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ABSTRACT. In October 2011, the Halloween Nor’easter produced unusually early and heavy snowfall while leaves were still on the
trees, causing extensive damage throughout the northeastern United States. This storm is an example of winter weather whiplash, in
which an abrupt, back-and-forth swing in winter weather affects coupled human and natural systems. Research on the social-ecological
drivers and impacts of winter weather whiplash is scarce because most studies only consider meteorological causes and consequences
of extreme events. In this study, we used publicly available data of snowfall accumulation, vegetation phenology, road density, and per
capita income to predict storm impacts, which we estimated with textual analysis of Halloween Nor’easter newspaper coverage. We
demonstrated that a combination of meteorological, natural, and human system drivers was better able to predict the impact of the
storm than meteorological drivers alone. Although we focused on the Halloween Nor’easter, our work highlights the necessity of
understanding how multiple drivers and hazards can intersect to create rare and possibly novel conditions that may become more
common as the climate warms and becomes more variable.
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INTRODUCTION
On 28 October 2011, a cold polar air mass encountered a low-
pressure system off the southeastern coast of the U.S., forming a
Nor’easter that moved northward to the Canadian Maritimes.
Rain fell during the morning of 29 October and changed to snow
during the hours from the 29th through the 30th (Ryan 2011,
LeComte 2012). Historical snow accumulation records were
broken at multiple locations (NOAA 2021). The storm resulted
in ~4.3 million people losing power, and total damage estimates
were US$1 to 3 billion (DOE 2011, FERC 2012). The timing of
the event was unusual and contributed to the magnitude of its
impact because accumulating snowfall typically does not occur
in most of the northeastern U.S. until late November (Contosta
et al. 2019). Average monthly temperatures from September
through November 2011 were higher than normal (Contosta et
al. 2019), resulting in delayed autumn senescence (Yue et al. 2015),
particularly for species that experience later leaf coloration and
abscission such as American beech (Fagus grandifolia), white oak
(Quercus alba), and red oak (Quercus rubra; Lee et al. 2003). Heavy
snow loads on deciduous trees still in-leaf rendered them
vulnerable to storm damage (FERC 2012). Prior extreme weather
events in the region that year, including a tornado outbreak (June
2011) and Hurricane Irene (August 2011), had already caused
extensive power outages (LeComte 2012, Kloster et al. 2019) and
power outage “fatigue” among residents (e.g., Johnson and
Wojtas 2011).  

This “Halloween Nor’easter” illustrates weather whiplash: a type
of extreme event that features a seesaw in weather conditions.
Definitions of weather whiplash vary. They include rapid shifts
in precipitation from anomalously dry to anomalously wet
conditions over seasonal (Swain et al. 2018) and interannual (He
and Sheffield 2020) timescales. They also include rapid swings in
surface temperature over weekly, daily, and diurnal (24 hour)
periods (Lee 2022). From an atmospheric standpoint, weather
whiplash can manifest as an abrupt shift from a persistent

circulation pattern into a new circulation regime that may or may
not endure (Francis et al. 2022). Although early season
snowstorms can occur in the Northeast, the 2011 Halloween
Nor’easter has characteristics of weather whiplash that set it apart
from other out-of-season events. Temperatures across the
Northeast from September through November of 2011 were
persistently warm, averaging 1.5 to 5 °C higher than normal. This
weather pattern was interrupted by the convergence of a cold
polar air mass colliding with warmer air off  eastern North
America, such that temperatures dropped as much as 5 to 10 °C
during the storm before rebounding to pre-storm values (Vose et
al. 2014, NOAA 2023). In this case, the rapid back-and-forth
change in temperature included shifts from above to below
freezing and then back above 0 °C once the storm passed.
According to Casson et al. (2019), this repeated crossing of the
0 °C threshold makes the Halloween Nor’easter a winter weather
whiplash event that has the potential for outsized impacts (Fig.
1; Mazdiyasni and AghaKouchak 2015, Zscheischler and
Seneviratne 2017).  

Outsized consequences of winter weather whiplash occur in part
from the transition from frozen to thawed conditions (or vice
versa) because the phase change of water can damage natural and
managed vegetation, cause catastrophic flooding, and destroy
physical infrastructure such as roads and power lines (Casson et
al. 2019, Zscheischler et al. 2020). The social-ecological context
in which winter whiplash events occur contributes to their effects.
For example, emergency response capability, local awareness of
risk, and floodplain development policies can magnify or mitigate
the effects of weather extremes on local communities (Das et al.
2018). Therefore, in addition to synoptic-scale meteorology (i.e.,
weather events on the scale of days and across hundreds or
thousands of kilometers), the unique social-ecological setting of
the Halloween Nor’easter likely exacerbated the scope of its
impacts.
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 Fig. 1. Conceptual framework of the 2011 Halloween Nor’easter winter weather whiplash event (modified after Casson et al. 2019).
 

METHODS
Our study area comprised states in the geographic footprint of
the Halloween Nor’easter, which extended across the
northeastern U.S. from Virginia to Maine. Within this footprint,
we compiled publicly accessible data on the meteorological,
natural system, and human system drivers and impacts of the
storm (Fig. 2). Variable selection was guided by our conceptual
model of winter weather whiplash (Casson et al. 2019; Fig. 1),
which situates ecological disturbance theory within a coupled
human and natural systems framework to emphasize interactions
between regional-scale weather events, the social-ecological
setting in which events occur, and the resulting impacts. We used
a “bottom-up” approach (sensu Zscheischler et al. 2018) in
choosing driver and impact variables for the analysis, starting with
the event itself  and then identifying the factors, processes, and
phenomena that shaped the outcomes of the event. This kind of
approach emphasizes combinations of drivers and hazards that
result in system failures while also enabling an analysis of the
relative importance of different drivers in causing specific
impacts. Both driver and impact variables were scaled or
aggregated per county within the study area. All spatial analyses
were performed in ArcGIS version 10.4.1.

Driver variables

Synoptic weather
We considered snowfall the primary synoptic weather driver of
the event (Fig. 1). Spatial 24-hour snow water equivalent (SWE)
accumulation data (inches) for each day of the October
snowstorm (28 to 31 October 2011) were obtained from the 0.04-
degree resolution National Snowfall Analysis product (NOHRSC
2021). To estimate snow accumulation, SWE values for all four
days were summed at each pixel location, filtered to remove pixels
with less than one-inch accumulated SWE (NOAA 2021),
averaged for all pixels within each county, and then converted to
mm.

Natural system context
The presence of leaves greatly increases the probability of tree
damage during snowstorm events as the mass of snow that can
accumulate is greater because of the larger surface area than the
branches alone (Kane and Finn 2014). Therefore, we selected leaf
area index (LAI) immediately prior to the storm as the natural
system driver of the event (Fig. 1), where LAI is a dimensionless
quantity of leaf area per unit ground area that characterizes the
density of leafed tree canopies. Spatial LAI values for 28 October
2011 were obtained from the 1-km resolution Moderate
Resolution Imaging Spectrometer (MODIS) MCD15A3H data
product (Friedl et al. 2010, Myneni et al. 2015), cropped to the
study area, and then averaged for each county.

Human system context
We selected four variables as human system drivers: road density,
population density, per capita income, and the social vulnerability
index (SVI; Fig. 1). In keeping with Winkler et al. (2010), road
density was used as a proxy for above-ground power line density
—the infrastructure that was most commonly, extensively, and
heavily damaged in the event—because we did not have private,
utility-owned power line maps across the region. Road density
was calculated from the U.S. Census Bureau’s TIGER/Line Files
and Shapefiles spatial dataset of primary and secondary roads
for 2011 (USCB 2011). The dataset was filtered to remove primary
roads—divided and limited-access highways—because secondary
roads typically comprise the electric distribution network (e.g.,
Short 2003). These secondary roads were spatially joined to each
county to associate each road segment with a specific county. The
lengths of the road segments per county were calculated in
kilometers, summed per county to obtain total road lengths, and
then divided by county area to yield road density per county (km/
km²). We obtained total population counts and SVI scores for
2010 and per capita income (US$ 2010) at the county level from
the U.S. Centers for Disease Control and Prevention (CDC 2010).
Total population per county was divided by county area to obtain
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 Fig. 2. Maps of driver variables per county. (A) Average 4-day snowfall accumulation (mm snow water equivalent [SWE]); (B)
Average leaf area index (LAI; unitless) for 28 October 2011; (C) Road density (km/km²); (D) Population density (people/km²); (E)
Per capita income in US$ 2010; (F) Social vulnerability index (unitless). Counties in gray did not experience snowfall and were not
included in the analysis.
 

population density (people/km²). Population density is well-
correlated with infrastructure density and has been used to assess
risk from natural disasters in other studies considering social and
ecological contexts (Quinn 2013). The SVI estimates the social
vulnerability of U.S. counties to environmental hazards, including
extreme weather events, according to variables such as age,
income, ethnicity, and housing, and ranks the estimates based on
percentiles for all counties within each state to yield scores ranging
from 0 (least vulnerable) to 1 (most vulnerable; Flanagan et al.
2011).

Impact variable
We undertook a contextual analysis of newspaper articles
reporting on the Halloween Nor’easter to evaluate the impact of
the winter weather whiplash event. Data on the social and
economic impacts of extreme events can come from a variety of
sources, including bulletins from meteorological agencies,
retrospective reports from governmental or non-governmental
agencies, insurance industry sources, or news agencies (Hilker et
al. 2009, Wirtz et al. 2014). Newspaper articles provide detailed,
authoritative information throughout an event (Barnolas and
Llasat 2007), are particularly useful for capturing information
about smaller events that may not be captured in reports focusing
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on very large events (Du et al. 2015), and provide spatially resolved
information if  local or regional news sources are available (Gil-
Guirado et al. 2019). There are limitations to the types of impacts
captured in newspaper articles. For instance, news coverage is
contingent on what other newsworthy events are happening at the
time (Eisensee and Strömberg 2007), tends to focus on impacts in
urban areas (Llasat-Botija et al. 2007), and provides estimates of
damages that are preliminary and so may not be complete
(Downton and Pielke 2005). We accessed articles reporting on the
Halloween Nor’easter using Nexis Uni (https://www.lexisnexis.
com/en-us/professional/academic/nexis-uni.page). Initial reference
searches focused on synoptic scale weather drivers of the event,
using the term “snow,” bounded range of dates aligning with
storm development and for two weeks after the event (28 October
to 12 November), publication type (newspaper), location of story
(northeastern U.S.), additional terms (“storm” or “fall”), and
location of publication (local, state, or national). Following
methods used by Kloster et al. (2019), only those articles that
wrote specifically about the snowstorm and its impacts were
considered. We included articles about trees or branches (natural
system) damaging physical infrastructure such as powerlines
(human system) and excluded articles if  there was no perceived
impact beyond brief  weather references. Further, all remaining
articles about unrelated events occurring at that time were
excluded. Only articles located in their original sources of
publication were considered; all others were removed (Kloster et
al. 2019).  

We applied content analysis as the method for coding newspaper
articles (Adler and Clark 1999, Kloster et al. 2019); coding and
subsequent analysis was completed using NVivo 10 software. A
coding frame was developed based on our understanding of the
storm as a winter weather whiplash event (Fig. 1) in combination
with a preliminary review of newspaper articles in our dataset.
This frame resulted in seven themes that aligned with our
conceptual framework (Fig. 1): “weather,” “tree damage,”
“power,” “public safety,” “community response,” “local events,”
and “other impacts.” “Weather” referred to the meteorological
driver of snowfall as well as to comparisons of the storm to
previous October snowfalls. “Tree damage” referred to downed
trees or branches; a key natural system impact of the 2011
Halloween Nor’easter event was tree damage from snow
accumulation weight on leaves. The other five themes represented
human system impacts. “Power” included references to power
outage, restoration, and the number of customers without power
per county. The theme of “public safety” encompassed avoided
travel, accounts of personal injury in traffic accidents or at home,
and state emergency declarations that cautioned against travel.
“Community response” reflected community interventions such
as the provision of temporary shelter. “Local events” represented
individual events that were cancelled because of the storm, such
as Halloween trick-or-treat—a direct and cultural impact of the
storm. “Other impacts” was established to represent impacts that
were broader-ranging or did not fit completely within the local
event category. The frequency with which these themes appeared
enabled us to qualitatively assess the degree of focus of our
conceptual model components (Fig. 1) in the news media. Once
the initial coding was completed, a subset of articles was
systematically checked by a second researcher well-versed in social
science methodology to ensure consistency in coding (e.g., Kloster
et al. 2019).  

We delineated the geographic impact of the Halloween Nor’easter
by assigning articles to counties through direct references in the
article to the counties themselves. If  counties were not identified,
the articles were assigned to the counties of the communities or
municipalities referenced in the articles. Articles without such
location information were assigned to the county in which the
newspaper was published. We then summed the number of articles
and the number of publishing newspapers per county and then
divided the total number of articles by the total number of
publishing newspapers per county, and this metric was used as
the impact variable in our statistical modeling of the event. We
standardized the number of observed articles to the number of
news sources in a county because our study area covered a range
of population densities from very low rural areas to very dense
urban areas; without performing the standardization, the dense
urban areas would be overrepresented in our dataset.  

As described above, there is a well-established body of literature
relating the quantity and quality of news coverage after an
extreme event to the social and economic impacts of that event.
The novelty of our approach is in the number of newspaper
articles as the impact (dependent) variable in a random forest
model.

Statistical analysis of drivers and impacts on coupled human-
natural systems
All statistical analysis was conducted in R 4.0.3 (R Development
Core Team 2020). We used regression tree modeling to test our
hypothesis that a combination of meteorological, human, and
natural system drivers would more accurately predict the impact
of the Halloween Nor’easter winter weather whiplash event than
meteorological drivers alone. Independent variables were
snowfall (synoptic scale meteorological driver), LAI (natural
system context), and road density, population density, per capita
income, and the SVI (human system context). The impact variable
was the ratio of articles to publishing newspapers per county (the
impact of the event). The influence of driver variables on the
impact variable was modeled with different combinations of the
synoptic scale weather (snowfall), natural system (LAI), and
human system (road density, population density, per capita
income, and SVI) drivers. Snowfall, which was the driver variable
representing the primary cause of snow-related impacts, was
included in every driver variable combination. Per capita income
and SVI were not used in the same models because of collinearity.
Model comparison was performed by calculating the Akaike’s
Information Criteria (AIC) for each regression tree model using
the “regclass” package (Petrie 2020). The model with the lowest
AIC explained the maximum amount of variation with the fewest
number of drivers.  

The driver variables from the optimal regression tree—as
determined from multi-model inference using the AIC—were
then used in a random forest analysis to determine the relative
importance of each driver and to generate county-level
predictions of impact. Random forest is a machine learning
algorithm that uses an ensemble of decision trees to predict a
dependent (impact) variable from a suite of independent (driver)
variables (Liaw and Wiener 2018). It makes no assumptions about
data distributions, can incorporate both continuous and
categorical variables, and can accommodate collinearity between
variables (Liaw and Wiener 2018). Previous research has applied
random forest modeling to a variety of natural resource
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management contexts, such as evaluating how biophysical and
social factors influence roadside vegetation management to
minimize power outages (Hale and Morzillo 2020). The relative
importance of each driver in the random forest models was
assessed by calculating the mean squared error for each tree,
comparing its predictions with observed values for a subset of the
data, and then averaging the percent of variance explained in the
impact variable across 10,000 trees to produce an estimate of
model-averaged fit (Liaw and Wiener 2018). Random forest
analysis was completed using the R package “randomForest.”
The predicted storm impacts from the random forest analysis were
mapped by county to visually compare them with the observed
impacts. Partial dependence plots were then used to assess the
impact of each driver on the perceived impact of the storm.

RESULTS
From 28 to 31 October 2011, total snowfall ranged from 0 to 60
mm SWE across the region. The highest snowfall occurred in a
band that extended from southeastern Pennsylvania to southern
New Hampshire, with most counties in Massachusetts receiving
some of the most significant snowfall of the storm (Fig. 2A). Leaf
area index, which represented the natural system context in which
the system occurred, was highest in coastal and urban counties
along the eastern seaboard (Fig. 2B). Likewise, the human system
variables of road density and population density were generally
greater along the coast and in major metropolitan areas such as
Philadelphia, New York, and Boston (Fig. 2C and 2D road
density and population density, respectively). Per capita income
ranged from US$14,325 to $59,149 2010 across the region and
was generally higher along the coast in the Washington, D.C. to
Boston area and lower in the rural areas and in particular West
Virginia, upstate New York, Pennsylvania, and Maine (Fig. 2E).
The social vulnerability index had a large range, from as low as
0.002 in the Washington, D.C. to New York suburbs and parts of
New Hampshire, Maine, and Vermont to as high as 0.998 in New
York City (Fig. 2F).  

Our initial search of newspaper articles covering the storm
(integrated metric of meteorological, natural, and human system
impacts) resulted in 361 articles. After restricting the articles to
only those in their original publication source and which were
about the storm and its direct impact on people and property, 121
articles remained from which we analyzed the consequences of
the Halloween Nor’easter. The ratio of articles to publishing
newspapers per county ranged from 0 to 21 (Fig. 3A). There were
as many as nine newspapers per county publishing these articles
and as few as zero (Fig. 3B). The geographic range of both the
number of articles and the number of newspapers generally
mirrored the spatial distribution of total snowfall, though areas
of greater coverage also occurred in counties outside of the
epicenter of the storm.  

Content analysis of the 121 newspaper articles in our dataset
revealed that “weather” was the most frequently identified of the
seven themes in our coding frame (n = 224), with multiple
locations referenced in a single article occurring several times.
Coverage related to “weather” highlighted the record-breaking
amount of snowfall that the storm produced as well as the fact
that the snow was wet and heavy (see Table 1 for representative
quotes for all seven themes). “Power” was the next most common

theme (n = 180), followed by “public safety” (n = 103). Impacts
related to “power” emphasized the extent of power loss and the
deployment of crews from across the U.S. and Canada to restore
electricity to the region. Articles that discussed “public safety”
noted both the danger of traveling on roads during the storm as
well as the hazards of live power lines on the ground and in trees
following the storm. The next most frequent theme was “tree
damage” (n = 66). Newspaper content related to “tree damage”
impacts described the breaking and falling of trees and limbs onto
roads and houses, resulting in dangerous driving conditions and
damage to homes and personal property. Media coverage of
“community response” (n = 57), another human system impact,
focused on shelters for residents who had lost electricity. The themes
of “local events” and “other impacts” had the fewest references in
our dataset (n = 60 and 7, respectively). Content related to “local
events” emphasized the cancellation of trick-or-treating, while text
describing “other events” noted broader-ranging and multi-day
impacts such as school closures, changes to school year calendar
because of closures, and changes to or extensions made for
university admission deadlines.

 Fig. 3. (A) Ratio of articles to publishing newspapers per
county; (B) Number of publishing newspapers of those articles
in A; (C) Observed impact of the storm expressed as the number
of articles divided by the number of publishing newspapers; (D)
Predicted impact of the Halloween Nor’easter. Counties in gray
did not experience snowfall and were not included in the analysis.
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 Table 1. Representative quotes describing meteorological, natural, and human system impacts of the Halloween Nor’easter as
determined through newspaper content analysis; themes are ordered by frequency of occurrence.
 
Theme Representative quote

Weather “... the weather service spokesman said the snowstorm ‘absolutely crushed previous records that in some cases dated back more than 100 years.’
Saturday was only the fourth snowy October day in New York’s Central Park since record-keeping began 135 years ago” (“3 million in dark in
Northeast snow,” Charleston Gazette, Charleston, WV, 31 October 2011).

“It’s not only a lot of snow, but a lot of the heaviest wettest snow that you ever want to see out there” (“Storm knocks out power for 110,000,” Cape
Cod Times, Hyannis, MA, 30 October 2011).

“The Saturday snow, with an official depth of 5.5 inches, more than doubled the cumulative total of 3.5 inches of all known October snowfalls in the
record period, which dates to 1869” (“Record snow was October surprise,” Reading Eagle, Reading, PA, 4 November 2011).
 

Power A Connecticut Light & Power spokeswoman said, “the utility doesn’t know when power will be restored as it struggles to deal with a storm that cut
power to 820,000 of its 1.2 million customers” (“Greenwich continues storm cleanup,” The Stamford Advocate, Stamford, CT, 31 October 2011).

“State officials said 1,500 crews are working to restore power, including workers called in from as far away as Texas, Louisiana, Michigan and Canada”
(“For many, It’s far from over,” Sentinel & Enterprise, Fitchburg, MA, 1 November 2011).

“Since Saturday, local and regional linemen have struggled in 16-hour shifts to repair powers lines damaged by tree branches weighed down by wet
snow and leaves. ‘It’s called cracking ... ’ ‘This storm hit when not all the leaves had fallen, and that extra weight causes the branches to crack and fall
on the lines ... The biggest challenge are the trees ... When the branches come down, they snap the lines in half ’ ”(“Out-of-state electric workers up early
to help restore power in York County,” York Daily Record, York, PA, 2 November 2011).
 

Public Safety “The storm is causing treacherous driving conditions ... ‘I am urging residents to stay off  the roads and let DOT crews get out there and get the streets
clear ... People should stay inside at this point, we are seeing heavy snow start to impact power as well as driving’ ” (“Power lines and trees fall as
nor'easter dumps snow on Stamford,” The Stamford Advocate, Stamford, CT, 30 October 2011).

“... urged everyone to stay far away from downed lines and trees, since storms like this can lead to live power lines being on the ground. ‘Be sure to keep
pets and children especially away from downed lines, and be very careful around trees and tree limbs that have come down that may have power lines
tangled in them’ ” (“Storm knocks out power,” Lowell Sun, Lowell, MA, 2 November 2011).
 

Tree Damage “Crack! Boom! Trees were going down as I was driving” (“Halloween horror show,” Lowell Sun, Lowell, MA, 31 October 2011).

“ ‘My house is decimated,’ said ..., who had three trees that fell in her yard from the weight of the snow (“Halloween horror show,” Lowell Sun, Lowell,
MA, 31 October 2011).

“ ‘The whole back of my house is a wooden mess,’ he said Monday afternoon from the kitchen of his home. ‘I’ve called some tree companies but all of
them seem to be busy. What a way to wake up.’ His backyard is littered with branches and debris, and the bulk of the tree is still sitting on the top of his
house. He’s already contacted his insurance company, but he said not much can be done until the tree is removed! (“For many, ‘It’s far from over’,”
Sentinel & Enterprise, Fitchburg, MA, 1 November 2011).
 

Community
Response

“But because of the continuing widespread outages, 77 shelters were open across the state as of last night” (“Wintry mid-autumn storm sweeps Western
Mass., recovery begins,” Massachusetts Daily Collegian: University of Massachusetts - Amherst, Amherst, MA, 1 November 2011).

“The American Red Cross opened a shelter Monday afternoon at the Lebanon Valley Expo Center, 80 Rocherty Road, North Cornwall Township, to
serve people in Lebanon County and the northern end of Lancaster County who were without power. Meals, showers and cots were available for
anyone who needed help. Two people were at the shelter Monday night” (“Red Cross takes in storm victims at Lebanon Valley Expo Center,” The
Lebanon Daily News, Lebanon, PA, 31 October 2011).
 

Local Events “When I found out Halloween was canceled, I was so bummed; it was the worst day ever ... I went over to my grandparents’ house in New Milford
because they were, like, the only people on the planet who had power. But we still didn’t get to go trick-or-treating. There were too many trees and wires
all over the place. So I sat there on the couch and did nothing. I said, ‘I can't believe it’s Halloween and I’m sitting on a couch! This is an outrage!’ ”
(“For Some, Halloween in November Is a Sour Idea,” The New York Times, New York City, NY, 4 November 2011).

“In Sherman, Conn., ... and her daughter, ..., 7, spent Halloween night and the next night at a makeshift shelter. But they got a little trick-or-treating in
Monday and will attend Halloween events at schools Friday night and Saturday” (“For Some, Halloween in November Is a Sour Idea,” The New York
Times, New York City, NY, 4 November 2011).
 

Other Events “Connecticut schools must have at least 180 days of classes during the academic year and finish by June 30 under state law. Many districts have already
lost five to 10 days of classes and used up most of the snow days they set aside as a cushion ... West Hartford Assistant Superintendent ... said the
school year is now scheduled to end around June 20 or 21 unless more snow days push it later” (“East loses school days to snow, storm; Costal states
worry about making up days after heavy snowfall, Irene,” Charleston Daily Mail, Charleston, WV, 4 November 2011).

“Dozens of colleges and universities nationwide, meanwhile, extended their early decision deadlines because of the snowstorm, as the widespread
power failures made it impossible for many students to email their applications by the Tuesday deadline” (“East loses school days to snow, storm;
Costal states worry about making up days after heavy snowfall, Irene,” Charleston Daily Mail, Charleston, WV, 4 November 2011).
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Regression tree analysis showed that the geographic impact of
the Halloween Nor’easter, as quantified by a number of
newspaper articles per county, was best modeled using a
combination of meteorological, human, and natural system
drivers (no other model had a ΔAIC of < 2). Multi-model
inference indicated that the model that included snowfall, LAI,
road density, and per capita income as driver variables had the
lowest AIC and the highest r² of any model in our suite (AIC
= -284.72, r² = 0.54; Table 2). A base model including snowfall
(meteorological driver) as the only driver had an r² value of 0.28.
Adding LAI (natural system driver) to this base model improved
the model r² to 0.35. Adding road density, population density, and
per capita income (human system drivers) to the base model
improved the model r² to 0.50.

 Table 2. Results of regression tree analyses using different
combinations of driver variables (meteorological, natural system,
and human system) to predict the impact of the 2011 Halloween
Nor’easter. Models were ranked based on Akaike’s Information
Criteria (AIC) compared with the base model that included the
meteorological variable of snowfall (shown as snow water
equivalent or SWE) as the single driver. LAI = leaf area index;
Road = road density; Pop = population density; Inc = per capita
income.
 
Predictor types Variables included AIC

values
r²

SWE + LAI + Road + Inc -284.72 0.54
SWE + LAI + Inc -260.95 0.50

Meteorological +
natural+ human

SWE + LAI + Pop + Inc -250.39 0.46
SWE + LAI + Pop + SVI -250.39 0.46
SWE + LAI + Road + SVI -236.12 0.43
SWE + LAI + Road -236.12 0.43
SWE + LAI + SVI -216.57 0.38
SWE + LAI + Road + Pop + Inc -212.78 0.36
SWE + LAI + Road + Pop + SVI -212.78 0.36
SWE + LAI + Road + Pop -212.78 0.36
SWE + LAI + Pop -212.78 0.36
SWE + Pop + SVI -269.86 0.50
SWE + Pop -269.86 0.50

Meteorological +
human

SWE + Road + Inc -261.73 0.51
SWE + Pop + Inc -261.62 0.48
SWE + Road -216.60 0.39
SWE + Road + Pop + Inc -212.78 0.36
SWE + Road + Pop + SVI -212.78 0.36
SWE + Road + Pop -212.78 0.36
SWE + Inc -209.90 0.38
SWE + Road + SVI -197.46 0.33
SWE + SVI -147.94 0.18

Meteorological +
natural

SWE + LAI -205.73 0.35

Meteorological
only

SWE -171.91 0.28

Across the study area, 0 to 3.5 newspaper articles per county
reported on the observed impact of the storm (Fig. 3C). We used
random forest analysis of the optimal regression tree (see Table
2) to predict the storm impact. The random forest explained 31%
of the variance in the impact of the storm (mean squared residuals
= 0.47), with the predicted impact varying from 0 to 2.3 (Fig. 3D).
The ratio of articles to publishing newspapers per county was
over-predicted in low population density areas where the observed
ratio was close to or equal to zero, and under-predicted in high

population density areas where the observed ratio was greater. A
variable importance plot of the random forest analysis showed
that snowfall was the most influential variable predicting storm
impacts, as determined by the increase in mean squared error (Fig.
4A). The relative importance of the three other drivers in the
model were ranked in order of road density, followed by LAI, and
then per capita income (Fig. 4A). Partial dependence plots
showing the marginal effects of each driver are presented in Figure
4.

DISCUSSION
The example of the Halloween Nor’easter demonstrates that
winter weather whiplash events affect coupled human and natural
systems beyond what would be expected from weather alone
(Mazdiyasni and AghaKouchak 2015, Zscheischler and
Seneviratne 2017). In keeping with our hypothesis, we found that
regression tree models that combined meteorological, natural,
and human system drivers were better able to predict storm
impacts than models that considered each driver in isolation.
Prior research has taken a similar approach to combining
meteorological data with information about natural and human
systems to enhance model predictions of extreme events (e.g.,
Wanik et al. 2015, Cerrai et al. 2019). To our knowledge, our study
is unique in analyzing both the drivers and impacts of a compound
extreme winter weather event using a social-ecological lens. The
quantitative analysis we present here using the number of
newspaper articles standardized by the number of sources is a
potential model for understanding the impact of these types of
events. Although there are limitations to using newspaper articles
as a measure of impact, the relatively good fit of the random
forest model suggests that, in this case, the newspaper articles
captured the geographical distribution of storm impacts. This
kind of integrated assessment is crucial to anticipating risks that
might arise when multiple hazards overlap to create rare and
possibly novel conditions (Balch et al. 2020), which may become
more common as the climate warms and becomes more variable
(Lee 2022).  

Climate change is altering the character of winter in historically
cold, snow-covered regions (Contosta et al. 2019). Winter air
temperatures are rising, snowpacks are thinning, and more
precipitation is falling as rain rather than snow. These trends are
expected to continue or accelerate (USGCRP 2017, Contosta et
al. 2019, Burakowski et al. 2022). Empirical evidence has linked
warming Arctic air temperatures to increasing winter variability,
including winter weather whiplash events (Cohen et al. 2020).
Model projections have suggested that winter weather whiplash
will be more frequent in the future, even under optimistic scenarios
(Francis et al. 2022) and in regions that have typically experienced
winter temperatures below 0 °C (Chen et al. 2021). Some of these
winter whiplash events feature anomalously warm conditions that
disrupt plant, animal, and human phenology (Tervo 2008,
Penczykowski et al. 2017, Ladwig et al. 2019), or atypically wet
conditions such as rain-on-snow that threaten water quality and
human infrastructure (Li et al. 2019, Seybold et al. 2022). In this
study we focused on a single event within a class of events in which
winter weather incursions into the fall season created impacts on
ecological, social, and economic systems components due to tree
damage caused by snow that fell on pre-senescent vegetation
(Kane and Finn 2014).  
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 Fig. 4. (A) Variable importance plot of the random forest analysis showing the relative importance of each driver, as determined by
the increase in mean squared error to the overall model fit. (B-E) Partial dependence plots showing the marginal effect of each
driver on the driver impact (expressed as the ratio of articles to publishing newspapers per county). Snow water equivalent (SWE) is
measured in mm, leaf area index (LAI) is unitless, road density is measured in km/km², and income is measured in US$.
 

Our investigation of the Halloween Nor’easter as an example of
winter weather whiplash showed that higher income, higher
population density neighborhoods, with more-extensive urban
tree canopies were more likely to experience storm impacts.
Higher income areas tended to have higher population densities.
Well-documented relationships between socioeconomic characteristics,
green infrastructure, and urban heat islands may have combined
to delay autumn senescence in some locations (Grove et al. 2014,
Melaas et al. 2016), such that a greater abundance of trees still in
leaf in more densely populated areas that also have greater tree
cover posed natural hazards to an early season snowfall. This kind
of information may help moderate the effects of future shoulder
season snowstorms. For example, utilities might consider land
cover or individual species as part of their vegetation management
plans (Wanik et al. 2015, D’Amico et al. 2019). Yet, public
relations are the most challenging component of roadside
vegetation management (e.g., Johnson 2008), and attitudes
toward utility vegetation management are influenced by different
human dimensions factors and vary across location and scale
(Hale and Morzillo 2020, DiFalco and Morzillo 2021, DiFalco
et al. 2022). In the autumn of 2011, delayed senescence of species
that naturally experience later abscission meant that many beeches
and oaks were still in leaf when the Halloween Nor’easter hit.
Individuals of these species that were in poor health or showed
structural defects may have been more likely to fall on power lines
or damage critical infrastructure, such that prioritizing their
pruning or removal could have mitigated some storm impacts.  

In this study, we relied on publicly available datasets to construct
a statistical model of the Halloween Nor’easter that fit within the
conceptual framework developed by Casson et al. (2019). Satellite
derived LAI used to detect foliage presence at the time of the
storm did not provide information about which species were still
in leaf. We are not aware of publicly available data across our
study area that would allow for species-specific inferences of
phenological phase at fine temporal (daily) scales. The National
Land Cover Database (NLCD) tree canopy data layer provides
national estimates of tree canopy cover, including in urban areas.

Yet the five-year update cycle of the NLCD may be too coarse to
capture rapidly changing conditions that are a hallmark of
weather whiplash (Casson et al. 2019, Lee 2022). As part of
determining the human system context in which the storm
occurred, we estimated the density of distribution power lines
from secondary road density. This was not a perfect
representation of the electrical grid (for example, it does not
include regional transmission lines), but detailed maps of
distribution lines are neither publicly accessible nor in a
standardized form that enable regional scale analysis (Arderne et
al. 2020). Higher resolution tree cover data and standardized
publicly available maps of aboveground distribution lines would
enhance the identification of locations at greater risk to winter
weather whiplash events like the Halloween Nor’easter.  

Studies that evaluate the consequences of extreme events typically
consider direct, tangible damages, such as loss of life, insured
costs, and federal emergency relief  expenditures for which data
are readily available (IPCC 2012). Focusing solely on the
monetary impacts of extreme events neglects other direct impacts
and the complexity of both direct and indirect, intangible social
and ecological consequences, such as impacts on disease vectors,
impacts on psychological well-being and a sense of security, or
impacts on ecosystem services (Spruce et al. 2020). Our newspaper
content analysis of newspaper coverage of the storm revealed that
although some of the most frequent themes in our dataset such
as “power” and “public safety” might have been captured through
statistics of outages or accidents, issues related to the themes of
“tree damage,” “community response,” “local impacts,” and
“other impacts” may have been harder to enumerate because they
often occur at the medium and fine scales of neighborhoods or
individual property owners (Hasan and Foliente 2015). Lost
opportunities for travel, trick-or-treat, and holiday gatherings are
examples of intangible impacts of the storm as represented by
the “local events” theme. Yet content analysis can also be an
imperfect instrument when detecting the impacts of storms like
the Halloween Nor’easter. Prior research has demonstrated that
media outlets vary in their coverage of extreme weather events,
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both in the framing of stories and in the inclusion of stakeholder
voices, such as based on convenience (Kloster et al. 2019). Thus,
journalistic decisions about how to cover a story and whom to
interview may affect the occurrence and frequency of themes that
represent the human and natural impacts of the storm. The extent
and nature of news coverage of storm impacts also influences
both the ways affected individuals understand the risk of these
events (Conway and Jalali 2017) and also the amount and type
of relief  aid provided by government agencies (Berlemann and
Thomas 2019), and thus may influence the human and natural
system context for subsequent storms (Casson et al. 2019).  

The Halloween Nor’easter resulted in more than an estimated
US$1 billion in economic losses. Despite its magnitude, this
statistic underestimates the true consequences of the event
because it does not account for indirect, intangible, and direct
non-monetary impacts. Our integrated consideration of impacts,
based on a coupled human and natural systems framework,
revealed greater vulnerabilities to winter weather extreme events
than dollar amounts alone, including avoided travel, personal
injuries, work and school closures, and disrupted community
activities. We characterized both the drivers and the impacts with
publicly available data; however, our ability to predict the impacts
of the Halloween Nor’easter would likely improve with more
granular spatial and temporal data of the natural and human
contexts of the event. Although our study focused on a single
storm within one region, our analysis demonstrates the necessity
of a holistic approach for understanding the meteorological,
ecological, and socioeconomic drivers of extreme weather events
as a prerequisite to both preventing and mitigating their risks.
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