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A B S T R A C T   

In this paper, a multilayer perceptron (MLP) artificial neural network (ANN) with a back-propagation (BP) 
training algorithm is applied for modeling thermophysical properties and subcooled flow boiling performance of 
Al2O3/water nanofluid in a horizontal tube. The influence of nanofluid concentration, heat flux, and flow rate on 
different thermophysical parameters, including thermal conductivity, thermal conductivity enhancement, vis-
cosity, viscosity enhancement, and heat transfer coefficient, are investigated. Specifically, flow boiling of Al2O3/ 
water nanofluid in a horizontal tube is modeled with the MLP neural network optimized by three novel swarm- 
based optimization algorithms: namely, Equilibrium Optimizer (EO), Marine Predators Algorithm (MPA), and 
Slime Mould Algorithm (SMA). To evaluate the effectiveness of different models, the MSE (Mean-Square Error) of 
the ANN model with varying optimization algorithms is calculated and compared. Additionally, the optimal 
network and regression values for each parameter are determined. The results show that the applied neural 
network and optimization algorithms could model the thermal conductivity, thermal conductivity enhancement, 
and viscosity better than the viscosity enhancement and heat transfer coefficient. The MSE of the best network 
for the thermal conductivity is 2.693 × 10−7, while the MSE of the best network for the viscosity enhancement is 
0.0598. Also, the EO algorithm achieves the best optimization for the first three outputs, thermal conductivity, 
thermal conductivity enhancement, and viscosity. In comparison, the MPA algorithm extracts the optimal 
network for the other two outputs, viscosity enhancement, and heat transfer coefficient.   

1. Introduction 

The accelerated growth of nanotechnology and microelectronics 
placed significant issues in cooling systems of intense heat loads released 
from tightly bounded surfaces in many electrical devices. Conventional 
working fluids are often unsuccessful to cool down such devices leading 
to serious damage. On the other hand, nanofluids have demonstrated 
excellent cooling performance in many applications. They have 
enhanced the thermal performance of working fluid significantly 
compared with conventional fluid due to its exceptional heat transfer 
properties of dispersed solid particles [1,2]. Choi [3] pioneered using 
1–100 nm nanoparticles dispersed in a base fluid to enhance thermo-
physical properties such as viscosity and thermal conductivity. After 
that, many scholars have investigated different nanofluids by adding 
metallic, non-metallic, or combination of other nanoparticles to have 
hybrid nanofluids, e.g., Cu nanoparticles in water [4], Al2O3 

nanoparticles in water [5], AlN nanoparticles in water [6], CuO nano-
particle in R-113 refrigerant [7,8], Fe3O4 nanoparticle in water [9], CuO 
and SiO2 nanoparticle-based R-134a refrigerant [10], TiO2 nano-
particles in water [11], ZnO nanoparticles in water [12], carbon nano-
tube in therminol 66 [13] in different heat transfer applications such as 
in solar energy systems [14,15], domestic refrigerators [16], air condi-
tioning systems [17], heat exchangers [18], heat pipes [16,17] and 
thermosiphons [19]. 

The presence of nanoparticles in a base fluid substantially improves 
the heat transfer capability due to the thermal conductivity enhance-
ment [20]. At the same time, the fluid flow characteristics are also 
affected by rising the viscosity. Therefore, measurements of heat transfer 
and fluid properties have been considered important in nanofluid ap-
plications. In 2003, flow boiling experiment with nanofluid was initially 
performed by Faulkner et al. [21]. Both improvement and degradation 
of Al2O3/H2O nanofluid flow boiling were found in their experiment. In 
another experiment, Cu/R114 nanofluid flow boiling was investigated 
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by Peng et al. [8]. Their outcomes show that the flow boiling heat 
transfer is escalated by about 29.7 percent when the mass fraction of 
nanoparticles is 0.5 wt%. Since then, several works on the nanofluid 
flow boiling have been published, and the thermophysical properties of 
nanofluid have also been under consideration [22–27]. For instance, 
Wang et al. [28] experimentally studied the effects of Graphite/H2O and 
SiC/H2O nanofluids on flow boiling heat transfer, and both the 
improvement and degradation have been reported. The enhancement’s 
reason is the improvement of the thermophysical properties because of 
the random motion of nanoparticles. 

On the other hand, the deterioration is induced by the decrease in the 
number of nucleation sites because of the deposition of nanoparticles. 
Additionally, it was reported which the Brownian motion of nano-
particles alters the boundary layer’s structure, and therefore, the flow 
boiling heat transfer is improved [8]. Most investigations have focused 
on viscosity and thermal conductivity of nanofluids in flow boiling heat 
transfer because the use of nanofluids in engineering applications have 
both drawbacks and advantages. Hence, the effect of nanofluids on flow 
boiling heat transfer and critical thermophysical properties including 
viscosity and thermal conductivity should be taken into consideration. 

Many studies have employed nanofluid in flow boiling heat transfer 
under a subcooled region for cooling microelectronic devices. Subcooled 
flow boiling appears once the bulk liquid temperature remains below the 
saturation temperature at a given pressure. This regime is characterized 
by dominant convection and phase change phenomena that provide 
high heat transfer rates at small wall superheat. This is why subcooled 
flow boiling has been widely used for cooling technologies in different 
engineering applications, especially microelectronic devices. For 
example, Zangeneh et al. Field [28] theoretically and experimentally 
studied forced convection and subcooled flow boiling of CuO-water 
nanofluid to understand the influences of different parameters, 
including subcooling temperature, heat flux, nanofluid concentration, 
and fluid flow rate on the thermal performance of a vertical tube. Their 
results show that the heat transfer coefficient decreases by augmenting 
the subcooling temperature, while the behavior is the opposite for the 
fluid flow rate and heat flux. Also, heat transfer coefficients of subcooled 
flow boiling for gamma-alumina/water nanofluid was experimentally 
investigated by Karimzadehkhouei et al. [29]. Based on their results, 
heat transfer coefficients of subcooled flow boiling for nanofluids with 
low mass fractions and pure water were approximately identical. 
Nonetheless, heat transfer performance was worsened for nanofluids 
with high mass fractions because of the additional thermal resistance 
and nucleation site decrease because of the nanofluid deposition [25, 
30]. 

The disagreement on the enhancement or deterioration of nanofluid 
in flow boiling heat transfer has lasted long. Also, conducting two-phase 
flow boiling experiments or full CFD simulations require a high cost and 
time commitment. Heat transfer and thermophysical parameters like 
thermal conductivity, thermal conductivity enhancement, viscosity, 
viscosity enhancement, and heat transfer coefficient in boiling are usu-
ally a function of many independent variables including liquid and wall 
temperatures, each of them valid over a finite range of values. The 
relationship between these parameters and their relevance can be 
deduced using new computing techniques. A promising technique which 
can be applied is the use of soft-computing. In the past three decades, 
unprecedented development of soft computing techniques have been 
seen, such as Artificial Neural Networks (ANNs), Genetic Algorithm 
(GA), Genetic Programming (GP), Fuzzy-logic Control, and Data Mining, 
and its application to many scientific and engineering practices. Out of 
these, ANNs, which are inspired by biological nervous systems of 
humans, learn to perform tasks by utilizing available data, without the 
need for programmed task-specific rules. Artificial neural network 
(ANN) can achieve a universal correlation and acceptable prediction 
accuracy for all experimental data [31]. The artificial neural network 
(ANN) has been effectively implemented in numerous engineering and 
scientific practices, including data mining, pattern recognition, and 
system identification. However, limited studies have been performed to 
model flow boiling heat transfer using the ANN. In this paper, a multi-
layer perceptron (MLP) ANN with a back-propagation (BP) training al-
gorithm is applied for modeling thermophysical properties and 
subcooled flow boiling performance of Al2O3/water nanofluid in a 
horizontal tube. The MLP neural network was optimized by three novel 
swarm-based optimization algorithms, namely: Equilibrium Optimizer 
(EO), Marine Predators Algorithm (MPA), and Slime Mould Algorithm 
(SMA), to model flow boiling of Al2O3/water nanofluid. To the best of 
the authors’ knowledge, it is the first time that MLP neural network has 
been optimized by three novel swarm-based optimization algorithms to 
accurately model flow boiling heat transfer. All steps of the neural 
network’s design and the optimization process were implemented using 
MATLAB software. 

2. Data gathering 

All data used in this study for modeling five different thermophysical 
properties are obtained from previous experimental studies related to 
forced subcooled flow boiling heat transfer with Al2O3/water nanofluid 
in a horizontal tube [32–34]. The data show that nanofluid enhances the 
heat transfer coefficient by as much as 26% in the flow boiling 

Nomenclature 

yd desired output 
yg generated output 
fit fitness value 
l current iteration 
L maximum number of iteration 
ub upper bound 
lb lower bound 
N number of neuron 
F transfer function 
X optimization variables 

Greek Letters 
α leader 
β subordinates 
δ subordinates 
ω subordinates 

Subscripts 
i ith 
j jth 

Abbreviation 
HL hidden layer 
EO equilibrium optimizer 
MSE mean-square error 
BP back-propagation 
LSSVM least-squares support-vector machine 
RBF radial basis function 
GNN genetic neural network 
ANN artificial neural network 
MLP multilayer perceptron 
MPA marine predators algorithm 
SMA slime mould algorithm 
PSO particle swarm optimization  
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experimentation compared with conventional working fluids. This study 
evaluates the influences of nanofluid concentration, temperature, heat 
flux, and flow rate on thermophysical parameters of flow boiling. These 
parameters are thermal conductivity, thermal conductivity enhance-
ment, viscosity, viscosity enhancement, and heat transfer coefficient. 
3-D plots of all five parameters concerning different nanofluid concen-
trations, temperatures, heat fluxes, and flow rates are depicted in Fig. 1 
[32–34]. 

3. Neural network structure 

An artificial neural network (ANN) is an information processing 

machine invented for modeling the operation of a biological neural 
network of the brain. Neurons (the processing units of the network) are 
connected using communication links, each with an associated weight 
(the strength of the connection between units). An standard neural 
network builds from many neurons and connections [35]. The three 
principal elements of an ANN are a network architecture, a learning 
algorithm, and a transfer function. Each ANN method is different from 
the rest, according to these elements. The current study employs a 
multilayer perceptron (MLP)-type ANN model architecture with a 
back-propagation (BP) training algorithm. In the BP training algorithm, 
on the basis of the supervised learning strategy, the weights of the 
neuron’s connections are modified in accordance with the difference 

Fig. 1. 3D plots of (a) thermal conductivity, (b) thermal conductivity enhancement, (c) viscosity, (d) viscosity enhancement, and (e) heat transfer coeffi-
cient [32–34]. 
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between the desired and the predicted network outputs [36]. 
The MLP network includes an input layer, one or more hidden layers, 

and an output layer (Fig. 2). The neurons’ number in the input and 
output layers relies upon the number of input and output parameters of 
the problem. In contrast, the number of hidden layers and the number of 
neurons in each hidden layer can be chosen by the designer. Also, the 
transfer function of the neurons in the hidden and output layers can be 
selected by the designer. These selectable parameters determine the 
performance of the MLP network. To create a network with the best 
performance and lowest error, the architecture of the network has been 

optimized. The architecture parameters of this optimization problem 
consist of the neurons’ number in each hidden layer and the transfer 
function of each layer. 

This study considers the number of hidden layers as one, two, three, 
and four. Therefore, the optimization problem for the one hidden layer 
(1HL), two hidden layers (2HL), three hidden layers (3HL), and four 
hidden layers (4HL) networks has two, four, six, and eight design vari-
ables, respectively, as presented in Eqs. (1)–(4), 

X1HL = [N1,F1]T (1) 

Fig. 1. (continued). 

Fig. 2. Schematic of a neural network structure.  
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Table 1 
Input variables and the number of samples for each output in a neural network.  

Output Inputs NS 

Thermal conductivity (W/mK)  • Concentration (%)-wt. Al2O3/water  
• Temperature (◦C) 

54 

Thermal conductivity enhancement (%)  • Concentration (%)-wt. Al2O3/water  
• Temperature (◦C) 

45 

Viscosity (mPa.s)  • Concentration (%)-wt. Al2O3/water  
• Temperature (◦C) 

45 

Viscosity enhancement (%)  • Concentration (%)-wt. Al2O3/water  
• Temperature (◦C) 

45 

Heat transfer coefficient (W/m2K)  • Concentration ((%)- wt.)  
• Heat flux (kW/m2)  
• Flow rate (L/m) 

96  

Fig. 3. Classification of metaheuristic algorithms.  

Fig. 4. Typical structure of the 1HL neural network.  
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X2HL = [N1,N2,F1,F2]T (2)  

X3HL = [N1,N2,N3,F1,F2F3]T (3)  

X4HL = [N1,N2,N3,N4,F1,F2F3,F4]T (4) 

X is the optimization variables for two, three, and four hidden-layer 
networks. Ni,Fi,andTare the number of neurons, the type of the transfer 
function, and the transpose of the design variable matrix in the ith 
hidden layer, respectively. The optimization of the ANN’s performance 
is determined by the value of the mean squared error (MSE). 

MSE = 1
NS

∑(
yd − yg

)2 (5)  

where NS is the number of samples, and yd and yg are the desired and 
generated outputs, respectively. Eq. (6) presents a summary of the 
optimization problem, 

Table 2 
The best results for the 1HL network.   

N1 F1 MSE R 

Thermal Conductivity (Case 1) 4 tansig 8.1188e-07 0.99904 
Thermal Conductivity Enhancement (Case 2) 26 logsig 0.001 0.99893 
Viscosity (Case 3) 5 elliotsig 2.4214e-05 0.99945 
Viscosity Enhancement (Case 4) 16 tansig 0.5423 0.97371 
Heat Transfer Coefficient (Case 5) 9 tansig 33.7358 0.99532  

Fig. 5. Regression diagrams of the best MLP network for Case 1 with 1HL network.  
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MinMSE(X)
X : {Ni,Fi}

S.t(subject to) :
Fi ∈ {logsig, tansig, elliotsig}

i = 1, 2For 2HL network
i = 1, 2, 3For 3HL network

i = 1, 2, 3, 4For 4HL network

(6) 

In Eq. (6), it is assumed that the transfer function is selected from the 
most commonly used transfer functions in ANN; Log-sigmoid transfer 
function (sigmoid), Hyperbolic tangent sigmoid transfer function (tan-
sig), and Elliot symmetric sigmoid transfer function (elliotsig), as 
expressed in Eqs. (7)–(9). 

Flogsig(x) =
1

1 + e−x =
ex

ex + 1 (7)  

Ftansig(x) = tanh(x) = ex − e−x

ex + e−x (8)  

Felliotsig(x) =
x

1 + |x| (9) 

The upper and lower bounds for the neurons’ number in each hidden 
layer are 1 and 30, respectively, a commonly considered range in ANN- 
based modeling. The design parameters of this optimization are discrete 
variables, and the optimization algorithms must search for optimal 
variables to be integer values. The dataset is divided randomly that the 
first 70% of the collected samples are used for training, the other 15% 
for validation, and the last 15% for testing. The training dataset is used 
to train the model, and test dataset is used to test the trained model. 

It is exclusively a designer’s choice to partition datasets into training, 
testing, and validation. In general, most of the datasets are selected for 
training (typically more than 50%), and the remaining is split into two 
other sets. It is possible to select other values, not 70, but the common 
values for this separation are known to be 70%-15%-15%, as used in 
several papers [37–43]. Moreover, for training the network, the 
Levenberg-Marquardt algorithm was used. The validation error is 
checked automatically to prevent "overfitting". If the validation error is 
increased during 6 epochs in a row, the simulation is terminated. 

The coefficient of determination, R, is another important criterion in 
measuring the quality of a neural network. It can be calculated as 
follows: 

Fig. 6. Regression diagrams of the best MLP network for Case 2 with 1HL network.  
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Fig. 7. Regression diagrams of the best MLP network for Case 3 with 1HL network.  
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Fig. 8. Regression diagrams of the best MLP network for Case 4 with 1HL network.  
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R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
∑Ns

i=1
(
yd − yg

)2

∑Ns
i=1(yd − yd)

2

√√√√ (10) 

Where yd is the mean of the actual outputs. It can be concluded from 
Eq. (10) that the maximum value of R is equal to 1. This condition (R=1) 
shows that the network predicts all the outputs accurately, without any 
error. Thus, when the value of R is closer to 1, the network’s quality is 
higher. 

The optimization algorithms are used to model the following five 
flow and heat transfer parameters in subcooled flow boiling with Al2O3/ 
water nanofluid;  

• Thermal conductivity  
• Thermal conductivity enhancement  
• Viscosity  
• Viscosity enhancement 

Fig. 9. Regression diagrams of the best MLP network for Case 5 with 1HL network.  

Fig. 11. A structure of the 3HL network.  
Fig. 10. A structure of the 2HL network.  

M. Ghazvini et al.                                                                                                                                                                                                                               



Engineering Analysis with Boundary Elements 145 (2022) 363–395

373

• Heat transfer coefficient 

The input variables and the number of samples for each case are 
shown in Table 1. 

4. Optimization algorithms 

Three different metaheuristic optimization algorithms are applied to 
reduce the modeling errors. The metaheuristic algorithms solve opti-
mization problems by imitating them to biological, physical, or social 
phenomena. They could be classified into four main categories: evolu-
tion, physics, swarm, and human-based methods, as shown in Fig. 3 
[44]. Evolution-based methods are derived from the natural evolution 
laws. The strength of these methods is that the next generation of in-
dividuals is formed by combining the best current individuals. This 
enables the optimization of the population can be performed over the 
course of generations. The best known evolution-inspired method is the 
Genetic Algorithms (GA) [45] which imitate the Darwinian evolution. 
Physics-based methods mimics the physical rules in the universe. The 
best known algorithm in this group is the Simulated Annealing (SA), 
which Pincus developed in 1970 [46]. The third group consists of 
swarm-based methods that imitate the social behavior of animal groups. 
The best known algorithm in this group is the Particle Swarm Optimi-
zation (PSO), developed by Kennedy and Eberhart in 1995 [47]. It is 
inspired by the social behavior of bird flocking. There are also other 
metaheuristic methods inspired by human behaviors in the last group. 

In the current study, three recently developed metaheuristic algo-
rithms, namely, Equilibrium Optimizer (EO), Marine Predators Algo-
rithm (MPA), and Slime Mould Algorithm (SMA), appeared in 2020, are 
considered. EO falls into the physics-based algorithms, while MPA and 
SMA are categorized as swarm-based algorithms. This study applies 
these algorithms because they are novel high-performance optimizers 
that can outperform well-known algorithms such as GA and PSO 
[48–50]. By varying the design variables, we aim to minimize the MSE 
value of the MLP neural network. 

4.1. Equilibrium optimizer (EO) 

The Equilibrium Optimizer (EO) is a physics-based algorithm whose 
inspiration is a simple well-mixed dynamic mass balance on a control 
volume. The mass balance equation gives the fundamental physics for 
the conservation of mass entering, leaving, and generated in a control 
volume. A first-order ordinary differential equation stating the generic 
mass-balance equation [51], in which the mass change in time is 
equivalent to the sum of the amount of mass that enters the system plus 
the amount being generated inside and the amount that leaves the sys-
tem. In EO, each particle in a control volume (solution) with its 

Fig. 12. A structure of the 4HL network.  

Table 3 
Optimum values of the design parameters for Case 1.  

Network Algorithms Ni (number 
of neurons) 

Fi (transfer 
function) 

MSE R 

2HL EO [4 2] [logsig tansig] 2.6935e- 
07 

0.99968 

MPA [6 6] [tansig tansig] 3.6017e- 
07 

0.99958 

SMA [6 1] [tansig tansig] 8.1578e- 
07 

0.99903 

3HL EO [4 2 2] [logsig logsig 
logsig] 

3.4525e- 
07 

0.99959 

MPA [5 3 6] [logsig logsig 
tansig] 

4.2032e- 
07 

0.99950 

SMA [4 4 4] [tansig tansig 
tansig] 

1.1345e- 
06 

0.99867 

4HL EO [4 14 9 4] [elliotsig 
tansig elliotsig 
tansig] 

8.9463e- 
07 

0.99896 

MPA [5 16 22 9] [tansig tansig 
tansig logsig] 

1.2406e- 
06 

0.99862 

SMA [4 1 1 1] [tansig logsig 
tansig tansig] 

8.7855e- 
07 

0.99895  

Fig. 13. Comparison between MSE errors for Case 1 with 2HL, 3HL and 4HL networks.  
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Fig. 14. Performance evolution for Case 1.  
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concentration (position) plays as a search agent. The search agents 
arbitrarily upgrade their concentration concerning best-so-far solutions, 
namely equilibrium candidates, to achieve the equilibrium state 
(optimal result) finally. More details on EO can be found in Faramarzi 
et al. [51]. 

4.2. Marine predator algorithm (MPA) 

MPA is a swarm-based algorithm proposed by Faramarzi et al. [46], 
inspired by marine predators’ behavior, including monitor lizards, 
sharks, sunfish, and etc. [52]. Marine predator algorithm generally in-
cludes three phases. In phase 1, the prey moves faster than the predator; 
the predator adopts the Brownian movement as its predation strategy. In 
phase 2, the prey and predator move at approximately the similar speed. 

Table 4 
Comparison of the best results for Case 1.   

Ni (number of neurons) Fi (transfer function) MSE R 

1HL network [4] [tansig] 8.1188e-07 0.99904 
2HL network [4 2] [logsig tansig] 2.6935e-07 0.99968 
3HL network [4 2 2] [logsig logsig logsig] 3.4525e-07 0.99959 
4HL network [4 1 1 1] [tansig logsig tansig tansig] 8.7855e-07 0.99895  

Fig. 15. Comparison of the best results for Case 1.  
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Fig. 16. Error analysis for Case 1 with the best network.  
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The adopted strategy of the predator is to implement Brownian and Lévy 
movements at the same time. Half of the predators of the population 
carry out the Lévy movement, and the other half implement the Brow-
nian movement. In phase 3, the predator moves faster than the prey; the 
strategy adopted by the predator is the Lévy movement. More details on 
MPA and its optimization scenarios, along with the Brownian and Lévy 
movements can be found in Faramarzi et al. [46]. 

4.3. Slime mould algorithm (SMA) 

SMA is a swarm-based algorithm, and the slime mould is classified as 
a fungus with a venous network to find food. The slime mould can 
approach food according to the odor in the air, then the contraction of 
the venous tissue wraps food contacted by vein. Without having any 
brain or neurons, slime moulds are exceptionally brilliant, capable of 
solving complex computational problems with high efficiency [53]. The 
slime mould can memorize, make motion decisions and contribute to 
changes [54]. This organism can optimize the form of its network as 
time passes by getting more information [54]. They take three main 
steps; (1) approach food based on the odor in the air, (2) wrap food by 
the venous tissue, and (3) propagate wave by the biological oscillator, so 
that they tend to be in a better position of food concentration. Hereto-
fore, the SMA solved many real-world optimization problems in industry 
and science better than many competitive algorithms such as PSO. For 
example, the SMA integrated with other population-based solvers is 
used for COVID-19 chest X-ray images [55]. More details on SMA can be 
found in Li et al. [50]. 

5. Result and discussion 

5.1. Results for the networks with one hidden layer (1HL) 

We use the results with 1HL network to compare them with those in 
two, three, and four hidden layers networks. Fig. 4 depicts the typical 
structure of the 1HL network where the optimization problem has two 
design variables, X = [N1, F1]T. By considering different N1 and F1 values 
in 1~30 and 1~3, respectively, the problem has 90 different combina-
tions. From the results, one can select the optimal design variables with 
minimum MSE without any optimization. Wi and bi are weight and bias, 
respectively. The transfer function in neural networks takes an input 
multiplied by a weight ’Wi’. Bias (bi) allows for shifting of the transfer 
function by adding a constant (i.e., the given bias) to the input. Table 2 
shows the best results (i.e., the minimum MSE) for five different ther-
mophysical properties using the 1HL network, where R is the regression 
value for all data. 

Figs. 5–9 show the regression diagrams for the best MLP network 
with 1HL, based on the specifications in Table 2, for all five thermo-
physical parameters. These diagrams show that an MLP network with 1 
HL can predict the desired outputs with R > 0.97371. The best result is 
for Case 3 (R = 0.99945), while the worst is for Case 4 (R = 0.97371) 

5.2. Optimizing the networks with two, three, and four hidden layers 

This section considers and optimizes the MLP neural network with 
two hidden layers (2HL), three hidden layers (3HL), and four hidden 
layers (4HL) using the aforementioned optimization algorithms. 
Figs. 10–12 show the typical structure of the 2HL, 3HL, and 4HL net-
works. The population sizes and the maximum iterations for all cases are 
chosen as 10 and 100 for the optimization process. 

Table 5 
Optimum values of the design parameters in Case 2.  

Network Algorithms Ni (number of neurons) Fi (transfer function) MSE R 

2HL EO [9 30] [tansig logsig] 6.3315e-04 0.99935 
MPA [4 6] [logsig tansig] 8.6517e-04 0.99917 
SMA [7 1] [tansig tansig] 8.0538e-04 0.99918 

3HL EO [9 2 1] [logsig elliotsig elliotsig] 7.9801e-04 0.99919 
MPA [7 2 1] [tansig logsig tansig] 9.3501e-04 0.99904 
SMA [5 1 1] [tansig tansig tansig] 1.0937e-03 0.99889 

4HL EO [7 30 17 6] [logsig tansig logsig tansig] 1.0461e-03 0.99917 
MPA [6 7 3 3] [logsig logsig logsig logsig] 8.5247e-04 0.99913 
SMA [6 1 1 2] [tansig elliotsig tansig tansig] 1.2113e-03 0.99883  

Fig. 17. Comparison between MSE errors for Case 2.  
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Fig. 18. Performance evolution for Case 2.  
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5.2.1. Case 1: thermal conductivity 
The optimization results of thermal conductivity of Al2O3/water 

nanofluid using the MLP network with 2HL, 3HL, and 4HL, associated 
with three different algorithms including EO, MPA, and SMA, are pre-
sented in Table 3. The optimal networks, their MSE values, and the 
regression value are also shown. Fig. 13 compares MSE values of all 

applied algorithms with different hidden layer networks. This figure 
shows that the EO and MPA algorithms in the 2HL and 3HL networks 
perform better (lower MSE) than the 4HL network. Fig. 14 shows the 
progression of changes and reduction of MSE along with iterations for all 
three optimization algorithms. It must be noticed that the initial popu-
lation in these methods is randomly created, which makes the starting 

Table 6 
Comparison of the best results for Case 2.   

Ni (number of neurons) Fi (transfer function) MSE R 

1HL network [26] [logsig] 0.001 0.99893 
2HL network [9 30] [tansig logsig] 6.3315e-04 0.99935 
3HL network [9 2 1] [logsig elliotsig elliotsig] 7.9801e-04 0.99919 
4HL network [6 7 3 3] [logsig logsig logsig logsig] 8.5247e-04 0.99913  

Fig. 19. Comparison of the best results for Case 2.  
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Fig. 20. Error analysis for Case 2 with the best network.  
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points of the different algorithms different. The following could be 
observed from these results.  

• In the 2HL and 3HL MLP networks, the EO and MPA algorithms 
perform better than the SMA algorithm.  

• The SMA and EO algorithms provide better results than the MPA 
algorithm in the 4HL network optimization.  

• The EO algorithm with the 2HL network consisting of the number of 
neurons Ni = [42] and the transfer functions Fi = [logsigtansig]has 
the lowest MSE value.  

• In comparison among the transfer functions, the tansig transfer 
function is seen more than the other two in the optimal networks.  

• Generally, the results of the EO algorithm have been better than the 
other two for the thermal conductivity output.  

• As the number of hidden layers increases from 2 to 4, the MSE also 
increases. 

Table 4 shows the comparison of the best results based on the 
number of hidden layers. This table is obtained by checking all possible 
scenarios for 1HL network and then performing the optimization with 
2HL, 3HL, and 4HL. Fig. 15 compares MSE and R values of the best 

results in different scenarios. These results show that the network with 
2HL has the best performance and creates the least error. Therefore, by 
increasing the number of hidden layers from 2 to 4, the MSE increase, 
and the R values decrease. 

According to these results, the best network obtained for this prob-
lem is the network with 2HL; the number of neurons Ni = [42] and 
transfer functions Fi = [logsigtansig] obtained from the EO algorithm. 
Fig. 16 shows the results of error analysis in this optimal network, and 
Fig. 16a shows the regression diagram for the training, validation, and 
test datasets. The value of R = 0.99968 indicates that the obtained 
optimal network simulates the desired problem with the least error. 
Fig. 16b shows the absolute error of the modeling for the thermal con-
ductivity output. The x-axis is the absolute error of the modeling, which 
is the difference between the target and predicted values in the neural 
network, and the y-axis is thermal conductivity. 

Fig. 16b shows that the maximum error is less than 1.5 × 10−3. 
Fig. 16c shows the error histogram representing the errors between 
target and predicted values in the neural network. This histogram in-
dicates how predicted values are close to the target values and how the 
errors from the neural network are distributed. The sign of the error 
shows the direction of the bias. The positive error means the outputs are 
smaller than the targets, and the negative error means that the targets 
are larger than the outputs. Generally, the error distribution diagram 
follows the normal distribution for a precise model. Based on Fig. 16c, 
the error frequency accumulates mostly in the zero-axis error range, 
which makes a symmetric graph and shows that the methods have an 
excellent performance in estimating the thermal conductivity behavior 
in the subcooled flow boiling. Notice that the "zero error" line separates 
negative and positive values. 

5.2.2. Case 2: thermal conductivity enhancement 
Table 5 shows the results of the MLP network optimization with 2HL, 

3HL, and 4HL, MSE values, and the regression values (R) for thermal 
conductivity enhancement. Fig. 17 shows the comparison between the 
MSE values of different algorithms with different hidden layer networks. 
Fig. 18 shows the progression of changes and reduction of MSE along 
with iterations for all three optimization algorithms. The following 
could be observed from these results.  

• The EO algorithm performs better with the 2HL and 3HL networks 
than the 4HL network.  

• The MPA and EO algorithms perform better results than SMA in the 
optimization of the 4HL network. 

Table 7 
Optimum values of the design parameters for Case 3.  

Network Algorithms Ni (number 
of neurons) 

Fi (transfer 
function) 

MSE R 

2HL EO [7 3] [logsig logsig] 5.2145e- 
06 

0.99988 

MPA [9 3] [tansig logsig] 7.6667e- 
06 

0.99984 

SMA [6 6] [logsig logsig] 1.0079e- 
05 

0.99977 

3HL EO [6 16 1] [tansig logsig 
elliotsig] 

4.6373e- 
06 

0.9999 

MPA [2 19 13] [tansig logsig 
tansig] 

5.7627e- 
06 

0.99987 

SMA [18 18 18] [logsig logsig 
logsig] 

1.3893e- 
05 

0.99971 

4HL EO [4 29 1 1] [tansig 
elliotsig tansig 
elliotsig] 

5.9626e- 
06 

0.99986 

MPA [4 1 1 4] [tansig logsig 
elliotsig 
logsig] 

6.3280e- 
06 

0.99986 

SMA [7 7 7 7] [tansig tansig 
tansig tansig] 

2.2263e- 
05 

0.99955  

Fig. 21. Comparison between MSE values for Case 3.  
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Fig. 22. Performance evolution for Case 3.  
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• The EO algorithm with the 2HL network consisting of the number of 
neurons Ni = [930] and the transfer functions Fi = [tansiglogsig] has 
the lowest MSE value.  

• In comparison among the transfer functions, tansig and logsig are 
more commonly seen in optimal networks than elliotsig.  

• The EO algorithm performs better than the other two algorithms.  

• As the number of hidden layers increases from 2 to 4, the network 
error also increases. 

Table 6 shows the comparison between the best results based on the 
number of hidden layers. The least MSE value can be obtained using the 
2HL network, which is 6.3315 × 10−4. Fig. 19 compares the best results 
based on the MSE and R values. According to these results, the network 
with 2HL has the best performance and creates the least error among all 
the networks. Therefore, by increasing the number of hidden layers from 
2 to 4, the MSE values increase, and the R values decrease. 

Based on these results, the best network obtained for this problem 
was the network with 2 hidden layers optimized by the EO algorithm. 
The number of neurons and the transfer functions isNi = [930]and Fi =
[tansiglogsig], respectively. Fig. 20 shows the results of error analysis in 
this optimal network. Fig. 20a shows the regression diagram for the 
training, validation, and test datasets close to 1 (R=0.99935), showing 
that the network can accurately model the desired output. The amount 
of error for the thermal conductivity enhancement and the error 

Table 8 
Comparison of the best results for Case 3.   

Ni (number of 
neurons) 

Fi (transfer function) MSE R 

1HL 
network 

[5] [elliotsig] 2.4214e- 
05 

0.99945 

2HL 
network 

[7 3] [logsig logsig] 5.2145e- 
06 

0.99988 

3HL 
network 

[6 16 1] [tansig logsig 
elliotsig] 

4.6373e- 
06 

0.9999 

4HL 
network 

[4 29 1 1] [tansig elliotsig tansig 
elliotsig] 

5.9626e- 
06 

0.99986  

Fig. 23. Comparison of the best results for Case 3.  

M. Ghazvini et al.                                                                                                                                                                                                                               



Engineering Analysis with Boundary Elements 145 (2022) 363–395

384

Fig. 24. Error analysis for Case 3 with the best network.  
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histogram are shown in Fig. 20-b and 20-c, respectively. The value of R 
= 0.99935 and the displayed errors indicate that the obtained optimal 
network could simulate the desired problem with the least error. 

5.2.3. Case 3: viscosity 
The optimization results of viscosity are presented in Table 7. The 

comparison between MSE values of different algorithms with different 
hidden layers networks is also shown in Fig. 21. Fig. 22 shows the 
progression of changes and reduction of MSE along with iterations for all 
three optimization algorithms. The following could be observed from 
these results.  

• In optimization for all three types of networks (2HL, 3HL, and 4HL), 
the EO algorithm followed by the MPA algorithm has obtained better 
results than SMA.  

• The SMA algorithm has the worst performance in all three types of 
networks.  

• The EO algorithm with the 3HL network consisting of the number of 
neurons Ni = [6161]and the transfer functions Fi = [tansiglogsi-
gelliotsig] has the lowest MSE value.  

• In comparison among transfer functions, tansig and logsig functions 
are seen more than elliotsig in optimal networks.  

• A network with 3HL leads to the lowest MSE for this problem. 

Table 8 shows the comparison between the best results based on the 
number of hidden layers. This table shows that the best network for this 
problem is the 3HL network, whose MSE value is 4.6373 × 10−6. Fig. 23 
also compares MSE and R values of the best results in different scenarios. 
These results show that the number of hidden layers for this problem 
should be more than 1 to achieve a lower MSE. Also, the difference 
between optimal networks with 2HL, 3HL, and 4HL is small, but a 

network with 3HL is the most appropriate network and leads to the least 
error. 

As mentioned, the best network obtained for this problem is the 
network with 3HL optimized by the EO algorithm, in which the number 
of neurons and transfer functions are Ni = [6161] and Fi = [tansi-
glogsigelliotsig], respectively. Fig. 24 shows the results of error analysis 
in this optimal network, and Fig. 24-a shows the regression diagram for 
all the output data. Also, the amount of error and the error histogram in 
training, test, and validation datasets are shown in Fig. 24-b and 24-c, 
respectively. The value of R= 0.9999 and the displayed errors indicate 
that the obtained optimal network was able to model the desired 
problem with the least error. 

5.2.4. Case 4: viscosity enhancement 
The optimization results of viscosity enhancement, including 

optimal networks, their MSE values, and the regression value (R), are 
presented in Table 9. Fig. 25 shows the comparison between the MSE 
values of all applied optimization algorithms for viscosity enhancement 
with different hidden layers networks. Fig. 26 shows the progression of 
changes and reduction of MSE along with iterations for all three opti-
mization algorithms. The following results can be summarized based on 
the findings:  

• The MPA algorithm followed by the EO algorithm performs better in 
optimizing 2HL and 3HL networks than the SMA algorithm.  

• The EO and the MPA algorithms provide better results in the 4HL 
network optimization than the SMA.  

• Overall, the MPA algorithm achieves the best result (lower MSE 
value) for modeling the viscosity enhancement data.  

• The SMA algorithm has the weakest performance in all three types of 
networks. 

Table 9 
Optimum values of the design parameters for Case 4.  

Network Algorithms Ni (number of neurons) Fi (transfer function) MSE R 

2HL EO [18 25] [tansig tansig] 0.1423 0.99302 
MPA [30 11] [logsig logsig] 0.0685 0.99666 
SMA [26 30] [logsig logsig] 0.1812 0.99140 

3HL EO [23 20 14] [elliotsig logsig logsig] 0.0667 0.99677 
MPA [30 12 2] [logsig tansig logsig] 0.0598 0.99707 
SMA [29 28 18] [logsig tansig elliotsig] 0.1269 0.99405 

4HL EO [26 27 14 13] [logsig logsig tansig tansig] 0.1208 0.99421 
MPA [30 14 11 14] [logsig tansig tansig logsig] 0.1280 0.99378 
SMA [23 17 22 18] [logsig tansig tansig tansig] 0.1456 0.99382  

Fig. 25. Comparison between MSE values for Case 4.  
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Fig. 26. Performance evolution for Case 4.  
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• The MPA algorithm with the 3HL network consisting of the number 
of neurons Ni = [30122] and transfer functions Fi = [logsigtansi-
glogsig] has the lowest MSE value.  

• In comparison among transfer functions, the elliotsig function is less 
seen than the other two in optimal networks.  

• The network with 3HL has better performance (lower MSE values) 
for this problem. 

Table 10 shows the comparison between the best results based on the 
number of hidden layers. Fig. 27 also compares the best results based on 
MSE and R values. It can be concluded that the number of hidden layers 
must be more than 1 to have a model with a low MSE value. Also, it 
should be noticed that although the difference between optimal net-
works with two and three hidden layers is small, a network with three 
hidden layers is the most appropriate network, which leads to the least 
error. 

Table 10 
Comparison of the best results for Case 4.   

Ni (number of neurons) Fi (transfer function) MSE R 

1HL network [16] [tansig] 0.5423 0.97371 
2HL network [30 11] [logsig logsig] 0.0685 0.99666 
3HL network [30 12 2] [logsig tansig logsig] 0.0598 0.99707 
4HL network [26 27 14 13] [logsig logsig tansig tansig] 0.1208 0.99421  

Fig. 27. Comparison of the best results for Case 4.  
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Fig. 28. Error analysis for Case 4 with the best network.  

M. Ghazvini et al.                                                                                                                                                                                                                               



Engineering Analysis with Boundary Elements 145 (2022) 363–395

389

According to Table 7 and Fig. 27, the best network for modeling the 
viscosity enhancement is the network with 3HL derived from the MPA 
algorithm. In this network, the number of neurons and the transfer 
functions are Ni = [30122] and Fi = [logsigtansiglogsig], respectively. 
Fig. 28 examines the error in this optimal network. Fig. 28-a shows the 
regression diagram for all the output data. Table 2 shows that the vis-
cosity enhancement output is the most difficult of the five problems 
discussed since it has a lower R-value than other parameters. The error 
rates at different outputs and the error histograms are shown in Figs. 28- 
b and 28-c, respectively, indicating that the obtained optimal network 
has acceptable accuracy and can model the desired output. 

5.2.5. Case 5: heat transfer coefficient 
The optimization results of the heat transfer coefficient are presented 

in Table 11. Also, the comparison between MSE values of all three 
optimization algorithms for the heat transfer coefficient with different 
hidden layers networks is represented in Fig. 29. Fig. 30 shows the 
progression of changes and reduction of MSE along with iterations for all 
three optimization algorithms. The following could be observed from 
these results.  

• The MPA algorithm followed by the SMA algorithm performed better 
in optimizing 2HL and 3HL networks compared with the EO 
algorithm.  

• The SMA and EO algorithms perform better than the MPA (lower 
MSE and higher R) in 4HL network optimization.  

• The SMA algorithm performs better for modeling the heat transfer 
coefficient than the previous 4 problems.  

• Compared to the previous 4 problems, the EO algorithm performs 
worse in this problem.  

• The MPA algorithm with the 2HL network consisting of the number 
of neurons Ni = [411] and the transfer functions Fi = [tansigtansig] 
has the lowest MSE value.  

• Based on Fig. 29, the network with 2HL has the best performance for 
this problem. 

Table 12 shows the comparisons between the best results based on 
the number of hidden layers. Fig. 31 also compares the best results based 
on MSE and R values. According to these results, the network with 2HL 
has the best performance, which leads to the least error. Therefore, by 
increasing the number of hidden layers from 2 to 4, the MSE values 
increase, and the R values decrease. 

Based on Table 12 and Fig. 31, the best network for this problem is 
the 2HL network with the number of neurons Ni = [411]and transfer 
functions Fi = [tansigtansig] derived from the MPA algorithm. Fig. 32 
examines the error in this optimal network. Fig. 32-a shows the 
regression diagram for the training, validation, and test datasets. The 
value of R=0.99858 indicates that the obtained optimal network can 
model the desired problem with an acceptable error. Also, the amount of 
error in different datasets and the error histogram are shown in Fig. 32-b 
and 32-c, respectively. 

6. Comparison between different cases 

In this study, the actual data (and not the normalized data) of the 
flow boiling of Al2O3/water nanofluids in a horizontal tube (5 outputs in 
Table 1) has been used. Therefore the MSE values of the networks are 
very different in the 5 different problems. In other words, the MSE 
values are in different ranges. Hence, the R values of each optimization 
are used to compare the results from different cases—the closer the R- 
value to 1, the better the network’s performance. 

Table 11 
Optimum values of the design parameters for Case 5.  

Network Algorithms Ni (number of neurons) Fi (transfer function) MSE R 

2HL EO [11 3] [tansig elliotsig] 14.1977 0.99805 
MPA [4 11] [tansig tansig] 10.2501 0.99858 
SMA [8 3] [tansig elliotsig] 13.1251 0.99819 

3HL EO [3 22 17] [logsig logsig logsig] 17.9319 0.99757 
MPA [4 9 4] [tansig elliotsig elliotsig] 14.7558 0.99802 
SMA [5 21 27] [tansig logsig logsig] 16.9460 0.99765 

4HL EO [4 13 20 4] [logsig logsig tansig tansig] 27.3904 0.99626 
MPA [5 9 12 11] [tansig logsig tansig tansig] 30.6425 0.99578 
SMA [4 28 3 2] [logsig logsig elliotsig elliotsig] 20.3954 0.99719  

Fig. 29. Comparison between MSE errors for Case 5.  
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Fig. 30. Performance evolution for Case 5.  
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Fig. 33 summarizes the R values for the optimal networks of 5 out-
puts with the three optimization algorithms. It clearly shows that the 
applied MLP networks and the optimizations can model the values of the 
thermal conductivity, thermal conductivity enhancement, and viscosity 
better than the other two outputs, namely viscosity enhancement and 
heat transfer coefficient. In comparison between these outputs, the best 
performance of the model is the viscosity, while the weakest 

performance is related to the viscosity enhancement. 
Table 13 compares the optimization results for the 5 outputs from 

another perspective: which type of network is the best and which al-
gorithm has extracted the optimal network. Recall from the results of the 
previous sections that the EO algorithm achieves the best network for 
the first three outputs, thermal conductivity, thermal conductivity 
enhancement, and viscosity. In comparison, the MPA algorithm extracts 

Table 12 
Comparison of the best results for Case 5.   

Ni (number of neurons) Fi (transfer function) MSE R 

1HL network [9] [tansig] 33.7358 0.99532 
2HL network [4 11] [tansig tansig] 10.2501 0.99858 
3HL network [4 9 4] [tansig elliotsig elliotsig] 14.7558 0.99802 
4HL network [4 28 3 2] [logsig logsig elliotsig elliotsig] 20.3954 0.99719  

Fig. 31. Comparison of the best results for Case 5.  
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Fig. 32. Error analysis for Case 5 with the best network.  
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the optimal network for the other two outputs, viscosity enhancement 
and heat transfer coefficient. Also, the network with 2HL is the best for 
the thermal conductivity, thermal conductivity enhancement, and heat 
transfer coefficient. In contrast, the network with 3HL performs the best 
performance for the viscosity and viscosity enhancement. 

Fig. 34 shows another comparison between the three optimization 
algorithms concerning the mean value of R between 15 different 
implementations, corresponding to Fig. 33. It can be seen that the MPA 
and EO algorithms are significantly better than the SMA algorithm for 
modeling the flow boiling of Al2O3/water nanofluid in a horizontal tube. 

7. Conclusion 

In this paper, a multilayer perceptron (MLP) ANN with a back- 
propagation (BP) training algorithm is applied for modeling thermo-
physical properties and subcooled flow boiling performance of Al2O3/ 
water nanofluid in a horizontal tube. The modeling data focuses on the 
influences of the nanofluid concentration, heat flux, and flow rate on 
different thermophysical parameters, including thermal conductivity, 
thermal conductivity enhancement, viscosity, viscosity enhancement, 
and heat transfer coefficient are investigated. Specifically, flow boiling 
of Al2O3/water nanofluid in a horizontal tube with the MLP neural 

network optimized by three novel swarm-based optimization algo-
rithms, namely: Equilibrium Optimizer (EO), Marine Predators Algo-
rithm (MPA), and Slime Mould Algorithm (SMA), is modeled. To 
evaluate the effectiveness of different optimization models, the MSE and 
R values that allow us to determine the best optimization network are 
calculated and compared. The results of MLP network optimization with 
three algorithms are summarized as follows:  

• The applied neural network and the optimizations can model the 
values of the thermal conductivity, thermal conductivity enhance-
ment, and viscosity better than the other two outputs, namely vis-
cosity enhancement and heat transfer coefficient. In comparison 
between these outputs, the best performance of the model is the 
viscosity values, while the worst performance is related to the vis-
cosity enhancement. 

• By comparing the optimization results for the 5 outputs, the EO al-
gorithm performs the best for the thermal conductivity, thermal 
conductivity enhancement, and viscosity, while the MPA algorithm 
extracts the optimal network for the viscosity enhancement and heat 
transfer coefficient. 

• In optimization with 2HL and 3HL networks for the thermal con-
ductivity, the EO and the MPA algorithms perform better than the 
SMA algorithm.  

• The EO algorithm with 2HL is the best network for modeling the 
thermal conductivity and thermal conductivity enhancement.  

• The EO algorithm with 3HL is the best network for modeling the 
viscosity. 

• The MPA algorithm with 3HL is the best network to model the vis-
cosity enhancement, while the MPA with 2HL is the best network for 
modeling the heat transfer coefficient. 

In general, the comparison of the three optimization algorithms in 

Fig. 33. Optimal network’s R-value for different cases.  

Table 13 
Best network and algorithm for each output.  

Best Algorithm Best Network Output of the system 

EO 2HL Thermal Conductivity 
EO 2HL Thermal Conductivity Enhancement 
EO 3HL Viscosity 
MPA 3HL Viscosity Enhancement 
MPA 2HL Heat Transfer Coefficient  
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terms of the mean value of R between 15 different implementations 
shows that the MPA and EO algorithms are significantly better than the 
SMA algorithm for modeling the flow boiling of Al2O3/water nanofluid 
in a horizontal tube. 
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