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In this paper, a multilayer perceptron (MLP) artificial neural network (ANN) with a back-propagation (BP)
training algorithm is applied for modeling thermophysical properties and subcooled flow boiling performance of
Al,03/water nanofluid in a horizontal tube. The influence of nanofluid concentration, heat flux, and flow rate on
different thermophysical parameters, including thermal conductivity, thermal conductivity enhancement, vis-
cosity, viscosity enhancement, and heat transfer coefficient, are investigated. Specifically, flow boiling of Al03/
water nanofluid in a horizontal tube is modeled with the MLP neural network optimized by three novel swarm-
based optimization algorithms: namely, Equilibrium Optimizer (EO), Marine Predators Algorithm (MPA), and
Slime Mould Algorithm (SMA). To evaluate the effectiveness of different models, the MSE (Mean-Square Error) of
the ANN model with varying optimization algorithms is calculated and compared. Additionally, the optimal
network and regression values for each parameter are determined. The results show that the applied neural
network and optimization algorithms could model the thermal conductivity, thermal conductivity enhancement,
and viscosity better than the viscosity enhancement and heat transfer coefficient. The MSE of the best network
for the thermal conductivity is 2.693 x 10~7, while the MSE of the best network for the viscosity enhancement is
0.0598. Also, the EO algorithm achieves the best optimization for the first three outputs, thermal conductivity,
thermal conductivity enhancement, and viscosity. In comparison, the MPA algorithm extracts the optimal
network for the other two outputs, viscosity enhancement, and heat transfer coefficient.

nanoparticles in water [5], AIN nanoparticles in water [6], CuO nano-
particle in R-113 refrigerant [7,8], Fe3O4 nanoparticle in water [9], CuO
and SiO; nanoparticle-based R-134a refrigerant [10], TiO nano-
particles in water [11], ZnO nanoparticles in water [12], carbon nano-

1. Introduction

The accelerated growth of nanotechnology and microelectronics

placed significant issues in cooling systems of intense heat loads released
from tightly bounded surfaces in many electrical devices. Conventional
working fluids are often unsuccessful to cool down such devices leading
to serious damage. On the other hand, nanofluids have demonstrated
excellent cooling performance in many applications. They have
enhanced the thermal performance of working fluid significantly
compared with conventional fluid due to its exceptional heat transfer
properties of dispersed solid particles [1,2]. Choi [3] pioneered using
1-100 nm nanoparticles dispersed in a base fluid to enhance thermo-
physical properties such as viscosity and thermal conductivity. After
that, many scholars have investigated different nanofluids by adding
metallic, non-metallic, or combination of other nanoparticles to have
hybrid nanofluids, e.g., Cu nanoparticles in water [4], AlyOs3
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tube in therminol 66 [13] in different heat transfer applications such as
in solar energy systems [14,15], domestic refrigerators [16], air condi-
tioning systems [17], heat exchangers [18], heat pipes [16,17] and
thermosiphons [19].

The presence of nanoparticles in a base fluid substantially improves
the heat transfer capability due to the thermal conductivity enhance-
ment [20]. At the same time, the fluid flow characteristics are also
affected by rising the viscosity. Therefore, measurements of heat transfer
and fluid properties have been considered important in nanofluid ap-
plications. In 2003, flow boiling experiment with nanofluid was initially
performed by Faulkner et al. [21]. Both improvement and degradation
of Al;03/H20 nanofluid flow boiling were found in their experiment. In
another experiment, Cu/R114 nanofluid flow boiling was investigated
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Nomenclature

Yd desired output

Ye generated output

fit fitness value

l current iteration

L maximum number of iteration
ub upper bound

b lower bound

N number of neuron

F transfer function

X optimization variables
Greek Letters

o leader

B subordinates

5 subordinates

® subordinates

Subscripts

i ith

j jth

Abbreviation

HL hidden layer

EO equilibrium optimizer

MSE mean-square error

BP back-propagation

LSSVM least-squares support-vector machine
RBF radial basis function

GNN genetic neural network
ANN artificial neural network
MLP multilayer perceptron

MPA marine predators algorithm
SMA slime mould algorithm

PSO particle swarm optimization

by Peng et al. [8]. Their outcomes show that the flow boiling heat
transfer is escalated by about 29.7 percent when the mass fraction of
nanoparticles is 0.5 wt%. Since then, several works on the nanofluid
flow boiling have been published, and the thermophysical properties of
nanofluid have also been under consideration [22-27]. For instance,
Wang et al. [28] experimentally studied the effects of Graphite/H,0 and
SiC/H20 nanofluids on flow boiling heat transfer, and both the
improvement and degradation have been reported. The enhancement’s
reason is the improvement of the thermophysical properties because of
the random motion of nanoparticles.

On the other hand, the deterioration is induced by the decrease in the
number of nucleation sites because of the deposition of nanoparticles.
Additionally, it was reported which the Brownian motion of nano-
particles alters the boundary layer’s structure, and therefore, the flow
boiling heat transfer is improved [8]. Most investigations have focused
on viscosity and thermal conductivity of nanofluids in flow boiling heat
transfer because the use of nanofluids in engineering applications have
both drawbacks and advantages. Hence, the effect of nanofluids on flow
boiling heat transfer and critical thermophysical properties including
viscosity and thermal conductivity should be taken into consideration.

Many studies have employed nanofluid in flow boiling heat transfer
under a subcooled region for cooling microelectronic devices. Subcooled
flow boiling appears once the bulk liquid temperature remains below the
saturation temperature at a given pressure. This regime is characterized
by dominant convection and phase change phenomena that provide
high heat transfer rates at small wall superheat. This is why subcooled
flow boiling has been widely used for cooling technologies in different
engineering applications, especially microelectronic devices. For
example, Zangeneh et al. Field [28] theoretically and experimentally
studied forced convection and subcooled flow boiling of CuO-water
nanofluid to understand the influences of different parameters,
including subcooling temperature, heat flux, nanofluid concentration,
and fluid flow rate on the thermal performance of a vertical tube. Their
results show that the heat transfer coefficient decreases by augmenting
the subcooling temperature, while the behavior is the opposite for the
fluid flow rate and heat flux. Also, heat transfer coefficients of subcooled
flow boiling for gamma-alumina/water nanofluid was experimentally
investigated by Karimzadehkhouei et al. [29]. Based on their results,
heat transfer coefficients of subcooled flow boiling for nanofluids with
low mass fractions and pure water were approximately identical.
Nonetheless, heat transfer performance was worsened for nanofluids
with high mass fractions because of the additional thermal resistance
and nucleation site decrease because of the nanofluid deposition [25,
30].
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The disagreement on the enhancement or deterioration of nanofluid
in flow boiling heat transfer has lasted long. Also, conducting two-phase
flow boiling experiments or full CFD simulations require a high cost and
time commitment. Heat transfer and thermophysical parameters like
thermal conductivity, thermal conductivity enhancement, viscosity,
viscosity enhancement, and heat transfer coefficient in boiling are usu-
ally a function of many independent variables including liquid and wall
temperatures, each of them valid over a finite range of values. The
relationship between these parameters and their relevance can be
deduced using new computing techniques. A promising technique which
can be applied is the use of soft-computing. In the past three decades,
unprecedented development of soft computing techniques have been
seen, such as Artificial Neural Networks (ANNs), Genetic Algorithm
(GA), Genetic Programming (GP), Fuzzy-logic Control, and Data Mining,
and its application to many scientific and engineering practices. Out of
these, ANNs, which are inspired by biological nervous systems of
humans, learn to perform tasks by utilizing available data, without the
need for programmed task-specific rules. Artificial neural network
(ANN) can achieve a universal correlation and acceptable prediction
accuracy for all experimental data [31]. The artificial neural network
(ANN) has been effectively implemented in numerous engineering and
scientific practices, including data mining, pattern recognition, and
system identification. However, limited studies have been performed to
model flow boiling heat transfer using the ANN. In this paper, a multi-
layer perceptron (MLP) ANN with a back-propagation (BP) training al-
gorithm is applied for modeling thermophysical properties and
subcooled flow boiling performance of Al;Os/water nanofluid in a
horizontal tube. The MLP neural network was optimized by three novel
swarm-based optimization algorithms, namely: Equilibrium Optimizer
(EO), Marine Predators Algorithm (MPA), and Slime Mould Algorithm
(SMA), to model flow boiling of Al,Os/water nanofluid. To the best of
the authors’ knowledge, it is the first time that MLP neural network has
been optimized by three novel swarm-based optimization algorithms to
accurately model flow boiling heat transfer. All steps of the neural
network’s design and the optimization process were implemented using
MATLAB software.

2. Data gathering

All data used in this study for modeling five different thermophysical
properties are obtained from previous experimental studies related to
forced subcooled flow boiling heat transfer with Al;03/water nanofluid
in a horizontal tube [32-34]. The data show that nanofluid enhances the
heat transfer coefficient by as much as 26% in the flow boiling
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Fig. 1. 3D plots of (a) thermal conductivity, (b) thermal conductivity enhancement, (c) viscosity, (d) viscosity enhancement, and (e) heat transfer coeffi-

cient [32-34].

experimentation compared with conventional working fluids. This study
evaluates the influences of nanofluid concentration, temperature, heat
flux, and flow rate on thermophysical parameters of flow boiling. These
parameters are thermal conductivity, thermal conductivity enhance-
ment, viscosity, viscosity enhancement, and heat transfer coefficient.
3-D plots of all five parameters concerning different nanofluid concen-
trations, temperatures, heat fluxes, and flow rates are depicted in Fig. 1
[32-34].

3. Neural network structure

An artificial neural network (ANN) is an information processing
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machine invented for modeling the operation of a biological neural
network of the brain. Neurons (the processing units of the network) are
connected using communication links, each with an associated weight
(the strength of the connection between units). An standard neural
network builds from many neurons and connections [35]. The three
principal elements of an ANN are a network architecture, a learning
algorithm, and a transfer function. Each ANN method is different from
the rest, according to these elements. The current study employs a
multilayer perceptron (MLP)-type ANN model architecture with a
back-propagation (BP) training algorithm. In the BP training algorithm,
on the basis of the supervised learning strategy, the weights of the
neuron’s connections are modified in accordance with the difference
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Fig. 1. (continued).
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Fig. 2. Schematic of a neural network structure.

between the desired and the predicted network outputs [36].

The MLP network includes an input layer, one or more hidden layers,
and an output layer (Fig. 2). The neurons’ number in the input and
output layers relies upon the number of input and output parameters of
the problem. In contrast, the number of hidden layers and the number of
neurons in each hidden layer can be chosen by the designer. Also, the
transfer function of the neurons in the hidden and output layers can be
selected by the designer. These selectable parameters determine the
performance of the MLP network. To create a network with the best
performance and lowest error, the architecture of the network has been
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optimized. The architecture parameters of this optimization problem
consist of the neurons’ number in each hidden layer and the transfer
function of each layer.

This study considers the number of hidden layers as one, two, three,
and four. Therefore, the optimization problem for the one hidden layer
(1HL), two hidden layers (2HL), three hidden layers (3HL), and four
hidden layers (4HL) networks has two, four, six, and eight design vari-
ables, respectively, as presented in Eqs. (1)-(4),

Xim = [Ny, Fi]” )
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Table 1
Input variables and the number of samples for each output in a neural network.
Output Inputs Ng
Thermal conductivity (W/mK) e Concentration (%)-wt. Al,O3/water 54
e Temperature (°C)
Thermal conductivity enhancement (%) e Concentration (%)-wt. Al,O3/water 45
e Temperature (°C)
Viscosity (mPa.s) e Concentration (%)-wt. Al,O3/water 45
e Temperature (°C)
Viscosity enhancement (%) e Concentration (%)-wt. Al,O3/water 45
e Temperature (°C)
Heat transfer coefficient (W/m?K) e Concentration ((%)- wt.) 96
o Heat flux (kW/m?)
e Flow rate (L/m)

Fig. 3. Classification of metaheuristic algorithms.

Fig. 4. Typical structure of the 1HL neural network.
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Table 2
The best results for the 1HL network.
Ny F MSE R
Thermal Conductivity (Case 1) 4 tansig 8.1188e-07 0.99904
Thermal Conductivity Enhancement (Case 2) 26 logsig 0.001 0.99893
Viscosity (Case 3) 5 elliotsig 2.4214e-05 0.99945
Viscosity Enhancement (Case 4) 16 tansig 0.5423 0.97371
Heat Transfer Coefficient (Case 5) 9 tansig 33.7358 0.99532
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Fig. 5. Regression diagrams of the best MLP network for Case 1 with 1HL network.

X, = [N1, Na, Fi, o (2
Xam = [Ni,Na, N3, Fy, FoF3)" 3
Xum = [Ni,Na, N3, Ny, Fy, FoF3, )" (C))

X is the optimization variables for two, three, and four hidden-layer
networks. N;,Fj,andTare the number of neurons, the type of the transfer
function, and the transpose of the design variable matrix in the ith
hidden layer, respectively. The optimization of the ANN’s performance
is determined by the value of the mean squared error (MSE).

368

1 2
MSE = N—SZ (va = ¥e) (5)
where Ns is the number of samples, and y4 and y, are the desired and
generated outputs, respectively. Eq. (6) presents a summary of the
optimization problem,
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Fig. 6. Regression diagrams of the best MLP network for Case 2 with 1HL network.

MinMSE(X)
X :{N,F}
S.t(subject t0) :
F; € {logsig, tansig, elliotsig}
i =1,2For2HL network
i =1,2,3For3HL network
i =1,2,3,4For4HL network

(6)

In Eq. (6), it is assumed that the transfer function is selected from the
most commonly used transfer functions in ANN; Log-sigmoid transfer
function (sigmoid), Hyperbolic tangent sigmoid transfer function (tan-
sig), and Elliot symmetric sigmoid transfer function (elliotsig), as
expressed in Eqgs. (7)-(9).

1 e
Flogsig(x) = Tter = e+ 1 )
e —e*
Fransig (.X) - tanh(x) = X X (8)
X
Fplliolsig (X) 1 + ‘xl (9)
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The upper and lower bounds for the neurons’ number in each hidden
layer are 1 and 30, respectively, a commonly considered range in ANN-
based modeling. The design parameters of this optimization are discrete
variables, and the optimization algorithms must search for optimal
variables to be integer values. The dataset is divided randomly that the
first 70% of the collected samples are used for training, the other 15%
for validation, and the last 15% for testing. The training dataset is used
to train the model, and test dataset is used to test the trained model.

It is exclusively a designer’s choice to partition datasets into training,
testing, and validation. In general, most of the datasets are selected for
training (typically more than 50%), and the remaining is split into two
other sets. It is possible to select other values, not 70, but the common
values for this separation are known to be 70%-15%-15%, as used in
several papers [37-43]. Moreover, for training the network, the
Levenberg-Marquardt algorithm was used. The validation error is
checked automatically to prevent "overfitting". If the validation error is
increased during 6 epochs in a row, the simulation is terminated.

The coefficient of determination, R, is another important criterion in
measuring the quality of a neural network. It can be calculated as
follows:
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Fig. 7. Regression diagrams of the best MLP network for Case 3 with 1HL network.
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Fig. 10. A structure of the 2HL network.

2
Zﬁl (yd - yg)
Ziv:] 0 —74)°

Where ¥, is the mean of the actual outputs. It can be concluded from
Eq. (10) that the maximum value of R is equal to 1. This condition (R=1)
shows that the network predicts all the outputs accurately, without any
error. Thus, when the value of R is closer to 1, the network’s quality is
higher.

(10)
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Fig. 11. A structure of the 3HL network.

The optimization algorithms are used to model the following five
flow and heat transfer parameters in subcooled flow boiling with Al;03/
water nanofluid;

e Thermal conductivity

e Thermal conductivity enhancement
e Viscosity

e Viscosity enhancement
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Fig. 12. A structure of the 4HL network.

Table 3
Optimum values of the design parameters for Case 1.
Network  Algorithms  N; (number F; (transfer MSE R
of neurons) function)
2HL EO [4 2] [logsig tansig] 2.6935e- 0.99968
07
MPA [6 6] [tansig tansig] 3.6017e- 0.99958
07
SMA [61] [tansig tansig] 8.1578e- 0.99903
07
3HL EO [422] [logsig logsig 3.4525e- 0.99959
logsig] 07
MPA [536] [logsig logsig 4.2032e- 0.99950
tansig] 07
SMA [4 4 4] [tansig tansig 1.1345e- 0.99867
tansig] 06
4HL EO [41494] [elliotsig 8.9463e- 0.99896
tansig elliotsig 07
tansig]
MPA [516229] [tansig tansig 1.2406e- 0.99862
tansig logsig] 06
SMA [4111] [tansig logsig 8.7855e- 0.99895
tansig tansig] 07

e Heat transfer coefficient

The input variables and the number of samples for each case are

shown in Table 1.

Engineering Analysis with Boundary Elements 145 (2022) 363-395
4. Optimization algorithms

Three different metaheuristic optimization algorithms are applied to
reduce the modeling errors. The metaheuristic algorithms solve opti-
mization problems by imitating them to biological, physical, or social
phenomena. They could be classified into four main categories: evolu-
tion, physics, swarm, and human-based methods, as shown in Fig. 3
[44]. Evolution-based methods are derived from the natural evolution
laws. The strength of these methods is that the next generation of in-
dividuals is formed by combining the best current individuals. This
enables the optimization of the population can be performed over the
course of generations. The best known evolution-inspired method is the
Genetic Algorithms (GA) [45] which imitate the Darwinian evolution.
Physics-based methods mimics the physical rules in the universe. The
best known algorithm in this group is the Simulated Annealing (SA),
which Pincus developed in 1970 [46]. The third group consists of
swarm-based methods that imitate the social behavior of animal groups.
The best known algorithm in this group is the Particle Swarm Optimi-
zation (PSO), developed by Kennedy and Eberhart in 1995 [47]. It is
inspired by the social behavior of bird flocking. There are also other
metaheuristic methods inspired by human behaviors in the last group.

In the current study, three recently developed metaheuristic algo-
rithms, namely, Equilibrium Optimizer (EO), Marine Predators Algo-
rithm (MPA), and Slime Mould Algorithm (SMA), appeared in 2020, are
considered. EO falls into the physics-based algorithms, while MPA and
SMA are categorized as swarm-based algorithms. This study applies
these algorithms because they are novel high-performance optimizers
that can outperform well-known algorithms such as GA and PSO
[48-50]. By varying the design variables, we aim to minimize the MSE
value of the MLP neural network.

4.1. Equilibrium optimizer (EO)

The Equilibrium Optimizer (EO) is a physics-based algorithm whose
inspiration is a simple well-mixed dynamic mass balance on a control
volume. The mass balance equation gives the fundamental physics for
the conservation of mass entering, leaving, and generated in a control
volume. A first-order ordinary differential equation stating the generic
mass-balance equation [51], in which the mass change in time is
equivalent to the sum of the amount of mass that enters the system plus
the amount being generated inside and the amount that leaves the sys-
tem. In EO, each particle in a control volume (solution) with its

MSE
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Table 4
Comparison of the best results for Case 1.
N; (number of neurons) F; (transfer function) MSE R
1HL network [4] [tansig] 8.1188e-07 0.99904
2HL network [4 2] [logsig tansig] 2.6935e-07 0.99968
3HL network [422] [logsig logsig logsig] 3.4525e-07 0.99959
4HL network [4111] [tansig logsig tansig tansig] 8.7855e-07 0.99895

concentration (position) plays as a search agent. The search agents 4.2. Marine predator algorithm (MPA)
arbitrarily upgrade their concentration concerning best-so-far solutions,

namely equilibrium candidates, to achieve the equilibrium state MPA is a swarm-based algorithm proposed by Faramarzi et al. [46],
(optimal result) finally. More details on EO can be found in Faramarzi inspired by marine predators’ behavior, including monitor lizards,
et al. [51]. sharks, sunfish, and etc. [52]. Marine predator algorithm generally in-

cludes three phases. In phase 1, the prey moves faster than the predator;
the predator adopts the Brownian movement as its predation strategy. In
phase 2, the prey and predator move at approximately the similar speed.
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Fig. 15. Comparison of the best results for Case 1.
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Table 5
Optimum values of the design parameters in Case 2.
Network Algorithms N; (number of neurons) F; (transfer function) MSE R
2HL EO [9 30] [tansig logsig] 6.3315e-04 0.99935
MPA [4 6] [logsig tansig] 8.6517e-04 0.99917
SMA [7 1] [tansig tansig] 8.0538e-04 0.99918
3HL EO [921] [logsig elliotsig elliotsig] 7.9801e-04 0.99919
MPA [721] [tansig logsig tansig] 9.3501e-04 0.99904
SMA [511] [tansig tansig tansig] 1.0937e-03 0.99889
4HL EO [7 3017 6] [logsig tansig logsig tansig] 1.0461e-03 0.99917
MPA [6733] [logsig logsig logsig logsig] 8.5247e-04 0.99913
SMA [6112] [tansig elliotsig tansig tansig] 1.2113e-03 0.99883

The adopted strategy of the predator is to implement Brownian and Lévy
movements at the same time. Half of the predators of the population
carry out the Lévy movement, and the other half implement the Brow-
nian movement. In phase 3, the predator moves faster than the prey; the
strategy adopted by the predator is the Lévy movement. More details on
MPA and its optimization scenarios, along with the Brownian and Lévy
movements can be found in Faramarzi et al. [46].

4.3. Slime mould algorithm (SMA)

SMA is a swarm-based algorithm, and the slime mould is classified as
a fungus with a venous network to find food. The slime mould can
approach food according to the odor in the air, then the contraction of
the venous tissue wraps food contacted by vein. Without having any
brain or neurons, slime moulds are exceptionally brilliant, capable of
solving complex computational problems with high efficiency [53]. The
slime mould can memorize, make motion decisions and contribute to
changes [54]. This organism can optimize the form of its network as
time passes by getting more information [54]. They take three main
steps; (1) approach food based on the odor in the air, (2) wrap food by
the venous tissue, and (3) propagate wave by the biological oscillator, so
that they tend to be in a better position of food concentration. Hereto-
fore, the SMA solved many real-world optimization problems in industry
and science better than many competitive algorithms such as PSO. For
example, the SMA integrated with other population-based solvers is
used for COVID-19 chest X-ray images [55]. More details on SMA can be
found in Li et al. [50].

5. Result and discussion
5.1. Results for the networks with one hidden layer (1HL)

We use the results with 1HL network to compare them with those in
two, three, and four hidden layers networks. Fig. 4 depicts the typical
structure of the 1HL network where the optimization problem has two
design variables, X = [Ny, F e By considering different Ny and F; values
in 1~30 and 1~3, respectively, the problem has 90 different combina-
tions. From the results, one can select the optimal design variables with
minimum MSE without any optimization. W; and b; are weight and bias,
respectively. The transfer function in neural networks takes an input
multiplied by a weight *W;’. Bias (b;) allows for shifting of the transfer
function by adding a constant (i.e., the given bias) to the input. Table 2
shows the best results (i.e., the minimum MSE) for five different ther-
mophysical properties using the 1HL network, where R is the regression
value for all data.

Figs. 5-9 show the regression diagrams for the best MLP network
with 1HL, based on the specifications in Table 2, for all five thermo-
physical parameters. These diagrams show that an MLP network with 1
HL can predict the desired outputs with R > 0.97371. The best result is
for Case 3 (R = 0.99945), while the worst is for Case 4 (R = 0.97371)

5.2. Optimizing the networks with two, three, and four hidden layers

This section considers and optimizes the MLP neural network with
two hidden layers (2HL), three hidden layers (3HL), and four hidden
layers (4HL) using the aforementioned optimization algorithms.
Figs. 10-12 show the typical structure of the 2HL, 3HL, and 4HL net-
works. The population sizes and the maximum iterations for all cases are
chosen as 10 and 100 for the optimization process.
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Table 6
Comparison of the best results for Case 2.
N; (number of neurons) F; (transfer function) MSE R
1HL network [26] [logsig] 0.001 0.99893
2HL network [9 30] [tansig logsig] 6.3315e-04 0.99935
3HL network [921] [logsig elliotsig elliotsig] 7.9801e-04 0.99919
4HL network [6733] [logsig logsig logsig logsig] 8.5247e-04 0.99913

5.2.1. Case 1: thermal conductivity

The optimization results of thermal conductivity of Al,Os/water
nanofluid using the MLP network with 2HL, 3HL, and 4HL, associated
with three different algorithms including EO, MPA, and SMA, are pre-
sented in Table 3. The optimal networks, their MSE values, and the
regression value are also shown. Fig. 13 compares MSE values of all

applied algorithms with different hidden layer networks. This figure
shows that the EO and MPA algorithms in the 2HL and 3HL networks
perform better (lower MSE) than the 4HL network. Fig. 14 shows the
progression of changes and reduction of MSE along with iterations for all
three optimization algorithms. It must be noticed that the initial popu-
lation in these methods is randomly created, which makes the starting
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Table 7
Optimum values of the design parameters for Case 3.
Network  Algorithms  N; (number F; (transfer MSE R
of neurons) function)
2HL EO [7 3] [logsig logsig] 5.2145e- 0.99988
06
MPA [9 3] [tansig logsig] 7.6667e- 0.99984
06
SMA [6 6] [logsig logsig] 1.0079e- 0.99977
05
3HL EO [6161] [tansig logsig 4.6373e- 0.9999
elliotsig] 06
MPA [21913] [tansig logsig 5.7627e- 0.99987
tansig] 06
SMA [18 18 18] [logsig logsig 1.3893e- 0.99971
logsig] 05
4HL EO [42911] [tansig 5.9626e- 0.99986
elliotsig tansig 06
elliotsig]
MPA [4114] [tansig logsig 6.3280e- 0.99986
elliotsig 06
logsig]
SMA [7777] [tansig tansig 2.2263e- 0.99955
tansig tansig] 05

points of the different algorithms different. The following could be
observed from these results.

e In the 2HL and 3HL MLP networks, the EO and MPA algorithms
perform better than the SMA algorithm.

e The SMA and EO algorithms provide better results than the MPA
algorithm in the 4HL network optimization.

e The EO algorithm with the 2HL network consisting of the number of
neurons N; = [42] and the transfer functions F; = [logsigtansig]has
the lowest MSE value.

e In comparison among the transfer functions, the tansig transfer
function is seen more than the other two in the optimal networks.

e Generally, the results of the EO algorithm have been better than the
other two for the thermal conductivity output.

e As the number of hidden layers increases from 2 to 4, the MSE also
increases.

Table 4 shows the comparison of the best results based on the
number of hidden layers. This table is obtained by checking all possible
scenarios for 1HL network and then performing the optimization with
2HL, 3HL, and 4HL. Fig. 15 compares MSE and R values of the best

Engineering Analysis with Boundary Elements 145 (2022) 363-395

results in different scenarios. These results show that the network with
2HL has the best performance and creates the least error. Therefore, by
increasing the number of hidden layers from 2 to 4, the MSE increase,
and the R values decrease.

According to these results, the best network obtained for this prob-
lem is the network with 2HL; the number of neurons N; = [42] and
transfer functions F; = [logsigtansig] obtained from the EO algorithm.
Fig. 16 shows the results of error analysis in this optimal network, and
Fig. 16a shows the regression diagram for the training, validation, and
test datasets. The value of R = 0.99968 indicates that the obtained
optimal network simulates the desired problem with the least error.
Fig. 16b shows the absolute error of the modeling for the thermal con-
ductivity output. The x-axis is the absolute error of the modeling, which
is the difference between the target and predicted values in the neural
network, and the y-axis is thermal conductivity.

Fig. 16b shows that the maximum error is less than 1.5 x 1075,
Fig. 16c shows the error histogram representing the errors between
target and predicted values in the neural network. This histogram in-
dicates how predicted values are close to the target values and how the
errors from the neural network are distributed. The sign of the error
shows the direction of the bias. The positive error means the outputs are
smaller than the targets, and the negative error means that the targets
are larger than the outputs. Generally, the error distribution diagram
follows the normal distribution for a precise model. Based on Fig. 16¢,
the error frequency accumulates mostly in the zero-axis error range,
which makes a symmetric graph and shows that the methods have an
excellent performance in estimating the thermal conductivity behavior
in the subcooled flow boiling. Notice that the "zero error" line separates
negative and positive values.

5.2.2. Case 2: thermal conductivity enhancement

Table 5 shows the results of the MLP network optimization with 2HL,
3HL, and 4HL, MSE values, and the regression values (R) for thermal
conductivity enhancement. Fig. 17 shows the comparison between the
MSE values of different algorithms with different hidden layer networks.
Fig. 18 shows the progression of changes and reduction of MSE along
with iterations for all three optimization algorithms. The following
could be observed from these results.

e The EO algorithm performs better with the 2HL and 3HL networks
than the 4HL network.

e The MPA and EO algorithms perform better results than SMA in the
optimization of the 4HL network.
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Table 8
Comparison of the best results for Case 3.
N; (number of F; (transfer function) MSE R
neurons)
1HL [5] [elliotsig] 2.4214e- 0.99945
network 05
2HL [7 3] [logsig logsig] 5.2145e- 0.99988
network 06
3HL [6161] [tansig logsig 4.6373e- 0.9999
network elliotsig] 06
4HL [42911] [tansig elliotsig tansig ~ 5.9626e- 0.99986
network elliotsig] 06

o The EO algorithm with the 2HL network consisting of the number of
neurons N; = [930] and the transfer functions F; = [tansiglogsig] has
the lowest MSE value.

e In comparison among the transfer functions, tansig and logsig are
more commonly seen in optimal networks than elliotsig.

e The EO algorithm performs better than the other two algorithms.

Engineering Analysis with Boundary Elements 145 (2022) 363-395

e As the number of hidden layers increases from 2 to 4, the network
error also increases.

Table 6 shows the comparison between the best results based on the
number of hidden layers. The least MSE value can be obtained using the
2HL network, which is 6.3315 x 10~* Fig. 19 compares the best results
based on the MSE and R values. According to these results, the network
with 2HL has the best performance and creates the least error among all
the networks. Therefore, by increasing the number of hidden layers from
2 to 4, the MSE values increase, and the R values decrease.

Based on these results, the best network obtained for this problem
was the network with 2 hidden layers optimized by the EO algorithm.
The number of neurons and the transfer functions isN; = [930]and F; =
[tansiglogsig], respectively. Fig. 20 shows the results of error analysis in
this optimal network. Fig. 20a shows the regression diagram for the
training, validation, and test datasets close to 1 (R=0.99935), showing
that the network can accurately model the desired output. The amount
of error for the thermal conductivity enhancement and the error
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Table 9
Optimum values of the design parameters for Case 4.
Network Algorithms N; (number of neurons) F; (transfer function) MSE R
2HL EO [18 25] [tansig tansig] 0.1423 0.99302
MPA [30 11] [logsig logsig] 0.0685 0.99666
SMA [26 30] [logsig logsig] 0.1812 0.99140
3HL EO [23 20 14] [elliotsig logsig logsig] 0.0667 0.99677
MPA [3012 2] [logsig tansig logsig] 0.0598 0.99707
SMA [29 28 18] [logsig tansig elliotsig] 0.1269 0.99405
4HL EO [26 27 14 13] [logsig logsig tansig tansig] 0.1208 0.99421
MPA [30 1411 14] [logsig tansig tansig logsig] 0.1280 0.99378
SMA [2317 22 18] [logsig tansig tansig tansig] 0.1456 0.99382

histogram are shown in Fig. 20-b and 20-c, respectively. The value of R
= 0.99935 and the displayed errors indicate that the obtained optimal
network could simulate the desired problem with the least error.

5.2.3. Case 3: viscosity

The optimization results of viscosity are presented in Table 7. The
comparison between MSE values of different algorithms with different
hidden layers networks is also shown in Fig. 21. Fig. 22 shows the
progression of changes and reduction of MSE along with iterations for all
three optimization algorithms. The following could be observed from
these results.

e In optimization for all three types of networks (2HL, 3HL, and 4HL),
the EO algorithm followed by the MPA algorithm has obtained better
results than SMA.

e The SMA algorithm has the worst performance in all three types of
networks.

e The EO algorithm with the 3HL network consisting of the number of
neurons N; = [6161]and the transfer functions F; = [tansiglogsi-
gelliotsig] has the lowest MSE value.

e In comparison among transfer functions, tansig and logsig functions
are seen more than elliotsig in optimal networks.

e A network with 3HL leads to the lowest MSE for this problem.

Table 8 shows the comparison between the best results based on the
number of hidden layers. This table shows that the best network for this
problem is the 3HL network, whose MSE value is 4.6373 x 107°. Fig. 23
also compares MSE and R values of the best results in different scenarios.
These results show that the number of hidden layers for this problem
should be more than 1 to achieve a lower MSE. Also, the difference
between optimal networks with 2HL, 3HL, and 4HL is small, but a

network with 3HL is the most appropriate network and leads to the least
error.

As mentioned, the best network obtained for this problem is the
network with 3HL optimized by the EO algorithm, in which the number
of neurons and transfer functions are N; = [6161] and F; = [tansi-
glogsigelliotsig], respectively. Fig. 24 shows the results of error analysis
in this optimal network, and Fig. 24-a shows the regression diagram for
all the output data. Also, the amount of error and the error histogram in
training, test, and validation datasets are shown in Fig. 24-b and 24-c,
respectively. The value of R= 0.9999 and the displayed errors indicate
that the obtained optimal network was able to model the desired
problem with the least error.

5.2.4. Case 4: viscosity enhancement

The optimization results of viscosity enhancement, including
optimal networks, their MSE values, and the regression value (R), are
presented in Table 9. Fig. 25 shows the comparison between the MSE
values of all applied optimization algorithms for viscosity enhancement
with different hidden layers networks. Fig. 26 shows the progression of
changes and reduction of MSE along with iterations for all three opti-
mization algorithms. The following results can be summarized based on
the findings:

e The MPA algorithm followed by the EO algorithm performs better in
optimizing 2HL and 3HL networks than the SMA algorithm.

e The EO and the MPA algorithms provide better results in the 4HL
network optimization than the SMA.

e Overall, the MPA algorithm achieves the best result (lower MSE
value) for modeling the viscosity enhancement data.

e The SMA algorithm has the weakest performance in all three types of
networks.
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Fig. 25. Comparison between MSE values for Case 4.
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Table 10
Comparison of the best results for Case 4.
N; (number of neurons) F; (transfer function) MSE R
1HL network [16] [tansig] 0.5423 0.97371
2HL network [3011] [logsig logsig] 0.0685 0.99666
3HL network [30 12 2] [logsig tansig logsig] 0.0598 0.99707

4HL network [26 27 14 13]

[logsig logsig tansig tansig]

0.1208 0.99421

o The MPA algorithm with the 3HL network consisting of the number
of neurons N; = [30122] and transfer functions F; = [logsigtansi-
glogsig] has the lowest MSE value.

e In comparison among transfer functions, the elliotsig function is less
seen than the other two in optimal networks.

e The network with 3HL has better performance (lower MSE values)

Table 10 shows the comparison between the best results based on the
number of hidden layers. Fig. 27 also compares the best results based on
MSE and R values. It can be concluded that the number of hidden layers
must be more than 1 to have a model with a low MSE value. Also, it
should be noticed that although the difference between optimal net-
works with two and three hidden layers is small, a network with three
hidden layers is the most appropriate network, which leads to the least
€rror.

for this problem.

‘.

2HL

3HL 4HL

a) MSE

0.995 -

0.99 -

/ —a— _a—
e
0.985
~ 098 ?—
0.975 - ——
0.97 / S
0.965 /

0.96 T
1HL 2HL

3HL 4HL

b) R

Fig. 27. Comparison of the best results for Case 4.
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Table 11
Optimum values of the design parameters for Case 5.
Network Algorithms N; (number of neurons) F; (transfer function) MSE R
2HL EO [11 3] [tansig elliotsig] 14.1977 0.99805
MPA [411] [tansig tansig] 10.2501 0.99858
SMA [83] [tansig elliotsig] 13.1251 0.99819
3HL EO [32217] [logsig logsig logsig] 17.9319 0.99757
MPA [49 4] [tansig elliotsig elliotsig] 14.7558 0.99802
SMA [5 21 27] [tansig logsig logsig] 16.9460 0.99765
4HL EO [4 13 20 4] [logsig logsig tansig tansig] 27.3904 0.99626
MPA [591211] [tansig logsig tansig tansig] 30.6425 0.99578
SMA [4 28 3 2] [logsig logsig elliotsig elliotsig] 20.3954 0.99719

According to Table 7 and Fig. 27, the best network for modeling the
viscosity enhancement is the network with 3HL derived from the MPA
algorithm. In this network, the number of neurons and the transfer
functions are N; = [30122] and F; = [logsigtansiglogsig], respectively.
Fig. 28 examines the error in this optimal network. Fig. 28-a shows the
regression diagram for all the output data. Table 2 shows that the vis-
cosity enhancement output is the most difficult of the five problems
discussed since it has a lower R-value than other parameters. The error
rates at different outputs and the error histograms are shown in Figs. 28-
b and 28-c, respectively, indicating that the obtained optimal network
has acceptable accuracy and can model the desired output.

5.2.5. Case 5: heat transfer coefficient

The optimization results of the heat transfer coefficient are presented
in Table 11. Also, the comparison between MSE values of all three
optimization algorithms for the heat transfer coefficient with different
hidden layers networks is represented in Fig. 29. Fig. 30 shows the
progression of changes and reduction of MSE along with iterations for all
three optimization algorithms. The following could be observed from
these results.

e The MPA algorithm followed by the SMA algorithm performed better
in optimizing 2HL and 3HL networks compared with the EO
algorithm.

e The SMA and EO algorithms perform better than the MPA (lower

MSE and higher R) in 4HL network optimization.

The SMA algorithm performs better for modeling the heat transfer

coefficient than the previous 4 problems.

Compared to the previous 4 problems, the EO algorithm performs

worse in this problem.

o The MPA algorithm with the 2HL network consisting of the number
of neurons N; = [411] and the transfer functions F; = [tansigtansig]
has the lowest MSE value.

e Based on Fig. 29, the network with 2HL has the best performance for
this problem.

Table 12 shows the comparisons between the best results based on
the number of hidden layers. Fig. 31 also compares the best results based
on MSE and R values. According to these results, the network with 2HL
has the best performance, which leads to the least error. Therefore, by
increasing the number of hidden layers from 2 to 4, the MSE values
increase, and the R values decrease.

Based on Table 12 and Fig. 31, the best network for this problem is
the 2HL network with the number of neurons N; = [411]and transfer
functions F; = [tansigtansig] derived from the MPA algorithm. Fig. 32
examines the error in this optimal network. Fig. 32-a shows the
regression diagram for the training, validation, and test datasets. The
value of R=0.99858 indicates that the obtained optimal network can
model the desired problem with an acceptable error. Also, the amount of
error in different datasets and the error histogram are shown in Fig. 32-b
and 32-c, respectively.

6. Comparison between different cases

In this study, the actual data (and not the normalized data) of the
flow boiling of Al,O3/water nanofluids in a horizontal tube (5 outputs in
Table 1) has been used. Therefore the MSE values of the networks are
very different in the 5 different problems. In other words, the MSE
values are in different ranges. Hence, the R values of each optimization
are used to compare the results from different cases—the closer the R-
value to 1, the better the network’s performance.

MSE

y mEO

_a—
‘ I MPA

Yamm
I R
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4HL

Fig. 29. Comparison between MSE errors for Case 5.
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Table 12
Comparison of the best results for Case 5.
N; (number of neurons) F; (transfer function) MSE R
1HL network [9] [tansig] 33.7358 0.99532
2HL network [411] [tansig tansig] 10.2501 0.99858
3HL network [494] [tansig elliotsig elliotsig] 14.7558 0.99802
4HL network [42832] [logsig logsig elliotsig elliotsig] 20.3954 0.99719

Fig. 33 summarizes the R values for the optimal networks of 5 out-
puts with the three optimization algorithms. It clearly shows that the
applied MLP networks and the optimizations can model the values of the
thermal conductivity, thermal conductivity enhancement, and viscosity
better than the other two outputs, namely viscosity enhancement and
heat transfer coefficient. In comparison between these outputs, the best
performance of the model is the viscosity, while the weakest

performance is related to the viscosity enhancement.

Table 13 compares the optimization results for the 5 outputs from
another perspective: which type of network is the best and which al-
gorithm has extracted the optimal network. Recall from the results of the
previous sections that the EO algorithm achieves the best network for
the first three outputs, thermal conductivity, thermal conductivity
enhancement, and viscosity. In comparison, the MPA algorithm extracts
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Fig. 31. Comparison of the best results for Case 5.
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Table 13
Best network and algorithm for each output.

Best Algorithm Best Network Output of the system

EO 2HL Thermal Conductivity

EO 2HL Thermal Conductivity Enhancement
EO 3HL Viscosity

MPA 3HL Viscosity Enhancement

MPA 2HL Heat Transfer Coefficient

the optimal network for the other two outputs, viscosity enhancement
and heat transfer coefficient. Also, the network with 2HL is the best for
the thermal conductivity, thermal conductivity enhancement, and heat
transfer coefficient. In contrast, the network with 3HL performs the best
performance for the viscosity and viscosity enhancement.

Fig. 34 shows another comparison between the three optimization
algorithms concerning the mean value of R between 15 different
implementations, corresponding to Fig. 33. It can be seen that the MPA
and EO algorithms are significantly better than the SMA algorithm for
modeling the flow boiling of Al,O3/water nanofluid in a horizontal tube.

7. Conclusion

In this paper, a multilayer perceptron (MLP) ANN with a back-
propagation (BP) training algorithm is applied for modeling thermo-
physical properties and subcooled flow boiling performance of Al;03/
water nanofluid in a horizontal tube. The modeling data focuses on the
influences of the nanofluid concentration, heat flux, and flow rate on
different thermophysical parameters, including thermal conductivity,
thermal conductivity enhancement, viscosity, viscosity enhancement,
and heat transfer coefficient are investigated. Specifically, flow boiling
of Al,Os/water nanofluid in a horizontal tube with the MLP neural

393

network optimized by three novel swarm-based optimization algo-
rithms, namely: Equilibrium Optimizer (EO), Marine Predators Algo-
rithm (MPA), and Slime Mould Algorithm (SMA), is modeled. To
evaluate the effectiveness of different optimization models, the MSE and
R values that allow us to determine the best optimization network are
calculated and compared. The results of MLP network optimization with
three algorithms are summarized as follows:

e The applied neural network and the optimizations can model the
values of the thermal conductivity, thermal conductivity enhance-
ment, and viscosity better than the other two outputs, namely vis-
cosity enhancement and heat transfer coefficient. In comparison
between these outputs, the best performance of the model is the
viscosity values, while the worst performance is related to the vis-
cosity enhancement.

e By comparing the optimization results for the 5 outputs, the EO al-

gorithm performs the best for the thermal conductivity, thermal

conductivity enhancement, and viscosity, while the MPA algorithm
extracts the optimal network for the viscosity enhancement and heat
transfer coefficient.

In optimization with 2HL and 3HL networks for the thermal con-

ductivity, the EO and the MPA algorithms perform better than the

SMA algorithm.

e The EO algorithm with 2HL is the best network for modeling the
thermal conductivity and thermal conductivity enhancement.

e The EO algorithm with 3HL is the best network for modeling the
viscosity.

o The MPA algorithm with 3HL is the best network to model the vis-
cosity enhancement, while the MPA with 2HL is the best network for
modeling the heat transfer coefficient.

In general, the comparison of the three optimization algorithms in
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terms of the mean value of R between 15 different implementations
shows that the MPA and EO algorithms are significantly better than the
SMA algorithm for modeling the flow boiling of AlyOs/water nanofluid
in a horizontal tube.
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