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Abstract 

Developmental scientists have largely adopted numerous biomarkers in their research to better 

understand influences of adversity on development and risk for long-term health outcomes. Yet, 

the patterns of adoption and ultimate utility of biomarkers in developmental research merits 

investigation given the substantial time and financial resources used to include biomarkers in 

developmental research with infants and children. In the present paper we document trends of 

use of 90 biomarkers between 2000–2020 from approximately 430,000 publications indexed by 

the Web of Science. We used a data-driven approach to estimate biomarker growth trajectory 

based on yearly publication number, NIH dedicated funding resources, journal impact, years 

since the first publication, and number of research institutions involved in the biomarker 

research. Results indicate that most biomarkers experience rapid growth followed by a plateau. 

External funding, number of research institutions involved, and variability of journal impact all 

are associated with variations in growth. 

 Keywords: metascience; biomarkers; developmental science; developmental psychology 
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Biomarker Adoption in Developmental Science: A Data-driven Modeling of Popularity 

Trends from 90 Biomarkers Across Time 

The integration of biological data into child development research, while not new, has 

rapidly increased over the last two decades, from measures of hormone levels to brain structure 

to molecular measures such as DNA and epigenetics. Scholars who study child and human 

development have been trying to integrate biological theory, methods, and data for centuries 

(Bernard, 2012; Meloni, 2014, 2016). Early theories of social processes were squarely rooted in 

Darwin’s theory of evolution, but even before that, societies were thought to have life cycles like 

many mammals. Often biology provides great insights into social processes, but it has also run 

amuck with disastrous effect (e.g., phrenology, eugenics; Meloni, 2016; Thornton, 2005). 

However, since the late 20th century there has been a particularly rapid integration of measures 

of biology into child development research. Several rationales have been provided for 

integrating biomarkers with social and behavioral data (Falk et al., 2013; Meloni, 2016; Mitchell 

et al., 2013). For most developmental outcomes, biology is expected to be a mechanism linking 

social (and other) exposures to development. Also, of particular interest to developmental 

scientists, biomarkers could be used as indicators of exposure so that even if not part of the 

causal pathway from external stimuli to outcome, researchers can reconstruct the (sometimes 

unobserved) past. Similarly, many biomarkers were developed to indicate disease before typical 

symptoms emerge (Falk et al., 2013; Justice et al., 2018; Martin et al., 2019; Mitchell, Schneper, 

& Notterman, 2016; Singh & Rose, 2009). For others even if the biomarker was not part of the 

causal pathway from external stimuli to outcome, the consideration of biomarkers may improve 

the estimate of the variable of interest on development (i.e., controls). In addition to these more 

scientific reasons, others have suggested that the prominence of biology as a scientific field has 

led to its integration into less prestigious areas of science to improve scientific reputation of 

practitioners (Bernard, 2012).  
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Yet, most biomarkers were not developed with the goal of examining variation related to 

social behavior, to study mechanisms linking environment to child development outcomes, or to 

be measured outside of a lab or clinic. Furthermore, most were not developed with children as 

the target (Justice et al., 2018; Meloni, 2016; Mitchell et al., 2016; Singh & Rose, 2009). 

Attempts to identify biomarkers relevant to developmental stage, consequences of adversity, 

and risk for negative health outcomes have been widely embraced by developmental scientists. 

However, whether a biomarker will be useful is often difficult to determine, particularly for 

scholars with no or limited advanced training in biology. Small samples (see Davis-Kean & Ellis, 

2019; Ritchie, 2020) and incorrect interpretation of biomarkers (for an example of this 

discussion with DNA methylation, see Moore & Kobor, 2020) are regularly observed as limits to 

accuracy in most studies of infants and children, and likely contribute to a replication crisis. 

Unfortunately, despite good intentions, developmental scientists may be participants in a 

problematic cycle of booming popularity and decreasing quality, with significant consequences 

for precious scientific resources (e.g., funding, time, supplies). Importantly, biomarkers also 

often fail to live up to their initial promise.  

In this paper we document the patterns of adoption and use of biological metrics in 

relation to child development research. Although there is nothing theorized specifically about 

models of biomarker integration into developmental sciences, others have speculated about the 

effect of novel findings and technical innovations (i.e., new data, new statistical technique, 

unique finding) on a field or market (Fenn, 1995; Fenn & Linden, 2003; O’Leary, 2008; Ritchie, 

2020). For example, innovative technologies are thought to emerge and change as part of a 

hype curve or cycle. This hype curve is thought to have five general stages (see Figure 1A; 

Fenn & Raskino, 2008): 1) the technology trigger phase when the technology growth is driven 

by the potential of the innovation, 2) the peak of inflated expectations phase when several initial 

success stories are publicized but access to the technology is still limited, 3) the trough of 

disillusionment when the hype rapidly declines due to realistic re-adjustment of the innovation’s 
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potential impact, 4) the slope of enlightenment, a long phase in which an often small group of 

cautious users remain attentive to how the innovation is appropriately used and 5) the plateau of 

productivity in which the true advancement into the broader field can take place. More broadly 

though, social and developmental sciences have had a long history of also attempting to 

examine how scientific methods and ideas spread through a field. Two very prominent social 

psychological theories that might apply are the infatuation/novelty curve and the learning curve. 

The infatuation or novelty curve (see Figure 1B) was first proposed in 1968 and generally 

suggests that as familiarly grows so does favorability until saturation is reached and then begins 

to decline (Berlyne, 1970). The learning curve (see Figure 1C) is even older (1924) and is 

essentially a cumulative density function related to knowledge such that more rapid retention of 

knowledge occurs at the beginning, slowing over time until it becomes flat toward the end (Adler 

& Clark, 1991; Baloff, 1966). Some have suggested that the innovative technology hype curve is 

just the combination of an infatuation curve with a slower learning curve following it so that the 

real growth comes after a bout of infatuation (Dedehayir & Steinert, 2016). It is this potential 

insight into the underlying processes that will afford us to better quantify the underlying 

processes. 

 

Figure 1. Potential Patterns of Adoption and Use  

 

Note. Figure created with BioRender.com based on prior research (Adler & Clark, 1991; Baloff, 

1966; Berlyne, 1970; Fenn & Raskino, 2008). 
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 The degree to which biomarkers follow a specific trend (hype curve, infatuation curve, 

learning curve), allows us to document the growth in biomarker use and make inferences about 

patterns of adoption. Further, this approach provides the opportunity to make predictions on 

future use of biomarkers. Our goals are to: (1) document historic patterns of biomarker use, and 

(2) utilize those observations to offer a generalizable predictive model that can be applied to 

foreshadow future trends. To do this, we gathered publication related statistics for 90 

biomarkers to create a set of content agnostic predictive models that both explain and predict 

publication popularity.  

Method 

Biomarker Selection 

In our modeling plan, each biomarker is the modeling unit in analyses. Thus, our first 

step was to identify a candidate list of biomarkers used in developmental science by searching 

consortia, large data sets, and databases (not just developmental) such as the USC biomarker 

network, National Study of Adolescent to Adult Health, Environmental Influences on Child 

Health Outcomes, and meta-analyses (e.g., Justice et al., 2018). Although this was not a list of 

all potential biomarkers, it was intended to be large enough to derive sufficient data to generate 

a predictive algorithm. A round of screening on the original list of biomarkers was conducted 

based on the availability of developmental publications in the Web of Science and NIH funding. 

Biomarkers with too few publication entries or NIH-funded projects were not retained for further 

analysis, leaving 90 biomarkers for the next stage of analysis. For the list of biomarkers, and the 

number of publications and NIH funded projects, please see Supplemental Table 1. 

Variables of Interest 

The statistics of interest relevant to each biomarker include the number of publications, 

the number of projects funded by National Institute of Health (NIH), the amount of funding given 

by NIH, the number of institutes participating in publication activities, and the quality of 
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publication outlets. All of the statistics included can be obtained from publicly available sources 

with relative ease. These statistics are by no means the only ones we think are relevant to 

predicting the research popularity. Nevertheless, they capture important behavioral information 

related to the publication activities as would be explained. 

Yearly Publication Number 

The yearly number of publications is the most important variable in our modeling 

process. Because interest in biomarkers will be largely translated to the number of publications, 

it is logical to use publication number as the outcome variable of our modeling process. In 

addition to serving as the outcome variable, the publication numbers from previous years serve 

as important indicators to current research interest.  

We used Web of Science to query publication information for each of the selected 

biomarkers. Web of Science offers access to scholarly work from a broad range of scientific 

disciplines, allowing us to capture the developmental science adoptions of biomarkers with 

specific emphasis such as medical or social applications. For each biomarker, we used the 

following statement to query relevant publications within developmental science: “TS = (the 

query for each biomarker) AND (CHILD* OR ADOLESCENT* OR INFANT* OR NEWBORN* 

OR PEDIATRICS*)”. All biomarker names were quoted in the search, to avoid partial matches to 

the biomarker names. All entries returned from the query were retained. Publication data after 

2020 were removed due to incompleteness. Publications prior to 2000 were also removed, as 

we planned to focus on the time range where most of the included biomarkers have adequate 

publication data coverage across the modeling timespan. Between 2000 and 2020, among the 

90 biomarkers, the number of publications ranged from 0 to 4635, with a median of 90 

publications. 

Considering changes in publication numbers across time requires including the potential 

influence of inflation in article publications. As seen in the Dimension database that tracks the 

overall publication numbers across years, the yearly number of all scientific publications 
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increases over time (Bode, Herzog, Hook, & McGrath, 2018). To make the number of 

publications comparable across years so we could model the ebb and flow in the research 

interest for each biomarker, the queried publication number for biomarkers in a given year was 

divided by the total scientific publication number of that year from the Dimension database.  

Publication Growth Rate 

The growth rate of publications related to each biomarker for a given year captures the 

acceleration in publication interest. The rate of change for each year was defined to be the 

percentage change in the rescaled publication number relative to the statistic from the previous 

year. Between 2000 and 2020, among the 90 biomarkers, the growth rate ranged between 

89.2% and 966.8%, with a median of 1.6%. 

Participating Institutes 

The number of institutes involved in publications for each biomarker offers information 

on the penetration of a biomarker into the field. The number of institutes interested in a 

particular biomarker is largely unrestricted except for the total number of existing research 

institutes, especially for biomarkers not requiring expensive and specialized assaying 

processes, thus allowing for rapid growth of research output related to particular biomarkers.   

We obtained the yearly total number of involved research institutes by tabulating the 

author affiliations from each of the publications gathered for our analysis from Web of Science. 

We counted the number of unique institutes found from all publications related to a particular 

biomarker from a particular year. Between 2000 and 2020, among the 90 biomarkers, the yearly 

affiliation number ranged between 0 and 5962, with a median of 188 institutes per biomarker per 

year.  

NIH Funding 

Funding provides critical support to research activities, especially for biomarker research 

that typically involves expensive assaying processes. We are interested in both the total funding 

amount associated with each biomarker, as well as the number of funded projects. While the 
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total funding amount made available to specific biomarkers is an indicator of the resources 

supporting the research popularity, it may be accounted for by only a few large grants. Thus, we 

also included the number of projects funded to capture the spread of funding support that drives 

the popularity for specific biomarkers.  

The number of NIH projects funded, as well as the monetary amount of funding from NIH 

were used to approximate funding availability for each biomarker. We selected NIH due to the 

wide range of scientific disciplines it supports, as well as the number of grants it awards. NIH 

funding information of relevant projects was queried in the Research Portfolio Online Reporting 

Tools (RePORT) on the NIH website. The following query for NIH-funded projects was used: 

“Text Search: (the query for each biomarker) and (child or children or infant or newborn or 

pediatrics) (advanced)”. The projects with the same project ID were merged in each year, with 

their total funding summed. Some projects had sub-projects, which created overlaps with parent 

projects. To solve this problem, only sub-projects whose parents were not included in data were 

retained. The searches were conducted on December 31, 2020. All data after 2020 were 

removed due to incompleteness. Between 2000 and 2020, among the 90 biomarkers, the 

number of funded projects ranged from 0 to 2186, with a median of 21 projects funded by NIH.  

Similar to publication increases, both the number of projects funded and the total amount 

of funds from NIH have seen increases across years, thus requiring adjustment to make the 

research resources available to biomarkers comparable across years. To do so, we obtained 

the yearly total number of projects funded by NIH, as well as the yearly sum of funding provided 

to all projects, to serve as denominators in the corresponding adjustments. The yearly total 

statistics were obtained from RePORT through querying all projects from a given year without 

supplying any search terms. 

Ranking of Publication Outlets 

The increase in popularity for some biomarkers could be partially attributed to 

publications in journals with lower impact factors, as more researchers compete for similar work 
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to be published in higher impact outlets. While journal impact does not necessarily indicate 

something meaningful about the quality of journals or a given article published in that journal, 

this metric nevertheless reflects one method for assessing prestige within the scientific 

community. By including journal rankings to predict the popularity, we tested if rapidly rising 

popularity co-occurs with a higher proportion of lower ranked journal publications. 

To evaluate the impact of journals, we used the SCImago Journal Rank indicator (SJR 

indicator). The SJR indicator assesses the impact of journals contained in the Scopus database 

yearly (Scimago Lab). The SJR indicator is available for journals between 1999 and 2020. 

Each of the publications queried from our analysis was given a SJR indicator value 

through matching the journal name from Web of Science query to the journals in the SJR 

database. However, some publications cannot be given a SJR value because some journals 

queried from Web of Science were not included in SJR in specific years. To solve this problem, 

a 0 was given as the SJR indicator for these publications, with the assumption that journals not 

included in the SJR database may not have established high impact, such as journals that were 

newly established. 

For our modeling approach, we used both the yearly average SJR across all publications 

on a specific biomarker, and the yearly variance of SJR indicator for publications on a 

biomarker. The yearly average captures the overall impact of biomarker research, whereas the 

variance captures the spread of the impact of specific biomarker research. Between 2000 and 

2020, among the 90 biomarkers, the yearly average SJR ranged from 0 to 14302, with a median 

of 1272.; the yearly median SJR ranged from 0 to 14302, with a median of 966; and the yearly 

variance in SJR ranged from 868314 to 54036606, with a median of 1540092. SJR impact data 

was not rescaled in our analysis. 

Time since first adoption 

One final predictor was the number of years since a biomarker was first adopted in 

developmental science. Beyond understanding the general progression of popularity through 
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time, we can also better capture the effect of other predictors included through controlling the 

effect of time. Among the 90 biomarkers, the number of years since biomarker adoption ranged 

from 0 to 115, with a median of 27. 

Modeling Frameworks 

 We propose two modeling frameworks, a polynomial multilevel model and a random 

forest model, to predict the yearly publication popularity several years into the future based on 

past publication statistics. The exact span of future prediction depends on the specific predictors 

used for the model. Both models used in our analysis were also able to identify the most 

important driving forces behind publication popularity, while the multilevel model can further 

elucidate the direction of relation between popularity and predictors.  

Polynomial Multilevel Model 

 The polynomial multilevel model offers a flexible approach to model trajectories by 

accounting for the effects of time and other predictors on publication popularity, while also 

modeling the dependency among data from different years for the same biomarker. Because of 

the dependencies in data, treating yearly observations for the same biomarker as independent 

would violate assumptions for linear regressions, thus warranting the use of multilevel models.  

 In formulating the multilevel model, each biomarker was chosen as a level 2 unit, while 

the yearly publication data for biomarkers formed the level 1 observations. To avoid the issue of 

multicollinearity, we did not include all possible predictors from 3 to 5 years ago as fixed effect 

predictors. For fixed effects, both a forward selection and a backward selection procedure were 

used to retain predictors that were shown to have yielded the largest decrease in AIC and BIC 

at each step. Both selection processes stopped when adding or leaving out any of the variables 

no longer yielded lower AIC and BIC. The forward and the backward selection processes found 

the same set of variables, including linear, quadratic, and cubic number of years since the first 

publication, as well as affiliation number (5 years ago) and scaled NIH funded project number (5 

years ago). This set of variables selected allows for making predictions 5 years into the future, 
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as the only historical statistics used are from 5 years ago. For random effects, the random 

intercept and the random slope of year number were used to represent the different size and the 

speed of increases in publication numbers for different biomarkers. 

 Because some of our variables can be tiny in terms of absolute quantity, such as the 

very small number for the adjusted yearly publication number, some of the model coefficients 

would be extremely small, thus hindering our interpretation. Accordingly, to avoid tiny 

coefficients in models while retaining the distributions of variables included, we used a min max 

normalization process, which rescaled all the variables within a range between 0 to 1. In the 

polynomial multilevel model, the rescaling was conducted across all biomarkers, rather than 

within each biomarker. The rationale was that the differences between magnitudes of data for 

biomarkers are readily accounted for by random intercepts and random slopes, leaving us to 

interpret the effect of predictors largely unaffected by the biomarker-specific effects. 

Random Forest Regression 

Random forest regression has been used widely in modeling highly nonlinear and 

interactive relations among many predictors and a continuous outcome with high accuracy. The 

model averages the predictions from many decision trees, each containing some split decision 

point at which a random set of input variables are entered to yield a single variable that reduces 

the prediction error in the outcome variable the most. Each tree is trained with a random subset 

of the data. The decision tree structure quite exhaustively learns the relation between input 

variables and output variable, thus risking overfitting the model to the specific training dataset. 

The design of the random forest model promotes the generalizability of the learned model to 

other datasets with both the random input variable selection at decision points and the random 

data sub-setting in the training process, all the while using an ensemble of trees to average the 

prediction output. For our purpose of predicting publication interest with many predictors, as well 

as offering a generalizable model to other biomarkers not included in our dataset, random forest 

regression provides a good fit.  
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Random forest models also allow for some level of interpretability through computing the 

contribution of each input variable to the reduction of outcome variable prediction error. The 

relative contribution for each of the included predictors is called feature importance. We planned 

to use feature importance to interpret the random forest model, as well as to guide the 

formulation of theory about publication popularity.  

For the predictors, we included the 1st to 4th power of year number, as well as the 

following variables from 3 to 5 years ago: yearly NIH grant project number, yearly total NIH 

funding amount, yearly NIH mean funding amount per project, yearly affiliated institute number, 

yearly growth rate of publication number, yearly mean SJR indicator, and yearly variance of SJR 

indicator. The outcome variable was the adjusted yearly publication interest. To reduce the 

impact of differences among biomarkers, min max normalization was conducted on all 

covariates except year numbers and growth rates for each biomarker. 

Results  

Descriptive Data 

In addition to providing a dataset of the 90 biomarkers for each of the 20 years 

(https://osf.io/ksj2n/?view_only=5eea3aeaf3b541dba289f226c026c63e), we created a 

visualization tool for charting the trends within developmental science research 

(https://hypecurve.shinyapps.io/hypecurve/). Broadly speaking, more novel biomarkers show an 

early rapid growth followed by a plateau that matches developmental publications overall (for an 

example of three biomarkers for illustrative purposes, see Figure 2).  
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Figure 2. Growth of Three Illustrative Biomarkers in Developmental Sciences 

 

Note. Dots represent values adjusted for total developmental publications; Lines represent 

modeled fit from the random forest model) for three illustrative biomarkers (i.e., cortisol, waist 

circumference, and DNA methylation). 

 

Older biomarkers (e.g., cortisol) already have higher numbers of publications but slower growth 

rates as well. In general, the vast majority of biomarkers followed a similar trajectory of faster 

early growth (compared to developmental publications in general) followed by a slower change 

(typically a plateau or even small decline relative to the developmental literature in general). 

This suggests that most biomarkers follow a “learning curve” style growth. However, some 

biomarkers, such as 5-HTT have growth curves that are very different (see Figure 3) and more 

akin to an infatuation or hype curve with rapid growth and similarly rapid decline in publications.   

 

Figure 3. Growth of 5-HTT in Developmental Sciences  

Ad
ju

st
ed

 P
ub

lic
at

io
n 

N
um

be
r

2005 2010 2015 2020
Year

Cortisol

Waist circumference

DNA methylation



 BIOMARKER ADOPTION 15 

 

Note. Dots represent values adjusted for total developmental publications; Line represents 

modeled fit from the random forest model). 

 

Multilevel Model  

 The polynomial multilevel model was fitted with the lme4 package in R (v1.1-26; Bates, 

Maechler, Bolker, & Walker, 2015), with random slope for the linear effect of year number 

allowed for different biomarkers. All predictors included were on level-1, the level of yearly 

publication outcomes. No level-2 predictors were used in our analysis. The polynomial multilevel 

model was fitted with the whole dataset, to obtain parameter estimates and overall model 

performance in explaining variance with the fixed effect part of the model.  

 

Table 1. Parameter estimates and significance information 

 Estimates 

 

Standard Error df T-value Pr(>|t|) 

Intercept -5.05x19-2 3.08x10-2 130 -1.64 .103 

Linear year number 4.95x10-3 1.37x10-3 337.5 3.61 <.001 

Quadratic year number -6.17x10-5 2.31x10-5 710.1 -2.67 .008 

Cubic year number 4.56x10-7 1.14x10-7 633.4 4.02 <.001 
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Affiliations 5 -8.72x10-5 5.11x10-6 1296 -17.06 <.001 

Adjusted NIH project number 5 5.60x10-1 2.64x10-1 1347 2.12 .034 

 

Table 1 contains the parameter estimates and significance information. Besides the 

intercept, all retained predictors are significant. The linear and cubic year numbers are positively 

associated with the outcome variable, but the quadratic year number has a negative 

association. The coefficient for the year related predictors means that taken together, the initial 

linear increase is gradually overtaken by a decrease from the quadratic effect, while the cubic 

term, despite its very small coefficient, exerts a larger positive association with the passage of 

time. The affiliation number has a negative coefficient on publication popularity five years into 

future, whereas the NIH project number has a positive coefficient. Because the effect sizes of 

multilevel models is a topic that is still being researched, with no definitive approach to compute 

the effect sizes as would for the case of linear regression, we did not obtain effect sizes for 

predictors. The model fitted on the full dataset has an R2 of .101 for the fixed effect. Similarly 

with the small magnitude of the outcome variable, the assessment of predictive ability relying on 

RMSE was no longer meaningfully interpretable. As a result, we took the absolute difference 

between the predicted value and the actual value, to compute a percentage of prediction 

deviation with the predicted value as the base. This statistic offered intuitive interpretations and 

comparability across different models. The predicted value was chosen as the base rather than 

the actual value because the possible actual value of 0 would return an infinity error. The 

median percentage deviation for the multilevel model was 9.0%. Because the multilevel model 

was fitted with all biomarkers as level-2 units, we did not perform cross-validation which may 

change the number of level-2 units retained for fitting the multilevel model.  

For the random forest model, we included all the available predictors first. From the 

overall dataset, we obtained the feature importance for each of the predictors, ranked from the 

most to least relative contribution to decreasing the outcome variance at the tree splits where 
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the corresponding feature was featured. Among the predictors included, the number of 

affiliations from 3 to 5 year ago had the highest feature importance. Following the affiliation 

numbers, variance of SJR and growth rate of publication numbers from various years in the 

past, as well as the median SJR from 4 years ago, had relatively high feature importance. 

Further predictors along the ladder of importance appeared to be somewhat distanced from the 

previous predictors. To prevent the overfitting of the model to data, we conducted a 100-time 

cross-validation, essentially splitting the dataset randomly without replacement into a 75% 

training set and a 25% testing set for 100 times. During each split, the random forest model was 

fitted with the training set, while we recorded the median percentage deviation statistic obtained 

with the trained model applied on the corresponding testing set. The cross validation median 

percentage deviation for the random forest model ranged from 6.5% to 7.1%, with a mean of 

6.8% and a median of 6.8%. 

 

Table 2. Predictor feature importance from the random forest model 

Predictor Importance 

Affiliation Number (3-year-ago) 5.91 

Affiliation Number (5-year-ago) 4.22 

Affiliation Number (4-year-ago) 4.16 

Variance of SJR (3-year-ago) 2.70 

Variance of SJR (5-year-ago) 2.43 

Variance of SJR (4-year-ago) 2.26 

Growth Rate of Adjusted Publication Number (4-year-ago) 2.13 

Growth Rate of Adjusted Publication Number (5-year-ago) 1.94 

Growth Rate of Adjusted Publication Number (3-year-ago) 1.74 

Median SJR (4-year-ago) 1.66 
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Median SJR (3-year-ago) 1.33 

Adjusted NIH Total Funding Amount (3-year-ago) 1.32 

Median SJR (5-year-ago) 1.31 

Adjusted NIH Project Number (3-year-ago) 1.27 

Adjusted NIH Total Funding Amount (4-year-ago) 1.19 

Adjusted NIH Project Number (4-year-ago) 1.03 

Adjusted NIH Project Number (5-year-ago) 1.01 

Adjusted NIH Median Funding Amount (4-year-ago) 0.98 

Adjusted NIH Total Funding Amount (5-year-ago) 0.96 

Adjusted NIH Median Funding Amount (3-year-ago) 0.92 

Adjusted NIH Median Funding Amount (5-year-ago) 0.88 

Biquadratic Year Number 0.83 

Quadratic Year Number 0.82 

Cubic Year Number 0.78 

Year Number 0.76 

 

To make future predictions on biomarker level, we refitted the random forest model with 

the full dataset in order to make future 3-years predictions for all the included biomarkers. The 

same set of predictions was conducted with the polynomial multilevel model, albeit allowing the 

predictions for future 5-years. The predictions for the popularity of the biomarkers are shown in 

the interactive plot previously discussed. In this interactive plot, viewers can visualize both the 

historical publication trend and future popularity prediction for either single biomarkers or 

multiple biomarkers comparatively. Viewers can also compare the predictive results from the 

two modeling frameworks we adopted. 

Discussion 
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 Using publicly available information for 90 distinct biomarkers between 2000 and 2020, 

we sought to document and understand the general trend of biomarker adoption in 

developmental science publications, as well as to explore the potential predictors behind their 

growth. We used a metascience perspective that was content agnostic, allowing us to identify 

common drivers to the popularity of biomarkers without regard to the substantive research topic. 

Most biomarkers followed the “learning curve” model, and though the rate of the growth differed 

by biomarker, there was a pattern of a rapid initial rate followed by slower, more consistent 

growth. In addition to documenting changes across time, we developed two models to predict 

the publication popularity for the biomarkers, finding that we were able to make relatively 

precise predictions for future popularity of the included biomarkers given historic publication and 

funding data. The two models were constructed from different modeling frameworks to present a 

diverse set of predictions and is less likely to be vulnerable to specific assumption violations. 

Both the explanation and the prediction components of the models offer important utilities. The 

explanations based on the interpretation of the models reveal what factors contributed to growth 

in biomarker adoption patterns. The predictions, on the other hand, offer insight into the 

trajectory of any given biomarker, which may be of interest for planning new projects or funding 

decisions.  

 In general, the patterns of publications most closely resembled a learning curve theory of 

growth in the field. The combination of the direction and magnitude of the three significant time 

related predictors, together resemble a general popularity growth curve that accelerates in the 

beginning, slows down in the middle, and is followed by a smaller accelerated growth after the 

slowdown. The consistency with which this general trend was found is impressive. However, it is 

possible that more transitory biomarkers saw so few publications as to never gain a foothold 

long enough to arrive on our list of biomarkers. Nevertheless, it does appear that developmental 

science incorporates biomarkers into research products in a remarkably similar way. In fact, 

only one biomarker, 5-HTT or SERT, had a publication pattern that did not follow a learning 
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curve model. The majority of the papers under this heading are molecular genetic measures of 

the length polymorphism of the 5-HTT gene (Caspi et al., 2003; Caspi, Hariri, Holmes, Uher, & 

Moffitt, 2010; Culverhouse et al., 2018; Karg, Burmeister, Shedden, & Sen, 2011; Munafò, 

Brown, & Hariri, 2008; Risch et al., 2009). The literature on candidate genes, and 5HTTLPR in 

particular, has been particularly active and contentious over a relatively short period of time 

(Alexander, 2019). After a very rapid rise, publications on 5-HTT have seen a rapid decline 

recently suggesting a growth more akin to the infatuation cycle or potentially a hype curve 

(though more time would be needed to determine which pattern it most resembles).    

 Although most of the 90 biomarkers followed a similar trend in growth over the past 20 

years, another key goal of this paper was to explain variations in that growth by using publicly 

accessible data on publications, funding, and networks from prior years. The purpose was in 

part to be able to describe some of the driving forces of the growth in these biomarkers. For 

example, the significant positive effect of the number of NIH projects funded fit expectations that 

a wide range of supported projects lead to future increases in publication output. However, the 

amount of funding was not a significant predictor over the number of projects, suggesting a 

weaker relation with future publication popularity.  

 Interestingly, we observed a significant negative effect of affiliation number from 5 years 

ago on publication popularity. This is contrary to expectations that topics that have already 

received widespread interest are in the position to gain even more popularity. Our results 

suggest that a rapid increase of participating research institutes is related to a decrease in 

future research popularity, lending support to the idea that a sudden influx of interest may 

precede a deceleration in the growth of research output. It is possible that as a biomarker 

becomes accessible for research by more institutions it, by definition, becomes less unique and 

innovative lowering its value for publication. Also, if more researchers can use the biomarker, it 

might also be more mature in its lifecycle. Scientists know its limitations and proper use, thereby 

reducing the number of publications with misuses of the biomarker. The feature importance 
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metric of the random forest model also demonstrated the importance of affiliation number as a 

driving force behind publication popularity. In this model, affiliation number had the highest 

contribution in explaining variance in publication popularity.  

 Furthermore, in terms of the random forest model, the feature importance metric also 

demonstrated that the variance of SJR index, and publication growth rate had the highest 

contributions to publication popularity. Unlike with the multilevel model, with the random forest 

model, current methods do not allow for us to elucidate the direction of relation between 

popularity and predictors. Thus, while we know that variance of SJR index and publication 

growth rate play an important role in publication popularity, we do not know whether a more or 

less variable SJR index or a lower or higher publication growth rate is associated with increased 

popularity. Based on our cross-validation process, the random forest model offered a higher 

prediction accuracy over the multilevel model, thus allowing for more confidence in the use of 

the prediction result for research activity and funding decision making. The random forest 

model, which depends on highly nonlinear relation, and the multilevel model, which uses largely 

linear relation between predictors and the outcome, draw information from distinctive sets of 

predictors. Because the two models rely on distinctive aspects of research to predict future 

publication popularity, users of our work have the freedom to pick the model that best captures 

their interest. For example, should a specific funding agency be particularly mindful of the 

variability in the research publication quality of a biomarker rather than how long the biomarker 

been published, the random forest predictions should be consulted more than the multilevel 

model.  

 In their current form, our models can inform funding agencies and researchers of the 

adoption trends for a wide range of biomarkers that covers almost all that have been associated 

with developmental research. Our users can quickly gather insight into the publication trends 

and predictions for single or multiple biomarkers. Furthermore, given the large number of 

biomarkers included in our modeling approach, a biomarker not included in our analysis, or 
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essentially any searchable scientific term, can have its future popularity predicted through 

feeding the models with the raw historic publication data.  

 Our data driven approach, while allowing us to model the publication popularity behavior 

with publicly available records, has limitations. Publication bias makes it more likely that whether 

studies translate to publications are based in part on whether the paper presents statistically 

significant results. Such biases are likely to mask the true use of each biomarker in research. 

Because we currently could not correct for publication biases in data, our predictive models 

could only rely on the assumption that all topics have similar biases in publication activities. With 

initiatives such as Open Science Framework, we project there will be metrics available that 

measure the degree of publication biases, thus allowing us to adjust the publication interest to 

reflect the true research interest popularity. Another limitation for our modeling approach 

involves the nature of our chosen predictors which are naturally correlated with high collinearity. 

Although we have taken care with the multilevel model to retain only a few key variables with a 

model comparison approach, it was nevertheless an incomplete approach that could result in 

violations of assumptions in the multilevel model. On the other hand, the random forest models 

should not be affected by the correlated predictors with the random selection of predictors at 

decision points. Taken together, future efforts should seek to address these weak points in both 

the source of data and the modeling approach. 

 Researchers who study infants, children, and adolescence have increasingly answered 

calls to be interdisciplinary (Duncan, 1991; Michel & Moore, 1995) and examine functioning 

across multiple levels (Falk et al., 2013; Insel, 2014; Pollak, 2015). Such approaches have 

already yielded important new knowledge related to normative development, the effects of 

adversity, and predictors of long-term life outcomes (e.g., morbidity and mortality). However, 

there are important considerations regarding biomarker adoption, particularly when team 

members have insufficient training to collect, assay, and interpret findings, especially in the 

context of small, cross-sectional samples and unspecified theoretical models. We hope to 
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encourage best practices within the developmental science community through the explicit 

encouragement of collaboration with those who have expertise and training in the biomarkers of 

interest, pre-registration and data sharing (in concert with the open science framework; Foster & 

Deardorff, 2017; Open Science Collaboration, 2015), and selection of biomarkers informed by 

theory. More broadly, research networks focused on improving the use of specific popular 

biomarkers, such as the Telomere Research Network and genetic and epigenetic consortia, 

bring together stakeholders to development and disseminate the best practices for telomere 

measurement. Taken together, our findings indicate that integration of biological and research 

on human development is likely to continue to grow – and it is encouraging that primarily 

patterns of learning, rather than hype curves, are best supported by patterns of adoption in the 

past 20 years.   
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