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Abstract 7 

Both deterministic and stochastic forces shape biofilm communities, but the 8 

balance between those forces is variable. Quantifying the balance is both 9 

desirable and challenging. For example, drift-driven drift failure, a stochastic 10 

force, can be thought of as an organism experiencing ‘bad luck’ and 11 

manipulating ‘luck’ as a factor in real world systems is difficult. We used an 12 

agent-based model to manipulate luck by controlling seed values governing 13 

random number generation. We determined which organism among identical 14 

competitors experienced the greatest drift-driven failure, gave it a deterministic 15 

growth advantage, and re-ran the simulation with the same seed. This enabled 16 

quantifying the growth advantage required to overcome drift, e.g., a 50% chance 17 

to thrive may require a 10-20% improved growth rate. Further, we found that 18 

crowding intensity affected that balance. At moderate spacings, there were wide 19 

ranges where neither drift nor selection dominated. Those ranges shrank at 20 

extreme spacings; close and loose crowding respectively favoured drift and 21 

selection. We explain how these results may partially illuminate two 22 

conundrums: the fact that a stably operating wastewater treatment plant’s 23 



microbial community can vary greatly over time and the difference between 24 

equivalent and total community size in neutral community assembly models. 25 

Keywords: agent-based model, biofilm, drift, neutral assembly, community 26 

assembly, individual based model  27 



1 Introduction 28 

Both stochastic and deterministic assembly processes can shape biofilm communites.1,2 Those 29 

processes, however, rarely act equally and the balance between them is determined by many 30 

conditions related to competition intensity. Such conditions include population size,3,4 available 31 

space,5 and resource availability.6 Understanding how this balance shifts under differing conditions  32 

provides insights into biofilm-associated systems such as environmental bioreactors, healthcare, 33 

industrial production, and natural ecosystems. 34 

Here, we attempt to quantify the balance between drift, a pure stochastic process,1,3 and a more 35 

deterministic kinetic advantage. Under this balance, even if losing the ‘drift lottery,’ an individual’s 36 

progeny may thrive if their maximum growth rate (μmax) or half saturation constant (Ks) confers a 37 

selection advantage over their competitors.  38 

Such quantification is challenging. Drift is an inherently random process and experimental 39 

manipulation of a random process, distinct from simply controlling for it, is difficult. Despite that 40 

difficulty, there have been some physical experiments in which drift is isolated as an experimental 41 

factor,4,7,8 often requiring subtle statistical analyses or extremely precise experimental work. 42 

An alternative approach, used here, is to perform the experiments in silico where drift may be 43 

directly manipulated via random number generation. We used an agent-based model (NUFEB)9,10 to 44 

simulate spatially competing bacteria under low nutrient conditions. The bacteria were identical and 45 

evenly spaced, differentiated only by random growth directions and biomass allocations during 46 

division. Drift was therefore the only selection process and was controlled by the seed value 47 

initializing the random number generator.  48 

Our goal was to determine the degree to which a deterministic factor (here, Monod kinetics) must 49 

improve to overcome drift-driven failure so subsequent simulations using identical seeds were run. 50 

The difference was that the ‘biggest loser’, the lineage with the lowest relative abundance, was 51 



assigned different kinetics. This approach allowed us to relate quantifiable kinetic changes to the 52 

likelihood that the failing lineage would overcome drift-driven failure and thrive. We also 53 

determined how the required degree of change varied under differing crowding intensities (e.g., 54 

closer spacing and increased initial population size). 55 

We found that under purely stochastic conditions the losing lineage varied unpredictably between 56 

runs, showing the expected effects of drift. Further, altering kineticsdid enable losing lineages to 57 

overcome drift. For example, for an initial population of 9 cells evenly spaced 10 diameters apart 58 

either Ks or μmax had to improve by at least 10-20% for a 50% chance of thriving. Crowding affected 59 

both the improvement needed for a 50% chance of thriving and the ranges over which both drift and 60 

fitness influenced success. The strong and sometimes non-linear interactions between terms could 61 

not be adequately reproduced using simple linear estimators but could be adequately expressed with 62 

a generalized additive model. 63 

2 Methods 64 

2.1 Agent Based Model  65 

The agent-based model employed NUFEB (Newcastle University Frontiers in Engineering 66 

Biology),9,10 which is based on the LAMMPS9 molecular dynamics simulation framework and has 67 

successfully been used to model multi-species biofilms,10 including development and detachment,7  68 

trade-offs in extracellular polymeric substance production,11 and phototroph-heterotroph metabolic 69 

interactions.12.   70 

NUFEB is not lattice based, cells were positioned in three dimensions and had individual dynamic 71 

sizes. The directions in which cells divided and biomass allocations (40 to 60%) during division were 72 

randomly determined using a Park-Miller pseudorandom number generator and were the two factors 73 

contributing to drift.  74 



The individually simulated bacterial cells physically interacted using realistic physics and grew 75 

according to Monod-style models described by Equation (1) where µ is the substrate-dependent 76 

growth rate (1/hr), µmax is the maximum specific growth rate (1/hr), [S] is the concentration of the 77 

relevant substrate (kg/m3), and Ks is the half-saturation constant for the substrate (kg/m3). Additional 78 

descriptions of NUFEBs mechanics are detailed in previous publications.9,10 79 

 
𝝁 =  𝝁𝒎𝒂𝒙

[𝑺]

𝑲𝒔 + [𝑺]
  

(1) 

The simulation volume height (2x10-4 m) was defined to be in the Z-dimension, the bulk substrate 80 

concentration boundary condition at the top of the simulation volume was 1x10-4 kg/m3 and the 81 

initial substrate concentration throughout the volume was set to the same value. The X and Y 82 

dimensions were equal and varied based on spacing and number of initial cells. Additionally, the X 83 

and Y boundaries were periodic, allowing biomass and substrates to wrap from one side of the 84 

simulation to the other.   85 

2.1.1 Model Implementation Details 86 

NUFEB simulates bacterial growth, physical interactions, and substrate diffusion and reactions 87 

within a cuboid volume. Bacterial growth is given as mass over time and determined by a summation 88 

of Monod-style rate equations and the change in mass is used to calculate the diameter of a spherical 89 

organism. When an individual grows beyond a user-defined threshold (here 1.36 microns), it divides 90 

into two organisms. The first cell receives 40-60% of the biomass (uniformly randomly selected) and 91 

the second cell receives the remainder. The three-dimensional direction of division relative to the 92 

centre of the initial cell is randomly chosen.Mechanically, the individuals are subjected to contact, 93 

adhesion, and fluid forces which are implemented as respective as spring and dashpot, spring, and 94 

simple one-way coupling physical models. A mechanical relaxation step is performed to address the 95 

mechanical in-equilibrium introduced by organism division. With respect to the crowding explored 96 

in this research, the result of mechanical relaxation is that a freshly cell which finds itself 97 



‘overlapping’ with existing biomass will be part of a ‘shoving’ match in which all relevant 98 

individuals will be pushed into nearby empty space. 99 

In this simulation a generic nutrient substrate is modelled and oxygen is non-limiting. The substrate 100 

is modelled within the cuboid by solving a standard advection-diffusion-reaction equation. The 101 

equation is discretized across and solved for small voxel subsections of the cuboid with a short 102 

timestep. 103 

The implementation used here does not differ from previous detailed explanations10 employing thee 104 

the ODD protocol (Overview, Design concepts, Details), which is a standard for agent-based model 105 

description. Specifically, the underlying equations regarding growth, transport, and physical 106 

interactions have not been modified and the interested reader is guided specifically to the supporting 107 

information of reference 10 for an exhaustive, canonical description. 108 

2.2 Experimental Approach 109 

The base experimental unit was an agent-based simulation initially seeded with identical bacterial 110 

cells with starting diameters of 1x10-6 m, Ks of 3.5x10-5 kg/m3, µmax of 1 h-1, and yield 0.61 kg 111 

biomass per kg substrate consumed. The initial cells (total population 4, 9, or 16) were arranged 112 

along evenly spaced (2.5, 5, or 10 cell diameters) MxM points at the base of the simulation volume. 113 

Bacteria were allowed to grow and compete until 20% of the simulation volume consisted of 114 

heterotrophic biomass.  115 

Each combination of populations sizes and spacings was run 120 times using different seed values to 116 

initialize the random number generator and the ‘biggest loser’ from each run was identified (see 2.3). 117 

Those simulations were then run again, but with the failed lineage given altered kinetic values (see 118 

2.4). The results of the runs were used to determine how the altered kinetics contributed to the 119 

probability of transitioning from drift-driven failure to a thriving state (see 2.5) under various 120 

crowding intensities.  121 



All combinations of the factor levels listed in Table 1 (1089 combinations) were simulated for each 122 

of the 120 seeds, resulting in a total of 130680 runs. Each run required between 2 to 36 hours to 123 

complete, so the simulations were carried out on a high-performance computing cluster (see 2.6). 124 

Table 1: Experimental factors and levels 125 

Factor Values 

Spacing (cell diameters) 2.5 5 10         

Initial Population Size 4 9 16         

% Change in Ks -50 -40 -30 -20 -10 0 10 20 30 40 50 

% Change in µmax -50 -40 -30 -20 -10 0 10 20 30 40 50 

2.3 Determining Failed Lineages 126 

For a system initialized with N bacterial lineages, the total biomass Xt is the sum of the biomass for 127 

each lineage Xi, as expressed by equation(2). 128 

 

𝑿𝒕 = ∑ 𝑿𝒊

𝑵

𝒊

 
(2) 

In a system where each initial cell is identical, with no competition, and with no random effects, all 129 

Xi are expected to be equal, thus the expected relevant abundance of any lineage (XE) is given as: 130 

 
𝑿𝑬 = 𝑿𝑻/𝑵 

(3) 

In the first round of simulations, all initial cells were identical and evenly spaced, but cell division 131 

directions and biomass allocations during division were determined randomly. As a result, the 132 

distribution biomass for any lineage at any particular time was often not equal to the expected 133 

relevant abundance, 𝑋𝑖 ≠ 𝑋𝐸. In practice, there were often one or two lineages which strongly 134 

dominated with Xi ≫ XE, one or two lineages which became vanishingly small with Xi ≪ XE (the 135 

‘biggest losers’), and the rest persisted at some noticeable abundance that was however below XE.  136 

Moreover, the outcomes appeared to be determined early in the simulation, especially for the best 137 

and worst performing lineages. (Supporting Information Figure S1, Table S1, and Video SV1). We 138 

have defined three classifications of lineage survival based on the difference between XE and Xi: 139 

languishing (𝑋𝑖 < 0.3 𝑋𝐸), thriving (𝑋𝑖 > 0.9𝑋𝐸), and barely surviving (0.3 𝑋𝐸 ≤ 𝑋𝑖 ≤ 0.9𝑋𝐸). The 140 



threshold for thriving is lower than XE to accommodate situations where single lineage massively 141 

dominated (e.g., Xi > 0.6) leading to lineages which were clearly otherwise doing well but with low 142 

relative abundance. 143 

2.4 Kinetic Alteration for Potential Selective Advantange 144 

The worst-performing bacterial lineages from each of the initial homogenous runs were modified by 145 

altering their individual maximum specific growth rate (µmax) and/or their half-saturation constant 146 

(Ks) (Figure 1), potentially giving them a competitive advantage. The altered values were selected as 147 

described in Table 1. We acknowledge that not all combinations of µmax and Ks were advantageous 148 

and that µmax and Ks are often strongly correlated; here our goal was to thoroughly explore the 149 

parameter space. 150 

  151 
Figure 1: Illustration of a parameter sweep. Under baseline conditions when all bacteria are identical (left hand side), colony 4 was the 152 
worst performing lineage. When colony 4 was given a potental selective advantage (right hand side) via reduced KS and increased µmax, 153 

colony 4 transitioned to thriving. This result along with all other parameter combinations across 120 random seeds was used to 154 
estimate pthrive, the probability that the worst-performing colony would transition to thriving under given altered kinetics. The trend of 155 

upward growth by the bacteria is due to substrate concentration gradients and is characteristic of growth under low-nutrient 156 
conditions.10 157 

A two-dimensional parameter space was chosen because both µmax and Ks met two desirable criteria. 158 

First, they directly associate growth and substrate concentration. Second, they are major parameters 159 

used when designing bioreactors, calibrating associated models, and when discussing kinetic control 160 

of microbial populations within reactors. A composite ratio of the parameters did not appear usable 161 

due to a lack of symmetry in results (e.g., across the upper-left to lower-right diagonals in Figure 4). 162 

The disadvantage of such an approach is the large computational cost. For similar work where those 163 



criteria do not apply, a one-dimensional parameter space is suggested. Ideally, this single-parameter 164 

would be part of the underlying biological model (such as yield), rather than a generic multiplicative 165 

‘selective advantage’ variable . 166 

2.5 Probability Map Generation 167 

The kinetic parameter sweeps were used to generate tables for each combination of factors which 168 

listed the final relative biomass of each bacterial lineage, that lineage’s status as the ‘biggest loser’, 169 

and the lineage’s success under each run. Within each combination population size and spacing, the 170 

percentage of failing lineages which transitioned to thriving during the parameter sweep was 171 

recorded across all seeds. s.  Those percentages represent the probabilities that the selective advantage 172 

(if any) conferred by altered kinetics would outweigh drift-driven failure under the given conditions.  173 

2.6 Simulation Management 174 

Simulations were run and their results tabulated on the Newcastle University Rocket High 175 

Performance Computing environment and managed using Snakemake13,14 workflows populating a 176 

SLURM15 queue. Each simulation was run on a single core, with multiple hundreds of simulations 177 

run in parallel.  Job submissions encompassed all kinetic parameter sweeps for each combination of 178 

other parameters, e.g., a single batch submission would consist of all combinations of µmax and Ks for 179 

4 bacteria, spaced 5 diameters apart. 180 

2.7 Data Analysis 181 

Simulation results were saved as tabular comma separated value (CSV) text files and aggregated 182 

using BASH16 (v. 4.2) shell and Python17 (v. 3.8) scripts which included the NumPy18 and pandas19 183 

libraries. Further processing of the data was performed off the cluster and used R20 (v. 4.2) scripts 184 

incorporating various Tidyverse21 and other supporting packages.22–43 185 



2.7.1 Parameters Quantifying the Balance Between Drift and Selection 186 

Each probability map was conceptually analogous to a cliffside; a continuous sharp probability 187 

threshold gradient separated by two flat regions of either 100% lineage success or failure (Figure 2 188 

A). We wished to quantify the midpoint and steepness of the gradient along lines of constant Ks for 189 

each crowding condition. A cross-section of the probabilities along µmax for any constant Ks produces 190 

a sigmoid-shaped profile (Figure 2 B). The profiles were fit to a logistic function of µmax with a 191 

maximum value of 1 given by equation (4), where pthrive is the probability of transitioning to a 192 

thriving colony, k is a parameter affecting the steepness of the curve, and µ50 is the µmax value at 193 

which there is a 50% probability of thriving. 194 

 

𝒑𝒕𝒉𝒓𝒊𝒗𝒆 =  
𝟏

𝟏 + 𝒆−𝒌∗(𝝁𝟓𝟎−𝝁𝒎𝒂𝒙)
 

(4) 

The relevant k and µ50 parameters from each fit were recorded. We also determined the domains of 195 

µmax values associated with the 𝑝𝑡ℎ𝑟𝑖𝑣𝑒 ranges covering either a 2.5-97.5% or 16-84% chance of 196 

thriving. These domains, respectively named spread95 and spread68 quantified the regions over which 197 

both  drift and selection influenced success.  198 

 199 
Figure 2: Illustration of how the µ50 and spread parameters were calculated. In this example, the probability map corresponding to 4 200 

initial organisms placed 5 diameters apart is shown (A), and the dashed line is drawn along a line of constant Ks. The full length of the 201 
line denotes the spread95 region, the portion between crosses denotes spread68, and the solid point represents the µ50 mark. When the 202 
pthrive values are plotted as a function of µmax along the line of constant Ks, (B) it is apparent that a logistic function (grey solid line) 203 



may be fitted to the points (black rings). The fitted function was used to estimate both the value of µ corresponding to µ50 and the 204 
widths of the spread regions. This analysis was repeated for all crowding conditions along all lines of constant Ks. 205 

The results of all sigmoid fits are shown in Supporting Information Figures S2-S10. 206 

2.7.2 Analysing Balance Parameters 207 

Within each crowding scenario, the extracted parameters were analysed using simple linear 208 

regression models of the parameters as functions of Ks. The effect of crowding pressure (spacing and 209 

total population) was then analysed by comparing the results of the fits between scenarios. 210 

We note that although the linear fits for a 2nd order polynomial on µ50 generally resulted in 211 

marginally improved R2
 scores and removed parabolic patterns from the residuals, the simple linear 212 

regressions were still excellent and more interpretable; care should be taken if extending this work to 213 

larger ranges of kinetic values. 214 

2.7.3 Modelling the Effect of Competitive Pressure and Altered Kinetics 215 

We wished to determine if a model based on the simulation results could accurately reproduce the 216 

transition probabilities for each crowding scenario.  The ultimate goal of these models was not 217 

prediction, but to provide a descriptive framework44 showing which factors, interactions, and 218 

potential non-linearities were important. Variations on both multiple linear regression models (MLR) 219 

and Generalized Additive Models (GAMs)45 were fitted to either the log-likelihood of pthrive (for 220 

MLRs) or directly to pthrive (GAMs).  221 

In both cases, backward step selection from factorial models incorporating up to three-way 222 

interactions was performed to select the final model. Non-significant (p > 0.05) terms were 223 

iteratively removed from the model starting with the highest order interactions. Main effects were 224 

retained even if non-significant when they were part of a significant interaction term. 225 

The final models were selected based on R2 and Akaike Information Criterion (AIC) values as well 226 

as interpretability. The potential models and the associated fit criteria are included in Supporting 227 

Information Tables S2-S5. 228 



3 Results 229 

3.1 Drift Occurred When All Cells Were Identical 230 

A foundational assumption of this approach is that even in a system with equally spaced, identical 231 

microbes, random growth will lead to drift. We tested this assumption for crowding scenarios where 232 

all microbes had identical base Ks and µmax parameters by determining the number of times each 233 

lineage was the ‘biggest loser’ over 120 simulations (Figure 3) and, similar to testing m dice for 234 

fairness, applied a Chi-Square test (α=0.05/m) where m is a Bonferroni correction for multiple testing 235 

(m=9 at 3x3 initial spacings and population sizes).  Each initial site was statistically as likely as any 236 

other to be the biggest loser (Supporting Information Table S6). 237 

 238 
Figure 3: The number of times each colony was the least successful performer during all 120 runs of the baseline simulation where all 239 
bacteria were identical. Dashed grey lines indicate the expected value. Points are colored based on spacings between initial sites. For 240 

each set of initial populations, no colony appeared biased away from the expected number of failures. 241 

Additionally, the relative proportion of lineages which languished, survived, or thrived for each set 242 

of crowding conditions was determined. Simulations, on average, had between one and two thriving 243 

lineages, with the rest languishing (65-75% for 4 initial sites, 80-88% others), and a few (0-5%) 244 

which did not thrive but grew to non-negligible abundance (Supporting Information Table S1). When 245 



4 organisms were initially present, only languishing and thriving lineages existed, there was 246 

otherwise no clear trend between these ratios and either the number or spacing of initial bacteria. 247 

3.2 The Least Successful Lineages Could Overcome Drift with Altered Kinetics 248 

As expected, altering the kinetics of  an organism could give it a chance to overcome  drift-driven 249 

failure (Figure 4).  250 



 251 
Figure 4: Changing the µmax and Ks of the least successful lineage was associated with a probability of transitioning to a thriving 252 

status. Solid dots represent µ50, the percent change in µmax at a given Ks associated with 50-50 odds of thriving. Dashed lines show the 253 
range of µmax corresponding to a pthrive of 2.5 to 97.5 (i.e., spread95). Crosses indicate the analagous spread68 region. 254 

The increases in µmax corresponding to the least successful lineage having a 50% chance to become 255 

thriving, which we denote as µ50, are represented by the dark circles in Figure 4. At the baseline Ks a 256 

typical µ50 is in the range of 10-30%, with the exact value affected by initial spacing and population 257 



size (i.e., crowding). Decreasing Ks, as expected, reduces µ50 – even to the point where so long as 258 

substrate uptake affinities are ‘good enough’, the initially failing organism may have excellent odds 259 

despite having a µmax notably lower than its peers.  The overall effect, for a given crowding 260 

condition, is a semi-linear ‘cliff ‘of µ50 values where µ50 changes inversely with Ks. Qualitatively 261 

speaking, the location of that ‘cliff’ was shifted to the right (higher µ50) when crowding was 262 

increased via initial population size or when comparing between the extremes of spacing. 263 

Areas where the probability of thriving is neither 0 nor 1, are, by definition, areas where drift and 264 

selection both influence success. The widths of these areas are denoted as spread and are indicated 265 

by the dotted horizontal lines and crosses in Figure 4. The full length of the line denotes the spread95 266 

area, which is the range of µmax for a given KS which corresponds to a 2.5% to 97.5% chance of 267 

thriving. The crosses represent a similar range, spread68, which corresponds to a 16% to 85% chance 268 

of thriving.  269 

Because the µ50 values are also the centre point of the spread regions, spread shifted in the same 270 

manner as µ50. However, the actual magnitudes of spread did not necessarily follow the same 271 

patterns. First, there was no guaranteed symmetry about Ks. For example, for 9 initial organisms 272 

separated by 5 diameters, the spread95 for Ks of -30% and 30% are visibly different (Figure 4, row 2 273 

column 2). Though the asymmetry varied between crowding conditions, it generally manifested as 274 

spread widening with increasing Ks. Second, there was no clear monotonic trend with spread values 275 

corresponding to crowding.  A spacing of 5 diameters appeared to produce the widest spreads, 276 

ceteris paribus. Further, there was no clear rule determining which of the two spacing extremes 277 

would have a larger spread. For example, with 4 initial bacteria a spacing of 10 diameters resulted in 278 

larger spreads than in 2.5 diameters, but the opposite occurred with 16 initial bacteria. 279 



3.3 Quantitative Effect of Crowding on µ50 and spread 280 

The qualitative effects of crowding described in the previous section were quantified via simple 281 

linear regression as described in section 2.7.2. 282 

For any given crowding condition µ50, the relative change of µmax at which the worst performing 283 

lineage had a 50% chance to transition towards thriving, was essentially linear with respect to KS and 284 

the correlation coefficient was uniformly high (Figure 5). The slopes of these relationships indicate 285 

the change in µ50 required to compensate for a change in Ks. At the tightest spacing, µ50 had to 286 

change the most, with a ratio of essentially 1:1 and a slight monotonic increase corresponding to 287 

initial population size. As initial spacings widened, the ratio almost always decreased for any initial 288 

population size. Across initial population sizes, the ratio for 5 and 10 diameter spacings appeared to 289 

follow a general trend of increasing, but this was not monotonic.  290 

 291 
Figure 5: Under each crowding condition, µ50 changed linearly with KS. Large initial population sizes increased the differences 292 

between spacings, moderate spacings generally required the largest absolute µ50, but the tightest spacings required the largest change 293 
µ50 in per unit change in KS. 294 

The absolute value of µ50 was strongly affected by differences between the fitted intercepts. For 295 

example, a 2.5 diameter spacing under an initial population size of 16 had a high slope (0.983) but 296 

also the lowest required µ50 of all spacings under the same conditions until a 30% change in Ks. The 297 

practical difference between spacing was largest at high initial population size, indicating a potential 298 

interaction between these factors. 299 



Unlike µ50, the range over which both drift and selection effects influenced success, spread95 did not 300 

have a simple linear relationship with KS, with many poor R2 values, residual patterns, and high 301 

leverage datapoints (Figure 6).  There was also no clear, consistent relationship applicable across 302 

factors. In general, linear fits became worse with increasing population size which appeared to 303 

produce higher variance and generated more high-leverage points, especially at separation distances 304 

of 5 diameters. These issues were largely the same when the analysis was repeated for spread68 305 

(Supporting Information Figure S13). There is little to concretely say except that the spread was 306 

most often widest at moderate spacings, generally increased with Ks, and had a noisy, complicated 307 

relationship with initial population size and spacing. 308 

 309 
Figure 6: Under each crowding condition, spread95 changed with KS. Insofar as trends were present, moderate spacing produced the 310 

widest spread95 and the differences between spacings increased with population size. 311 

3.4 Description via Multiple Linear Regression and Generalized Additive Models 312 

The simulation results were modelled using both multiple linear regression (MLR) and a generalized 313 

additive model(GAM) respectively described by equations (5) and (6) where: pthrive is the probability 314 

of transitioning to a thriving status, µp and Kp are the respective percent changes from the baseline 315 

µmax and Ks, N0 is the initial population size, si is the initial spacing (in diameters) between 316 

organisms, and ε is a small pseudo-probability (1x10-6) added to avoid division by 0 and issues with 317 



log transformation. For linear terms in equations (5) and (6), βi denotes the fitted coefficient for term 318 

i with i=0 representing the intercept. Terms to which GAM smoothing was applied are represented 319 

by s(…) in equation (6) with interactions between a smoothed variable x and linear variable y 320 

denoted as s(x, by y). Significant terms (p < 0.05) are highlighted in bold. The associated 321 

coefficients, significance values, and other relevant fitting information are included in Supporting 322 

Information Tables S2-S5. 323 

 
𝐥𝐨𝐠 (

𝒑𝒕𝒉𝒓𝒊𝒗𝒆

𝟏 − 𝒑𝒕𝒉𝒓𝒊𝒗𝒆 + 𝜺
+ 𝜺) = 𝜷𝟎 + 𝜷𝟏𝝁𝒑 + 𝜷𝟐𝑲𝒑 + 𝜷𝟑𝑵𝟎 +  𝜷𝟒𝒔𝒊 + 𝜷𝟓𝝁𝒑𝒔𝒊 + 𝜷𝟔𝑲𝒑𝒔𝒊 

(5) 

 

𝑝𝑡ℎ𝑟𝑖𝑣𝑒 = 𝛽0 + 𝑠(𝜇𝑝) + 𝑠(𝐾𝑝) + 𝒔(𝑁0) + 𝑠( 𝒔𝒊) + 𝑠(𝝁𝒑𝑲𝒑) + 𝑠(𝝁𝒑𝒔𝒊) + 𝑠(𝑲𝒑𝒔𝒊)

+ 𝑠(𝑵𝟎, by 𝒔𝒊) + 𝑠(𝝁𝒑𝑲𝒑𝑵𝟎) + 𝑠(𝝁𝒑𝑲𝒑𝒔𝒊) 
(6) 

The MLR model captured the general behaviour of the shift in the boundary between low and high 324 

thriving probabilities but did not adequately reproduce changes in spread (Figure 7 A vs. C). The 325 

overall root-mean-squared error (RMSE) of the model was 0.125. While most predicted probabilities 326 

differed from the simulation by no more than ±0.1, some predictions were subject to large error 327 

(Figure 7 A, D, F and Supporting Information Figures S11 and S14-S15). The largest errors 328 

unsurprisingly appear closest to the boundary between low and high pthrive regions with the MLR 329 

model over-optimistic at the extremes of spacing and lower initial population size. Conversely, the 330 

model tended towards overly pessimistic at moderate spacing. 331 



 332 
Figure 7: Predictions of MLR model (A) and GAM (B). Simulation results in (C) are presented for ease of comparison. The model 333 

errors for the MLR (D) and GAM (E) are presented visually as well as quantified per-crowding condition in (F). The GAM 334 
outperformed the MLR, which particularly failed to capture spread, was overly optimistic at spacing extremes, and pessimistic at 335 

moderate spacing. The small region of greater than 100% odds occured because the GAM was not constrained to predicting values in 336 
the range of [0,1]. Larger individual plots of panels A, B, D, and E are available in Supporting Information figures S14-S17. 337 

In comparison to the MLR model, the GAM not only captured the general boundary shift but also the 338 

changes in spread (Figure 7 B vs. C in contrast to A vs. C). The overall RMSE of the GAM was 339 

0.0563, or somewhat better than half the RMSE of the MLR model. As with the MLR model, most 340 

predicted probabilities differed from the simulation by no more than ±0.1. Unlike the MLR model, 341 

there were fewer exceptionally large errors and those which did occur were of smaller magnitude 342 

(Figure 7 B, E, F and Figures S12 and S16-S17). The GAM followed the same trends in over- and 343 

under-prediction as the MLR. 344 

4 Discussion 345 

4.1 Crowding Affects the Balance Between Drift and Selection 346 

The two parameters describing the balance between drift and selection, µ50 and spread, were both 347 

affected as crowding became more intense due to either decreased initial spacing or increased initial 348 



population size. It was originally expected that as crowding intensity increased, greater selective 349 

advantages would be required (µ50) along with a decrease in the range of values over which both drift 350 

and selection influenced success (spread). That was not the case. 351 

Instead, the largest spread values predominately occurred at moderate (5 diameter) initial spacing. 352 

We suggest the cause is physical competition for space, specifically the practical significance of 353 

single ‘bad’ random choices in division direction and biomass allocation. When bunched tightly 354 

together, competition for space is intense and even a few poor random events can consign a lineage 355 

to languishing despite a moderate growth advantage. At the other extreme, spatial competition is 356 

lessened sufficiently that a few missteps do not guarantee ruin, allowing a lineage to take the full 357 

benefit of any growth advantage.  Meanwhile, at moderate spacing, immediate neighbours are close 358 

enough so that poor random events are harmful but not necessarily disastrous and, at the same time, 359 

growth advantages are somewhat hindered, but still helpful. Remembering that spread quantifies the 360 

region where both fitness and drift influenced success, it then makes sense that we observed the 361 

largest spread values at moderate spacing. 362 

The 50-50 odds point, µ50, was also slightly larger at moderate spacings, although not consistently 363 

and the effect size was not practically different except at large population sizes. The underlying basis 364 

for why is not entirely clear, numerically it was due to the consistently larger intercept (Figure 5). 365 

The trend of the slopes is, however, more easily explained and we attribute it to competition for 366 

substrate. For any initial population size, smaller spacings resulted in higher slopes. In other words, 367 

to maintain the 50-50 odds when Ks was poor, µ50 had to change more at closer spacing. This makes 368 

intuitive sense – closer spacings result in lower local substrate concentrations, and any deficit to Ks is 369 

more deleterious to selection.  370 

Increased initial population sizes had more straightforward, secondary, effects on µ50 and Ks. As the 371 

initial population size increased, the differences between spacings became more pronounced, but the 372 



general trends remained unchanged. In other words, more competitors are problematic, especially as 373 

it relates to diffusible substrate, but the major influence on success is competition for space between 374 

immediate neighbours. 375 

4.2 Interactions Between Factors Incorporating Non-Linear Effects are Important 376 

In the MLR a main-effects only model (RMSE 0.125, R2 of 0.820) performed essentially identically 377 

to the MLR model with interactions (RMSE 0.127, and R2 of 0.820), however neither adequately 378 

reproduced simulation results. Both were especially poor at representing the regions where fitness 379 

and drift influenced success.  A GAM which incorporated only main effects using non-linear 380 

smoothing quantitatively performed slightly worse than either MLR main-effects model (RMSE 381 

0.197 and R2 of 78.1), but drastically and uniformly overpredicted spread. Only when both 382 

interactions and smoothing were incorporated did a model adequately reproduce the simulation 383 

results (Figure 7 and Supporting Information Figure S17). It is visually apparent in the simulation 384 

results and quantified in the fitting results (Supporting Information Table S4-5) that interactions are 385 

important, particularly those involving spacing. Further, the non-linearity of the interactions 386 

(measured as the departure of the term’s extended degrees of freedom from a value of 1), is 387 

particularly high for any interaction incorporating both µp and Kp and less so but still notably for 388 

interactions incorporating spacing (Supporting Information Table S5). 389 

4.3 Limitations and Extensions 390 

The simulated conditions were deliberately chosen to isolate the effect of drift. While this made the 391 

work tractable, a system wherein every organism is completely identical, starts growing at the same 392 

time, and is initially evenly spaced on a grid does not frequently occur in nature. Although we 393 

believe the general themes uncovered translate to real ecological systems, the exact quantification 394 

does not and is not mean to apply to all situations. Future work should focus on stochastically placed 395 

(in time and space) populations with natural variability in Monod parameters.  396 



Extending the work so that the simulated community reflects a more natural distribution would also 397 

enable validation of the model, as, despite promising advances,46 it is currently infeasible to exactly 398 

place essentially identical bacteria at the resolution required. 399 

 Additional parameters affecting drift and selection should also be evaluated – especially the 400 

influence of nutrient-rich conditions47 and how a change to yield, rather than growth rate, alters 401 

success.48 Adding these factors requires however overcoming the curse of dimensionality, the current 402 

simulations took over 1 year of real-world time and 175 years’ worth of CPU time. Given the large 403 

areas where ‘nothing interesting’ happens, designing further experiments to incorporate adaptive 404 

sampling49 is a promising solution. Further, adaptive sampling would enable, at the same 405 

computational cost, exploring a larger range of µmax and KS variation (which may vary by orders of 406 

magnitude in real-world conditions50) and at a greater degree of resolution than 10% changes in the 407 

region where the probabilities rapidly change.   408 

5 Conclusion And Relevance to Real World Systems 409 

It is apparent that during biofilm formation in low nutrient conditions, drift strongly determines 410 

which organisms thrive and which organisms fail, so long as they have similar growth rates and 411 

substrate affinities. Even when those parameters differ between individuals by ±50%, there are still 412 

large regions where a selective advantage does not guarantee overcoming drift-driven failure. 413 

In fact, we observed the lineage fates were determined very early in the simulations and for these 414 

systems ‘well-begun is half done’. We speculate that this may be a piece to the puzzle explaining the 415 

apparent contradiction between actual and effective community size in neutral modelling4 – the 416 

bacteria are not in competition with the full steady-state community but only the immediate smaller, 417 

community near the beginning of biofilm growth. However, the conditions studied here violate the 418 

steady state assumption of that work, so a more careful analysis is warranted. 419 



The conditions we have described are not dissimilar from those within an aerated portion of a 420 

wastewater treatment plant, where tightly packed bacterial aggregates are suspended in a bulk liquid 421 

and where substrate concentrations are often quite low, especially during operation as a completely 422 

mixed stirred reactor (albeit somewhat higher than simulated here). Further, these bacteria are 423 

recirculated through the system and relatively well-adapted to domestic wastewater, thus already 424 

selected for similarity. Based on the results presented here, we would expect to see a system in which 425 

there is a high degree of random turnover in organism identity, but relatively stable functional and 426 

biological activity, which is exactly what has been observed in wastewater treatment plants.51,52  427 
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