate the activity of the calcium-dependent transcription factor NFAT. By varying
both the frequency and duty cycle of stimulation, they found that NFAT integrates cumula-
tive signaling activity rather than decoding the frequency of calcium pulses, as was previously
thought. Optogenetic tools can also be used to completely bypass upstream signaling activity and
directly assess the effects of dynamic target gene induction. In a beautiful example of this ap-
proach, Imayoshi et al. (93) studied the effects of oscillatory versus sustained gene expression in
mouse neural progenitor cells (NPCs) (Figure 2e). By placing the transcription of Ascl1, a reg-
ulator of neuronal differentiation, under optogenetic control, they revealed that oscillatory Ascl1
expression induced proliferation of NPCs,whereas sustaining Ascl1 expression ledNPCs to adopt
a neuronal phenotype (93).

3.3. Spatially Probing Cellular Signal Processing

Cell signaling unfolds not only in time but also in space. Organelles compartmentalize signaling,
and a polarized cytoskeleton is essential for cell movement and asymmetry (e.g., apical–basal
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polarity). Cells within a tissue also coordinate their activities by paracrine signaling to drive
wound repair, collective cell migration, and tissue morphogenesis. Our ability to study spatial
aspects of biological systems, from the length scales of molecules to tissues, requires tools that can
be turned on and off with high spatial precision. Optogenetics is ideally suited for such studies, as
even straightforward single-photon illumination can be focused with micrometer-scale precision,
enabling the experimentalist to study localized signaling at scales ranging from fine subcellular
manipulation to tissue-scale control.

Indeed, cytoskeletal researchers were among the first to enthusiastically adopt optogenetic
tools. Cell polarization is controlled in part by the localized activation of Rho GTPases such
as Rac1, RhoA, and Cdc42, as well as by PI3K, which together can locally alter the balance of
membrane protrusion and actomyosin contractility. Some of the earliest successes of optogenetic
control involved engineering light-regulated variants of these proteins. Wu et al. (94) demon-
strated that a fusion between Rac1 and AsLOV2, termed PA-Rac, leads to rapid RhoA inhibition
at the site of Rac1 activation, providing compelling evidence that RhoA is inhibited in regions
where Rac1 is active. Furthermore, localized Rac1 stimulation elicited protrusions at the site of
stimulation as well as retraction of the cellular edge opposite the site of stimulation, suggesting
that localized Rac1 activity is sufficient for front–back cell polarization. In parallel, light-induced
dimerization was used to activate Rac, Rho, Cdc42, PI3K, and lipid phosphatases at specific mem-
brane sites, providing a broad palette of tools to paint localized cytoskeletal activity (54, 95, 96).
More recently, the light-dissociable interaction between Zdk1 and AsLOV2 was used to create a
light-activated cofilin (97) and a light-inactivated microtubule-binding protein, EB1 (98), demon-
strating the sufficiency of each for locally directing cell movement.

Optogenetics has also helped clarify the role of cytoskeletal signaling in multicellular contexts.
Cavanaugh et al. (99) employed optogenetics to understand how the dynamics of RhoA activa-
tion influence the remodeling of junctions in epithelial monolayers. By modulating the duration
of RhoA stimulation, Cavanaugh and colleagues found that short pulses of RhoA stimulation at
cell–cell junctions decrease their length in a reversible manner. However, RhoA pulses longer
than 5 min irreversibly shortened junctions to a saturating extent of 80% of the original junc-
tion length, through a mechanism involving E-cadherin internalization. Mathematical modeling
predicted that sequential pulses of RhoA stimulation could shorten junctions beyond the 80%
saturation point, which was confirmed experimentally using optogenetics. Similar optogenetic
tools for RhoA have been used to understand how this key regulator influences tissue contractil-
ity and progression through mitosis (100–102). For instance, Uroz et al. (102) found that, while
light-induced RhoA activation increased the time that cells required for mitotic rounding, relax-
ing tissues through the optogenetic inhibition of RhoA led to a decrease in the time required for
mitotic rounding.

What about even larger tissue length scales? Waves of mechanical and biochemical informa-
tion can travel across hundreds of cell diameters in a tissue to coordinate long-range effects like
collective migration or tissue growth (79). One breathtaking example is the recent discovery of
propagating waves of Erk activity in vivo. Using a live-cell biosensor of Erk, Hiratsuka et al. (103)
observed traveling waves of activity that propagate across mouse skin and emanate from a wound
site. Cells were also observed to move toward the source of waves, hinting at a possible role for
propagating Erk waves in collective cell migration and wound healing (104–106). Optogenetics
has been instrumental in causally testing this hypothesis: Activating Erk signaling in an epithelial
sheet using a traveling wave of light revealed movement toward the wave source (105) and
reorientation of front–rear cell polarity (106), although it remains to be seen whether Erk waves
are sufficient to orchestrate long-range cell migration. More broadly, light-based control over
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spatial signaling could be useful for testing these patterns’ sufficiency for producing collective
cell behaviors, as well as for providing a strategy to predictably control tissue-scale responses.

4. RESOLVING AND RECONSTRUCTING MULTICELLULAR SYSTEMS

A biological engineer, reading a developmental biology textbook for the first time, might think of
an audacious goal. Can she deliver a signal to only a cell of interest in its native developmental
context, telling that cell to move to a particular location, differentiate into a particular cell type,
and then carry out a user-defined function? Having such targeted control could be revolutionary
for correcting developmental defects, programming novel tissues and organs for biotechnologies,
and teaching us about the control of cell identity and behavior. Optogenetic tools enable major
steps toward this goal, allowing researchers to deliver signals to specific tissues or even subcellular
positions in a live, developing embryo. Here, we summarize some recent advances in optogenetic
studies of developmental signaling, organized into two major themes: (a) how upstream signals
are interpreted by the embryo to trigger specific cell fate programs and (b) how cells are directed
to collectively organize into complex morphological forms.

4.1. Optogenetics for Dissecting Lineage-Commitment Programs

The past few years have witnessed an explosion of optogenetic tools employed in the study of
developing organisms. Take theDrosophila embryo as an example. Studies have now demonstrated
at least some degree of optogenetic control over all three major spatial cues in the early embryo
(Bicoid, Dorsal, and Erk) (107–109), as well as other important pathways (e.g., Delta/Notch sig-
naling) (67) and genes (e.g., Zelda) (110). The story is similar in vertebrate embryos, with studies
demonstrating embryo-wide control over Ras/Erk, Wnt, and TGF-β/SMAD signaling (51, 111,
112). These tools provide powerful control over when, where, and how a signal is delivered in a
developing embryo, thus providing a means of deciphering the highly context-dependent process
of cell fate decision-making.

4.1.1. The when. The application of optogenetics to the study of embryogenesis has gone be-
yond proof of principle, revealing previously unattainable details of signaling interpretation and
cell fate control. These tools allow us to determine when during the developmental timeline a par-
ticular upstream cue is capable of triggering a cell fate program of interest, thus defining a signal’s
temporal window of sensitivity. Sako et al. (112) uncovered such a relationship in the zebrafish
embryo using a light-controlled Nodal receptor. A Nodal gradient is believed to provide posi-
tional information within the zebrafish gastrula, coding for the specification of either prechordal
plate (ppl) or endodermal cells. By activating the receptor within tight temporal windows, the re-
searchers discovered a duration-dependent phenomenon in which short Nodal signaling induced
endoderm formation and longer signaling induced ppl formation.

An inverted approach, relying on light-inducible clustering or degradation to inactivate up-
stream factors, has proven useful for understanding developmental gene expression in Drosophila.
For example, Huang et al. (107) developed a light-inactivatable Bicoid morphogen to study gap
gene expression requirements. These authors fused Bicoid to Cry2 for light-inducible clustering,
which, through an as-yet-unclear mechanism, turns the fusion protein into a dominant-negative
suppressor of Bicoid activity. Varying the illumination window revealed that at anterior positions,
where Bicoid levels are naturally highest, brief lapses in signaling were sufficient to compromise
gap gene expression. This sensitivity decreased as one moved down the anterior–posterior axis,
with the mesothorax requiring Bicoid activity only in a narrow window between nuclear cycle 13
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and early cycle 14. Viswanathan et al. (67) took a similar approach in their study of mesectoderm
specification in the gastrulating Drosophila embryo. Cry2-based optogenetic clustering of Delta
acutely inhibited Notch cleavage, enabling the researchers to examine the relationship between
the temporal window of Notch signaling and the downstream expression of the mesectoderm
transcription factor sim. Individual cells exhibited a switchlike mechanism, turning on sim when
Delta activity exceeded a certain threshold. The duration of the Delta activation window affected
the time at which each cell reached this threshold, however, and thus manifested unique sim acti-
vation kinetics at the tissue scale. Finally, a light-degradable Dorsal transcription factor revealed
that expression of the target gene snail requires Dorsal activity only prior to nuclear cycle 14,
the point at which Dorsal levels normally peak (108). While each of these studies reveals unique
insights, together they paint a recurring picture: that target gene expression is decided by more
complex functions than simply the instantaneous concentration of an upstream signal. How this
complex interpretation is achieved in each case remains an open question.

4.1.2. Thewhere. The abovementioned opto-Bicoid research (107) hints at another strength of
optogenetics in developmental biology: the ability to map the spatial location of cells in an embryo
to their unique interpretation of cell fate signals.This capability has been employed predominantly
through the use of the OptoSOS system, used to modulate Ras/Erk signaling, during Drosophila
development. Erk activity is patterned as two outward-to-inward gradients in the fly embryo, with
maximal activity at the anterior and posterior poles. In a series of papers, Johnson and colleagues
interrogated the consequences of perturbing this pattern, by increasing the terminal dose of Erk
activity; applying it in regions other than the termini; or erasing and replacing the endogenous Erk
gradient with a fully synthetic, light-based pattern (109, 113, 114). In short, Johnson et al. found
that the embryo was remarkably robust to changes in Erk patterning at the termini, with embryos
developing normally evenwhenErkwas activatedwell above endogenous levels.Most surprisingly,
a simple all-or-none pattern of light supplied toOptoSOS embryos deficient for the normal graded
Erk patterning was sufficient to generate viable organisms. Indeed, approximately 30% of these
“opto-rescued” embryos hatched from the microscope and led normal lives, including mating and
laying eggs whose embryos exhibited the same lethal lack of terminal signaling that, save for the
light pattern, would have killed their mothers. In contrast, whereas the embryonic poles are robust
to Erk dose well above normal physiological levels, even a small, 40-μm strip of illumination in
the center of the embryo resulted in almost complete embryonic lethality.

That simple light patterns can suffice was also revealed by a study of noncanonical Wnt sig-
naling during zebrafish morphogenesis (115). Noncanonical Wnt signaling is critical for directed
cell migration in developmental processes, for example, for the coordinated internalization of ppl
cells toward the animal pole of the gastrula. By expressing an optogenetically controlled variant
of the noncanonical Wnt receptor Fz7 in MZfz7a/b double mutants, the authors of this study
revealed that uniform photoactivation of the embryo was sufficient to fully rescue the pattern and
directionality of ppl movement.This finding demonstrated a permissive role of noncanonicalWnt
signaling in this mesenchymal cell movement, in contrast to the instructive role of the same path-
way in polarizing epithelial migration.This combination of robustness and sensitivity underscores
the context dependence with which a single signal may be processed in the embryo.

4.1.3. The how. The studies described above address the when and where of signaling require-
ments, but what about the how? What is the logic by which pathway activity is interpreted into
specific cell fate decisions? Johnson & Toettcher (113) explored this question by using the Op-
toSOS system to investigate the role of Erk dynamics in Drosophila cell fate decision-making. Erk
signaling is required to specify two separate cell types—gut endoderm or neural ectoderm—at
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Figure 3

Optogenetics has allowed for a deeper understanding of and control over developmental signaling. (a) The iLID-based OptoSOS
system was used to unravel an Erk-dependent cell fate specification event in the Drosophila embryo. To distinguish between two
proposed signal-decoding mechanisms, pairs of photoactivation regimes either were administered with the same uninterrupted signal
duration but different amplitude or vice versa (left). Inducing these signals in individual embryos and observing the phenotypic response
revealed that cells decode the cumulative dose of Erk signaling. This finding led to a more complete picture of how a single
morphogen, Erk, can specify multiple cell types in the Drosophila embryo (right). (b) Optogenetic localization of RhoGEF2 to the apical
membrane of Drosophila cells allows for precise induction of morphological movements. Here, light-activated apical constriction is
sufficient to induce local tissue invagination in a user-defined pattern. Abbreviation: iLID, improved light-induced dimer. Panel a
adapted from Reference 113. Panel b adapted from Reference 118.

different positions in the embryo. How this one signal could direct two distinct cellular responses
was unknown. The authors found that, as the dose of optogenetic Erk activation increased, cells
first induced a neural ectoderm gene expression program before switching to a gut endoderm pro-
gram. By delivering various light pulse sequences, the authors established that the total integrated
dose of Erk activity determined cell fate, in contrast to prior indications that the duration of a sin-
gle Erk pulse might serve as the discriminating factor (Figure 3a) (116). Although the mechanistic
basis for this translation from signal interpretation into target gene expression remains elusive, an
exciting study by Keenan et al. (117) provides a clue. These researchers found that optogenetic
Erk activation can trigger unbinding of the transcriptional repressor Capicua from DNA with as-
tonishing speed, activating gene expression within minutes, which suggests that signal processing
occurs downstream of this initial transcriptional response. We await further studies to close this
temporal gap and relate minutes-timescale gene expression to the hours-timescale selection of cell
fate.
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4.2. Light-Guided Morphogenesis

In tandem with proper specification of cell fate, the growing embryo must undergo a miraculous
feat of self-organization to reproducibly generate an organism’s complex final form. The robust-
ness of this morphogenesis, choreographed among the inherent noisiness of biological systems, is
a testament to the tight regulation of the signals shaping development. Probing this precise regu-
latory landscape requires an equally precise tool, one that can modulate signaling strength in real
time and with subcellular precision. Optogenetics has proven to be of great use in this domain,
allowing researchers to examine how factors such as protein localization, physical organization,
and local force disruption can influence global morphological movements.

4.2.1. Probing and directing tissue movements. Cells integrate a complex array of cues to
initiate a morphological response. Probing certain cues, such as the downregulation of the molec-
ular motor myosin-II at the basal membrane of invaginating cells, requires tight spatial control
over subcellular protein localization.To examine this phenomenon,Krueger et al. (119) developed
a Cry2-RhoGEF fusion that can be localized with subcellular precision in a Drosophila embryo.
Models had suggested that basal membrane relaxation via myosin-II downregulation was neces-
sary for tissue invagination; however, studies were limited by the lack of genetic tools to direct this
protein localization.Using two-photon excitation to precisely modulate myosin-II levels at multi-
ple stages of ventral furrow formation,Krueger et al. demonstrated that basal relaxation is required
both before and after the commencement of tissue bending for proper furrow development. One
can also harness these tools to precisely interfere with tissue contractility and disrupt an endoge-
nous morphogenetic program. Guglielmi et al. (120) were the first to demonstrate this capability,
using a photoactivatable inositol polyphosphate 5-phosphatase OCRL (Cry2-OCRL) that de-
pletes phosphatidylinositol 4,5-bisphosphate and actin when recruited to the plasma membrane
and thus inhibits contractility. By directing Cry2-OCRL to the apical membrane on a subpopula-
tion of cells during Drosophila ventral furrow formation, these researchers defined the minimum
size of the contractile region required for tissue invagination. Similarly, localizing a dominant-
negative Rho1 construct to the plasma membrane is sufficient to block Drosophila cephalic fur-
row formation, with even a thin strip of light-based inhibition preventing the dorsal and ventral
cephalic furrows from aligning with one another (121). This myosin-dependent disruption of fur-
row linearity suggests that continuous mechanical coupling is required for robust morphogenesis.

Once the optogenetic inputs sufficient to elicit a morphological response are determined, the
opportunity arises to use light to sculpt tissue into a user-defined structure. Izquierdo et al. (118)
demonstrated this capability, showing that epithelial folding can be optogenetically induced on a
Drosophila embryo even where morphological movements are normally absent. Their experiments
employed an optogenetic RhoGEF2, recruited to only the apical membrane by use of two-photon
stimulation. The researchers induced local tissue invagination in an arbitrary shape, absent any
endogenous instructions (Figure 3b).

4.2.2. Effects of themechanical microenvironment. The dependence of thesemorphological
phenomena on both internal and external cellular organization has also been investigated using
optogenetics tools. Krueger et al. (122) explored the effects of internal organization in a study
of the link between actomyosin network geometry and tissue contraction. The researchers again
used their Cry2-RhoGEF fusion, in this case to activate basal myosin-II during various stages of
Drosophila cellularization. Actomyosin organizes into a hexagonal topology during the early stages
of cellularization, transitioning to a ringlike topology once the plasma membrane has internalized
from the apical surface. Through optogenetic stimulation, Krueger et al. showed that hexagonally
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organized actomyosin fibers are insensitive to basal myosin-II upregulation, whereas fibers in a
circular geometry are responsive to myosin-II activity and contract upon induction. Conversely,
Qin et al. (123) examined the effects of external organization on signal interpretation, in particular
how cell–cell and cell–matrix adhesions affect basal myosin-II oscillations in the Drosophila ovary.
These oscillations are critical for tissue elongation in the egg chamber; however, their dependence
on a cell’s mechanical interactions was unclear. Using a light-inducible protein trap to sequester
tagged adhesion proteins and inactivate them in real time,Qin et al. validated their genetic findings
by showing that tissue elongation is directly controlled by cell–matrix adhesion activity but only
weakly influenced by cell–cell adhesions.

5. OPTOGENETICS FOR CELL AND TISSUE ENGINEERING

The precision that makes optogenetics so well suited for discovering the finer details of develop-
mental signaling is equally desirable for the engineering of biological systems. This engineering
may take many forms, including synthetic morphogenesis, where cells are programmed to orga-
nize into multicellular structures, and optogenetic feedback control, where individual cells are
monitored and signaling inputs are modulated to attain a given output set point. Here, we transi-
tion from reading to writing the code of the cell, using optogenetics not only to discover the inner
workings of biology but also to modify the computations and algorithms taking place.

5.1. Synthetic Morphogenesis

All of the tissue-scale studies highlighted thus far have probed signaling phenomena within a
developing organism. Converging from the opposite direction, synthetic morphogenesis aims to
engineer multicellular complexity using either individual cells or synthetic protocells as the basic
building blocks (124).Making this vision a reality will require control over multiple levels of inter-
action, including cell–cell contractility and three-dimensional (3D) pattern formation. In an early
example of synthetic tissue control, Sakar et al. (125) designed functional muscle microtissues that
could undergo light-inducible contraction. Equipped with a photoactivatable ChR2, the stimu-
lated tissues exhibited force and tension parameters comparable to those of spontaneous muscle
contractility. Likewise, Staddon et al. (126) probed the mechanosensitive remodeling of human
epithelial cells using a photoactivatable RhoA. By modulating the frequency of actomyosin con-
tractility, these researchers uncovered amechanical ratcheting system in which epithelial junctions
are most efficiently rearranged under high-amplitude actomyosin activation with long rest peri-
ods between successive pulses (for a mechanistic look at this phenomenon, see 99). We envision
that the quantitative model accompanying this result will be exceptionally valuable for the rational
shaping of engineered tissues.

One of the greatest challenges of synthetic morphogenesis will be to design structures with
hierarchical complexity and reproducible patterning. This task will require us both to harness the
natural self-organizing capacity of multicellular systems and to impart arbitrary nonnative pat-
terns at will. In an example of spontaneous self-assembly, cocultures of wild-type and optoWnt-
expressing embryonic stem cells segregated into reproducible structures upon global illumination
(127). In 3D spheroids, wild-type cells organized in an epithelium-like manner within the cen-
tral lumen, while cells with a photoactivated Wnt pathway sorted to the exterior and developed
protrusions that interacted with the surrounding matrix. Some studies have taken a more syn-
thetic approach, engineering cells or protocells to express light-inducible dimerization pairs and
reversibly form multicellular structures. Chervyachkova & Wegner (128) functionalized colloids
to present two mutually exclusive optogenetic dimerization pairs: improved light-induced dimer
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(iLID)/Nano and nMagHigh/pMagHigh, which could be sorted into two distinct populations
upon illumination. Mueller et al. (129) extended this approach to live cells, demonstrating that
the frequency of dimer activation is the main controller of aggregate morphology. The structures
appeared tightly packed under high-frequency activation and branched under low-frequency acti-
vation, analogous to colloidal aggregation under thermodynamic and kinetic control, respectively.
These exciting first steps for light-regulated synthetic morphogenesis will be enhanced by cou-
pling optogenetic control with other synthetic circuits (130), allowing for the creation of far more
sophisticated structures than have been produced to date.This will require some form of in vivo/in
silico feedback control, as discussed in the next section.

5.2. Regulating Cellular Processes Using Light-Based Feedback Control

As our understanding of cellular signal processing grows, so will the benefit of controlling signal-
ing processes. While cell engineering is poised to revolutionize medicine and biotechnology, it
suffers from challenges in designing stable, predictable synthetic circuits. The picture is also com-
plicated by cell-to-cell variability and intracellular noise. Closed-loop feedback control, where an
input is iteratively updated in response to real-time measurements of the cell’s output, could be
used to deliver a vast array of dynamic stimuli with high precision while circumventing noise and
unwanted cellular regulation (e.g., desensitization to inputs over time) that may distort a cell’s re-
sponse to the input signal (Figure 4). Here, we describe some successes in optogenetic feedback
control that use measurements of cell state to update light inputs for precise control of biological
processes.

What types of optogenetic feedback controllers are appropriate and efficacious for cellular
systems? One early effort utilized proportional-integral feedback control (95), in which a light in-
put is simply updated in response to both the instantaneous mismatch between the experimentally
measured response and a desired value (the proportional term) and the past history of such mis-
matches (the integral term). This type of feedback control proved useful for driving both constant
and time-varying responses and for stabilizing PI3K signaling to the same set point, even after
perturbation by pathway-altering drugs. In parallel, Milias-Argeitis et al. (131) developed a model
predictive controller to regulate gene expression at the cell population level, using periodic flow
cytometry measurements to characterize current gene expression levels. In a subsequent study,
Milias-Argeitis et al. (132) extended their approach to regulate the production of methionine

Controller
Target
output

Signaling
pathway

Output
• Protein localization
• Signaling activity
• Gene expression
• Phenotype

In silico In vivo

Biological system
• Not fully characterized
• Subject to noise

+

–

Figure 4

In silico feedback control aims to produce a target output by measuring a system’s output, determining the offset from the target
output, and updating the input accordingly. When applied to biological systems, dynamically varying outputs can be achieved despite
complex signal processing and inherent noise. Figure adapted from Reference 95.
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synthase, an essential enzyme for methionine biosynthesis, enabling them to set a user-defined
growth rate for bacterial cultures.

Light-based feedback control is now being used to dissect complex signaling pathways.
Harrigan et al. (133) developed an experimental pipeline for replacing endogenous regulatory
proteins in the yeast pheromone response pathway with their light-controlled counterparts, and
then determined when they were required for regulating pathway output by placing them under
in silico feedback control. They used this pipeline, named closed loop optogenetic compensa-
tion (CLOC), on three different pheromone response regulators, each of which displayed distinct
dynamic requirements to restore signaling to wild-type levels. The dynamic requirements that
CLOC yields could, in theory, be compared with the dynamics of regulator expression that oc-
cur naturally within a biological system of interest. Moreover, the modular nature of the authors’
Cry2-based gene expression system enables CLOC to be generalized to a variety of other biolog-
ical systems.

A computational optogenetic control system need not simply drive a fixed output—it can also
be used to implement any desired signaling logic and test for cellular responses. As an example of
imparting nonnative signaling logic onto multicellular systems, Perkins et al. (134) set out to im-
plement a simple biochemical network resembling Delta/Notch mutual inhibition and connect it
to living cells. Using a lawn of noninteracting yeast cells expressing an optogenetic transcriptional
activator, these researchers computed the light input to each cell based on the current states of all
neighboring cells. They found that by altering the parameters of the simulated biochemical path-
way, the in silico cell–cell communication network could switch cells between a uniform level of
gene expression and a checkerboard pattern of alternating bright and dim cells. Such experiments,
which necessitate the high level of spatiotemporal control presented by optogenetics, could prove
to be a very useful prototyping step to rapidly evaluate many biochemical networks before physical
implementation. They also offer a powerful approach to the direct study of cellular algorithms:
Because alternative algorithms can be directly tested in an experimental context, their capacity to
elicit biologically relevant outcomes can be objectively evaluated.

6. CONCLUSION

Cellular optogenetics has already begun to redefine what experiments are possible in biological
systems. By systematically applying different light patterns, we can nowmap how upstream signals
are decoded into changes in cell state. By applying inputs at different nodes in a pathway, we can
reveal hidden features of the underlying biochemical network. And by pointing these tools at a de-
veloping embryo,we can deduce how cells sense their position, choose appropriate fates, andmove
to produce a living organism. Light-controlled proteins open the door to a closer link between
biology and engineering: We may now envision performing real-time feedback control or system
identification on any biological system for which optogenetic inputs exist, or even implementing
user-defined signaling logic in software while feeding its output back into a living cell.

Nevertheless, there remain many challenges in deploying optogenetics within cell biology, de-
velopmental biology, and biological engineering. One pressing challenge is a better suite of tools
for multicolor control. Most widely used optogenetic domains (Cry, LOV, and BLUF) require a
flavin cofactor, leading to near-complete spectral overlap between these tools and making it vir-
tually impossible to separately trigger Cry2-based clustering and LOV-based nuclear transport in
the same cell, for example. Fortunately, phytochromes have proven to be especially spectrally flex-
ible; the development of orthogonal phytochrome-based tools at various excitation wavelengths
represents an exciting future avenue for multicolor control (31).
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Another major unsolved problem, especially for developmental and multicellular applications,
is the need for precise 3D optogenetic stimulation. Conventional methods rely on single-photon
excitation using a light source placed outside a tissue, at best creating a column of light-activated
cells along the entire illumination path. Two-photon excitation is an attractive solution for limit-
ing photoactivation to a single 3D position, with the degree of activation depending nonlinearly
on light intensity (135). However, some domains (e.g., AsLOV2) are very weakly excited by two-
photon illumination. Recent approaches that hold promise for precise 3D optogenetic activation
include fusing a two-photon-excitable fluorescent protein donor and an optogenetic acceptor so
that energy can be transferred between them by Förster resonance energy transfer (136), as well
as primed conversion, a phenomenon in which two photons of differing wavelength must be ab-
sorbed sequentially for optogenetic activation of certain photoconvertible fluorescent proteins
(137). Delivering each wavelength from a different light source should make it possible to obtain
primed conversion and optogenetic activation only in regions where the two beams intersect.

During its early years, cellular optogenetics was limited primarily to proofs of principle:
demonstrating that light could be used to activate a protein of interest or change its localiza-
tion. The field has matured since then and now resides firmly in a second phase—one in which a
researcher can expect the tools to work, and the merit of a study is determined by what they learn
about a biological system. This substrate—of interesting biological questions and precise pertur-
bative tools—offers the hope of a third phase, where biologists and engineers can work together
to control a biological system for therapy, to garner a deeper understanding of its operation, or
simply because they can.
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