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AN ALGORITHM FOR IDENTIFYING EIGENVECTORS

EXHIBITING STRONG SPATIAL LOCALIZATION

JEFFREY S. OVALL AND ROBYN REID

Abstract. We introduce an approach for exploring eigenvector localization
phenomena for a class of (unbounded) selfadjoint operators. More specifically,
given a target region and a tolerance, the algorithm identifies candidate eigen-
pairs for which the eigenvector is expected to be localized in the target region
to within that tolerance. Theoretical results, together with detailed numerical
illustrations of them, are provided that support our algorithm. A partial real-
ization of the algorithm is described and tested, providing a proof of concept
for the approach.

1. Introduction

This paper concerns the development of new computational methods for explor-
ing eigenvector localization phenomena for selfadjoint elliptic eigenvalue problems,

Lψ .
= −∇ · (A∇ψ) + V ψ = λψ in Ω, ψ = 0 on ∂Ω,ψ #≡ 0 in Ω,(1)

where Ω ⊂ Rd is a bounded, connected open set, V ∈ L∞(Ω) is non-negative, and
there are constants c, C > 0 such that the symmetric matrix A : Ω → Rd×d satisfies

cvtv ≤ vtA(x)v ≤ Cvtv for all v ∈ Rd and a.e. x ∈ Ω.

When d = 2, we require A ∈ [L∞(Ω)]d×d; and when d > 2, we require that A
is uniformly Lipschitz in each of its components. The operator L is viewed as
an unbounded operator on L2(Ω), with domain Dom(L) = {v ∈ H1

0 (Ω) : Lv ∈
L2(Ω)}. We denote the (real) spectrum of L by Spec(L), and recall that it consists
of a sequence, infΩ V < λ1 < λ2 ≤ λ3 ≤ · · · , that has no finite accumulation
points. Furthermore, the eigenspace E(λ, L) = {v ∈ Dom(L) : Lv = λv} is finite
dimensional for each λ ∈ Spec(L).

The assumptions on L guarantee that it has the unique continuation property (cf.
[1, 17, 24]), i.e. any function v ∈ H1(Ω) satisfying Lv = 0 in Ω that vanishes on a
non-empty open subset of Ω must vanish identically on Ω. A simple consequence of
this is that no eigenvector ψ of (1) may vanish identically on any open subset of Ω.
However, it may be the case that nearly all of the “mass” of an eigenfunction ψ is
concentrated in a non-empty, open, proper subset R of Ω. In this case, we say that ψ
is localized in R. For convenience, we will refer to a non-empty, open, proper subset
R of Ω as a subdomain of Ω. We now quantify what we mean by localization in R.
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Given a function v ∈ L2(Ω) and a subdomain R, the complementary quantities

δ(v, R) = ‖v‖L2(Ω\R)/‖v‖L2(Ω) , τ (v, R) = ‖v‖L2(R)/‖v‖L2(Ω),(2)

provide measures of localization/concentration of v within the subdomain R. Clearly,

δ2(v, R) + τ2(v, R) = 1, δ(v, R) = τ (v,Ω \ R), τ (v, R) = δ(v,Ω \ R),

and we have δ(ψ, R), τ (ψ, R) ∈ (0, 1) for eigenvectors ψ and any subdomain R.
Given a tolerance δ∗ ∈ (0, 1/2), we say that v is localized in R with tolerance δ∗ if
δ(v, R) ≤ δ∗ or, equivalently, τ (v, R) ≥

√
1 − (δ∗)2. Note that we do not require

that R is connected, although it will be in many applications.
Localization of eigenvectors may occur due to properties of the coefficients A

and V , the shape of the domain, and/or the boundary conditions. A 2013 overview
of the geometric structure of eigenvectors for L = −∆ that highlights eigenvector
localization due to domain geometry is provided in [21] (see also [12,23,36,39]). In
a series of recent articles [4–6, 16], starting in 2012, the authors investigate local-
ization due to highly discontinuous potentials V (“disordered media”), providing
some theoretical insight into the mechanisms driving localization, a novel numerical
method for approximating likely subdomains in which localization may occur, and
a simple estimate of the smallest eigenvalue whose eigenvector is localized in each
such subdomain. In [16], the authors state that

“. . . there has been no general theory able to directly determine for
any domain and any type of inhomogeneity the precise relationship
between the geometry of the domain, the nature of the disorder, and
the localization of vibrations, to predict in which subregions one can
expect localized standing waves to appear, and in which frequency
range.”

Although progress has been made by these authors and others (cf. [2,3,30,35,45]) in
the meantime, there is still room for improvement, particularly on the algorithmic
front. We describe the computational approaches of [4] and [2, 3], which are pre-
sented for Schrödinger operators L = −∆+V , before giving a summary description
of our own.

Central to the work in [4–6, 16] is the so-called landscape function u for L. The
following basic result, which is stated in each of these works, and can be proved
by applying the Maximum Principle to w± = λ‖ψ‖L∞(Ω)u ± ψ, provides pointwise
bounds on an eigenvector in terms of its eigenvalue and the landscape function.

Proposition 1.1. Let (λ,ψ) be an eigenpair of (1). It holds that

|ψ(x)| ≤ λu(x)‖ψ‖L∞(Ω)(3)

pointwise in Ω, where u ∈ Dom(L), satisfies Lu = 1 in Ω.

An outline of the computational approach from [4] is:

(a) Compute the landscape function u.
(b) Determine several or all local minima of the associated effective potential

W = 1/u, Wk = W (xk) for 1 ≤ k ≤ N , with Wk ≤ Wk+1.
(c) Estimate N eigenvalues as λ̃k = (1 + d/4)Wk. The factor (1 + d/4) is

supported empirically and heuristically.
(d) Choose the set Rk to be the connected component of {x ∈ Ω : W (x) ≤ E}

that contains xk, where E ≥ λ̃k is a parameter to be set by the user. It is
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EIGENVECTOR LOCALIZATION 1007

expected that δ(ψ, Rk) is small, where ψ is an eigenvector associated with
the eigenvalue of L estimated by λ̃k.

We highlight a few features of this approach. The most obvious is that it does
not involve the (approximate) solution of any eigenvalue problems; only the solu-
tion of a single source problem is required. From this, estimates (as opposed to
convergent approximations) of several eigenvalues are computed, together with lo-
calization regions for eigenvectors whose eigenvalues are near the given estimates.
Eigenvector approximations are not provided, though the authors mention solving
for the smallest eigenpair of L with homogeneous Dirichlet conditions on Rk, or
some slightly larger region, as an option. We note that λ̃k, 1 ≤ k ≤ N , are not
necessarily estimates of the first N eigenvalues of L. For example, there may be
multiple eigenvectors that are localized in one or more of the regions R1, . . . , Rk

whose eigenvalues are smaller than the smallest eigenvalue having an eigenvector
localized in Rk+1. We emphasize that the method of [4] estimates only the smallest
eigenvalue having an eigenvector localized in each of its determined subdomains R;
we will refer to this eigenvalue (or eigenpair) as the ground state for R.

In contrast, the approach of [2, 3] aims to compute localized eigenvectors (and
their eigenvalues), together with their localization regions, by a two-phase iterative
process. Given a highly disordered, but structured, potential V , a fine mesh T ε is
generated that is deemed suitable for resolving the lowermost part of the spectrum
of L via a finite element method—the user determines the number N of eigenpairs
sought. A (much) coarser mesh T H , of which T ε is a refinement, is used in the first
phase of the algorithm, whose aim is to provide regions of localization, together with
a basis for a rough approximation of the space in which approximate eigenpairs will
be computed during the second phase. Starting with finite element hat functions
associated with the vertices of T H (there should be at least 3N of them), a few
approximate inverse iterations, using one preconditioned conjugate gradient (PCG)
step per iteration, are performed during phase one, with a mechanism involving
Rayleigh quotients and a parameter η ∈ (0, 1) used to pair down the set of functions
after each iteration. At the end of phase one, a basis for a coarse subspace of
dimension at least 3N is obtained. Since T ε is a refinement of T H the functions
obtained in phase one are already finite element functions (of the same degree) on
T ε. In phase two, a few steps of approximate inverse iteration are again used on
the finer discretization, starting with the functions obtained from phase one; this
time, however, three PCG steps are used per iteration. After each inverse iteration,
approximate eigenpairs are obtained by a Rayleigh-Ritz procedure on the remaining
set of functions, and a similar mechanism is used to pair down the set of functions
(if needed) for the next iteration. At the end of phase two, a set of at least 2N
approximate eigenpairs is obtained, and the first N of them are kept. Variations
on this basic algorithm are presented in [3], and the description above comes from
Algorithm 1 in that paper. This algorithm is clearly more sophisticated and costly
than that described above from [4], but it does provide approximations of eigenpairs,
not just eigenvalues, and the quality of these approximations can be controlled by
parameters in the discretization. Additionally, this algorithm can find more than
one eigenvector that is localized in a given region, which was not the case for the
approach of [4]. However, the authors note that their algorithm assumes that the
first N eigenvectors are localized, which is a reasonable assumption for the highly
disordered potentials they consider, but might be problematic for problems in which

Licensed to Portland St Univ. Prepared on Fri Apr 28 09:36:37 EDT 2023 for download from IP 131.252.96.10.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1008 J. OVALL AND R. REID

other factors, such as domain geometry, are dominant drivers of localization. The
approach of [4] does not assume that the first N eigenfunctions are localized, but
is currently limited to computing estimates of as many eigenvalues and localization
subdomains as there are local minima of W = 1/u.

Both approaches discussed above are aimed at the lower part of the spectrum,
and are best suited to situations in which this part of the spectrum contains many
localized eigenvectors. Additionally, these approaches offer no a priori control of
how strongly localized an eigenvector ψ should be in a localization subdomain R
determined by their algorithms, i.e. how small δ(ψ, R) should be, in order to con-
sider it “localized enough”. Our approach puts this consideration at the forefront,
and targets the following fundamental task:

(T)
Given a subdomain R, an interval [a, b] and a (small) tolerance δ∗ > 0, find
all eigenpairs (λ,ψ) for which δ(ψ, R) ≤ δ∗ and λ ∈ [a, b], or determine
that there are not any.

One might obtain reasonable candidates for such an R using a landscape function
approach, as in [4], or the first phase of Algorithm 1 in [3], but for our purposes
we will just assume an R is given. If [a, b] contains relatively few eigenvalues of L
(counted by multiplicity), this task can be accomplished reasonably efficiently using
existing technology: just compute (approximate) all eigenpairs (λ,ψ) for λ ∈ [a, b]
by your favorite method, and check δ(ψ, R) for each. However, if [a, b] contains
many eigenvalues of L, or we have no a priori sense of how many eigenvalues
it contains, an approach that automatically filters out eigenvectors that are not
localized in R is desirable. Drawing inspiration from the work of Marletta [37, 38]
on combating the effects of spectral pollution in computing eigenvalues for operators
having essential spectrum, we also consider a complex-shifted version of the operator
(though our operator L has no essential spectrum). More specifically, given a
subdomain R and a number s > 0, we define the operator Ls by

Ls = L + isχR , Dom(Ls) = Dom(L).(4)

The intuition behind our approach is that, if (λ,ψ) is an eigenpair of L with ψ highly
localized in R, then there ought to be an eigenpair (µ,φ) of Ls with µ near λ + i s
and φ near ψ. This intuition will be justified theoretically in Section 2. With this
in mind, our algorithm template, Algorithm 1, begins by finding eigenpairs (µ,φ)
of Ls for which +µ is near s. These eigenpairs of Ls are then “post-processed” to
find eigenpairs (λ,ψ) of L for which ψ is likely to be localized in R. The parameter
δ∗ governs both whether +(µ) is “near enough” to s and whether δ(ψ, R) is “small
enough”.

The rest of the paper is outlined as follows. In Section 2, we establish the key
theoretical results that naturally lead to an algorithm template for (T), and il-
lustrate several of the results and ideas of this section via two 1D examples for
which discretization is not needed for computing eigenpairs of L and Ls. The al-
gorithmic template itself is given in Section 3, together with a description of one
reasonable choice for computing eigenpairs of Ls that lie in a target region—the
FEAST method. Section 4 contains several experiments illustrating the perfor-
mance of a practical realization of the algorithm using finite element discretizations
to approximate eigenpairs. In Section 5 we offer a few concluding remarks.
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2. Theoretical Results and Illustrations

Given a proper subdomain R and an s > 0, we now explain and justify what we
mean by asserting that

If (λ,ψ) is an eigenpair of L with ψ highly localized in R, then
there is an eigenpair (µ,φ) of Ls, defined in (4), that is close to the
eigenpair (λ + i s,ψ) of L + i s.

A natural analogue of this assertion, with the roles of L and Ls reversed, also holds,
and both will be considered below, after first establishing some simple bounds on
the real and imaginary parts of eigenvalues of Ls. Suppose that (µ,φ) is an eigenpair
of Ls. We have

µ =
(Lφ,φ)

‖φ‖2
L2(Ω)

+ i s[τ (φ, R)]2,(5)

where (·, ·) is the (complex) inner-product on L2(Ω). It follows by the unique
continuation principle and the variational characterization of the eigenvalues of L
that

Proposition 2.1. For any µ ∈ Spec(Ls), 0 < +µ < s and ,µ > λ1(L) =
min Spec(L).

We now present the first of two key results concerning the eigenpairs of L, Ls

and L + i s.

Theorem 2.2. Let (λ,ψ) be an eigenpair of L. If s is sufficiently small, then

dist(λ + i s, Spec(Ls)) ≤ s δ(ψ, R).(6)

Proof. Because Ls is a holomorphic perturbation of the selfadjoint operator L,
when s is sufficiently small, there is an eigenpair (µ(s),φ(s)) of Ls, depending
holomorphically on s, such that µ(s) → λ, and φ(s) → ψ in norm (cf. [31, Chapter
VII, VIII], [8, Chapter 8]). Letting (·, ·) denote the inner product on L2(Ω), we see
that

µ(s) (φ(s),ψ) = (Lsφ(s),ψ)

= (Lφ(s),ψ) + i s (χRφ(s),ψ)

= λ (φ(s),ψ) + i s (χRφ(s),ψ) .

For the third equality, we used that L is selfadjoint. Since i s (χRφ(s),ψ) =
i s (φ(s),ψ)− i s (χΩ\Rφ(s),ψ), we further manipulate the identity above to obtain

λ + i s − µ(s) = i s
(χΩ\Rφ(s),χΩ\Rψ)

‖φ(s)‖L2(Ω)‖ψ‖L2(Ω)

‖φ(s)‖L2(Ω)‖ψ‖L2(Ω)

(φ(s),ψ)
.(7)

It follows that |λ+i s−µ(s)| ≤ sδ(ψ, R)
(
δ(φ(s), R)‖φ(s)‖L2(Ω)‖ψ‖L2(Ω)/|(φ(s),ψ)|

)
.

The quantity in parentheses converges to δ(ψ, R) < 1 as s → 0. This completes the
proof. !

A simple consequence of Proposition 2.1 and Theorem 2.2, put in the context of
our key task (T), is that

Corollary 2.3. If (λ,ψ) is an eigenpair of L with λ ∈ [a, b] and δ(ψ, R) ≤ δ∗,
and s is sufficiently small, then there is an eigenpair (µ,φ) of Ls in the region
U = U(a, b, s, δ∗) = {z ∈ C : dist(z, L) ≤ sδ∗ , +z < s} pictured in Figure 1, where
L = [a, b] + i s.
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Figure 1. The region U = U(a, b, s, δ∗) from Corollary 2.3

The condition “s is sufficiently small” in Theorem 2.2 and Corollary 2.3 naturally
leads to the question of how small must s be, in practice, for these results to hold.
The proof of Theorem 2.2 suggests that the size of δ(ψ, R) may play a key role in
determining an appropriate s, and this is what we have observed in experiments.
More specifically, we have observed that, the smaller δ(ψ, R) is, the larger s can
be while still maintaining the inequality (6). We highlight that there is no such
constraint on s in Theorem 2.4 below, because the relevant operators L and L + i s
are normal in this case, whereas Ls is non-normal.

We also have the complementary result to Theorem 2.2, by similar reasoning.

Theorem 2.4. Let (µ,φ) be an eigenpair of Ls. Then

s [δ(φ, R)]2 ≤ dist(µ, Spec(L + i s)) ≤ s δ(φ, R),(8)

dist(,µ, Spec(L)) ≤ s δ(φ, R) τ (φ, R).(9)

Let λ = arg min{|σ −,µ| : σ ∈ Spec(L)}. If Λ ⊂ Spec(L) contains λ, then

inf
v∈E(Λ,L)

‖φ− v‖L2(Ω)

‖φ‖L2(Ω)
≤ s δ(φ, R) τ (φ, R)

dist(,µ, Spec(L) \ (Λ ∪ {,µ}))
,(10)

where E(Λ, L) =
⊕

{E(σ, L) : σ ∈ Λ} is the invariant subspace for Λ.

Proof. Since µ /∈ Spec(L + i s), and (L + i s − µ)φ = i sχΩ\Rφ, it follows that

dist(µ, Spec(L + i s)) = ‖(L + i s − µ)−1‖−1 ≤ s δ(φ, R) ,

which is the upper bound in (8). Since µ = µ1 + i s[τ (φ, R)]2, |d + i s − µ| =
|d − µ1 + i s[δ(φ, R)]2| ≥ s[δ(φ, R)]2 for any d ∈ R, from which the lower bound
follows immediately.

Letting δ = δ(φ, R) and τ = τ (φ, R), one finds that (L − µ1)φ = i s(τ2χΩ\Rφ−
δ2χRφ) by direct computation. If µ1 ∈ Spec(L), then (9) holds trivially, so we
assume that µ1 #∈ Spec(L). It follows that

‖φ‖2
L2(Ω) ≤ ‖(L − µ1)

−1‖2‖i s(τ2χΩ\Rφ− δ2χRφ)‖2
L2(Ω)

= ‖(L − µ1)
−1‖2s2(τ4‖φ‖2

L2(Ω\R) + δ4‖φ‖2
L2(R)).

Shifting around terms, and recalling that δ2 + τ2 = 1, we obtain

‖(L − µ1)
−1‖−2 ≤ s2(δ4τ2 + τ4δ2) = s2δ2τ2,(11)

which yields (9).
Now let P = 1

2π i

∫
γ(z − L)−1 dz denote the (orthogonal) spectral projector for

E(Λ, L), where γ is a simple closed contour that encloses Λ ∪ {µ1}, and excludes
Spec(L) \ Λ. Noting that P commutes with L, the identity

I − P = (L(I − P ) − µ1)
−1(I − P )(L − µ1)(12)
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follows by direct algebraic manipulation. Now it holds that

inf
v∈E(Λ,L)

‖φ− v‖L2(Ω)

‖φ‖L2(Ω)
=

‖(I − P )φ‖L2(Ω)

‖φ‖L2(Ω)
≤ ‖(L(I − P ) − µ1)

−1‖ sδ(φ, R)δ(τ, R) ,

and (10) follows by recognizing that ‖(L(I − P ) − µ1)−1‖ = 1/ dist(µ1, Spec(L) \
(Λ ∪ {µ1})). !
Remark 2.5 (Vector normalization). Given an eigenpair (µ,φ) of Ls, with ‖φ‖L2(Ω)

= 1, we will further normalize φ as follows:

φ ←− cφ where c = arg min{‖+(dφ)‖L2(Ω) : |d| = 1}.(13)

Our rationale for minimizing the imaginary part in this sense is that if some scaling
of φ, cφ, is close to a real(!) eigenvector ψ of L, which is the case if the upper-bound
in (10) is small, then the imaginary part of cφ should be small. Proposition 2.6
will provide further motivation for this kind of normalization. For a given non-
zero function φ = φ1 + iφ2, not necessarily an eigenvector, one can recast the
minimization problem α = min{‖+(dφ)‖L2(Ω) : |d| = 1} as a 2 × 2 eigenvalue
problem, with α2 as the smaller of the two (real) eigenvalues. The corresponding
real eigenvector c = (c1, c2), with c2

1 + c2
2 = 1, is related to the optimal scalar c by

c = c1 + i c2. The matrix for this eigenvalue problem is
(
‖φ2‖2

L2(Ω)

∫
Ω φ1φ2 dx∫

Ω φ1φ2 dx ‖φ1‖2
L2(Ω)

)
.(14)

It can be seen, using the Cauchy-Schwarz inequality, that this matrix is positive
semidefinite, and that α = 0 iff {φ1,φ2} is a linearly dependent set.

Proposition 2.6. Let (µ,φ) be an eigenpair of Ls with ‖φ‖L2(Ω) = 1, and set
µ1 = ,µ, φ1 = ,φ, φ2 = +φ, τ = τ (φ, R) and δ = δ(φ, R). It holds that

‖(L − µ1)φ1‖2
L2(Ω) = s2(τ4‖φ2‖2

L2(Ω\R) + δ4‖φ2‖2
L2(R)).(15)

Proof. As was seen in the proof of Theorem 2.4, (L−µ1)φ = i s(τ2χΩ\Rφ−δ2χRφ).
Comparing the real and imaginary parts of both sides, we determine that

(L − µ1)φ1 = −s(τ2χΩ\Rφ2 − δ2χRφ2).

This identity immediately yields (15). !
The following 1D examples illustrate several of the ideas and results discussed

so far.

Example 2.7. For Ω = (0, 1), we consider the operator

L = − d2

dx2
+

4∑

k=1

VkχRk , Rk =
1

4
(k − 1, k),

with homogeneous Dirichlet boundary conditions, for constants Vk ≥ 0. The land-
scape function u can be determined analytically in this case. The eigenfunctions
can also be determined analytically, up to the solutions of a non-linear equation
for the eigenvalues (cf. [13]). As a concrete illustration, we consider the case
(V1, V2, V3, V4) = (0, 802, 0, 4002). In this case, u has precisely two local max-
ima, u1 = 0.008652 and u3 = 0.008819, at x1 = 0.13155 and x3 = 0.61972,
respectively. The approach of [4] estimates the two ground state eigenvalues as
λ ≈ 1.25/u3 = 141.74280 and λ ≈ 1.25/u1 = 144.46879; the actual ground state
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(a) max τk for λ ∈ (140, 7155) (left) and λ ∈ (158923,176357) (right)

(b) Three eigenvectors, with λ and max τk

Figure 2. Localization measures max τk = max τ (ψ, Rk) for 32
eigenvectors, and plots of three of these eigenvectors, for Exam-
ple 2.7

eigenvalues in this case are λ = 140.49323 and λ = 143.18099. Using the factor
1.875 employed in [4] for a (more complicated) 1D Schrödinger problem, the local-
ization interval for the first ground state is [0.528993, 0.710441] ⊂ R3, and for the
second ground state, it is [0.0416835, 0.221412] ⊂ R1.

In Figure 2, plots are given of the maximum localization measures max τk =
max τ (ψ, Rk), for the eigenvectors associated with the smallest sixteen eigenvalues,
and for the eigenvectors associated with the first fifteen eigenvalues larger than V4

and the one immediately preceding them. The plot concerning eigenvalues near or
larger than V4 was specifically chosen to demonstrate localization in the region R4,
which would not have been predicted in the approaches of [4] or [2,3]. Plots of three
eigenvectors are also given, together with their eigenvalues and the largest of their
localization measures, to illustrate what “highly localized” may or may not look like
in practice. With respect to the standard ordering of eigenvalues 0 < λ1 < λ2 <
λ3 < · · · (all eigenvalues of L are simple), the eigenpairs pictured in Figure 2(B)
correspond to λ11, λ13 and λ96. It is clear that τk ≤ 0.84 does not correspond
to a natural understanding of being highly localized in Rk, but that τk ≥ 0.96
does, in these cases. The first twelve eigenvectors for this example, those for which
λ < V2 = 802, are all strongly localized in either R1 or R3, alternating between these
subdomains, with max{τ1, τ3} > 0.96; and the remaining four eigenvectors, though
each most localized in R2, are not highly localized in any of the four subdomains.
Among the sixteen eigenvectors much higher in the spectrum, four of them are
strongly localized in R4, with τ4 > 0.96, the second, third, fourth and seventh;
none of the rest are highly localized in any of the four subdomains.

A slight modification of the approach in [13] allows for the computation of com-
plex eigenpairs for Ls, and we use it below. In Table 1, we see the five eigenvalues
λ of L for which λ ∈ [0, 220000] and δ(ψ, R3) ≤ δ∗ = 1/5 for the corresponding
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EIGENVECTOR LOCALIZATION 1013

Table 1. Eigenvalues and localization measures in R3 for eigen-
pairs (λ,ψ) of L with λ ∈ [0, 220000] and δ(ψ, R3) ≤ δ∗ = 1/5,
for Example 2.7. Eigenvalues and localization measures for the
eigenpairs (µ,φ) of Ls with µ ∈ U(0, 220000, s, 1/5), for s = 1 and
s = 100. In italics are the eigenvalue and localization measure
for L that fail to satisfy δ(ψ, R3) ≤ δ∗, but which have obvious
counterparts among the given eigenpairs of Ls.

s = 1 s = 100
λ δ(ψ, R3) !µ "µ δ(φ, R3) !µ "µ δ(φ, R3)

140.49323 0.0324770 140.49323 0.99894524 0.0324770 140.49441 99.894539 0.0324748
561.35749 0.0659934 561.35749 0.99564487 0.0659934 561.36244 99.564551 0.0659886
1260.5517 0.1019069 1260.5517 0.98961499 0.1019069 1260.5640 98.961665 0.1018987
2233.8447 0.1425062 2233.8447 0.97969199 0.1425062 2233.8708 97.969580 0.1424928
3472.5421 0.1928871 3472.5421 0.96279456 0.1928871 3472.5974 96.280425 0.1928620
4954.5303 0.2707494 4954.5303 0.92669479 0.2707494 4954.6877 92.674005 0.2706658

Table 2. Eigenvalues and localization measures in R4 for eigen-
pairs (λ,ψ) of L with λ ∈ [0, 220000] and δ(ψ, R4) ≤ δ∗ = 1/5,
for Example 2.7. Eigenvalues and localization measures for the
eigenpairs (µ,φ) of Ls with µ ∈ U(0, 220000, s, 1/5), for s = 1 and
s = 100. In italics are the eigenvalues and localization measures
for L that fail to satisfy δ(ψ, R4) ≤ δ∗, but which have obvious
counterparts among the given eigenpairs of Ls.

s = 1 s = 100
λ δ(ψ, R4) !µ "µ δ(φ, R4) !µ "µ δ(φ, R4)

160158.93 0.0577667 160158.93 0.99666301 0.0577667 160158.92 99.667632 0.0576513
160629.92 0.1092483 160629.92 0.98806481 0.1092483 160629.94 98.809982 0.1090879
161389.73 0.2332336 161389.73 0.94560213 0.2332335 161390.21 94.613050 0.2320981
163942.68 0.2610104 163942.68 0.93187361 0.2610103 163942.71 93.203093 0.2607088
167673.57 0.3716197 167673.57 0.86189881 0.3716197 167673.93 86.221341 0.3711962
170192.99 0.4219290 170192.99 0.82197599 0.4219289 170192.51 82.233071 0.4215084

eigenvector. The twelfth eigenvalue of L, λ = 4954.5303, just fails to make the cut,
with δ(ψ, R3) = 0.27074936. For convenience in comparison, this eigenvalue and
its localization measure are included in the table in italics. Also given in this table
are all eigenvalues µ of Ls = L + i sχR3 within the region U(0, 220000, s, δ∗), for
s = 1 and s = 100, together with the localization measures δ(φ, R3) for their corre-
sponding eigenvectors. In both cases for Ls, six eigenpairs make the cut, with the
final eigenvalue approximating λ = 4954.5303. Recalling (5), we note that δ(ψ, R3)
can be obtained directly from +µ, δ(ψ, R3) =

√
1 −+µ/s. When s = 1, λ and ,µ,

and δ(ψ, R3) and δ(φ, R3), agree in all digits shown, for eigenpairs (λ,ψ) and (µ,φ)
that are matched. We note that there are 130 eigenvalues of L in [0, 220000], so
the reduction to six candidates for localization in R is significant.

In Table 2, we see the two eigenvalues λ of L for which λ ∈ [0, 220000] and
δ(ψ, R4) ≤ δ∗ = 1/5 for the corresponding eigenvector. Also given in this table
are all eigenvalues µ of Ls = L + i sχR4 within the region U(0, 220000, s, δ∗), for
s = 1 and s = 100, together with the localization measures δ(φ, R4) for their

Licensed to Portland St Univ. Prepared on Fri Apr 28 09:36:37 EDT 2023 for download from IP 131.252.96.10.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1014 J. OVALL AND R. REID

(a) s = 100 for R3, δ(φ, R3) = 0.27066575, ‖(L − µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 0.67472464

(b) s = 100 for R2, δ(φ, R2) = 0.53309756, ‖(L − µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 10.9088368

(c) s = 100 for R4, δ(φ, R4) = 0.05765133, ‖(L − µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 0.36354044

Figure 3. Plots of φ1 = ,φ (left) and φ2 = +φ for eigenvectors
φ of Ls, normalized so that ‖φ‖L2(Ω) = 1 and α = ‖φ2‖L2(Ω) is
minimized, for Example 2.7. The eigenvalues µ = µ1 + i µ2 are
given above the plots of φ1, and the α-values are given above the
plots of φ2. Compare with Figure 2(B).

corresponding eigenvectors. In both cases for Ls, six eigenpairs make the cut, and
the eigenvalues of L that best match the remaining four of Ls, together with their
localization measures, are also given in italics in this table.

Finally, in Figure 3, analogues of the plots in Figure 2(B) are given for Ls, with
s = 100, and R = R3 for the first pair of plots, R = R2 for the second pair,
and R = R4 for the third pair. Each pair of plots shows the real and imaginary
parts of an eigenfunction φ, normalized so that ‖φ‖L2(Ω) = 1 and α = ‖+φ‖L2(Ω)

is minimized—see Remark 2.5. Up to scaling, the corresponding ψ and φ1 =
,φ show strong resemblances. Localization values δ(φ, R) and relative residuals
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EIGENVECTOR LOCALIZATION 1015

‖(L − µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) (see Proposition 2.6) are also included. The second
eigenvector, shown in Figure 3(B), has the largest (worst) δ-value, α-value and
relative residual among the three, whereas the third eigenvector is best in each of
these categories. The α-values in Table 1 for s = 100 increased from 7.189 × 10−4

to 5.337 × 10−3 for the first five, and α = 1.1015 × 10−2 for the sixth. For the
eigenvectors in Table 2 with s = 100, α = 4.152 × 10−3 and α = 8.870 × 10−3 for
the first two, and the α-values ranged between 1.515 × 10−2 and 2.613 × 10−2 for
the final four.

Based on the apparent correlation between a normalized eigenvector φ of Ls

having a small α-value and it being close to an eigenvector ψ of L that is localized
in R, one might be tempted to think that α-values for eigenvectors of Ls are, by
themselves, decent indicators of localization of eigenvectors of L in R. However,
this is not the case. For example, the second eigenvalue of Ls, with s = 100
and R = R3, is µ = 143.18098 + 6.2629546 × 10−17 i, with the real part of the
(normalized) eigenfunction φ highly localized in R1, and its significantly smaller
imaginary part highly localized in R3: δ(,φ, R1) = 0.032815726, δ(+φ, R3) =
0.042859575 and α = 6.9038783×10−10. The eigenvector φ of L that is closest to φ
has λ = 143.18098, δ(ψ, R1) = 0.032815726 and δ(ψ, R3) = 1.0000000. So a small
α-value for φ in this case corresponds to a nearby eigenvector of L that is highly
localized in the complement of R3! Of course, we never would have considered this
eigenpair of Ls if we were searching in the region U indicated in Corollary 2.3.

Mathematica was used for all of these computations and plots, employing very
high precision arithmetic.

Example 2.8 (False indication of localization, large s). It can be the case that
Ls = L + i sχR has localized eigenvectors even when L has none. For example,
if L = − d2

dx2 on (0, 1), with homogeneous Dirichlet conditions, the eigenpairs are
(λn,ψn) = ((nπ)2, sin(nπx)). Taking R = (0, 1/4), we have

1

4

(
1 − 2

π

)
≤ [τ (ψn, R)]2 =

1

4

(
1 +

in+1 + (−i)n+1

nπ

)
≤ 1

4

(
1 +

2

3π

)
,

[τ (ψn, R)]2 → 1

4
.

Clearly, none of the eigenvectors are localized in R.
However, if we take s = 104, we find an eigenpair (µ,φ) of Ls with µ =

149.02494 + 9991.7736 i and δ(φ, R) = 0.02868. In this case, φ is highly local-
ized in R, and µ will lie in some U(a, b, s, δ∗) for any δ∗ ≥ 0.000822, which could
lead to the false indicator that there is an eigenpair (λ,ψ) of L with ψ highly lo-
calized in R. The nearest eigenvalue of L + i s to µ is λ = (4π)2 + i s, with ψ = ψ4,
for which R is a nodal domain.

Example 2.9 (False indication of localization, small s). One might wonder if only
allowing smaller s, say s ≈ 1, would eliminate such false indicators of localization
of eigenvectors of L, but that is not necessarily the case. Suppose that L = − d2

dx2 +
V χ(1/4,3/4). It is straight-forward to show that eigenvectors of L must have either
even or odd symmetry about x = 1/2, so eigenvectors cannot be highly localized
in either R = (0, 1/4) or R = (3/4, 1). We also note that, being a Sturm-Liouville
problem, the eigenvalues are known to be simple, but choosing large V can result
in distinct eigenvalues that are very close. For our illustrations, we choose V = 802.
The eigenvectors corresponding to the smallest two eigenvalues of L are given in
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(a) The first two eigenvectors of L

(b) The real (left) and imaginary of the first eigenpair of Ls with R = (0, 1/4)

(c) The real (left) and imaginary of the first eigenpair of Ls with R = (3/4, 1)

Figure 4. Plots of the first two eigenvectors of L, and of the
real and imaginary parts of the first eigenvector of Ls for different
choices of R, and s = 1. See Example 2.9.

Figure 4. These eigenvalues are extremely close to each other, λ2−λ1 ≈ 3.59×10−16.
Increasing V reduces this gap even further.

When R = (0, 1/4) and s = 1 are chosen for Ls, the eigenpair (µ,φ) having
smallest real part µ1 is given in Figure 4. For this eigenpair, we have δ(φ, R) =
0.032815726, ‖(L−µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 7.27553×10−6, which is a very strong
false(!) indicator of localization of an eigenvector ψ of L having eigenvalue λ near
µ1. There is a counterpart of λ2 among the eigenvalues of Ls as well, having real
part 143.180985607932844609 (slightly larger than µ1 = ,µ) and imaginary part
3.2278925 × 10−32. The corresponding eigenvector is highly localized in (3/4, 1).
Motivated by this observation, we mention a simple analogue of (6) whose proof
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EIGENVECTOR LOCALIZATION 1017

follows precisely the same pattern as that for (6) in Theorem 2.2. For an eigenpair
(λ,ψ) of L, and s sufficiently small, it holds that

dist(λ , Spec(Ls)) ≤ sτ (ψ, R) = sδ(ψ,Ω \ R).(16)

Changing to R = (3/4, 1) yields essentially identical results as were obtained for
R = (0, 1/4), up to a flip in the graphs of the real and imaginary parts of φ across
x = 1/2 and a change in signs. These are also given in Figure 4. If one had the
inspired idea of taking R = (0, 1/4)∪(3/4, 1), the first two eigenpairs of Ls (ordered
by their real parts) are very close to those of L. These are given in Figure 5.

Because of the tight clustering of eigenvalues of L, we use this example to discuss
the eigenvector result (10) in Theorem 2.4. With R = (0, 1/4), the pair (µ1,φ1) =
(,µ,,φ) corresponding to Figure 4(B) has µ1 very close to two eigenvalues of L,
those we called λ1 and λ2 above, but φ1 is not close to any eigenvector of L. If we
were to take Λ = {λ1} or Λ = {λ2} in (10), then the denominator in the bound,
dist(µ1, Spec(L) \Λ), is extremely small, which permits the poor approximation of
φ1 in E(Λ, L). Note that µ1 /∈ Spec(L), so Spec(L) \ (Λ∪ {µ1}) = Spec(L) \Λ, and
so we use the more concise expression dist(µ1, Spec(L) \ Λ). However, if we take
Λ = {λ1,λ2}, then dist(µ1, Spec(L) \Λ) is much larger, and a good approximation
of φ1 in E(Λ, L) is ensured. More specifically, the next closest eigenvalues of L
to µ1 are λ3 = 572.082899256658465449 and λ4 = 572.08289925665847099, so
dist(µ1, Spec(L)\Λ) = λ3−µ1 = 428.90191. In this case, it is easy to see how φ1 is
very close to a linear combination of the eigenvectors of L pictured in Figure 4(A);
calling these ψ1 and ψ2, we see that φ1 ≈ −(ψ1 + ψ2)/

√
2.

As a matter of interest, we mention that the landscape function u for L has a
single local maximum value umax = 0.0086523880, which is achieved at x = xmax =
0.13154762 and x = 1−xmax. Using the approach of [4], the corresponding estimate
of the smallest eigenvalue is λ̃ = 1.25/umax = 144.46879. The summary description
for finding a localization region R that was given in Section 1 is inadequate in this
case, because both connected components of {x ∈ Ω : W (x) ≥ E} (for E ≥ λ̃)
contain a minimizer of W = 1/u, and both components are of the same size, so such
a consideration cannot be used as a tie-breaker. The authors of [4] note that tightly
clustered minima and/or minimizers of W can make the choice of corresponding
localization regions much more challenging, and indicate that they may pursue a
more nuanced approach in the future.

Remark 2.10. As suggested by (16), one could easily develop results analogous to
those in this section but for which the roles of R and Ω \ R are “reversed”. While
still being concerned with localization in R, the complex-shifted operator would be
defined instead as L̃s = L + i sχΩ\R. The analogue of the statement given at the
beginning of this section is:

If (λ,ψ) is an eigenpair of L with ψ highly localized in R, then there
will be an eigenpair (µ,φ) of L̃s that is close to (λ,ψ).
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(a) The first two eigenvectors of L

1
4

1
2

3
4

1

-0.00002

-0.000015

-0.00001

-5.×10-6

5.×10-6

� � 7.2833733 ×10-6

(b) The real (left) and imaginary of the first eigenpair of Ls with R =
(0, 1/4) ∪ (3/4, 1)

(c) The real (left) and imaginary of the second eigenpair of Ls with
R = (0, 1/4) ∪ (3/4, 1)

Figure 5. Plots of the first two eigenvectors of L, and of the
real and imaginary parts of the first eigenvector of Ls for different
choices of R, and s = 1. See Example 2.9.

The analogues of (6) and (9) in this case are

dist(λ , Spec(L̃s)) ≤ sδ(ψ, R) , dist(,µ, Spec(L)) ≤ sδ(φ, R)τ (φ, R),(17)

for eigenpairs (λ,ψ) of L and (µ,φ) of L̃s. There are similarly predictable analogues
of the other results in this section. A careful comparison of an approach based on
L̃s with that based on Ls is a topic of future research.
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EIGENVECTOR LOCALIZATION 1019

3. An Algorithm Template for (T)

Guided by the results of Section 2, we propose the algorithm template given in
Algorithm 1 for our fundamental task (T), which we restate here for convenience,

(T)
Given a subdomain R, an interval [a, b] and a (small) tolerance δ∗ > 0, find
all eigenpairs (λ,ψ) for which δ(ψ, R) ≤ δ∗ and λ ∈ [a, b], or determine
that there are not any.

Practical realizations are obtained by choices made in lines 2 and 8 of Algorithm 1,
and we describe below reasonable choices for each. Tables 1 and 2, in which some
eigenvalues of Ls in U corresponded to an eigenvector of L that was not sufficiently
localized in R, demonstrate why line 9 is needed.

Algorithm 1 Eigenvector Localization Template

1: procedure Localize(a, b, s, δ∗, R)
2: determine all eigenpairs (µ,φ) of Ls with µ ∈ U(a, b, s, δ∗) - Corollary 2.3
3: if no eigenvalues are found in 2 then
4: exit - No eigenpairs (λ,ψ) of L with λ ∈ [a, b] and δ(ψ, R) ≤ δ∗

5: else
6: for each eigenpair (µ,φ) found in 2 do
7: φ ←− cφ - Normalize φ, Remark 2.5
8: post-process (,µ,,φ) to obtain (approximate) eigenpair (λ̃, ψ̃) of L
9: if δ(ψ̃, R) ≤ δ∗ then

10: accept (λ̃, ψ̃)
11: end if
12: end for
13: end if
14: return accepted (approximate) eigenpairs (λ̃, ψ̃)
15: end procedure

We first consider line 2 of Algorithm 1. There are several classes of methods that
are designed for finding eigenpairs (µ,φ) (or just eigenvalues) of an operator, with µ
in some user-specified region Ũ ⊂ C, which we will assume is simply connected and
has a (piecewise) smooth boundary γ = ∂Ũ . We mention methods that are based on
associated contour integrals, and classify them into four categories: Sakurai-Sugiura
methods (SS, CIRR) (cf. [7,28,29,41,42,53]), FEAST methods (cf. [18,19,25,32,40,
46,50,52]), Beyn methods (cf. [9–11,33,48]), and Spectral Indicator Methods (RIM,
SIM) (cf. [26, 27, 34, 49]). Unlike the other three approaches, Spectral Indicators
Methods do not involve the approximate solution of eigenvalue problems, and yield
only eigenvalue approximations.

As we use the FEAST approach for our experiments in Section 4, we provide a
brief high-level description of how it works for a normal (or selfadjoint) operator A
having compact resolvent, such as Ls or L. Although we are primarily concerned
with applying FEAST to the normal operator Ls, we describe it first for selfadjoint
A, and then indicate how it can be made applicable to normal operators. Suppose
that f = f(z) is a rational function that is bounded on Spec(A). Then B .

= f(A) is
a bounded (normal) operator on Dom(B)

.
= Dom(A), and if (λ,ψ) is an eigenpair

of A, then (f(λ),ψ) is an eigenvector of B. We emphasize that the eigenvectors
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of A and B are the same! Now suppose that the open set Ũ contains some finite
subset Λ ⊂ Spec(A) and that the contour γ = ∂Ũ does not intersect Spec(A). The
rational function f is then chosen as an approximation of the characteristic function
for Ũ , f(z) ≈ χŨ (z) = 1

2π i

∮
γ(ξ − z)−1 dξ. This rational approximation is often

obtained from a quadrature approximation of this Cauchy integral, taking the form
f(z) =

∑n−1
k=0 wk(zk − z)−1, but there are other ways of obtaining such a rational

function (cf. [22, 47]). It follows that B approximates (in some sense) the spectral
projector S for A associated with Λ, i.e. S = χŨ (A) = 1

2π i

∮
γ(ξ−A)−1 dξ. We have

E
.
= Range(S) = E(Λ, A), which is the target invariant subspace. FEAST is based

on subspace iteration using the “filtered operator” B: starting with a random finite-
dimensional subspace E0 ⊂ Dom(A) that satisfies SE0 = E, the iteration generates
a sequence of subspaces Ek+1 = BEk that converge to E with respect to subspace
gap. A Rayleigh-Ritz procedure is used on a finite rank operator Ak : Ek → Ek to
obtain approximations Λk that converge to Λ in the Hausdorff metric, and a natural
by-product of this procedure is that an orthonormal basis of Ek is obtained. More
specifically, Ak = PkA|Ek

, where Pk is the orthogonal projector onto Ek, and
Λk = Spec(Ak). The rate of convergence is governed by the ratio

κ
.
=

supλ∈Spec(A)\Λ |f(z)|
infλ∈Λ |f(z)| < 1,(18)

so a good “filter function” f for the region Ũ should decay rapidly (in modulus)
away from Ũ , and ideally not vary too much within Ũ . For non-selfadjoint (normal)
A, approximations Ek and E∗

k of the right and left invariant subspaces E and
E∗ of A are obtained using subspace iteration with B and its adjoint B∗, with
some variations on how to extract eigenvalue approximations and maintain well-
conditioned bases of Ek and E∗

k (cf. [32, 52]).
It is convenient to use

Ũ = Ũ(a, b, s, δ∗) = {z ∈ C : dist(z, L) ≤ sδ∗} , L = [a, b] + i s,(19)

for the search region. Recall that the eigenvalues of Ls that are of interest are in
its lower-half, U , which is pictured in Figure 1. The region Ũ , when viewed as
a domain in R2, is often called a Bunimovich stadium in the context of quantum
billiards, where it serves as a popular example (cf. [12]). We will refer to γ = ∂Ũ as
a Bunimovich curve. A unit-speed parameterization of γ that traverses it counter-
clockwise, starting at the point b + i(s − r), is given by z(t) = x(t) + i y(t), where

(x(t), y(t)) =






r(sin( t
r ),− cos( t

r )) + (b, s) , 0 ≤ t ≤ t1
(b + t1 − t, s + r) , t1 ≤ t ≤ t2
r(sin( t+a−b

r ),− cos( t+a−b
r )) + (a, s) , t2 ≤ t ≤ t3

(a − t3 + t, s − r) , t3 ≤ t ≤ P

,(20)

and

r = sδ∗ , t1 = πr , t2 = t1 + b − a , t3 = t2 + πr , P = 2πr + 2(b − a) .(21)

The parameterization is made P -periodic by setting z(t + P ) = z(t). The n-pole
rational filter function associated with γ is obtained by applying the trapezoid rule
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(a) Bunimovich curve γ =

∂Ũ and poles (quadrature
points) of f(z)

(b) Contour plot of |f(z)|
for a − 2r ≤ &z ≤ b + 2r
and s − 2r ≤ 'z ≤ s. The
red curve is part of γ =
∂Ũ .

Figure 6. Poles and contour plot of |f(z)| for the rational
filter f(z) associated with Ũ = Ũ(a, b, s, δ∗) for (a, b, s, δ∗) =
(−4, 18, 10, 1/5); n = 32 equispaced points are used for the filter

to 1
2π i

∮
γ(ξ − z)−1 dξ,

f(z) =
n−1∑

k=0

wk(zk − z)−1 , zk = z(kh + πr/2),(22)

wk =
hz′(kh + πr/2)

2π i
, h =

P

n
.

The offset of πr/2 in the definition of the quadrature points (poles) zk and weights
wk provides a more symmetric distribution of these points. An example Bunimovich
curve, overlaid with the poles of f(z), is given in Figure 6, together with a contour
plot of |f(z)| that illustrates its effectiveness in distinguishing between points inside
γ from those outside. The thick red curve in the contour plot is the portion of γ
for which +z ≤ s—recall that eigenvalues µ of Ls satisfy +µ < s. The thick black
curves in the contour plot are the contours |f(z)| = 2j , −8 ≤ j ≤ 2, with the curve
for |f(z)| = 2−8 being farthest from γ. These indicate the desired rapid decay of
|f(z)| away from Ũ .

We now consider the post-processing step in line 8. As suggested by Theorem 2.4
and Proposition 2.6, the pair (µ1,φ1) = (,µ,,φ) is often a decent starting point
for finding an eigenpair (λ,ψ) of L with λ “close” to µ1; recall that |µ1 − λ| ≤
sδ(φ, R)τ (φ, R). A reasonable post-processing procedure consists of a few inverse
iterations, see Algorithm 2.

One might instead opt for Rayleigh quotient iterations, which replace µ1 with the
current approximation λ̃ on line 5 of Algorithm 2. However, it is expected that few
iterations will be needed, so requiring the action of only one inverse is perhaps more
attractive. We note that Proposition 2.6 allows for the efficient computation of the
initial residual, which may already be below the prescribed tolerance, resulting in
no inverse iterations. In practice, one might use a more readily computable proxy
for the residual norm.
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Algorithm 2 Approximate Eigenpair Post-Processing

1: procedure Post-process(µ1,φ1, tol)
2: λ̃ ←− µ1

3: ψ̃ ←− φ1/‖φ1‖L2(Ω)

4: while ‖Lψ̃ − λ̃ψ̃‖L2(Ω) > tol do

5: ψ̃ ←− (µ1 − L)−1ψ̃
6: ψ̃ ←− ψ̃/‖ψ̃‖L2(Ω)

7: λ̃ ←− (Lψ̃, ψ̃)
8: end while
9: return post-processed (approximate) eigenpair (λ̃, ψ̃)

10: end procedure

In Remark 3.1, we highlight a potential danger of relying on the post-processing
procedure in Algorithm 2 as stated in situations in which µ1 = ,µ is close to
an eigenvalue of L, but φ1 = ,φ is not close to an eigenvector despite the fact
that ‖Lφ1 − µ1φ1‖L2(Ω) is reasonably small. Example 2.9 was chosen precisely to
illustrate how such scenarios could arise. While we do not expect such situations to
be common enough to reject Algorithm 2 as a viable option, it is useful to consider
possible variants that are likely to be more robust in such situations. One such
variant is to first estimate (as efficiently as possible) how many eigenvalues of L
are “near” µ1 (cf. [15, 51]), as this has a direct affect on the convergence rate of
inverse iteration. Recall that we are guaranteed that there is at least one eigenvalue
of L that is within sδ(φ, R)τ (φ, R) of µ1, so we might consider a slightly larger
interval around µ1 for our eigenvalue count estimate. If the approach estimates m
eigenvalues of L near µ1, then inverse iteration would be performed using a subspace
of size at least m. After extracting (approximate) eigenpairs, each would be tested
for its localization in R, as in lines 9-11 of Algorithm 1. A more in-depth discussion
of variants of the post-processing algorithm will be postponed for subsequent work.

Remark 3.1 (Possible false positives from post-processing). As was demonstrated
in Example 2.9, it is possible for ‖Lψ̃ − λ̃ψ̃‖L2(Ω) to be relatively small with-

out (λ̃, ψ̃) being close to an eigenpair of L. In that example, we would have
‖Lψ̃ − λ̃ψ̃‖L2(Ω) = 7.27553 × 10−6 for the initial check in line 4. If the toler-
ance in Algorithm 2 was chosen larger than this, no inverse iterations would be
performed, and the procedure would return its input, which is not close to an
eigenpair of L and would falsely indicate an eigenvector of L that is localized in
R = (0, 1/4). Setting a smaller tolerance in this case will force at least one inverse
iteration, but the question of when the tolerance is small enough to be considered
“safe” for the types of problems of interest is a subtle one. In fact, by increasing
the constant V in Example 2.9, the initial residual ‖Lψ̃ − λ̃ψ̃‖L2(Ω) can be made
arbitrarily small, so no tolerance would seem safe. For Example 2.9 with V = 802

(as was used in that example), the form of (L − µ1)−1ψ̃ is known in advance—
linear combinations of (regular and/or hyperbolic) sines and cosines having known
frequencies on each subinterval—so inverse iterations can be carried out by solv-
ing linear systems that enforce the boundary conditions and the continuity of the
function and its derivative across subintervals. After performing the first inverse

Licensed to Portland St Univ. Prepared on Fri Apr 28 09:36:37 EDT 2023 for download from IP 131.252.96.10.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EIGENVECTOR LOCALIZATION 1023

iteration, and renormalizing, the resulting function hardly differs from its prede-
cessor at all—the maximal pointwise difference between the two functions is on the
order of 10−9—which suggests that many inverse iterations would be required (in
essentially exact arithmetic!) before the iterates began to reasonably approximate
the true eigenvector. The extremely slow convergence of inverse iteration in this
case is expected, due to the fact that there are two eigenvalues of L that are ex-
tremely close to µ1 (and to each other). Since the next nearest eigenvalues of L are
much farther away from µ1, performing inverse iteration with a two-dimensional
subspace, (re)orthogonalizing its basis as needed, will lead to much more rapid
convergence, from which (approximate) eigenpairs can be easily extracted using a
Rayleigh-Ritz procedure. The initial basis might be chosen randomly, or one might
choose ψ̃ = φ1/‖φ1‖L2(Ω) as one of the two basis functions and the other to be
the normalized version of the orthogonal complement u⊥ of the landscape function
u with respect to φ1, i.e. u⊥ = u − (u, ψ̃) ψ̃. In this case, the “clever” choice of
initial basis leads to very few inverse iterations before approximate eigenpairs very
close to those given in Figure 4(A) are obtained by the Rayleigh-Ritz procedure.
From these two, one can then deduce that there are no eigenvectors of L whose
eigenvalues are near µ1 that are localized in R = (0, 1/4), though one can see that
they are localized in R = (0, 1/4) ∪ (3/4, 1).

Remark 3.2. As indicated near the beginning of this section, an approach such
as SIM, which yields only eigenvalue approximations, might be used in line 2 of
Algorithm 1. In this case, line 7 is clearly irrelevant, and the post-processing phase
would proceed with only eigenvalue approximations. Since inverse iteration is used,
and can proceed with random initialization, such an approach is feasible. The
potential reduction in cost by using SIM in line 2 might make up for the potential
increase in cost of using inverse iteration with random initialization, as opposed to
the (likely) better initialization obtained from methods that return eigenpairs in
line 2.

Up to this point, we have not discussed how to choose the parameter s in Ls.
Example 2.8 illustrates that choosing s “too large” can introduce false indicators
of localization that would later have to be recognized and rejected, but how large
is “too large” in terms of producing false indicators may be problem-dependent, as
can be seen in Examples 2.7 and 2.9. In the first of these examples, choosing s = 1
or s = 100 had very little practical effect on how well the eigenpairs (µ,φ) of Ls with
µ ∈ U(a, b, s, δ∗) served as predictors of eigenpairs (λ,φ) of L for which λ ∈ [a, b] and
δ(φ, R) ≤ δ∗. Example 2.9, which was specifically designed to yield false indicators
of localization even when s is small, probably should not be weighed so heavily in
coming up with practical guidance about how to choose s, but nonetheless illustrates
that the quality of localization indicators coming from line 2 of Algorithm 1 can
be quite sensitive to the choice of s for certain problems. Given the localization
tolerance δ∗, there is some theoretical appeal to choosing s so that r = sδ∗ ≤ 1,
because it makes it easier for the bounds in eigenvector results such as (10) to be
meaningful (i.e. smaller than 1). However, Example 2.7 again shows that such
a restriction is not necessary. It may be that a “good” choice of s, in relation
to a, b and δ, is dictated largely by practical efficiency considerations concerning
the method used for computing eigenpairs (µ,φ) of Ls with µ ∈ U(a, b, s, δ∗). For
example, with the FEAST approach used above, the rational filter f(z) determines
how rapidly its iterations converge. We recall that the key issue is the contrast
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between |f(µ)| for µ ∈ U = U(a, b, s, δ∗) and µ ∈ Spec(Ls) \ U ; the greater the
contrast, the fewer number of iterations are needed. For fixed (a, b, s, δ∗), increasing
the number n of poles in f (see (22)) will reduce the number of iterations needed,
but increase the cost per iteration. For a fixed n, the aspect ratio of U (equivalently
Ũ) affects the quality of the filter. In Figure 6, n = 32 poles produces a very nice
contrast for (a, b, s, δ∗) = (−4, 18, 10, 1/5); the aspect ratio ((b − a) + 2r)/(2r)
is 6.5 in this case. However, changing only s from 10 to 1 increases the aspect
ratio to 56, and destroys the quality of the filter. We do not picture the poor
filter here, but mention that |f(z)| ≥ 1/2 for some z with +z = s − 2r; the filter
when s = 10 satisfied |f(z)| < 2−7 (typically even smaller) for all such z. Now,
taking (a, b, s, δ∗) = (−4,−9/5, 1, 1/5) restores the aspect ratio of U to 6.5, and
|f(z)| looks precisely as that pictured in Figure 6. We note that the only change
between this and the poor filter situation is that b was changed to restore the
original aspect ratio of 6.5. For a fixed U(a, b, s, δ∗) (and n), the situation can be
improved by subdividing [a, b], [a, b] = [a0, a1] ∪ · · · ∪ [ap−1, ap] for some p ∈ N,
where aj = a + j(b − a)/p. Each subregion U(aj , aj+1, s, δ∗), which will have a
smaller aspect ratio than U(a, b, s, δ∗), can be searched independently (in parallel)
for eigenvalues of Ls. In light of the discussion above, it appears that offering
practical guidance for choosing s may require significant experimentation, so we
postpone such judgments to later work that is more computationally focused.

Remark 3.3 (Alternate approach using bounded operator). As indicated above,
when b − a is very large, the search region Ũ(a, b, s, δ∗) for eigenvalues of Ls

will typically have a very large aspect ratio, which would necessitate subdivi-
sion Ũ(a, b, s, δ∗) =

⋃
{Ũ(aj , aj+1, s, δ∗) : 0 ≤ j ≤ p − 1}. Since each subregion

Ũ(aj , aj+1, s, δ∗) can be explored independently and in parallel, large regions can
be efficiently explored in practice when parallel computing is available. However,
a different approach might be used that requires only a single search region even if
one wants to test all eigenvectors of L for localization in R—assuming that there
are only finitely many linearly independent eigenvectors of L that are localized in
R to within a given tolerance (see Remark 3.4 for a counterexample).

Suppose that b > 0 is a known or computed lower bound on Spec(L). The
eigenvectors of M = b L−1 are precisely those of L, and we have Spec(M) ⊂ (0, 1].
If we define Ms = M + i sχR, then Spec(Ms) ⊂ (0, 1] + i (0, s), and the obvious
analogues of the results in Section 2 hold for M and Ms, as they did for L and Ls.
Now, instead of exploring potentially many regions Ũ(aj , aj+1, s, δ∗) for eigenvalues

of Ls, we explore a single region Û(s, δ∗) = [0, 1] + i[s(1 − δ∗), s] for eigenvalues of
Ms. Of course, this assumes that Û(s, δ∗) contains only finitely many eigenvalues
of Ms counting multiplicities. The associated filtered operator B = f(Ms) for
FEAST iterations has the form

B =
n−1∑

k=0

wk(zk − Ms)
−1 = L

n−1∑

k=0

wk((zk − i sχR)L − b)−1.(23)

A more thorough investigation of theoretical and practical considerations related to
such an approach is intended for future work, though we note here that one must
still contend with issues of discretization related to resolving highly oscillatory
eigenvectors.
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Remark 3.4. Although we expect that, when R is a relatively small subdomain of
Ω, and δ∗ < 1/2, there will typically be only finitely many eigenvectors ψ of L that
satisfy δ(ψ, R) ≤ δ∗, this need not be the case. For example, let Ω be the unit disk
and L = −∆. The eigenvalues are known to be λm,n = [jn(m)]2, for m ≥ 1 and
n ≥ 0, where jσ(m) is the mth positive root of the first-kind Bessel function Jσ.
The corresponding eigenspaces, expressed in polar coordinates, are

E(λm,n, L)=span{Jn(jn(m)r) sin(nθ) , Jn(jm(m)r) cos(nθ)}=span{ψ(0)
m,n , ψ(1)

m,n}.

Given r∗ ∈ (0, 1), we consider the annulus R for which r∗ < r < 1 (0 ≤ θ < 2π).

For n ≥ 1, we have ‖ψ(k)
m,n‖2

L2(Ω) = (π/2)[Jn+1(jn(m))]2, and

[δ(ψ(k)
m,n, R)]2 =

(r∗)2([Jn(jn(m)r∗)]2 − Jn−1(jn(m)r∗)Jn+1(jn(m))r∗)

[Jn+1(jn(m)r∗)]2
.

It can be shown that δ(ψ(k)
1,n, R) → 0 as n → ∞, regardless of the choice of r∗,

which is a way of quantifying the statement that the eigenvectors ψ(k)
1,n concentrate

near the boundary of Ω for large n. So we see that, even if r∗ is near 1, so R
is relatively small compared to Ω, and δ∗ is small, there will be infinitely many
linearly independent eigenvectors ψ of L satisfying δ(ψ, R) ≤ δ∗.

4. A Partial Realization of Algorithm 1

An implementation of the FEAST algorithm that uses finite element methods to
discretize the associated operators is described in [18] (see also [19]). Corresponding
code, Pythonic FEAST [20], builds on the general purpose finite element software
package NGSolve [43, 44], and provides a convenient user interface in Python. Re-
cent modifications to Pythonic FEAST allow for normal operators such as Ls, which
we use to illustrate a partial realization of Algorithm 1. In this realization, the com-
putation (approximation) of eigenpairs of Ls whose eigenvalues are in the search
region U(a, b, s, δ∗), and the renormalization of the eigenvectors, is performed—up
through line 7 of Algorithm 1. These computations provide likely candidates for
associated localized eigenvectors of L, to be obtained through post-processing and
then finally accepted or rejected based on the tolerance δ∗. The post-processing is
not automated here, and we instead rely on visual comparison and experience to
determine the eigenpairs of L that correspond to those computed for Ls. The final
accept/reject decision for these eigenvectors of L is clear based on their δ-values.

To illustrate the implementation, we have chosen an example for which local-
ization is due to domain geometry, as opposed to coefficients in the differential
operator. The operator is L = −∆, with homogeneous Dirichlet boundary condi-
tions, and the domain Ω consists of three squares, one 4 × 4, one 3 × 3 and one
2× 2, joined by two 2× 1 rectangular “bridges”, as shown in Figure 7. We refer to
Ω as the “three bulb” domain, and to each of the squares as “bulbs”. Many simple
constructions such as this could be chosen to yield localization of some eigenvectors
(cf. [14,21]), and this domain was chosen because localization of eigenvectors in each
of the three bulbs occurs (multiple times) early in the spectrum. The eigenvalue
problems were discretized using quadratic finite elements on a fixed (relatively fine)
quasi-uniform triangular mesh having maximal edge length 0.1, resulting in a finite
element space of dimension 15493.

To provide a baseline for comparison, we computed the first 71 eigenpairs for
this discretization of L, whose (discrete) eigenvalues are in the range (1.22, 33.30).
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Figure 7. Contour plots of the first sixteen computed eigenvec-
tors for the three bulb domain. Computed eigenvalues are given
for each, as well as localization measures for the bulb in which the
eigenvector is most localized: τ& for left bulb, τr for right bulb, and
τm for middle bulb.

Contour plots of the first sixteen eigenvectors are given in Figure 7, and exhibit
instances of localization in each of the three bulbs. In our localization experiments,
we search for eigenvectors that are localized with tolerance δ∗ = 1/4, so τ∗ =√

15/4 ≈ 0.96825, in each of the three bulbs, for eigenvalues in [1, 33]. There are
70 such (discrete) eigenpairs in this portion of the spectrum. When R is taken to
be the left bulb, 20 of these eigenvectors satisfy the localization tolerance. When R
is taken as the right bulb, 9 of these eigenvectors satisfy the localization tolerance.
Finally, when R is taken to be the middle bulb, only one of the these eigenvectors
satisfies the localization tolerance.

When R is taken as the middle bulb, two computed eigenpairs of Ls are found
having computed eigenvalues in U(1, 33, 1, δ∗). This search region was split into
smaller (slightly overlapping) search regions as discussed in and before Remark 3.3,
each having aspect ratio 2/(2r) + 1 = 5 (r = sδ∗ = 1/4), that were tested inde-
pendently using the Bunimovich filter having n = 32 poles. These eigenvalues of
Ls were µ = 4.50447 + 0.98218i and µ = 24.33196 + 0.96185i. The corresponding
eigenpairs of L have λ = 4.50292, for which the eigenvector is sufficiently localized
in R, and λ = 24.20972, for which its eigenvector ψ is not, δ(ψ, R) = 0.64489 > δ∗

(τ (ψ, R) = 0.76427 < τ∗). Contour plots of the real and imaginary parts of the
eigenvectors φ are given, together with their matched (real) eigenvectors ψ, in Fig-
ure 8. Since the color scheme in each image is relative to the range of values of the
plotted function (blue for the smallest values and red for the largest), the ranges of
function values are given explicitly in the figures for added context. We note that
max |+φ| is significantly smaller than max |,φ| for the true indicator—about two
orders of magnitude. For the false indicator, the difference is about one order of
magnitude.

When R is taken as the right bulb, 14 computed eigenpairs of Ls were found
whose eigenvalues were in U(1, 33, 1, δ∗). This search was conducted in the same
way for the middle bulb. Since there are only 9 eigenvectors of L that are localized
in R within the tolerance δ∗, five of the eigenpairs of Ls provide false indicators in
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Figure 8. Middle bulb. Top panel: Contour plots of the
eigenvector φ of Ls corresponding to the true indicator µ =
4.50447 + 0.98218i, and of the matched eigenvector ψ of L (with
λ = 4.50292). Bottom panel: Contour plots of the eigenvector φ
of Ls corresponding to the false indicator µ = 24.33196+0.96185i,
and of the matched eigenvector ψ of L (with λ = 24.20972). The
notation “f ∈ [c, d]” in the images indicates that the range of the
function f shown in a given contour plot is [c, d].

Table 3. Computed eigenvalues µ of Ls in U(1, 33, 1, δ∗) for the
right bulb, paired with matched eigenvalues λ of L and localization
measures δ(ψ, R) of their corresponding eigenvectors φ. The five
false indicators are highlighted in italics.

!µ "µ λ δ(ψ, R) !µ "µ λ δ(ψ, R)
2.17146 0.99932 2.17143 0.02610 18.61842 0.99841 18.62201 0.32601
5.30605 0.99047 5.30506 0.09800 18.98014 0.83889 18.98051 0.48562
5.48270 1.00000 5.48270 0.00638 21.86147 0.99711 21.86307 0.07712
8.37589 0.94815 8.36148 0.24017 27.32128 0.99505 27.32821 0.18688

10.41327 0.82496 10.28357 0.60658 28.12641 0.90667 28.15248 0.33336
10.96057 0.99984 10.96061 0.02829 28.48136 0.99618 28.48221 0.06920
14.24624 0.99981 14.24624 0.01599 31.58901 0.97649 31.58960 0.27542

this case. All 14 eigenvalues of Ls are given in Table 3, together with the eigenvalues
of L with which we have matched them and the localization measures (δ-values)
of the corresponding eigenvectors of L. Those that fail to make the final cut are
emphasized using italics. Of the five false indicators, a strong case could be made
that three of the corresponding eigenvectors ψ of L just barely failed to make the
cut—those for which 0.25 < δ(ψ, R) < 0.34. In Figure 9 we provide contour plots,
analogous to those in Figure 8, for the remaining two false indicators and their
matched eigenvectors of L.

We finally turn to the investigation of localization in the left bulb. For this
choice of R, there are 20 eigenvectors of L that satisfy the localization tolerance.
Taking U(1, 33, 1, δ∗) as before, we compute 29 eigenpairs of Ls, so there are 9
false indicators in this case. Table 4, analogous to Table 3 for the right bulb,
provides the corresponding numerical data. Of the 9 false indicators, only three
(perhaps 4) really miss the mark in their predictions of localization for the matched
eigenvectors of L. We also performed the search with s = 1/2, for eigenpairs of
Ls with eigenvalues in U(1, 33, 1/2, δ∗). In lieu of the level of detail provided in
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Figure 9. Right bulb. Top panel: Contour plots of the
eigenvector φ of Ls corresponding to the false indicator µ =
10.41327 + 0.82496i, and of the matched eigenvector ψ of L (with
λ = 10.28357). Bottom panel: Contour plots of the eigenvector φ
of Ls corresponding to the false indicator µ = 18.98014+0.83889i,
and of the matched eigenvector ψ of L (with λ = 18.98051).

Table 4. Computed eigenvalues µ of Ls in U(1, 33, 1, δ∗) for the
left bulb, paired with matched eigenvalues λ of L and localization
measures δ(ψ, R) of their corresponding eigenvectors φ. The 9 false
indicators are highlighted in italics.

!(µ) "(µ) λ δ(ψ, R) !(µ) "(µ) λ δ(ψ, R)
1.22976 0.99989 1.22975 0.01043 17.86628 0.99922 17.86930 0.03231
3.05287 0.99882 3.05277 0.03393 20.94272 0.99914 20.94341 0.06392
3.08423 1.00000 3.08423 0.00046 22.62970 0.99581 22.58585 0.44630
4.87100 0.99661 4.87063 0.05798 22.81320 0.99887 22.81332 0.03824
6.09172 0.99482 6.09100 0.07199 24.62085 0.99792 24.62379 0.13433
6.16815 1.00000 6.16815 0.00195 24.87619 0.94232 24.89579 0.32321
7.72286 0.97045 7.71673 0.17517 25.27439 0.88857 25.27430 0.02228
8.01849 0.99999 8.01849 0.00263 27.67153 0.99504 27.67714 0.14656

10.14045 0.84445 10.02874 0.54897 30.70848 0.99543 30.70761 0.07065
10.48456 0.99995 10.48453 0.01301 30.84404 0.99999 30.84395 0.00292
10.77238 0.91878 10.84459 0.68925 31.11016 0.82898 30.99216 0.60879
12.33173 0.99981 12.33501 0.29032 31.92197 0.99340 31.91777 0.18332
15.41686 0.99990 15.41680 0.01730 32.34692 0.93750 32.38753 0.37163
15.95522 0.93615 16.02489 0.26457 32.65153 0.99340 32.65182 0.10739
16.03284 0.99941 16.04093 0.28087

Table 4, we summarize the results. The choice of s = 1/2 yielded 28 candidates,
with one fewer false indicator, corresponding to λ = 30.99216. Changing to s = 1/4
eliminated two more false indicators, those corresponding to λ = 10.02874 and
λ = 10.84459. Further reducing to s = 1/8, 1/16, 1/32 or 1/64 did not eliminate
any of the remaining false indicators.

5. Concluding Remarks

We have provided theory, together with detailed examples illustrating key results,
motivating Algorithm 1 for exploring eigenvector localization phenomena. A partial
realization of Algorithm 1 was described and tested on a problem exhibiting multiple
instances of localization due to domain geometry early in its spectrum, providing
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a “proof of concept” for our approach. What is missing from this realization is
a post-processing phase in which eigenpairs of L are obtained from those of Ls

automatically, though some form of inverse iteration was suggested for this. We
have not provided numerical analysis, i.e. theoretical insight into the effects of
discretization errors, for our approach, but intend to pursue that in future work.
Future work will also include extensive testing of a full realization of Algorithm 1,
as well as variants discussed in Section 3, on a wide variety of problems, with a
view toward providing guidance on how to set key parameters.
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