Muon capture on the deuteron in chiral effective field theory
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Abstract

We consider the capture of a muon on a deuteron. An uncertainty analysis of the dominant
channels is important for a careful analysis of forthcoming experimental data. We quantify the
theoretical uncertainties of chiral effective-field-theory predictions of the muon-deuteron capture
rate from the relevant neutron-neutron partial wave channels in the final state. We study the
dependence on the cutoff used to regularize the interactions, low-energy constants calibrated using
different fitting data and strategies, and truncation of the effective-field-theory expansion of the

currents. Combining these approaches gives as an estimate of F;{f =399.14+7.6+4.4 s7! for

capture from the atomic doublet state, and F%z = 12.31 £ 0.47 4+ 0.04 s~! for capture from the
quartet state and the first and second uncertainties given here are due to the effective field theory

truncation error and the uncertainty in the axial radius, respectively.
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I. INTRODUCTION

One of the main current priorities of nuclear theory is the description of nuclear elec-
troweak processes. They give insights into the structure of complex nuclei, can be used
to search for physics beyond the standard model, and are also important inputs to models
of big bang nucleosynthesis and stellar evolution. Their calculation requires models of the
nuclear interaction and electroweak currents that are consistent with each other. Chiral
effective field theory provides a systematic approach to derive these consistently within one

framework [1-3].

Effective field theories (EFTs) are systematic low-energy expansions that can be con-
structed when a system displays a separation of scales whose ratios can be used as the
expansion parameters. Within chiral EFT, nucleons and pions are the degrees of freedom
used to construct the nuclear Hamiltonian. The expansion parameter () of chiral EFT is
given by the ratio of the pion mass or a typical low momentum scale relevant for the prob-
lem at hand to Ay, the breakdown scale of the theory, which is expected to be comparable
to the lightest degree of freedom not taken into account in the theory. The cost of this
simplified EFT description of low-energy dynamics are additional parameters in the EFT,
known as low-energy constants (LECs), that have to be determined by fitting to experiment
or to calculations with the underlying theory. One important example of such parameters in
chiral EFT are the two coupling constants cp and cg of the leading chiral three-body force
whose values have to be determined by matching a theoretical calculation to experimental
data. One of the two parameters is only related to short-distance three-nucleon physics,
while the other is also related to the coupling of the electroweak current to the two-nucleon
system. It should therefore be possible to obtain this coupling constant from an experimen-
tal measurement that involves only two nucleons. Muon capture on the deuteron, u.e. the
process =~ +d — v, +n + n, is one such process that is experimentally accessible. The
current operator thus calibrated can then be used to make predictions for other nuclear
electroweak observables, e.g. the proton-proton fusion rate that serves as important input

to astrophysical models but can not be measured at relevant energies.

Muon capture on nuclei has been a tool to study nuclear physics for a long time and the
rate of muon capture on the deuteron has been experimentally measured several times in

the past [4-7]. The precision of existing data, however, is not sufficient to guide theoretical
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studies. An ongoing experiment at the Paul Scherrer Institute aims to measure this rate with
1.5% precision [8]. This will provide a strong constraint on the two-nucleon axial current
operator which will be completely independent of the many-body dynamics that affect the

extraction of ¢p from A > 3 observables.

On the theoretical side, this process has been considered previously using different ap-
proaches, see for example Ref. [9] and references therein. The first chiral EFT calculation
of muon capture into the neutron-neutron (nn) singlet S-wave was carried out by Ando et
al. [10] in a hybrid formalism in which matrix elements are calculated with EFT currents
and wave functions are obtained from phenomenological potentials. More recently, more
complete calculations of this rate were carried out in Refs. [11, 12] (see also Ref. [13] for a
review of EFT calculations of this process). It was pointed out in Ref. [14] (and confirmed
in Ref. [15]) that previous works and other works on electroweak processes suffered from an

error in the employed relation between the axial two-body current and the three-body force.

In Ref. [16], some of us considered previously the capture rate in chiral EFT with a
focus on the 1Sy neutron-neutron final state channel (with the correct relation between axial
two-body current and three-body force). This channel gives the dominant contribution to
the capture rate and is the only channel that is sensitive to the leading two-nucleon axial
current in the chiral EFT expansion. In this work, we use the same chiral EFT interactions
to consistently include higher partial-wave contributions, which is necessary to relate the
1S, capture rate to the experimental datum. We also note that a very recent calculation
of muon capture into the deuteron doublet state with novel chiral EFT potentials that are

minimally non-local [17] also aimed at quantifying the uncertainty of this process.

Here, we present a complete calculation of muon capture into doublet and quartet channel.
We will take all relevant partial wave channels into account and quantify the uncertainty by
using a large number of different chiral EFT interactions but also by estimating the EFT

truncation error through an order-by-order calculation of this process.

This manuscript is ordered as follows. We discuss the electroweak current in chiral EFT
in Section II and summarize the theoretical derivations needed to evaluate the muon capture
rate in Section III. We then present our findings and put them in the context of previous

literature in Section IV. We conclude with a brief summary and outlook in Section V.



II. ELECTROWEAK CURRENTS

Interactions between a system of particles and external sources are described by current
operators that allow the transition from an initial state to a final state. In our case, these
operators are the building blocks of the nuclear electroweak current J* that is written as a

sum of vector and axial currents V* and A", respectively
JM:ATB+W%+A53+%%> (1)

where the subscripts 1B and 2B indicate whether we are considering a one-nucleon or two-
nucleon current, respectively. Note that this combination of axial and vector currents along
with the conserved vector current hypothesis imply that the vector part is related to the
electromagnetic currents by isopin rotations. Expressions for these currents were previously
derived in Refs. [18-21]. In this work, we use the currents derived with the method of unitary
transformations by Kélling et al. [22] and Krebs et al. [23].

Consistent with the truncation of the nuclear potentials employed in the computation of
the wavefunctions, we take into account current operators derived up to @Q° (NNLO). Higher
order terms are suppressed but the theory uncertainty from neglecting them are, as we will
show below, comparable to the expected experimental uncertainties.

The current operators used in our work are displayed in Thbl. I, in which there are a
variety of non-vanishing leading order (LO), next-to-leading order (NLO), and next-to-
next-to-leading order (NNLO) contributions. The power-counting also includes relativistic
corrections that are denoted by terms that have 1/m as subscript. Detailed expressions for
the different terms for both axial and vector currents are given in Appendix A.

The first contribution to the total electroweak current appears at order Q2 that includes
a static one-body time-like vector operator Eq. (A6) and a one-body space-like axial operator
Eq. (A2) which consists of the sum of the well known Gamow-Teller operator and a pion-pole
contribution that is contained in the pseudoscalar form factor of this term. At order Q 7!,
we encounter the one-body time-like axial operator Eq. (A1) which emerges from the time-
dependence of unitary transformations and a leading relativistic 1/m correction. Moreover
we have a space-like vector current contribution, shown in Eq. (A7), that includes the so-
called convection current and the spin-magnetization terms. At this order and at Q°, we

include the two-body axial and vector current operators Eqs. (A3), (A4), (A5), and (AS).
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Al Al Bustatic - Apian + A picont
Vo ViB:static . )

& - ViBistatic T Viga m + Vapan -

TABLE I. Ordering of the chiral electroweak currents as discussed in Refs. [22, 23]. Note that
in this counting relativistic 1/m corrections are counted differently from the counting advocated
by Park et al. [18]. Terms with a subscript static denote the contributions in which the external
current couples directly to the nucleon, a subscript 1/m denotes relativistic corrections and the

subscript 17 denotes contributions that include a pion loop.

We note that the space-like axial operators of Eqs. (A4) and (A5) feature LECs that also
parametrize the pion-nucleon and three-nucleon forces. These are represented by ¢; and cp,

respectively.

III. CALCULATION OF THE CAPTURE RATE

To obtain the capture rate, we first calculate the momentum-space matrix elements of the
current operators discussed above, which are needed to evaluate the corresponding transition

amplitude, defined as

G - .
Ty = 7‘;%”(0) Z C{}J;fsmlMd 177 (¥ (p)sisa|Jo|VaMa) (2)

Sude

where Gy= 1.14939x107° GeV~? is the Fermi coupling constant taken from Ref.[12],
Va(0) = [qemmuma/(m, + mg)]?/?/71/? is the ground state wavefunction of the muonic-
deuterium atom at the origin and «., denotes the fine structure constant. The incoming
state |¢gMy) is the deuteron bound state with wave function ¢4 and total angular mo-
mentum projection M, and the outgoing state |V (p)s;s2) is a neutron-neutron scattering
state with wave function W; and with spin projections s; and s,. Using a complete set of

momentum states, we write the deuteron state as

[a, Ma) = > [ dpp® [p(lal); 1, Ma) © 10, 0) ¢, (p) , (3)

14=0,2



and we express the scattering state with relative momentum p by using the identity

<qu(p)3132| = <p3132| [1 + £<Enn)G0(Enn)} ) (4>

here ¢ denotes the solution of the Lippmann-Schwinger equation and Gy is the free two-
neutron Green’s function, both evaluated at the two-neutron scattering energy FE,, = 7’;—1

The leptonic tensor in Eq. (2) is given by

17 =a(k', h)y7 (1 = v5)u(k, s,) , (5)

with lepton spinors u(k, h). In addition to this, we employ a coupling between the muon-
deuteron spin by introducing a Clebsch-Gordan coefficient C’{ /];zs 1, 10 Eq. (2) which allows
to calculate the capture rates for the two hyperfine states f =1/2 and f = 3/2.
Calculating the capture rate requires integration over the solid angle of p. To relate the
capture rate to the matrix elements with partial-wave projected final states, we express the

transition amplitude of Eq. (2) in terms of spherical harmonics.

G z o *Mm J,M S,82 S .
L= 5 ml0) > Ol D0 VT B0 s Oy jass W0l (141G o M)

su,Mg a,my,S;

Here, o denotes the channel with quantum numbers o = {(ls); JM;}. In this work, we
calculate the rate up to a J < 2 which includes the channels 'Sy, 3Py, 3P, 3P, 1Dy, 3F,
that make non-negligible contributions to the total muon capture rate. The integral over
the solid angle of p then gives angle-averaged squared matrix elements which can be easily
related to the total capture rate.

My TP = [ iy 303 T @

fz 51,82

To obtain the unpolarized rate, we then sum over the spin projections s; and sy of the

outgoing nucleons, leading to

W_ W}ud 2f+1zz

«Q

2
SO ol (L + 1Go) J, [baMa)| . (8)

s,ude

Finally, the momentum distribution of the capture rate for any channel can be calculated by
carrying out the phase space integral over the momentum of the outgoing neutrino, which

yields

(9)

(6)



Capture Rate 1B F{Ld(s’l)
f=1/2 f=3/2
NNLOsim 1Sy |J<1|J<2|'8|J<1|J<2

ga = 1.2754

A =450 MeV  |248.73|305.97|386.27|6.64| 7.66 |11.23
A =475 MeV  |248.14|305.95|386.25|6.62| 7.66 |11.26
A =500 MeV |247.61|305.80|386.12|6.61| 7.66 |11.29
A =525 MeV  |247.14|305.57|385.90|6.60| 7.66 |11.31
A =550 MeV  |246.73|305.34|385.68/6.59| 7.65 |11.32
A =575 MeV |246.37|305.10|385.47|6.58| 7.65 |11.33
A =600 MeV  |246.07|304.90|385.28|6.57| 7.64 |11.33

A. Elmeshneb [24]| 240.5 | 303.3 | 383.4 |6.38| 7.73 | 11.31

TABLE II. Results for the muon capture rate for the doublet (f = 1/2) and quartet (f = 3/2)
channel obtained with the NNLOsim [25] interactions and NNLO one-body currents only. The
different rows give the results obtained with different momentum cutoff A. Each given value is the
average over the 6 NNLOsim interactions with different 7!9° truncations at this cutoff. Different

columnns give the result for the rate with channels included up to J = 0,1, or 2. The last row

shows the corresponding results given in Ref. [24] for comparison.

The energy of the neutrino in Eq. (9) is given by E, = 5 [(my, +ma)? — 4(m?2 + p?)],

1

mu+md)
where m,,, mg, and m,, are the masses of the muon, deuteron, and the neutron respectively.
The total capture rate Fﬁd can be calculated by integrating Eq. (9) over the relative momen-
(mu+md)2 _ 2

m ]1/ %, We use 120 p points to achieve convergency in

tum p from 0 to pres = [ 1 .

our results.

IV. RESULTS

For the calculation of the ud-capture rate, we first use a family of 42 interactions truncated
at NNLO. The NN and NNN LECs in these interactions have been fitted in Ref. [25] at seven
different values of the regulator cutoff A at 25 MeV intervals in the range from 450 to 600
MeV simultaneously to the pion-nucleon data, the energies and charge radii of 2*H and *He,
the one-body quadrupole moment of 2H, the comparative 3-decay half life of 3H as well as six

different pools of NN scattering data with different truncations in the NN scattering energy,
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Capture Rate for Doublet State 1B+2B Fl/Q(s*I)

ud

NNLOsim 1Sy | 3Py | 3P, | 3Py |1 Dy|3Fy | Total
A = 450 MeV 255.04(15.27|45.55|71.88|7.75|0.97|396.46
A = 500 MeV 254.44116.02|45.72|71.93|7.75|0.98|396.84
A = 550 MeV 253.48|16.32|45.84|72.00|7.75|0.98|396.37
A =600 MeV 252.09(16.47|45.89|72.06|7.76|0.98|395.25

NNLOR5450 (A = 450 MGV) 150 SPO 3P1 3P2 1D2 3F2 Total

LO 189.36|13.60{30.23|58.98|5.88(0.70{298.75
NLO 250.92(19.28147.08|72.05|7.91|1.00|398.24
NNLO 254.39(19.23147.07|72.31|7.89|1.01|401.90

Theoretical Results:

S. Ando et al. [10] 386+4
L.E. Marcucci et al. [11] 399+3
A. Elmeshneb [24] 401

Experimental Results:

L-T. Wang et al. [4] 365496
A. Bertin et al. [5] 445460
M. Martino [6] 470429
M. Cargnelli et al. [7] 409440

TABLE III. Results for the muon capture rate for the doublet (f = 1/2) channel in s~!. Different
columns give the results for the different partial wave channels included. The labels NNLOsim and
NNLOgg indicate the nucleon-nucleon interaction at order Q2 used to calculate deuteron and nn

wave functions.

Tlan- These interactions, which we denote by NNLOsim, have been refitted to account for an
error in the equation that relates c¢p to the axial two-body contact current and then used to
calculate muon capture into the 'Sy nn-channel [16]. This error was found by the authors of
Ref. [14] and a detailed discussion of this correction was later published in Ref. [15] (see also
Ref. [16]). Here, we have calculated the rate for muon capture for the other five additional
partial wave channels that give a sizeable contribution to the rate and are therefore important
for comparison with experiment. While the NNLOsim interactions capture uncertainties

from cutoff variation, sensitivity to the input data sets, and fitting errors that account for



Capture Rate for Quartet State 1B+2B F3/2(s’1)

ud

NNLOsim LSy |3Py [P, | 3Py | Dy | 3 F, | Total
A = 450 MeV 6.72/0.54]0.50{1.53|2.58(0.34|12.21
A =500 MeV 6.71/0.57]0.51|1.54|2.68(0.34|12.35
A = 550 MeV 6.69/0.58(0.51|1.56(2.75(0.35|12.44
A = 600 MeV 6.68(0.59|0.51]1.56|2.79]0.35|12.48

NNLOR5450 (A = 450 MeV) 150 3P0 3P1 SPQ 1D2 3F2 Total

LO 2.7710.40]0.21|0.64|1.29|0.13| 5.44
NLO 6.63/0.75]0.52|1.48|1.84]0.33|11.55
NNLO 6.7210.75]0.51|1.53|2.39|0.34|12.24

Theoretical Results:

A. Elmeshneb [24] 12.7

TABLE IV. Rate results for muon capture on the deuteron for hyperfine state f = 3/2 (quartet).
Results are calculated using partial wave decomposition approach and are displayed in each corre-
sponding channel upto a J < 2. The labels NNLOsim and NNLORgg indicate the nucleon-nucleon

interaction at order Q? used to calculate deuteron and nn wave functions.

correlations among the LECs, it is also instructive to fix the pion-nucleon LECs to the
precise values obtained in Refs. [26, 27] using Roy-Steiner analysis. To this end, we use
the LO, NLO and NNLO interactions of Ref. [28], which we name LORrg450, NLORsa50, and
NNLORgss50. These interactions have been fit to the Granada database [29-31] as well as
the nn effective range parameters [32] with the pion-nucleon constants appearing at NNLO
fixed at the central values of the NLO [33] pion-nucleon coupling constants of Ref. [27]. The
various orders of the RS450 interactions also allow us to compare the uncertainty from the
truncation error in the potential to the NNLOsim uncertainties, which is an important check

of self-consistency of chiral EFT [34].

We show the results for the capture rates (capture from doublet and quartet channel, and
the channels included, truncated at different total nuclear angular momentum .J;,,,«) obtained
with differently regulated NNLOsim and one-body currents only in Tbl. II. Here, each entry
is the average over the set of NNLOsim interactions with different Tj,;, truncations at a given

regulator A. The last row shows the corresponding results given in Ref. [24] that we obtained
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with wave functions from chiral EFT potentials, the standard one-body operators, and
phenomenological two-body currents. In Thl. III, we show the results for the doublet capture
rate obtained with NNLOsim potentials and one- and two-body currents, the corresponding
results obtained with the RS450 interactions at LO, NLO and NNLO, the experimental
results given in Refs. [4-7], and the theoretical results obtained in Refs. [10, 12, 24]. The
different columns give now the contribution for each individual channel included with the
last one giving the total capture rate.

To demonstrate the impact of the inclusion of final state interactions, we show in Figs. 2
and 3, the differential capture rate with (bottom panel) and without final state interactions
(top panel) as a function of the magnitude of the relative momentum p between the outgoing
neutrons for doublet and quartet channel, respectively. The differently colored solid lines
denote the contributions from the individual partial wave channels of the nn state. The
dashed line denotes the total differential capture rate. The widths of these lines is generated
through the calculation of the partial differential capture rate with the different 42 different
NNLOsim interactions. It can clearly be seen that for both rates (doublet and quartet),
capture into the 1S, channel gives the largest contribution but also that a number of different
channels give sizeable contributions. The total differential capture rates for doublet and
quartet channel are in qualitative agreement with the results shown in Ref. [24] that were
obtained with chiral wave functions and phenomenological two-body currents.

In the top (bottom) panel of Fig. 1, we show the full rate Fllﬁ for capture from the doublet
(quartet) channel for the 42 different chiral interactions. We obtain the central values of
our rates by averaging the 42 results in each channel. The spread between the smallest
and largest rate and the corresponding central value give us an estimate for the rate and
its uncertainty. This is shown as the first error in Eq. (10) below. We also propagate the
recently determined uncertainty in the axial radius r% = 0.46 £ 0.16 fm? [35] by calculating
the rates at the upper and lower range of this uncertainty estimate. This is shown as the
second (symmetrical) error in Eq. (10) below. For the doublet and quartet channel rate, we

obtain in this way

[riﬂ = (39633503 £ 4y

[Piﬂ = (1238703 £ 0.04)s (10)

An even more reliable way to determine the uncertainty of an EFT calculation is to study
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FIG. 1. Top panel: Total muon capture rate on the deuteron evaluated for the doublet channel.

Bottom panel: Total muon capture rate on the deuteron evaluated for the quartet channel. Results
includes contributions for the nn-channels up to J < 2. Each point represents the result obtained
with one of the 42 NNLOsim potentials at order Q3 from Ref. [25]. Results with the same cutoffs

are connected by a line to guide the eye.

the order-by-order convergence pattern of an observable. Here, we will follow the method

discussed in Ref. [36] by writing the capture rate for either doublet or quartet channel as

(%)

where FES denotes the leading order result for the muon capture rate (in either dou-

3
LO

n=0

p

A (11)

blet or quartet channel), p denotes the inherent momentum scale of the problem, and Ay
is the breakdown scale. An estimate of the truncation is then obtained by calculating

(p/Ap)* max(|co|, |cal, |c3]). Using the RS450 results of Thl. III and Thl. IV to obtain the
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FIG. 2. Top panel: Differential capture rate results for the doublet channel f = 1/2 calculated
without final state interactions. Bottom panel: Differential capture rate results for the doublet
channel f = 1/2 calculated with final state interactions. The solid lines give the results for different

nn partial wave channels. The dashed solid lines give the total differential capture rate.

¢;’s, the pion mass for the momentum scale p and A, = 500 MeV, we obtain an uncertainty
of 7.6 s~! for the total doublet channel capture rate and 0.47 s~! for the total quartet capture
rate.

Using these results at face value we obtain for the ud-capture from this approach gives

F1/2] = (401.90 £ 7.6 £ 4.4) s7!
[ b | oo (401.90 £ 7.6 ) s,
F?’/Q] = (12.24 £0.4740.04) s ! 12
|: pnd RS450 ( )S ) ( )

where the first uncertainty quoted above is the estimate for the EFT truncation error and
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the second is the uncertainty resulting from the quoted uncertainty in the axial radius. The
uncertainty for the doublet prediction is in good agreement with the uncertainty obtained
using the same method for capture into 'Sy channel in Ref. [16] but also with the spread in
the final results between NNLOsim and NNLOgg4s5¢ interactions.

To obtain a final recommendation for the ud-capture rates in doublet an quartet channel

we take the average of the values given in Eqs. (10),(12) and use the uncertainties of Eq. (12)

DV =(399.1£7.6+4.4) s, (13)
DY = (12.31 £0.47+£0.04) 57", (14)

Within the quoted truncation error, our results agree with the previously published theo-
retical results in Refs. [11, 24] but disagrees slightly with the result given in Ref.[10]. The
results for capture into the doublet 1Sy channel alone also agree well with the recent calcu-
lation presented in Ref. [17]. Our result for doublet capture also compare favorably with the
experimental results [4-7]., however their large uncertainties limit our abilities to conclusions

about the quality of the employed currents.

V. CONCLUSION

In this work, we have calculated the total ud-capture from doublet and quartet channel
using chiral EFT potentials at NNLO and consistent NNLO currents [22, 23]. For the total
rates, we find after combining the results from different interactions I’Zf =399.1£7.6+44

3/2 = 12.31 + 0.47 + 0.04 s~ for capture

s~1 for capture from the doublet channel, and |yt

from the quartet channel. The first uncertainty quoted above arises from the order by
order convergence pattern of the capture rates, the second uncertainty propagates from the
quoted uncertainty in the axial radius. The recently determined large uncertainty of the
axial radius [35] remains therefore a pressing problem for the analysis of this problem as
it prevents a reliable connection of the experimental results with the nuclear Hamiltonian.
However, the large uncertainty in the doublet capture rate due to the intrinsic error of chiral
EFT also highlights that an experimental result for the capture rate can provide important
information on the nuclear Hamiltonian.

The results for the differential capture rate and the total capture rate are in good agree-

ment with previously published theoretical predictions [10-12, 24] apart from a small dis-
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FIG. 3. Top panel: Differential capture rate results for the quartet channel f = 3/2 calculated
without final state interactions. Bottom panel: Differential capture rate results for the quartet
channel f = 3/2 calculated with final state interactions. The solid lines give the results for different

nn partial wave channels. The dashed solid lines give the total differential capture rate.

crepancy with the ' D, doublet capture rate quoted in [11]. To the best of our knowledge,

this work represents the first EFT calculation of the capture rate from the quartet channel.

This and previous works demonstrate that muon capture on light nuclei is a valuable
tool to study the nuclear Hamiltonian. It is impacted by superpositions of current matrix
elements in a non-trivial way and depends also strongly on an accurate descriptions of nu-
clear bound and scattering properties. An ambitious program that focuses on the reduction
of experimental uncertainties and combined with capture rate calculations for different pro-
cesses might have the potential of constraining the additional short-range counterterms that

appear in the axial and vector current at order ) [22, 23]. Furthermore, a full calculation of
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radiative corrections such as the W~ box contribution seams feasible and therefore desirable.
In particular, to assess the importance of those contributions that can not be expressed as

one-nucleon radiative corrections and their dependence on nuclear structure effects [37].
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Appendix A: Electroweak Currents
1. Axial currents

The zero-component of the one-body axial current contains contributions from the axial
and pseudoscalar form factor

Ga(—q?) Gp(—q*)

Alp = [— 4Ot — g -01} 1+ (1—22), (A1)

where we use m = 938.9 MeV and expressions for G4 and Gp will be given below. The
vector components of the axial current are

A= |- Gatmato + D g oy + 1m0 @)

where g = p; — p;, ¢; = (P; + p;)/2, and qo = (pi* — p)/2m.
The axial two-body currents used in this work have the form

. ga ki o,

0 _
Aspin = —@@m

[T1 X T + (1+2), (A3)
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where we use throughout this work g4 = 1.2754 [38], F, = 92.4 MeV [25], and m, =
138.039 MeV. and

_gA 0'1']{21 2 q qQ'kl

qq -k, x 09

+C4[’7’1XTQ]_(I€1X0’2— q2+m72r

)_:_;L[Tlxrz]_qxa’g} + (1<2) (A4)

AQB:cont = ‘D |: q(al : q)

T 2F2A, Y2+ me?

where k; = p} — p,;, ¢ = |q|, K, is the isovector anomalous magnetic moment of the nucleon,

:|T_’1 + (1 <~ 2) , (A5)

A, =700 MeV is the chiral symmetry breaking scale of the order of the p meson mass.

2. Vector currents

The zero-component of the one-body vector current takes the standard form
Vig=Gg(t) -1 + (1—-2). (AG)

The spatial components of the one-body vector current operator receive the standard con-
tributions from the electric and magnetic couplings encoded in the electric and magnetic

form factors Gg and Gy, respectively

Ggl(t Gt
VlB:|: E<>‘11—Z ()
m 2m

(g x 01)17,1 + (1—-2), (A7)

where we defined the four-momentum transfer t = ¢3 — q* = m,(m, —2E,), with q = E, 2.

The two-body current that enters at NLO is

V2B:17r =

igi o3 ks o1k
AF2E3 +me2 | K2+ my?

— 01] [T1 XTo]- + (14+2). (A8)

3. Axial-Vector Form Factors
a. Axial Form Factors

We parametrize the axial form factor as in Ref. [23]

Gal-a) = a1 <—6>q) (49)
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with the axial radius squared (r%) = 0.46(16) fm?. The pseudoscalar form factor is

2

Gr(—q”) = (A10)

ga ,
q* +m3
where we emphasize that we found no difference in using this parametrization versus using

the form employed in Ref. [12] that replaces the factor of g4 with the axial form factor.

b.  Vector Form Factors

In the currents defined above we employ the isovector combination of the electric (mag-

netic) proton and neutron form factors G% and G (G4, and G7%,) [39], respectively
Geg=G% —G% and Gy =GH —GYy (A11)

The electric form factors are parametrized with dipole factors Gp

b Go(Y)

G%(t) = Gp(t) and GL(t) = 'un4m2?/m2 : (A12)
with the magnetic moments of proton and neutron p, = 2.793 p, = —1.913 in units of
nuclear magnetons. The dipole form factor is defined as

Gp(t) = S : (A13)
(1—t/A})

where Ay = 0.833 GeV. The magnetic form factors of proton and neutron are written as

Ghy(t) = mGo(t) and  Gy(t) = pGolt) . (A14)
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