[um—

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Quantifying Drift-Selection Balance Using an Agent-Based Biofilm Model

of Identical Heterotrophs Under Low Nutrient Conditions

Joseph Earl Weaver*

School of Civil Engineering &Geosciences, Newcastle University, Cassie Building, Newcastle upon

Tyne, NE1 7RU, United Kingdom

* Corresponding author(s). E-mail: Joe.Weaver@newcastle.ac.uk

Abstract
Both deterministic and stochastic forces shape biofilm communities, but the
balance between those forces is variable. Quantifying the balance is both
desirable and challenging. For example, drift-driven drift failure, a stochastic
force, can be thought of as an organism experiencing ‘bad luck’ and
manipulating ‘luck’ as a factor in real world systems is difficult. We used an
agent-based model to manipulate luck by controlling seed values governing
random number generation. We determined which organism among identical
competitors experienced the greatest drift-driven failure, gave it a deterministic
growth advantage, and re-ran the simulation with the same seed. This enabled
quantifying the growth advantage required to overcome drift, e.g., a 50% chance
to thrive may require a 10-20% improved growth rate. Further, we found that
crowding intensity affected that balance. At moderate spacings, there were wide
ranges where neither drift nor selection dominated. Those ranges shrank at
extreme spacings; close and loose crowding respectively favoured drift and
selection. We explain how these results may partially illuminate two

conundrums: the fact that a stably operating wastewater treatment plant’s
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microbial community can vary greatly over time and the difference between

equivalent and total community size in neutral community assembly models.

Keywords: agent-based model, biofilm, drift, neutral assembly, community

assembly, individual based model
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1 Introduction

Both stochastic and deterministic assembly processes can shape biofilm communites."? Those
processes, however, rarely act equally and the balance between them is determined by many

34 available

conditions related to competition intensity. Such conditions include population size,
space,’ and resource availability.® Understanding how this balance shifts under differing conditions

provides insights into biofilm-associated systems such as environmental bioreactors, healthcare,

industrial production, and natural ecosystems.

Here, we attempt to quantify the balance between drift, a pure stochastic process,!* and a more
deterministic kinetic advantage. Under this balance, even if losing the ‘drift lottery,” an individual’s
progeny may thrive if their maximum growth rate (umax) or half saturation constant (K;) confers a

selection advantage over their competitors.

Such quantification is challenging. Drift is an inherently random process and experimental
manipulation of a random process, distinct from simply controlling for it, is difficult. Despite that
difficulty, there have been some physical experiments in which drift is isolated as an experimental

4,7,8

factor,™"® often requiring subtle statistical analyses or extremely precise experimental work.

An alternative approach, used here, is to perform the experiments in silico where drift may be
directly manipulated via random number generation. We used an agent-based model (NUFEB)*!° to
simulate spatially competing bacteria under low nutrient conditions. The bacteria were identical and
evenly spaced, differentiated only by random growth directions and biomass allocations during
division. Drift was therefore the only selection process and was controlled by the seed value

initializing the random number generator.

Our goal was to determine the degree to which a deterministic factor (here, Monod kinetics) must
improve to overcome drift-driven failure so subsequent simulations using identical seeds were run.

The difference was that the ‘biggest loser’, the lineage with the lowest relative abundance, was
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assigned different kinetics. This approach allowed us to relate quantifiable kinetic changes to the
likelihood that the failing lineage would overcome drift-driven failure and thrive. We also
determined how the required degree of change varied under differing crowding intensities (e.g.,

closer spacing and increased initial population size).

We found that under purely stochastic conditions the losing lineage varied unpredictably between
runs, showing the expected effects of drift. Further, altering kineticsdid enable losing lineages to
overcome drift. For example, for an initial population of 9 cells evenly spaced 10 diameters apart
either K or umax had to improve by at least 10-20% for a 50% chance of thriving. Crowding affected
both the improvement needed for a 50% chance of thriving and the ranges over which both drift and
fitness influenced success. The strong and sometimes non-linear interactions between terms could
not be adequately reproduced using simple linear estimators but could be adequately expressed with

a generalized additive model.

2 Methods

2.1 Agent Based Model

The agent-based model employed NUFEB (Newcastle University Frontiers in Engineering

Biology),”!” which is based on the LAMMPS® molecular dynamics simulation framework and has
successfully been used to model multi-species biofilms,'® including development and detachment,’
trade-offs in extracellular polymeric substance production,'! and phototroph-heterotroph metabolic

interactions.'?.

NUFEB is not lattice based, cells were positioned in three dimensions and had individual dynamic
sizes. The directions in which cells divided and biomass allocations (40 to 60%) during division were
randomly determined using a Park-Miller pseudorandom number generator and were the two factors

contributing to drift.
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The individually simulated bacterial cells physically interacted using realistic physics and grew
according to Monod-style models described by Equation (1) where u is the substrate-dependent
growth rate (1/hr), wmax 1s the maximum specific growth rate (1/hr), [S] is the concentration of the
relevant substrate (kg/m?), and K is the half-saturation constant for the substrate (kg/m?). Additional

descriptions of NUFEBs mechanics are detailed in previous publications.”!°

[S] 1
0= HWmax @

K +[S]
The simulation volume height (2x10 m) was defined to be in the Z-dimension, the bulk substrate
concentration boundary condition at the top of the simulation volume was 1x10™ kg/m? and the
initial substrate concentration throughout the volume was set to the same value. The X and Y
dimensions were equal and varied based on spacing and number of initial cells. Additionally, the X
and Y boundaries were periodic, allowing biomass and substrates to wrap from one side of the

simulation to the other.

2.1.1 Model Implementation Details

NUFEB simulates bacterial growth, physical interactions, and substrate diffusion and reactions
within a cuboid volume. Bacterial growth is given as mass over time and determined by a summation
of Monod-style rate equations and the change in mass is used to calculate the diameter of a spherical
organism. When an individual grows beyond a user-defined threshold (here 1.36 microns), it divides
into two organisms. The first cell receives 40-60% of the biomass (uniformly randomly selected) and
the second cell receives the remainder. The three-dimensional direction of division relative to the
centre of the initial cell is randomly chosen.Mechanically, the individuals are subjected to contact,
adhesion, and fluid forces which are implemented as respective as spring and dashpot, spring, and
simple one-way coupling physical models. A mechanical relaxation step is performed to address the
mechanical in-equilibrium introduced by organism division. With respect to the crowding explored

in this research, the result of mechanical relaxation is that a freshly cell which finds itself
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‘overlapping’ with existing biomass will be part of a ‘shoving” match in which all relevant

individuals will be pushed into nearby empty space.

In this simulation a generic nutrient substrate is modelled and oxygen is non-limiting. The substrate
is modelled within the cuboid by solving a standard advection-diffusion-reaction equation. The
equation is discretized across and solved for small voxel subsections of the cuboid with a short

timestep.

The implementation used here does not differ from previous detailed explanations!'® employing thee
the ODD protocol (Overview, Design concepts, Details), which is a standard for agent-based model
description. Specifically, the underlying equations regarding growth, transport, and physical

interactions have not been modified and the interested reader is guided specifically to the supporting

information of reference 10 for an exhaustive, canonical description.

2.2 Experimental Approach

The base experimental unit was an agent-based simulation initially seeded with identical bacterial
cells with starting diameters of 1x10° m, K, of 3.5x107 kg/m>, umaxof 1 h', and yield 0.61 kg
biomass per kg substrate consumed. The initial cells (total population 4, 9, or 16) were arranged
along evenly spaced (2.5, 5, or 10 cell diameters) MxM points at the base of the simulation volume.
Bacteria were allowed to grow and compete until 20% of the simulation volume consisted of

heterotrophic biomass.

Each combination of populations sizes and spacings was run 120 times using different seed values to
initialize the random number generator and the ‘biggest loser’ from each run was identified (see 2.3).
Those simulations were then run again, but with the failed lineage given altered kinetic values (see
2.4). The results of the runs were used to determine how the altered kinetics contributed to the
probability of transitioning from drift-driven failure to a thriving state (see 2.5) under various

crowding intensities.
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All combinations of the factor levels listed in Table 1 (1089 combinations) were simulated for each
of the 120 seeds, resulting in a total of 130680 runs. Each run required between 2 to 36 hours to

complete, so the simulations were carried out on a high-performance computing cluster (see 2.6).

Table 1: Experimental factors and levels

Factor Values

Spacing (cell diameters) 2.5 5 10

Initial Population Size 4 9 16

% Change in K; 50 -40 -30 -20 -10 O 10 20 30 40 50
% Change in fmax 50 -40 -30 -20 -10 O 10 20 30 40 50

2.3 Determining Failed Lineages

For a system initialized with N bacterial lineages, the total biomass X;is the sum of the biomass for

each lineage X, as expressed by equation(2).

N
X, = Z X, @)
i

In a system where each initial cell is identical, with no competition, and with no random effects, all

X; are expected to be equal, thus the expected relevant abundance of any lineage (Xg) is given as:

Xg = X;/N ®
In the first round of simulations, all initial cells were identical and evenly spaced, but cell division
directions and biomass allocations during division were determined randomly. As a result, the
distribution biomass for any lineage at any particular time was often not equal to the expected
relevant abundance, X; # Xj. In practice, there were often one or two lineages which strongly
dominated with X; > X, one or two lineages which became vanishingly small with X; << Xz (the
‘biggest losers’), and the rest persisted at some noticeable abundance that was however below Xk,
Moreover, the outcomes appeared to be determined early in the simulation, especially for the best
and worst performing lineages. (Supporting Information Figure S1, Table S1, and Video SV1). We
have defined three classifications of lineage survival based on the difference between Xx and X::

languishing (X; < 0.3 Xg), thriving (X; > 0.9Xg), and barely surviving (0.3 Xg < X; < 0.9Xj). The



141

142

143

144

145

146

147

148

149

150

151
1%2

153
154
155
156
157

158

159

160

161

162

163

threshold for thriving is lower than XE to accommodate situations where single lineage massively
dominated (e.g., Xi > 0.6) leading to lineages which were clearly otherwise doing well but with low

relative abundance.

2.4 Kinetic Alteration for Potential Selective Advantange

The worst-performing bacterial lineages from each of the initial homogenous runs were modified by
altering their individual maximum specific growth rate (uma.x) and/or their half-saturation constant
(K) (Figure 1), potentially giving them a competitive advantage. The altered values were selected as
described in Table 1. We acknowledge that not all combinations of y.ax and Ks were advantageous
and that um. and K; are often strongly correlated; here our goal was to thoroughly explore the

parameter space.

+50%

Colony ID
=~

;/

.-

?‘5 6’%

ks,baseline Hmax,baseline —50% Hmax +50% ks.—SU% Himax,+50%

Figure 1: Illustration of a parameter sweep. Under baseline conditions when all bacteria are identical (left hand side), colony 4 was the
worst performing lineage. When colony 4 was given a potental selective advantage (right hand side) via reduced Ks and increased tmax,
colony 4 transitioned to thriving. This result along with all other parameter combinations across 120 random seeds was used to
estimate prrive, the probability that the worst-performing colony would transition to thriving under given altered kinetics. The trend of
upward growth by the bacteria is due to substrate concentration gradients and is characteristic of growth under low-nutrient
conditions.'?

A two-dimensional parameter space was chosen because both um« and Ks met two desirable criteria.
First, they directly associate growth and substrate concentration. Second, they are major parameters
used when designing bioreactors, calibrating associated models, and when discussing kinetic control
of microbial populations within reactors. A composite ratio of the parameters did not appear usable
due to a lack of symmetry in results (e.g., across the upper-left to lower-right diagonals in Figure 4).

The disadvantage of such an approach is the large computational cost. For similar work where those
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criteria do not apply, a one-dimensional parameter space is suggested. Ideally, this single-parameter
would be part of the underlying biological model (such as yield), rather than a generic multiplicative

‘selective advantage’ variable .

2.5 Probability Map Generation

The kinetic parameter sweeps were used to generate tables for each combination of factors which
listed the final relative biomass of each bacterial lineage, that lineage’s status as the ‘biggest loser’,
and the lineage’s success under each run. Within each combination population size and spacing, the
percentage of failing lineages which transitioned to thriving during the parameter sweep was
recorded across all seeds. 5. Those percentages represent the probabilities that the selective advantage

(if any) conferred by altered kinetics would outweigh drift-driven failure under the given conditions.

2.6 Simulation Management
Simulations were run and their results tabulated on the Newcastle University Rocket High

Performance Computing environment and managed using Snakemake':'*

workflows populating a
SLURM? queue. Each simulation was run on a single core, with multiple hundreds of simulations
run in parallel. Job submissions encompassed all kinetic parameter sweeps for each combination of

other parameters, e.g., a single batch submission would consist of all combinations of g and K; for

4 bacteria, spaced 5 diameters apart.

2.7 Data Analysis

Simulation results were saved as tabular comma separated value (CSV) text files and aggregated
using BASH'S (v. 4.2) shell and Python'” (v. 3.8) scripts which included the NumPy'® and pandas'
libraries. Further processing of the data was performed off the cluster and used R (v. 4.2) scripts

incorporating various Tidyverse?!' and other supporting packages.?>*



186  2.7.1 Parameters Quantifying the Balance Between Drift and Selection

187  Each probability map was conceptually analogous to a cliffside; a continuous sharp probability

188  threshold gradient separated by two flat regions of either 100% lineage success or failure (Figure 2
189  A). We wished to quantify the midpoint and steepness of the gradient along lines of constant K for
190  each crowding condition. A cross-section of the probabilities along umqx for any constant K produces
191  asigmoid-shaped profile (Figure 2 B). The profiles were fit to a logistic function of s with a

192  maximum value of 1 given by equation (4), where psmive 1s the probability of transitioning to a

193  thriving colony, k is a parameter affecting the steepness of the curve, and usois the gmax value at

194 which there is a 50% probability of thriving.

1 @)
1 + e k*(s0—Mmax)

Pthrive =

195  The relevant k and uso parameters from each fit were recorded. We also determined the domains of
196 wmax values associated with the p,, . ranges covering either a 2.5-97.5% or 16-84% chance of
197  thriving. These domains, respectively named spreadss and spreadss quantified the regions over which

198  both drift and selection influenced success.

A B
spreadgs
Thrive 50% 1.004
Probability (mrm *
N o]
0-10% _ 40% ! spreadss ° ©
4 o 1 -
=2 (= r
10-20% c 30% S | |
b= £ 0751 : I
20-30% £ 20% s ! 1
k- > ! 1 o
30-40% o 10% E 1 1 °
[ o - 1
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o ° 2 0504 -crrreernnnnnnns Jrrsrenaann @ MUso
& 5 i I
50-60% E -10% s I 1
3 > P
60-70% £ -20% £ ! 1
o 3 1 1
70-80% E 30% 2 0.25 1 !
G & P
80-90%
-40% i *
90-100% ; o
-50%
000 o0 0 0* o
.‘5\03 ‘700/ \:30& ‘\—’0£ ‘JO& o% JO& eog \Pog 75,; d‘oa/ ‘d‘oi ‘703 “’)Og ‘\—‘O£ “’0,3/ o% ¢0°/ "Og \Poi 7‘7& \s‘og
Cl Gl ] ] Gl ° ° o Gl ° ° © ] cl Gl ° © o ° °
Change in maximum specific growth rate (pa) Change in maximum specific growth rate (pmax)
%00 Figure 2: Illustration of how the uso and spread parameters were calculated. In this example, the probability map corresponding to 4
201 initial organisms placed 5 diameters apart is shown (A), and the dashed line is drawn along a line of constant K. The full length of the
202 line denotes the spreadss region, the portion between crosses denotes spreadss, and the solid point represents the 50 mark. When the

203 Purive values are plotted as a function of umar along the line of constant K, (B) it is apparent that a logistic function (grey solid line)
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may be fitted to the points (black rings). The fitted function was used to estimate both the value of u corresponding to x50 and the
widths of the spread regions. This analysis was repeated for all crowding conditions along all lines of constant K.

The results of all sigmoid fits are shown in Supporting Information Figures S2-S10.

2.7.2 Analysing Balance Parameters
Within each crowding scenario, the extracted parameters were analysed using simple linear
regression models of the parameters as functions of K. The effect of crowding pressure (spacing and

total population) was then analysed by comparing the results of the fits between scenarios.

We note that although the linear fits for a 2" order polynomial on w59 generally resulted in
marginally improved R* scores and removed parabolic patterns from the residuals, the simple linear
regressions were still excellent and more interpretable; care should be taken if extending this work to

larger ranges of kinetic values.

2.7.3 Modelling the Effect of Competitive Pressure and Altered Kinetics

We wished to determine if a model based on the simulation results could accurately reproduce the
transition probabilities for each crowding scenario. The ultimate goal of these models was not
prediction, but to provide a descriptive framework* showing which factors, interactions, and
potential non-linearities were important. Variations on both multiple linear regression models (MLR)
and Generalized Additive Models (GAMs)* were fitted to either the log-likelihood of pgyive (for

MLRs) or directly to pirive (GAMS).

In both cases, backward step selection from factorial models incorporating up to three-way
interactions was performed to select the final model. Non-significant (p > 0.05) terms were
iteratively removed from the model starting with the highest order interactions. Main effects were

retained even if non-significant when they were part of a significant interaction term.

The final models were selected based on R? and Akaike Information Criterion (AIC) values as well
as interpretability. The potential models and the associated fit criteria are included in Supporting

Information Tables S2-S5.
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3 Results

3.1 Drift Occurred When All Cells Were Identical

A foundational assumption of this approach is that even in a system with equally spaced, identical
microbes, random growth will lead to drift. We tested this assumption for crowding scenarios where
all microbes had identical base K, and umax parameters by determining the number of times each
lineage was the ‘biggest loser’ over 120 simulations (Figure 3) and, similar to testing m dice for
fairness, applied a Chi-Square test (a=0.05/m) where m is a Bonferroni correction for multiple testing
(m=9 at 3x3 initial spacings and population sizes). Each initial site was statistically as likely as any

other to be the biggest loser (Supporting Information Table S6).

Initial Population: 4 | [ Initial Population: 9 | | Initial Population: 16
Spacing (diameters): 25 e 5§ 10
]
O 401
e
1%}
©
c
>
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<))
=
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)]
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o ! am--==----3
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-
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U —————————
@) o :
[ ]
L} T T T T T T T T T T T T
1 2 3 4 1 3 5 7 9 4 8 12 16
Colony ID

Figure 3: The number of times each colony was the least successful performer during all 120 runs of the baseline simulation where all
bacteria were identical. Dashed grey lines indicate the expected value. Points are colored based on spacings between initial sites. For
each set of initial populations, no colony appeared biased away from the expected number of failures.

Additionally, the relative proportion of lineages which languished, survived, or thrived for each set
of crowding conditions was determined. Simulations, on average, had between one and two thriving
lineages, with the rest languishing (65-75% for 4 initial sites, 80-88% others), and a few (0-5%)

which did not thrive but grew to non-negligible abundance (Supporting Information Table S1). When
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4 organisms were initially present, only languishing and thriving lineages existed, there was

otherwise no clear trend between these ratios and either the number or spacing of initial bacteria.

3.2 The Least Successful Lineages Could Overcome Drift with Altered Kinetics
As expected, altering the kinetics of an organism could give it a chance to overcome drift-driven

failure (Figure 4).



53)
253
254

255
256

257

Probability of becoming 0-10% 20-30% 40-50% 60-70% 80-90%
a thriving colony
10-20% 30-40% 50-60% || 70-80% 90-100%

2.5 diameter spacing ‘ | 5 diameter spacing ‘ | 10 diameter spacing
50% +: -
40% i J
30% R N
20% K J
10% e

0%
-10%
-20%
-30%
-40%
-50%

eLI9)2e] (Bl

50%
40%
30%
20%
10%
0%
-10%
-20%
-30%

6

eLI912e] [eNUl

-40%
-50%

Change in half saturation (K;)

50%
40%

91

30%
20%
10%
0%
-10%
-20%
-30%

eLI912eq [eRUl

-40%
-50%

Change in maximum speoﬁc growth rate (umax)

Figure 4: Changing the uma and K; of the least successful lineage was associated with a probability of transitioning to a thriving
status. Solid dots represent uso, the percent change in umax at a given K; associated with 50-50 odds of thriving. Dashed lines show the
range of max corresponding to a purive of 2.5 to 97.5 (i.e., spreadys). Crosses indicate the analagous spreadss region.

The increases in umaq corresponding to the least successful lineage having a 50% chance to become
thriving, which we denote as w50, are represented by the dark circles in Figure 4. At the baseline K a

typical uso is in the range of 10-30%, with the exact value affected by initial spacing and population
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size (i.e., crowding). Decreasing K, as expected, reduces uso — even to the point where so long as
substrate uptake affinities are ‘good enough’, the initially failing organism may have excellent odds
despite having a umq«x notably lower than its peers. The overall effect, for a given crowding
condition, is a semi-linear ‘cliff ‘of x50 values where uso changes inversely with K. Qualitatively
speaking, the location of that ‘cliff” was shifted to the right (higher us0) when crowding was

increased via initial population size or when comparing between the extremes of spacing.

Areas where the probability of thriving is neither O nor 1, are, by definition, areas where drift and
selection both influence success. The widths of these areas are denoted as spread and are indicated
by the dotted horizontal lines and crosses in Figure 4. The full length of the line denotes the spreados
area, which is the range of ymax for a given Ks which corresponds to a 2.5% to 97.5% chance of
thriving. The crosses represent a similar range, spreadss, which corresponds to a 16% to 85% chance

of thriving.

Because the uso values are also the centre point of the spread regions, spread shifted in the same
manner as uso. However, the actual magnitudes of spread did not necessarily follow the same
patterns. First, there was no guaranteed symmetry about K For example, for 9 initial organisms
separated by 5 diameters, the spreados for K of -30% and 30% are visibly different (Figure 4, row 2
column 2). Though the asymmetry varied between crowding conditions, it generally manifested as
spread widening with increasing K. Second, there was no clear monotonic trend with spread values
corresponding to crowding. A spacing of 5 diameters appeared to produce the widest spreads,
ceteris paribus. Further, there was no clear rule determining which of the two spacing extremes
would have a larger spread. For example, with 4 initial bacteria a spacing of 10 diameters resulted in

larger spreads than in 2.5 diameters, but the opposite occurred with 16 initial bacteria.
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3.3 Quantitative Effect of Crowding on uso and spread
The qualitative effects of crowding described in the previous section were quantified via simple

linear regression as described in section 2.7.2.

For any given crowding condition uso, the relative change of wmax at which the worst performing
lineage had a 50% chance to transition towards thriving, was essentially linear with respect to Ks and
the correlation coefficient was uniformly high (Figure 5). The slopes of these relationships indicate
the change in usorequired to compensate for a change in Ks. At the tightest spacing, us50 had to
change the most, with a ratio of essentially 1:1 and a slight monotonic increase corresponding to
initial population size. As initial spacings widened, the ratio almost always decreased for any initial
population size. Across initial population sizes, the ratio for 5 and 10 diameter spacings appeared to

follow a general trend of increasing, but this was not monotonic.

Initial Population: 4 Initial Population: 9 Initial Population: 16

80% Spacing —¢— 2.5 --A- 5 —a&- 10 “‘
70% o 2

60%
50%
40%
30%
20%
10%
0%

-10% 4

50% Thriving Odds (Hsg)

-20% o .7

lso = 0,131 +0.819K., R = 0,99
jtso = 0.098 +0,894K., R = 1,00 . liso = 0,195 +0,864K., R = 0,99 liso = 0,28 +1K., R® = 0,99
liso = 0.0329+0.943K,, R* = 1.00 liso = 0,167 +0.946K., R = 0,99 lisa = 0.0765 +0.983K., R* = 1,00

lisg = 0.0841 +

5o =0.134+0.797K,, R =0.99

-30% 4

-40% o

-50%

Figure 5: Under each crowding condition, uso changed linearly with Ks. Large initial population sizes increased the differences
between spacings, moderate spacings generally required the largest absolute w50, but the tightest spacings required the largest change
0 in per unit change in K.

The absolute value of x50 was strongly affected by differences between the fitted intercepts. For
example, a 2.5 diameter spacing under an initial population size of 16 had a high slope (0.983) but
also the lowest required w50 of all spacings under the same conditions until a 30% change in K. The
practical difference between spacing was largest at high initial population size, indicating a potential

interaction between these factors.
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Unlike us0, the range over which both drift and selection effects influenced success, spreadss did not
have a simple linear relationship with Ks, with many poor R? values, residual patterns, and high
leverage datapoints (Figure 6). There was also no clear, consistent relationship applicable across
factors. In general, linear fits became worse with increasing population size which appeared to
produce higher variance and generated more high-leverage points, especially at separation distances
of 5 diameters. These issues were largely the same when the analysis was repeated for spreadss
(Supporting Information Figure S13). There is little to concretely say except that the spread was
most often widest at moderate spacings, generally increased with K, and had a noisy, complicated

relationship with initial population size and spacing.
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Figure 6: Under each crowding condition, spreadss changed with Ks. Insofar as trends were present, moderate spacing produced the
widest spreadss and the differences between spacings increased with population size.

3.4 Description via Multiple Linear Regression and Generalized Additive Models

The simulation results were modelled using both multiple linear regression (MLR) and a generalized
additive model(GAM) respectively described by equations (5) and (6) where: purive 1s the probability
of transitioning to a thriving status, u, and K, are the respective percent changes from the baseline
Umax and K, Ny is the initial population size, s; is the initial spacing (in diameters) between

organisms, and ¢ is a small pseudo-probability (1x10) added to avoid division by 0 and issues with
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log transformation. For linear terms in equations (5) and (6), f: denotes the fitted coefficient for term
i with /=0 representing the intercept. Terms to which GAM smoothing was applied are represented
by s(...) in equation (6) with interactions between a smoothed variable x and linear variable y
denoted as s(x, by y). Significant terms (p < 0.05) are highlighted in bold. The associated
coefficients, significance values, and other relevant fitting information are included in Supporting

Information Tables S2-S5.
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The MLR model captured the general behaviour of the shift in the boundary between low and high
thriving probabilities but did not adequately reproduce changes in spread (Figure 7 A vs. C). The
overall root-mean-squared error (RMSE) of the model was 0.125. While most predicted probabilities
differed from the simulation by no more than +0.1, some predictions were subject to large error
(Figure 7 A, D, F and Supporting Information Figures S11 and S14-S15). The largest errors
unsurprisingly appear closest to the boundary between low and high psive regions with the MLR
model over-optimistic at the extremes of spacing and lower initial population size. Conversely, the

model tended towards overly pessimistic at moderate spacing.
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Figure 7: Predictions of MLR model (A) and GAM (B). Simulation results in (C) are presented for ease of comparison. The model
errors for the MLR (D) and GAM (E) are presented visually as well as quantified per-crowding condition in (F). The GAM
outperformed the MLR, which particularly failed to capture spread, was overly optimistic at spacing extremes, and pessimistic at
moderate spacing. The small region of greater than 100% odds occured because the GAM was not constrained to predicting values in
the range of [0,1]. Larger individual plots of panels A, B, D, and E are available in Supporting Information figures S14-S17.

In comparison to the MLR model, the GAM not only captured the general boundary shift but also the
changes in spread (Figure 7 B vs. C in contrast to A vs. C). The overall RMSE of the GAM was
0.0563, or somewhat better than half the RMSE of the MLR model. As with the MLR model, most
predicted probabilities differed from the simulation by no more than +0.1. Unlike the MLR model,
there were fewer exceptionally large errors and those which did occur were of smaller magnitude
(Figure 7 B, E, F and Figures S12 and S16-S17). The GAM followed the same trends in over- and

under-prediction as the MLR.

4 Discussion

4.1 Crowding Affects the Balance Between Drift and Selection
The two parameters describing the balance between drift and selection, uso and spread, were both

affected as crowding became more intense due to either decreased initial spacing or increased initial
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population size. It was originally expected that as crowding intensity increased, greater selective
advantages would be required (us50) along with a decrease in the range of values over which both drift

and selection influenced success (spread). That was not the case.

Instead, the largest spread values predominately occurred at moderate (5 diameter) initial spacing.
We suggest the cause is physical competition for space, specifically the practical significance of
single ‘bad’ random choices in division direction and biomass allocation. When bunched tightly
together, competition for space is intense and even a few poor random events can consign a lineage
to languishing despite a moderate growth advantage. At the other extreme, spatial competition is
lessened sufficiently that a few missteps do not guarantee ruin, allowing a lineage to take the full
benefit of any growth advantage. Meanwhile, at moderate spacing, immediate neighbours are close
enough so that poor random events are harmful but not necessarily disastrous and, at the same time,
growth advantages are somewhat hindered, but still helpful. Remembering that spread quantifies the
region where both fitness and drift influenced success, it then makes sense that we observed the

largest spread values at moderate spacing.

The 50-50 odds point, us0, was also slightly larger at moderate spacings, although not consistently
and the effect size was not practically different except at large population sizes. The underlying basis
for why is not entirely clear, numerically it was due to the consistently larger intercept (Figure 5).
The trend of the slopes is, however, more easily explained and we attribute it to competition for
substrate. For any initial population size, smaller spacings resulted in higher slopes. In other words,
to maintain the 50-50 odds when K was poor, uso had to change more at closer spacing. This makes
intuitive sense — closer spacings result in lower local substrate concentrations, and any deficit to K is

more deleterious to selection.

Increased initial population sizes had more straightforward, secondary, effects on w50 and K;. As the

initial population size increased, the differences between spacings became more pronounced, but the
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general trends remained unchanged. In other words, more competitors are problematic, especially as
it relates to diffusible substrate, but the major influence on success is competition for space between

immediate neighbours.

4.2 Interactions Between Factors Incorporating Non-Linear Effects are Important

In the MLR a main-effects only model (RMSE 0.125, R? of 0.820) performed essentially identically
to the MLR model with interactions (RMSE 0.127, and R? of 0.820), however neither adequately
reproduced simulation results. Both were especially poor at representing the regions where fitness
and drift influenced success. A GAM which incorporated only main effects using non-linear
smoothing quantitatively performed slightly worse than either MLR main-effects model (RMSE
0.197 and R? of 78.1), but drastically and uniformly overpredicted spread. Only when both
interactions and smoothing were incorporated did a model adequately reproduce the simulation
results (Figure 7 and Supporting Information Figure S17). It is visually apparent in the simulation
results and quantified in the fitting results (Supporting Information Table S4-5) that interactions are
important, particularly those involving spacing. Further, the non-linearity of the interactions
(measured as the departure of the term’s extended degrees of freedom from a value of 1), is
particularly high for any interaction incorporating both u, and K, and less so but still notably for

interactions incorporating spacing (Supporting Information Table S5).

4.3 Limitations and Extensions

The simulated conditions were deliberately chosen to isolate the effect of drift. While this made the
work tractable, a system wherein every organism is completely identical, starts growing at the same
time, and is initially evenly spaced on a grid does not frequently occur in nature. Although we
believe the general themes uncovered translate to real ecological systems, the exact quantification
does not and is not mean to apply to all situations. Future work should focus on stochastically placed

(in time and space) populations with natural variability in Monod parameters.
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Extending the work so that the simulated community reflects a more natural distribution would also
enable validation of the model, as, despite promising advances,*® it is currently infeasible to exactly

place essentially identical bacteria at the resolution required.

Additional parameters affecting drift and selection should also be evaluated — especially the
influence of nutrient-rich conditions*’ and how a change to yield, rather than growth rate, alters
success.*® Adding these factors requires however overcoming the curse of dimensionality, the current
simulations took over 1 year of real-world time and 175 years’ worth of CPU time. Given the large
areas where ‘nothing interesting’ happens, designing further experiments to incorporate adaptive
sampling® is a promising solution. Further, adaptive sampling would enable, at the same
computational cost, exploring a larger range of xm« and Ks variation (which may vary by orders of
magnitude in real-world conditions*’) and at a greater degree of resolution than 10% changes in the

region where the probabilities rapidly change.

5 Conclusion And Relevance to Real World Systems

It is apparent that during biofilm formation in low nutrient conditions, drift strongly determines
which organisms thrive and which organisms fail, so long as they have similar growth rates and
substrate affinities. Even when those parameters differ between individuals by +50%, there are still

large regions where a selective advantage does not guarantee overcoming drift-driven failure.

In fact, we observed the lineage fates were determined very early in the simulations and for these
systems ‘well-begun is half done’. We speculate that this may be a piece to the puzzle explaining the
apparent contradiction between actual and effective community size in neutral modelling* — the
bacteria are not in competition with the full steady-state community but only the immediate smaller,
community near the beginning of biofilm growth. However, the conditions studied here violate the

steady state assumption of that work, so a more careful analysis is warranted.
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The conditions we have described are not dissimilar from those within an aerated portion of a
wastewater treatment plant, where tightly packed bacterial aggregates are suspended in a bulk liquid
and where substrate concentrations are often quite low, especially during operation as a completely
mixed stirred reactor (albeit somewhat higher than simulated here). Further, these bacteria are
recirculated through the system and relatively well-adapted to domestic wastewater, thus already
selected for similarity. Based on the results presented here, we would expect to see a system in which
there is a high degree of random turnover in organism identity, but relatively stable functional and

biological activity, which is exactly what has been observed in wastewater treatment plants.>!>
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