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ABSTRACT

The primary computational challengewhen simulating nonadiabatic ab initiomolecular dynamics is
the unfavourable compute costs of electronic structure calculationswithmolecular size. Simple elec-
tronic structure theories, like time-dependent density functional theory within the Tamm–Dancoff
approximation (TDDFT/TDA), alleviate this cost formoderately sizedmolecular systems simulated on
realistic time scales. Although TDDFT/TDA does have some limitations in accuracy, an appealing fea-
ture is that, in addition to including electron correlation through the use of a density functional, the
cost of calculating analytic nuclear gradients and nonadiabatic coupling vectors is often computa-
tionally feasible even formoderately sizedbasis sets. In thiswork, someof thebenefits and limitations
of TDDFT/TDA are discussed and analysed with regard to its applicability as a ‘back-end’ electronic
structuremethod for the symmetric quasi-classical Meyer–Millermodel (SQC/MM). In order to inves-
tigate the benefits and limitations of TDDFT/TDA, SQC/MM is employed to predict and analyse a
prototypical example of excited-state hydrogen transfer in gas-phase malonaldehyde. Then, the
ring-opening dynamics of selenophene are simulated, which highlight some of the deficiencies
of TDDFT/TDA. Additionally, some new algorithms are proposed that speed up the calculation of
analytic nuclear gradients and nonadiabatic coupling vectors for a set of excited electronic states.
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1. Introduction

A detailed, molecular-level description of nonadiabatic-
ity at the ab initio level is useful when elucidating many
important photoinduced chemical and physical pro-
cesses [1–7]. Simulating complex nonadiabatic dynam-
ics processes, however, is oftentimes prohibited by the
computational cost of electronic structure calculations
which can have high polynomial or exponential scal-
ings with system size – particularly if high-order exci-
tations and/or electron correlation is required for an
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accurate description of the excited electronic state. A
simple approach that seeks to alleviate this cost is to
represent each excited electronic state using only single
excitations in the configuration interaction wavefunc-
tion while including the effects of electron correlation
through the use of a Kohn–Sham (KS) reference determi-
nant. This approach, known as time-dependent density
functional theory within the Tamm–Dancoff approxima-
tion (TDDFT/TDA), has improved scalings with system
size, e.g. ∼ O(N2 − N3) per state, compared to many
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other correlated methods and meaningful predictions
of nonadiabatic processes that both explain and predict
experimental observables are possible [8].

An appealing feature of TDDFT/TDA from a dynam-
ics perspective is the efficiency when computing ana-
lytic nuclear gradients and nonadiabatic couplings which
are used to construct nuclear forces and first-order
derivative coupling vectors. [9–13]. Conveniently, in the
Tamm–Dancoff approximation, themachinery for calcu-
lating analytic first-order derivative coupling vectors is
exactly the same as the analytic nuclear gradient [12].
Often this results in the same computational routines
being used for both calculations. The main drawback
when using analytic gradient routines, however, is the
leading quadratic computational cost that grows with
the number of excited electronic states. Some newly
proposed methods avoid this cost by employing over-
lap based [14,15] and finite difference approximations
[16,17]. While these are generally considered an approx-
imation to the analytic couplings, integrating over the
time step has been shown to result in surface-hopping
simulations with greater accuracy including a more con-
sistent treatment of trivial avoided crossings [18–21].
Propagating the nuclear degrees of freedom (DOF) using
the SQC/MM procedure, however requires that all cou-
plings are computed at each time step and, with algo-
rithmic improvements, the cost of calculating these ana-
lytically is tractable even for moderately sized molecular
systems.

While many methodologies have been proposed that
propagate the equations of motion (EOM) for the elec-
tronic and nuclear degrees of freedom [22–30], with
varying degrees of complexity [31,32], a computationally
efficient and inmany cases sufficiently accurate approach
is to propagate both DOF on an equal footing using clas-
sical Hamiltonian mechanics [33]. One such approach
is the symmetric quasi-classical Meyer–Miller model
(SQC/MM) which quantises the electronic degrees of
freedom in theMeyer–Miller (MM)Hamiltonian using a
set of predefinedwindowing functions which are applied,
symmetrically, both to sample initial conditions and to
estimate electronic state populations (and/or coherences)
at prescribed times during the classical vibronic dynam-
ics evolution [34,35]. While typically the SQC/MM
approach has been used to model the complex nonadi-
abatic dynamics of model systems in the diabatic rep-
resentation, recent years have seen significant progress
in the development of the SQC/MM model to predict
the dynamics of general molecular systems in the adi-
abatic representation. This has been through improved
adiabatic EOM[36] and also some initial realistic calcula-
tions employing ‘on-the-fly’ electronic structure theories
[37–40].

In this work, Meyer–Miller dynamics, as employed in
both the standard Ehrenfest method as well as the SQC
model, are implemented and analysed using ‘on-the-
fly’ TDDFT/TDA electronic structure theory in the Q-
Chem software package [41]. The implementation of this
methodology required algorithmic improvements that
reduce the cost when evaluating analytic nuclear gradi-
ents and first-order derivative coupling vectors for multi-
ple electronic states. Using SQC/MMwith TDDFT/TDA,
a simple analysis of the implemented algorithms is per-
formed by simulating the population dynamics and geo-
metric rearrangements that mediate excited-state hydro-
gen transfer in malonaldehyde. Then, as a more com-
plex illustration of this approach, SQC/MM is employed
to make predictions of the excited-state ring-opening
dynamics of selenophene upon photoexcitation which
highlights some limitations of TDDFT/TDA when mod-
elling bond breaking.

2. Methods

The following notation is used throughout this work:
I and J denote adiabatic Born–Oppenheimer electronic
states where an electron has been excited from i,j,k,. . .
occupied KS orbitals to a,b,c,. . . virtual orbitals in the
reference determinant. μ,ν,λ, σ ,. . . are indices denoting
atomic orbital (AO) basis functions. Â[R] denotes the full
Cartesian derivative of the operator Â with respect to
Cartesian nuclear DOF R which also indicates differen-
tiation of the KS orbital coefficients. All electronic states,
orbitals, and basis functions are assumed to be real unless
otherwise noted.

2.1. SQC/MMnonadiabatic dynamics

The classical Meyer–Miller Hamiltonian maps the elec-
tronic DOF in a nonadiabatically coupled dynamic sys-
tem to a collection of classical harmonic oscillators. The
SQC/MM approach combines this mapping with a sim-
ple, yet effective quantisation protocol for the electronic
DOF along a classical trajectory. When electronic struc-
ture calculations are used for the nuclear forces and cou-
plings, the adiabatic basis is most amenable. The MM
Hamiltonian expressed in this basis is

H(x, p,R,P) =
1

2μ
(P + �P)2 + Veff (x, p,R), (1)

where R, P denote the positions and momenta of the
3N-Cartesian nuclear DOF with atomic masses μ. In the
MM framework, the nucleimove on an effective potential
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energy surface given by

Veff (x, p,R) =

F�

I

� 1
2p

2
I + 1

2x
2
I − γI

�
EI(R), (2)

where {xI , pI} are the positions andmomenta of the ‘elec-
tronic oscillators’ defining a set of F adiabatic electronic
states each with energy EI . {γI} denotes a set of zero
point energy (ZPE) parameters in the electronic DOF.
In the adiabatic representation, the nuclear momentum
P arises in combination with a nonadiabatic coupling
vector potential

�P(x, p,R) =

F�

I<J

(xIpJ − xJpI) dIJ(R),

which depends explicitly on the standard first-order
derivative coupling vector dIJ(R) = ��I| �∇R�J� between
adiabatic electronic states �I and �J . The occupation-
weighted effective potential shown in Equation (2) is
commonly symmetrised

Veff (x, p,R) =
1

F

F�

I

EI(R) +
1

F

F�

I<J

�
p2I − p2J + x2I − x2J

�

×
�
EI(R) − EJ(R)

�
, (3)

which sets the energy zero and guarantees the electronic
dynamics are independent of energy scale.

The canonical EOM are obtained by applying Hamil-
ton’s equations

ẋI =
∂H

∂pI
, ṗI = −∂H

∂xI
, Ṙ =

∂H

∂P
, Ṗ = −∂H

∂R
(4)

to the adiabatic MM Hamiltonian in Equation (1) pro-
ducing dynamically consistent, canonical coordinates
and momenta in both the nuclear and electronic DOF.
An apparent drawback of using the adiabatic basis how-
ever, is that Hamilton’s equations introduce second-
derivative nonadiabatic couplingmatrices into the EOM.
As recently shown, [36], the explicit calculation of these
second-derivative nonadiabatic coupling matrices can be
avoided entirely by employing a simple change of vari-
ables from the canonical nuclear momentum to the so-
called ‘kinematic’ nuclear momentum

Pkin = P + �P.

Although Pkin is not canonically conjugate to R it can
be utilised in generating exactly the same Hamiltonian

dynamics via the following kinematic EOM:

ẋI =
pI

F

F�

J

�
EI(R) − EJ(R)

�
+

F�

J

xJdJI(R) ·
Pkin

μ
,

(5a)

ṗI = −xI

F

F�

J

�
EI(R) − EJ(R)

�
+

F�

J

pJdJI(R) ·
Pkin

μ
,

(5b)

Ṙ =
Pkin

μ
, (5c)

Ṗkin = −∂Veff

∂R
−

�

IJ

�
1

2
pIpJ +

1

2
xIxJ

�

× (EJ(R) − EI(R))dIJ(R). (5d)

These kinematic EOM, advantageously, contain only the
first-order derivative couplings dJI(R), but are never-
theless exactly equivalent to the EOM obtained after
employing Equation (4) which includes both first- and
second-order couplings.

In the SQC/MM approach, quantisation of the clas-
sical Hamiltonian dynamics produced by Equations
(5a–5d) is done symmetrically, i.e. with respect to
both the initial and final values of the dynamical elec-
tronic variables. Quantisation is accomplished, initially
by Monte Carlo sampling actions from a ‘windowing’
function defined by the SQC model. The quantisation
at the prescribed final times is accomplished by ‘bin-
ning’ the final time-evolved actions according to the win-
dowing function. In Q-Chem, the triangle windowing
model is available and further estimates concerning the
number of acceptable trajectories with this approach are
provided in Ref. [42]. Additionally, the option to use a γ -
adjustment procedure, exactly as described in Ref. [43],
is available except here the γ -adjustment procedure is
employedwith the kinematic EOMof Equations (5a–5d).
The key point of the γ -adjustment procedure is to set
the {γI} in Equation (2) per DOF (and per trajectory), so
that the initial forces on the nuclei are that of the initial
pure quantum state – i.e. the single-surface forces. Ehren-
fest simulations are also available where the dynamics of
these are equivalent to the SQC calculations, but instead
of using symmetric windowing functions for selecting
initial conditions and estimating final populations, the
Ehrenfest method uses integer initial electronic action
variables with γ = 0 and uses the values of these action
variables at each desired final time to estimate the elec-
tronic state populations instead of evaluatingwhether the
actions fall within a window function.

The nuclear EOM (shown in Equations (5c) and
(5d)) are integrated numerically using a traditional
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velocity-Verlet integrator. The electronic EOM (shown
in Equations (5a) and (5b)) are integrated using a semi-
analytic scheme that solves the time-dependent elec-
tronic Schrödinger equation at each time step with the
nuclear coordinates and momenta as momentarily fixed.
This is equivalent to solving the following set of first-
order coupled differential equations

iĊ = HC (6)

where C are the set of time-dependent electronic ampli-
tudes

CI(t) =
1√
2

�
xI(t) + ipI(t)

�
, (7)

that are defined according to the electronic oscillator
variables, and H is the electronic Hamiltonian with
matrix elements

HIJ =
1

F

F�

K

�
EI(R) − EK(R)

�
δIJ − idJI(R) ·

Pkin

μ
,

(8)
expressed in the adiabatic basis. The time-dependent
electronic amplitudes are obtained after diagonalisingH,
at each time step, and writing the solution as a complex
exponential

Ct+1 = Ue−i��tU†Ct , (9)

where �t denotes the time step, U are the eigenvectors,
and � are the eigenvalues of Equation (8). The real and
imaginary components of C constitute the time-stepped
electronic oscillator coordinates andmomenta (scaled by
1/

√
2), respectively.

The propagation scheme shown in Equation (9) is
exact when the time step is zero or when the first-order
derivative coupling is independent of the nuclear DOF.
Construction of the Hamiltonian matrix in Equation (8),
however, assumes that the nuclei are fixed during the
electronic update. This is an approximation but seems to
have a negligible impact on the accuracy of the electronic
dynamics and allows propagation of both the electronic
and nuclear DOF with the same time step. For prob-
lematic situations, i.e. when H changes rapidly in time,
a higher-order numerical integrator may be required at
the additional expense of introducing a shorter electronic
time step.

2.2. Analytic gradients and nonadiabatic couplings

Time propagation of the electronic and nuclear DOF
requires nuclear gradients and first-order derivative cou-
pling vectors for a set of adiabatic electronic states.
The first-order derivative coupling vector between states

�I and �J is calculated using the Hellmann–Feynman
theorem [5]

dIJ(R) =
hIJ

ωJ − ωI
,

where ωI and ωJ are TDDFT/TDA excitation energies
and

hIJ ≡ ��I|Ĥ
[R]|�J�

is the nonadiabatic coupling vector. In the TDDFT/TDA
formalism, the excited state wavefunction is a projection
of the eigenfunctions of the electronic Hamiltonian Ĥ

onto the space of single excitations

|�I� =
�

ia

XI
ai|�

a
i �,

where |�a
i � denotes a singly-excited determinant after

promoting an electron from an occupied orbital i to
a virtual orbital a in the KS reference. The excitation
amplitudes XI

ai = ��I|�
a
i � are obtained by solving the

following eigenvalue equation

AXI = ωIX
I ,

where A is a single excitation Hamiltonian which is Her-
mitian in the Tamm-Dancoff approximation since the
corresponding excitation and de-excitation amplitudes
have been uncoupled.

An appealing property of TDDFT/TDA is that the
analytic expression for the nonadiabatic coupling is sim-
ilar to the excited state analytic gradient [12]

hIJ =
�

ijab

XI
aiA

[R]
ai,bjX

J
bj

=
�

ijab

XI
ai

�
F
[R]
ab δij − F

[R]
ij δab + �

[R]
ia,bj + 


[R]
ai,bj

�
XJ
bj,

(10)

where F is the KS Fockmatrix,� is the two-electron inte-
gral tensor, and � denotes the response of the exchange-
correlation Fock matrix after a perturbation in the one-
particle density matrix [8,10]. Equation (10) is a gen-
eralised Hellmann–Feynman-type expression which one
might assume is not valid because the wavefunctions
employed are not eigenfunctions of the electronic Hamil-
tonian; however, it has been shown in Ref. [44] that
the additional non-Hellmann-Feynman terms that arise
after projecting the eigenfunctions onto the space of sin-
gle excitations renders the first-order derivative coupling
dependent on overall translational motion which is obvi-
ously unphysical. The procedure advised in Ref. [12] is
to simply leave these additional non-Hellmann-Feynman
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terms out of the expression for the nonadiabatic cou-
pling which is justified by the introduction of electronic
translation factors into the electronic EOM [11].

Evaluating analytic nuclear gradients and nonadia-
batic coupling vectors requires building one- and two-
particle density matrices. Constructing the required
density matrices allows the nonadiabatic coupling in
Equation (10) to be expressed in a compact form

hIJ = P
IJ	
� · H[R] + �IJ	 · �[R] + WIJ	 · S[R]

+ P
IJ	
� · F[R]xc + TI† · �[R] · TJ , (11)

where H[R], S[R], and F
[R]
xc denote the Cartesian deriva-

tives of the core Hamiltonian, overlap, and exchange-
correlation Fock integrals and �[R] and �[R] denotes
the Cartesian two-electron and exchange-correlation
response integral derivatives, respectively. Expressions
for the required density matrices and further derivations
of the components of hIJ are provided in Appendix 1.

In a nonadiabatic dynamics simulation, evaluating
Equation (11) for multiple electronic states at each time
step can quickly become the dominant computational
expense. Q-Chem already contains efficient analytic gra-
dient and nonadiabatic coupling routines that evalu-
ate hIJ between any single pair of states [10,12]. One
approach, in a multi-state protocol, would be to sim-
ply use this code to evaluate hIJ between all combina-
tions of pairs of the electronic states during a trajectory.
Such an approach (referred to as scheme I) involves re-
calculating all integrals and integral derivatives for each
density matrix which is clearly not ideal as this amounts
to the most computationally expensive step being need-
lessly repeated for each pair. An improved approach
would be to simply build all of the required density
matrices up front and contract them all simultaneously,
thereby re-using already computed integrals and inte-
gral derivatives. We have implemented this approach,
referred to as scheme II, because it leads to significant
cost improvements as the most computationally expen-
sive step (i.e. evaluating integrals and integral derivatives)
is performed once for a common set of density matrices.

Timing results that illustrate the speedups possible
when employing scheme II are shown in Figure 1. The
molecular systemused for the timing analysis was a series
of alkane molecules where the length was systematically
increased. Equation (11) was used to compute the ana-
lytic nuclear gradients and nonadiabatic coupling vec-
tors for the ten lowest-energy singlet electronic states in
each system (corresponding to 55 vectors in total). The
PBE density functional was employed for all calculations
with a 6-31G∗ basis set. All timings were benchmarked

Figure 1. Timing benchmarks as a function of basis set (N) and
increasing chain length (n) for a series of alkane molecules. The
timings reported are the full evaluation of the set of analytic
nuclear gradient and first-order derivative coupling vectors (55 in
total). The ten lowest-energy singlet excited states of each sys-
tem were included. The red curve (scheme I) and the blue curve
(scheme II) corresponds to a polynomial least-squares fit.

on a single thread/core 3.6 GHz Intel Core i9 proces-
sor. As evident from Figure 1, the savings after employ-
ing scheme II is significant particularly when more than
300 basis functions are used (for 300 basis functions
scheme II takes approximately 15minutes while scheme I
takes approximately 1 hour). Fitting the timings to a
quadratic polynomial reveals that, in general this factor of
approximately 4× speedup remains even when 600 basis
functions are used. Further analysis of the fit is provided
in Appendix 2.

2.3. State-following and conical intersections

A precondition for electronic transitions between adi-
abatic electronic states is a non-vanishing first-order
derivative coupling. However, approaching symmetry-
allowed conical intersections and un-avoided crossings
during a dynamics trajectory are also possible which
can present a bookkeeping challenge when tracking and
identifying adiabatic states [45,46]. Therefore, a proto-
col is required to ensure that the electronic wavefunction
does not instantaneously change character during a tra-
jectory by allowing the system to correctly pass through
these allowed degeneracies. Furthermore, a protocol is
required that ensures the phase of the electronic wave-
function is consistent throughout the trajectory, which,
in turn, ensures that the first-order derivative couplings
are smooth functions of the nuclear DOF.
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A simple approach, that is independent of the phase
of the KS orbitals, is to assign electronic states based on
the difference between their attachment and detachment
density matrices at subsequent time steps [47]. For the
multi-state tracking protocol employed here, an approx-
imate overlap matrix is constructed from the similarity
metric

MIJ =

⎧
⎨
⎩
1 −

����AIJ
��� , if

����DIJ
��� ≥

����AIJ
���

1 −
����DIJ

��� , otherwise,

where �AIJ = AI
t+1 − A

J
t is the difference between the

attachment density for state I at time step t+ 1 and the
attachment density for state J at time step t. Similarly,
�DIJ = DI

t+1 − D
J
t is the difference between the detach-

ment density for state I at time step t+ 1 and the detach-
ment density for state J at time step t and �·� denotes the
spectral norm.

The matrix element MIJ is an approximate electronic
state overlap and inmost cases is sufficient for state track-
ing. However, as a result of this matrix being constructed
from differing electronic basis sets at consecutive time
steps, this matrix should be projected onto a common
basis. This is accomplished by taking the singular value
decomposition ofMIJ

M = U · � · VT ,

whereU are the left singular vectors which map the elec-
tronic basis at t+ 1 onto a common basis, � are the
singular values ofM, andVT are the right singular vectors
whichmap the electronic basis at time t onto the common
basis. With the singular vectors in hand, constructing the
nearest orthogonal matrix representation [48,49] to this
approximate overlap matrix

Q = U · VT ,

defines an orthogonalized similarity metric. Assigning
state character to specific adiabatic states is done with a
‘Min-Cost’ assignment algorithm that permutes the ele-
ments of Q until the trace is maximised [50,51]. Once
the trace is maximised, the energies and corresponding
amplitudes are swapped according to the unique set of
indices that resulted in the maximum trace. A consistent
overall phase for the amplitudes is enforced directly from
the overlap, at time t and at t+ 1, between the transition
density matrices (see Equation (A1)).

3. Model systems

The simulations of nonadiabatically mediated molecu-
lar rearrangements presented here (proton transfer and
ring-opening) are intended as illustrative examples of

modelling small molecular systems with the methodolo-
gies presented in this work. The modelling of the treated
relaxation pathways is rigorous and accurate at the level
of theory presented here but there are some relevant
relaxation pathways that, for various reasons, have not
been included in these simulations. For example, one
such pathway for bothmalonaldehyde and selenophene is
nonradiative decay from the optically dark S1 electronic
state to the ground state which is known to occur on
time scales greater than 50 fs [52,53]. Nonradiative decay
pathways to the ground state have not been included
here because, in such cases, the ground electronic state
is multi-reference and TDDFT/TDA is known to incor-
rectly predict topologies of the resulting conical inter-
sections [54]. Likewise, the simulations presented here
do not include spin-orbit coupling which is known to
be physically relevant in both systems [53,55]. Neverthe-
less, these examples constitute important demonstrative
examples of the SQC/MM methodology and the new
implementation in Q-Chem.

3.1. Excited-state hydrogen transfer in

malonaldehyde

Malonaldehyde is a simple prototypical example of
excited-state hydrogen transfer with many theoretical
studies analysing and identifying the complex intercon-
version and intersystem crossing pathways [56,57]. Geo-
metrically, malonaldehyde favours a closed ring struc-
ture where an intramolecular hydrogen bond is formed
between neighbouring carbonyl groups.While a substan-
tial barrier for hydrogen transfer is evident on the S0 and
the optically forbidden S1(nπ

∗) and S3(nπ
∗) potential

energy surfaces, hydrogen transfer on the optically bright
S2(ππ∗) state is believed to be barrier-less where the
bonding hydrogen favours an equidistant configuration
between the two oxygen terminals [52,58].

Simulating the ultrafast interconversion efficiency
after photoexcitation to the S2 state, i.e. for t<50 fs, is
well suited for TDDFT/TDA since conical intersections
with the ground and triplet electronic states are not yet
accessible and the population transfers quite rapidly to
the S1 state. In the longer-time regime (i.e. t>50 fs),
alternate pathways to the ground and low-lying triplet
states emerge after substantial population has transferred
into the S1 state. Identifying the structural rearrange-
ments necessary to activate these relaxation pathways
have led to some debate including a proposed three-
state conical intersection [52,59,60]. Recently, List et al.
combined both experiments with theory to identify and
assign these relaxation pathways usingmolecular dynam-
ics and x-ray absorption measurements [55].
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In the current work, a treatment of malonaldehyde’s
short-time S2 relaxation pathway is presented based on
Ehrenfest, SQC/MM, and fewest-switches surface hop-
ing (FSSH) trajectories in the gas phase, with a particu-
lar focus on illustrating the mechanics of the SQC/MM
methodology and new Q-Chem implementation. For
all simulations, trajectories were initialised by sam-
pling nuclear positions and momenta directly from a
0K ground-state harmonic oscillator Wigner distribu-
tion, with the electronic degrees of freedom initialised
as described above for the Meyer–Miller methods. The
electronic degrees of freedom for the FSSH trajectories
were initialised on S2 with integer actions in exactly
the same way as the Ehrenfest trajectories. The reduced
masses and harmonic frequencies used to construct the
Wigner distribution were calculated from the minimum
energy geometry on the ground electronic state poten-
tial energy surface. The PBE0 density functional was
employed with the 6-31G∗ basis set. The Wigner sam-
pled positions and momenta were allowed to propagate
via Meyer–Miller and FSSH dynamics on the three cou-
pled potential energy surfaces: S3, S2, and S1 with a 0.24 fs
time step for t = 60 fs. The gamma-adjustment protocol
was employed for the SQC/MM trajectories.

Mapping the nonadiabatic dynamics at each time step
onto the adiabatic basis states was distinct for malon-
aldehyde since the initially populated S2 state, assuming
Franck–Condon vertical excitation after sampling the
Wigner distribution, is energetically well separated from
both the S1 and S3 states. To illustrate this, Figure 2 shows
the energy differences in the Franck–Condon region
between the S2-S1 and S3-S2 electronic states which are
on average ≈ 1.5 eV suggesting that the initially popu-
lated S2 state is constructed of mainly ππ∗ character.

The primary orbital contributions for the two most
active states (S2 and S1) are shown in Figure 3(a). The
highest-occupiedKS orbital (HOKS) is comprised of out-
of-plane π-type orbitals on the acceptor and donor oxy-
gen atoms with a π bonding orbital on the carbon back-
bone. The lowest-unoccupied KS orbital (LUKS) com-
bines similar out-of-planeπ-type orbitals on the acceptor
and donor oxygen atoms with a π anti-bonding orbital
on the carbon backbone. The HOKS-1 orbital is an anti-
bonding σ -type orbitals on the oxygen atoms. The S2
and S1 states are comprised primarily of excitations from
the HOKS and HOKS-1 orbitals to the LUKS orbital,
respectively.

The population dynamics are shown in Figure 3(b,c).
All three methods, Ehrenfest, SQC/MM, and FSSH pre-
dict a similar decay out of S2 with SQC/MM predicting
slightlymore population transfer to the S1 state compared
with the FSSH and Ehrenfest predictions. Ehrenfest pre-
dicts a similar population transfer to SQC/MM up to

Figure 2. The binned energy differences between the S2(ππ∗)
and S1(nπ

∗) excitation energies (blue) and the S3(nπ
∗) and

S2(ππ∗) excitation energies (red) in malonaldehyde. Approxi-
mately 400 initial positions were sampled from a 0K ground-state
harmonic oscillator Wigner distribution.

t = 20 fs then the most significant deviations between
all three methods occurs between t = 20 and t = 40 fs.
After t = 40 fs, Ehrenfest predictions of the population
transfer out of S2 are closer to the FSSH results. Over the
course of the trajectories, less than 10% of the population
transfers to the S3 state with SQC/MMpredicting slightly
more population transfer than Ehrenfest or FSSH.

For reference and comparison with Ref. [52], the
donor minus acceptor hydrogen bond length (DH-AH)
was calculated at stationary points on the potential
energy surfaces and monitored during the MM dynam-
ics, i.e. those initialised with the SQC procedure (see
Figure 4(a)). On the S0 potential energy surface the min-
imised (DH-AH) bond length is −0.648 Å. The DH-AH
distance is significantly lengthened on the S1 potential
energy surface (±1.013 Å) suggesting localisation on one
of the oxygen terminals. On the S2 potential energy sur-
face, the hydrogen is equidistant between the two oxygen
atoms and is free to shuffle between donor and acceptor.
The degree of hydrogen transfer during the dynamics is
substantial, as shown in Figure 4(b), where the hydrogen
shuffles back and forth rapidly from t = 10 to t = 20 fs.
Once substantial population has transferred into the S1
state (at t>20 fs), the hydrogen atom begins localisation
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Figure 3. (a) The top contributing KS orbital excitations of the S2(ππ∗) and S1(nπ∗) electronic states ofmalonaldehyde. The population
dynamics of the S2(ππ∗) electronic state (b) and the S1(nπ∗) and S3(nπ∗) electronic states (c) simulatedwith the Ehrenfest (red,≈ 200
trajectories), SQC/MM (blue,≈ 400 trajectories with 69% contributing), and FSSH (green,≈ 200 trajectories) methods.

on either of the oxygen terminals as evidenced by density
depletion near DH-AH= 0 Å.

The simulations of the S2 relaxation pathways in mal-
onaldehyde presented here should serve as a guide when
using the Ehrenfest or SQC/MM methods in Q-Chem.
An interesting result, in addition to the significant and
rapid population transfer that occurs from the S2 to the S1
state, is the dispersion of DH-AH bond lengths through-
out the SQC/MM simulations. Since an effective poten-
tial forms between t = 40 and t = 60 fs, i.e. a weighted
average of S2 and S1 with significant S2 character, the dif-
ference bond length rarely reaches the optimised value
of DH-AH= ±1.013 Å on the S1 surface and is more
probable between±0.75 Å. This is not surprising consid-
ering that by t = 60 fs the occupation-weighted poten-
tial has approximately 60% S1 character (as shown in
Figure 3(b)) and there is sufficient DH-AH density near
approximately 60% of the optimal value.

3.2. Ring-Opening dynamics of selenophene

Heterocyclic compounds are important building blocks
for many modern technologies, from biomedical appli-
cations [61] to electronic devices [62–64]; and various
properties of these compounds can be explored in the

gas phase where a detailed, atomistic treatment is fea-
sible with quasi-classical molecular dynamics methods
[65–69]. Typically, these species exhibit optically bright
ππ∗ states which are short lived and involve a com-
peting series of internal conversion pathways to nearby
ππ∗ and πσ ∗ states that promote both ring-puckered
and ring-opened configurations, respectively. Additional
competing pathways emerge in ring-opened configura-
tions, i.e. after sufficient energy has transferred into πσ ∗

configurations, as these systems are known to undergo
intersystem crossing to nearby triplet states and nonra-
diative decay to the ground electronic state [70,71]. Of
the heterocyclic compounds, five-membered chalcogen-
containing ring systems have been extensively studied
using nonadiabatic dynamics methods and, in such sys-
tems, this series of competing pathways between ring-
opened and ring-puckered configurations is particularly
evident [72–81].

Selenophene (in the gas phase) provides an illustrative
example of these types of competing electronically nona-
diabatic dynamics. A simplified schematic, after photoex-
citation to the optically bright singlet A1(π2π

∗) elec-
tronic state, is shown in Figure 5(a). The first excitation
pathway consists of either staying on the A1 state or
undergoing internal conversion to the singlet B1(π1π

∗)
state resulting in a distortion of the planar geometry and
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Figure 4. (a) Stationary points on the ground, first-, and second-
excited state potential energy surfaces of malonaldehyde. The
minimum difference between the donor-hydrogen (DH) and
acceptor-hydrogen (AH) bond lengths at each stationary point
and for each electronic state is shown in parentheses. (b) The time
dependence of the difference (DH-AH) bond lengths monitored
during the SQC/MM trajectories.

ring puckering. The second pathway consists of under-
going internal conversion to either the singlet B2(π1σ

∗)
or the singlet A2(π2σ

∗) state. Once sufficient population
has transferred into one of these πσ ∗ states, ring open-
ing can occur. In ring opened configurations, additional
pathways emerge which result in either ring closing after
decay back to the singlet ground electronic state or inter-
system crossing to low-lying triplet states.

In order to elucidate the competing pathways in
selenophene, excitation energy differences were calcu-
lated across the standard hierarchy of density function-
als with each energy difference referenced from the
optimised C2v geometry with the 6-311G∗∗ basis set
(see Figure 5(b)). For comparison, the results from the
EOM-EE-CCSD/aug-cc-pVTZ level are shown in blue.
Using the EOM-EE-CCSD differences as a benchmark,
only range-separated density functionals (RSH-GGA)

give comparable results where the closest energy differ-
ences are predicted by the LRC-ωPBE and ωB97X func-
tionals. Generalized gradient approximations and their
global hybrid variants (GGA and GH-GGA) systemat-
ically overestimate the energy differences in compari-
son. Since the LRC-ωPBE/6-311G∗∗ level has the closest
energy difference when compared to the benchmark, this
functional and basis set was chosen for all simulations.

The electronically nonadiabatic dynamics of
selenophene were simulated by initially sampling 200
nuclear positions and momenta directly from a 298K
ground-state harmonic oscillator Wigner distribution.
The four lowest energy electronic states were included
in the simulations which, as discussed below, have mixed
ππ∗-πσ ∗ character due to out-of-plane distortions cou-
pling together π∗ and σ ∗ orbitals (shown in Figure 6(a))
in the Franck-Condon region. The electronic states (S1,
S2, S3, and S4) were initially assigned to the C2v refer-
ence states (A1, A2, B1, and B2) according to their maxi-
mum overlap and these characters were monitored dur-
ing the trajectories as defined by the multi-state tracking
protocol. After Wigner sampling nuclear positions and
momenta and assigning the corresponding electronic
states, the electronic oscillator variables were initialised
via the SQC protocol with the S2 state initially popu-
lated, i.e. the state that overlappedmost with the optically
bright A1(π2π

∗) state. The coupled nuclear and elec-
tronic DOF were allowed to propagate via Meyer–Miller
dynamics on the potential energy surfaces with a 0.24
fs time step for 80 fs. As with malonaldehyde, the γ -
adjustment protocol was employed in the initial SQC
sampling protocol.

The primary orbital contributions to the electronic
transitions are shown in Figure 6(a). The a2 HOKS-1
orbital is a bonding π orbital on the carbon backbone
while the b2 HOKS orbital is a combination of a bond-
ing π-type orbital on the carbon backbone with a p
orbital on the selenium. In the valence space, the b2 LUKS
orbital has the same bonding π structure as the HOKS
orbital but is anti-bonding with the neighbouring car-
bon atoms while the LUKS+1 orbital is a combination
of anti-bonding σ -type orbitals on both the selenium
atom and the carbon ring. The optically brightA1(π2π

∗)
and allowed, but dark, B1(π1π

∗) electronic states are an
excitation from the HOKS and HOKS-1 orbitals to the
LUKS orbital, respectively. Similarly, the optically forbid-
den A2(π2σ

∗) and allowed, but dark B2(πσ ∗) electronic
states are an excitation from the HOKS and HOKS-1
orbitals to the LUKS+1 orbital, respectively.

The population dynamics depend significantly on
the character of the initially populated electronic state.
When the initial geometries are Wigner sampled (see
Figure 6(b)), themajority of population transfers between
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Figure 5. (a) A simplified schematic of the available nonadiabatic pathways to ring opening and ring puckering in selenophene.
(b) Energy differences between the A1(π2π

∗), A2(π2σ
∗), and B2(π1σ

∗) excitation energies referenced from the C2v geometry on the
ground electronic state for each method. The EOM-EE-CCSD results are shown in blue for reference.

Figure 6. (a) The top contributing KS orbitals of the excited electronic states of selenophene referenced from the equilibrium geome-
try. (b) The SQC/MM population dynamics after sampling a 298K harmonic oscillator Wigner distribution (≈ 200 trajectories with 80%
contributing). (c) The SQC/MM population dynamics with the positions initialised to the C2v geometry and the velocities sampled from a
298K Boltzmann distribution (≈ 100 trajectories).

the S2 and S1 states before t = 10 fs. After approximately
60% of the initial population has transferred into S1, the
exchange abruptly stops and the populations are main-
tained for the remainder of the dynamics – although
some population (less than 10%) does transfer into the

S4 state. The S3 electronic state does not acquire any
substantial population on the time scales simulated. The
ceasing of this abrupt exchange after 10 fs is surpris-
ing, and as an additional experiment, designed to gauge
the effect of exciting into a state of mixed character,
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100 trajectories were initialised with a single value of
nuclear coordinates (precisely theC2v equilibrium geom-
etry) with momenta sampled from a 298K Boltzmann
distribution. Though there does not appear to be an obvi-
ous justification for this, the idea was to explore the
population dynamics that result from starting in the A1

electronic state which has pureπ2π
∗ character. As shown

in Figure 6(c), when the dynamics are initialised in this
way more than 90% of the population transfers directly
to the A2 state and neither the B2 or B1 states acquire any
substantial population.

When referenced from the symmetric C2v geometry,
vibronic predictions from the nonadiabatic dynamics fol-
low a predictable trend in that πσ ∗ states (A2,B2) result
in ring opened configurations and ππ∗ states (A1,B1)
result in ring puckered configurations. However, when
the initial state is mixed, as is the case after sampling the
Wigner distribution, the vibronic pathways are mediated
by the amount of ππ∗ or πσ ∗ character that is present
on the effective potential energy surface. At stationary
points on the adiabatic potential energy surfaces S0 and
S2, the selenophene ring is closed as shown in Figure 7(a).
The stationary point on the S1 potential energy surface is
ring opened which corresponds to an optimised differ-
ence bond length, defined as the Max–Min bond lengths
between selenium and the neighbouring carbon atoms,
of 0.776Å. The ring opening dynamics are shown in
Figure 7(b) where this change in the Max–Min differ-
ence bond length was monitored and binned across the
Wigner sampled trajectories, i.e. those corresponding to
the population dynamics shown in Figure 6(b). Clearly,
by t = 30 fsmost of the trajectories resulted in ring open-
ing with substantial trajectories after t = 50 fs predicting
difference bond lengths greater than the optimised value
on the S1 potential energy surface. The majority of tra-
jectories ring open (≈ 85%) which is seemingly contra-
dictory to the predicted population dynamics shown in
Figure 6(b) where only approximately 60% of the pop-
ulation transfers from the S2 to the S1 state. This evi-
dent contradiction can be understood as resulting from
a substantial number of trajectories initially excited into
S2 having enough πσ ∗ character such that their elec-
tronic configuration does not prevent ring opening. For
comparison, 96% of the trajectories that were initialised
to from the C2v equilibrium geometry, i.e. those cor-
responding to the population dynamics in Figure 6(c),
underwent ring opening.

A potentially concerning aspect of the simulations of
selenophene are the number of Wigner sampled trajec-
tories that cross the Coulson–Fischer (C-F) point [82] as
shown in Table 1. By t = 30 fs, 17% of the trajectories
crossed the C-F point with nearly 88% crossing by t = 80
fs. Since the trajectories were simulated using a restricted

Figure 7. (a) Stationary points on the ground, first-, and second-
excited electronic states of selenophene. (b) The difference
betweenmaximumandminimumselenium-carbonbond lengths
monitored across the≈ 200 Wigner-initialised SQC/MM trajecto-
ries.

formalism, crossing the C-F point often results in an arti-
ficial increase of the potential energy as the Se-C ring is
broken. Performing the simulations with an unrestricted
KS determinant would seemingly correct for this issue
as spin symmetry breaking would lower the potential
energy as the ring is broken. However, unrestricted KS
orbitals have been shown to result in nonphysical poten-
tial energy surfaces beyond the C-F point [83]. In the
event however that TDDFT/TDA is employed to simply
predict whether ring opening will occur or not, cross-
ing the C-F point during a dynamics trajectory is not
too concerning since the C-F point is crossed on the
S1 potential energy surface which is repulsive along the
bond-breaking coordinate.

4. Conclusions

The symmetric quasi-classical model for quantising clas-
sical Meyer–Miller vibronic dynamics is an efficient,
and often quite accurate framework for performing ab
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Table 1. The trajectories that crossed the Coulson–Fischer point
during the SQC/MM nonadiabatic dynamics simulations of
selenophene.

Time (t,fs) % traj. crossed C-F point < S
2 >

0 0.00 0.000
10 0.00 0.000
20 0.00 0.000
30 16.8 0.077
40 54.1 0.312
50 66.9 0.461
60 75.6 0.604
70 85.5 0.673
80 88.4 0.743

initomolecular dynamics for electronically nonadiabatic
processes, such as vibrational-DOF enhanced electronic
energy transfer dynamics and the role that nonadiabatic
energy transfer has on geometric and other properties.
Here, what has been developed for general use is an
implementation of the SQC/MM model using ‘on-the-
fly’ TDDFT/TDA within the widely available Q-Chem
quantum chemistry software package, including the effi-
cient implementation of new algorithms that improve the
compute cost when evaluating analytic nuclear gradients
and first-order derivative coupling vectors. In particular,
new digestion routines were proposed that contract the
full set of densitymatrices with a common set of integrals
and integral derivativeswhichwere shown to speedup the
calculations by a factor of four compared with the brute
force method. The efficiency gains that were achieved
as a result of these new algorithms should aid in simu-
lating realistic time-scales of nonadiabatic dynamics in
moderately sized molecular systems.

As an illustrative example of this new implementation,
the excited-state hydrogen transfer dynamics of malon-
aldehyde were analysed. The simulations presented here
suggest that when malonaldehyde is photoexcited to the
S2 state, nonradiative decay occurs rapidly to the nearby
S1 state where more than 50% of the population is trans-
ferred before t = 50 fs. In the intermediate regime (t<50
fs), the hydrogen atom, which bonds together the ring
structure, shuffles rapidly back and forth between the
donor and acceptor oxygen terminals. Once sufficient
population has transferred into the S1 state however, the
hydrogen atom mainly localises on either of the two
oxygen terminals. These simulations present a computa-
tionally simple example of the accuracy of TDDFT/TDA
in combination with the SQC/MM approach when com-
pared with other comparable nonadiabatic dynamics
methods.

The ring-opening dynamics of selenophene were
also investigated which posed some challenges for
TDDFT/TDA due to the Se-C bond breaking after cross-
ing the C-F point. The simulations predict that after

photoexcitation to the S2 state population transfers very
rapidly to the S1 state with more than 60% transferring
before t = 10 fs. After approximately 20 fs, either by
sufficient population accruing in the S1 state or the ini-
tialised S2 state having sufficient πσ ∗ character, the Se-C
bond breaks resulting in ring opening. Making vibronic
predictions, i.e identifying specific electronic rearrange-
ments and configurations that are directly responsible for
ring opening, was challenging in the case of selenophene
as a result of mixing between the π∗ and σ ∗ orbitals near
the Franck–Condon region.

A serious limitation when using TDDFT/TDA with
nonadiabatic dynamics methods is the incorrect topol-
ogy predictions of conical intersections between ground
and excited electronic states. While the malonalde-
hyde and selenophene simulations presented here pre-
dicted the population dynamics between excited elec-
tronic states only, these systems are known to undergo
nonradiative decay to the ground state which is a
physically relevant pathway that was neglected. Some
electronic structure approaches, such as spin-flip vari-
ants of TDDFT/TDA [12,84–87], have been developed
already that address the challengeswhen calculating first-
order derivative coupling vectors between ground and
excited electronic states. Efficiently implementing these
approaches in the framework of SQC/MM will be the
result of future work.
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Appendices

Appendix 1. Density matrix derivations

The matrix elements of A are the response of the KS Fock
matrix (F) to a perturbation in the one-particle density matrix
(P) [8,10]. The matrix elements are

Aai,bj =
∂Fai

∂Pbj
= (�a − �i)δabδij + �ai,bj + 
ai,bj,

which include the energies of the occupied and virtual KS
orbitals, the two-electron integral tensor (�), with elements
�ai,bj = (ia|jb) − CHF(ij|ab) where CHF is a scalar denoting
the percent Hartree–Fock exchange, and


ai,bj =
∂Fxc,ai

∂Pbj
,

Table A1. Fit parameters for the exchange-correlation (XC) inte-
gral derivative contraction (solid lines in Figure A1(a)) and the
electron-repulsion (E–E) integral derivative contraction (solid lines
in Figure A1(b)) components of the analytic nuclear gradient and
nonadiabatic coupling vectorwith increasing alkane chain length.

Component (hIJ) a × 105 b × 102 c × 101

XC (scheme I) 6.769 4.475 −18.830
XC (scheme II) 0.661 1.224 −4.489
E–E (scheme I) 26.14 −1.696 3.773
E–E (scheme II) 10.23 −1.389 4.397
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which is the response of the exchange-correlation Fock Matrix
to a perturbation in the one-particle density matrix. The
exchange-correlation Fock matrix is the response of the
exchange correlation energy (Exc) to the same perturbation

Fxc,ai =
∂Exc

∂Pai
=


 �

ξ

∂fxc

∂ξ

∂ξ

∂Pai
dr,

where {ξ } denotes a set of independent parameters defined
in the exchange-correlation functional (fxc) and which depend
linearly on the one-particle density matrix.

The differentiation of these matrix elements are typically
performed in the AO basis and contracting the derivatives with
relaxed (denoted by ’) one- and two-particle density matri-
ces is required when building the nonadiabatic coupling vector
hIJ [12,13]. The ground to excited state one-particle transition
density matrix is

TI = CvX
IC

†
o , (A1)

where Co and Cv are rectangular matrices that contain the
occupied and virtual blocks of the KS orbital coefficient
matrix C. The generalised difference density matrix (i.e. when
I = J, the ground to excited state difference density matrix is
obtained) is

P
IJ
� =

1

2
Cv(X

IXJ† + XJXI†)C
†
v − 1

2
Co(X

I†XJ + XJ†XI)C
†
o ,

which depends explicitly on the occupied-occupied and
virtual-virtual blocks of KS orbital coefficient matrix. The
relaxed generalised difference density matrix

P
IJ	
� = P

IJ
� + P

IJ
Z = P

IJ
� + CvZ

IJC
†
o + CoZ

IJ†C
†
v , (A2)

is obtained after differentiating the KS orbital coefficients. This,
in turn, requires solving the coupled-perturbed self-consistent
field (CPSCF) equations for a Z-vector (ZIJ) between states I
and J �

E��
KS

�
ZIJ = LIJ (A3)

where � denotes the set of virtual-occupied orbital rotations
and LIJ is a Lagrangian. The components of the CPSCF equa-
tions are defined as
�
E��
KS

�
ZIJ ≡ C

†
vFCvZ

IJ − ZIJC
†
oFCo + C

†
v

�
(� + �) · P

IJ
Z

�
Co

where PIJZ is given in Equation A2 and

LIJ ≡ C
†
v

�
(� + �) · P

IJ
� + TI† · � · TJ

�
Co

− 1

2
C

†
v

�
(� + �) · TI†

�
CvX

J

− 1

2
C

†
v

�
(� + �) · TJ†

�
CvX

I

+
1

2
XJC

†
o

�
(� + �) · TI†

�
Co

− 1

2
XIC

†
o

�
(� + �) · TJ†

�
Co,

which defines the Lagrangian. The solution to Equation A3
requires contracting the two-electron integrals and second-
functional derivatives with the generalised difference and

Figure A1. Timing data as a function of basis set size and increas-
ing chain length for the exchange-correlation (XC) integral deriva-
tive contractions (a) and the electron-electron (E–E) repulsion
integral derivative contractions (b). The red curves (scheme I) and
the blue curves (scheme II) correspond to a polynomial least-
squares fit of the timings of each component.

transition density matrices. Additionally, the third functional
derivative of the exchange-correlation energy

�μν,λσ ,κγ =
∂
μν,λσ

∂Pκγ
,

is contracted with the transition density matrices of states I and
J. With the corresponding Z-vector, the relaxed generalised dif-
ference density is constructed according to Equation A2 and
this matrix is contracted with the core Hamiltonian (H[R])
and exchange-correlation Fock (F[R]xc ) integral derivatives when
building the nonadiabatic coupling vector.

Additionally, evaluation of the nonadiabatic coupling vec-
tor in Equation 11 requires contracting the two-particle (�IJ	 )
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and energy-weighted (WIJ	 ) density matrices with the two-
electron (�[R]) and overlap (S[R]) integral derivatives, respec-
tively. These matrices are defined accordingly as

�IJ	 =

�
P ⊗ P

IJ	
�

�
+

�
TI† ⊗ TJ

�
(A4a)

WIJ	 = −1

2
�IJ	CC† − 1

2
CC†�IJ	† (A4b)

where

�IJ	 = P
IJ	
� · F + P

�
(� + �) · P

IJ	
� + TI† · � · TJ

�

+
1

2
TI

�
(� + �) · TJ†

�
+

1

2
TJ

�
(� + �) · TI†

�

+
1

2
TI†

�
(� + �) · TJ

�
+

1

2
TJ†

�
(� + �) · TI

�
,

which are notably relaxed due to their dependence on the
relaxed generalised difference densitymatrix fromEquationA2.

Appendix 2. Timing analysis

The timings were analysed by fitting the data to a simple
quadratic polynomial

CPU − time(N) = aN2 + bN + c,

where N denotes the total number of basis functions. The fit
parameters of themost computationally expensive components
of the nonadiabatic coupling are provided in Table A1. Both the
exchange-correlation (XC) and electron-electron (E–E) com-
ponents of the nonadiabatic coupling vector scale quadratically
with the number of basis functions. However, the quadratic
prefactor corresponding to the exchange-correlation term, after
employing scheme II, is reduced by a factor of ≈ 10 compared
with scheme I. The leading prefactor for the electron-electron
integral derivative contractions, which is clearly the most com-
putationally expensive step, is reduced by≈ 2.5 after employing
scheme II.

Timing illustrations for the speedups possiblewhen employ-
ing scheme II are shown for the exchange-correlation (XC,
Figure A1(a)) and electron-electron ( E–E, Figure A1(b))
integral derivative contractions. Fitting the timings with a
quadratic polynomial reveals that a factor of ≈ 3 speedup
for the electron-electron repulsion integral derivative contrac-
tions is possible. The exchange-correlation integral derivative
contractions result in a ≈ 10× speedup.


