
MERCURY: Accelerating DNN Training By
Exploiting Input Similarity

Vahid Janfaza, Kevin Weston, Moein Razavi, Shantanu Mandal, Farabi Mahmud, Alex Hilty, Abdullah Muzahid
Computer Science and Engineering, Texas A&M University, College Station, TX, USA

{vahidjanfaza, kevin.weston, moeinrazavi, shanto, farabi, ahilty, abdullah.muzahid}@tamu.edu

Abstract—Deep Neural Networks (DNN) are computationally
intensive to train. It consists of a large number of multidimensional
dot products between many weights and input vectors. However,
there can be significant similarities among input vectors. If one
input vector is similar to another, its computations with the
weights are similar to those of the other and, therefore, can be
skipped by reusing the already-computed results. We propose
a novel scheme, called MERCURY, to exploit input similarity
during DNN training in a hardware accelerator. MERCURY uses
Random Projection with Quantization (RPQ) to convert an input
vector to a bit sequence, called Signature. A cache (MCACHE)
stores signatures of recent input vectors along with the computed
results. If the Signature of a new input vector matches that
of an already existing vector in the MCACHE, the two vectors
are found to have similarities. Therefore, the already-computed
result is reused for the new vector. To the best of our knowledge,
MERCURY is the first work that exploits input similarity using
RPQ for accelerating DNN training in hardware. The paper
presents a detailed design, workflow, and implementation of the
MERCURY. Our experimental evaluation with twelve different
deep learning models shows that MERCURY saves a significant
number of computations and speeds up the model training by an
average of 1.97⇥ with an accuracy similar to the baseline system.

I. INTRODUCTION

Deep Neural Networks (DNNs) have become ubiquitous in
recent years. They are used for diverse tasks such as image and
video recognition, recommendation systems, natural language
processing, etc. [27], [39], [62]. Due to the versatility of DNN
models, special hardware accelerators have been proposed and
built [3], [9], [10], [12], [13], [21], [33], [40], [55]. DNNs
are computation intensive. For example, Convolutional Neural
Network requires 30k to 600k operations per pixel [10]. The
computation volume is even higher when the accelerator trains a
DNN model. However, inputs used during training often have
similarities. Our objective is to improve the computational
efficiency of DNN training by exploiting such similarities.

A. Computations with Input Similarity

DNN operations consist of numerous multidimensional dot
products between weight and input vectors extracted from
the weight and input matrices. Let us consider a weight
vector w and two input vectors v1 = [v1,1,v1,2,v1,3] and
v2 = [v1,1+e1,v1,2+e2,v1,3+e3]. If ei (for 1 i 3) represents
an insignificant difference, then v1 and v2 have value similarity.
The dot product of v2 and w would be v2.w = v1.w+ e.w.
If ei ⇡ 0, then e.w ⇡ 0, and therefore, v2.w ⇡ v1.w. In other
words, if v2 and v1 have value similarity, the computation of

v2 with a weight vector is considerably similar to that of v1
and, therefore, can be skipped by reusing the results of v1.

To further motivate the readers, we analyzed the VGG13
network [56] with ten convolution layers. We counted what
fraction of input and gradient vectors have similarities in
the convolution layers. The similarity is detected using a
well-established technique called Random Projection with
Quantization (RPQ) [5] (more details in § II-A). The similarity
in input vectors leads to computation reuse in the forward
propagation, while that of gradient vectors leads to computation
reuse in the backward propagation. Figure 1 shows that VGG13
has up to 75% similarity among input vectors and up to 67%
similarity among gradient vectors. By capitalizing on these
similarities, MERCURY speeds up the VGG13 training by
1.89⇥ compared to the baseline (§ VII-A).

 0

 20

 40

 60

 80

 100

la
ye

r-
1

la
ye

r-
2

la
ye

r-
3

la
ye

r-
4

la
ye

r-
5

la
ye

r-
6

la
ye

r-
7

la
ye

r-
8

la
ye

r-
9

la
ye

r-
10

In
p
u
t

S
im

il
a
ri
ty

 (
%

)

(a) Input vector.

 0

 20

 40

 60

 80

 100

la
ye

r-
1

la
ye

r-
2

la
ye

r-
3

la
ye

r-
4

la
ye

r-
5

la
ye

r-
6

la
ye

r-
7

la
ye

r-
8

la
ye

r-
9

la
ye

r-
10

G
ra

d
ie

n
t

S
im

il
a
ri
ty

 (
%

)
(b) Gradient vector

Fig. 1: Similarity among input and gradient vectors of VGG13.
B. State of the Art

When it comes to DNN inference acceleration, the two
dominant techniques are sparsity exploitation [1], [2], [10],
[20], [26], [48], [57] and computational reuse [28]–[30], [43],
[51], [53], [66]. Unfortunately, applying these techniques
directly during training has never been easy [41], [42]. Thus,
most of the efforts for reducing DNN training time focus on
alternative approaches, such as distributed training [19], [44],
data compression [22], [32], [65], low precision training [17],
[18], [36]. Recently, there is some work about exploiting
sparsity in DNN training [41], [42], [63]. Yet the challenges
of reusing similar computational data due to input similarity
during training are not well-studied. Most of the current work
in this category is either software-based [46], [47] or limited to
inference only [15], [43], [47], [53]. Extending them for training
in an accelerator is difficult due to two major challenges.

• Similarity Detection: Detecting similarity among inputs
requires extra computations and hardware. Therefore,
reducing the computations while reusing the existing
hardware as much as possible becomes a major bottleneck
for exploiting input similarity.

1

• Dataflow Modification: When two inputs are similar,
computations for one input can be reused for the other.
This creates an irregularity in the dataflow of an accel-
erator. Changing the dataflow or using a new one will
vanquish the benefit of the accelerator’s original dataflow.
Thus, addressing the irregularity in computations while
maintaining the original accelerator dataflow becomes a
significant objective for adopting input similarity.

C. Proposed Approach

We propose a novel scheme, called MERCURY, to exploit in-
put similarity during training in a DNN accelerator. MERCURY
uses RPQ [5] in hardware to detect similarity among input
vectors. We show a formulation of RPQ where it follows the
same computation pattern as a convolution operation. Therefore,
MERCURY reuses the existing hardware Processing Elements
(PEs) to perform RPQ. MERCURY uses RPQ to convert an
input vector into a bit-sequence, called Signature. MERCURY
calculates one signature for each input vector. If two input
vectors produce the same signature, they are significantly
similar and thus, have a higher similarity. During the DNN
operation between a weight and input vector, the input vector’s
signature is used to access a special cache, called MCACHE.
MCACHE uses signatures to calculate indices and tags and
(previously) computed results as data. If there is a hit on
MCACHE, the computation is skipped. Instead, the computed
result stored in the data portion of the cache entry is reused.
If there is a miss, the computation continues, and the result
is stored in MCACHE. Input similarity introduces irregularity
in the original computation pattern of a DNN accelerator by
skipping some computations. MERCURY adds a bitmap (called
Hitmap) and some shared structures to make the dataflow
and computations regular. The signatures produced during the
forward propagation are stored in memory to be reused during
the backward propagation. Moreover, MERCURY dynamically
decides when and to what extent input similarity should be
exploited based on its impact on performance and accuracy. In
summary, we make the following contributions:

1) MERCURY is the first accelerator to exploit input sim-
ilarity using RPQ for improving training performance.
We propose to adapt MERCURY dynamically based on
accuracy and performance impact.

2) We propose to use RPQ in hardware to detect similarity
among input vectors dynamically. We show a novel
formulation of RPQ where it follows the same computation
pattern as a convolution operation. Therefore, MERCURY
can calculate RPQ-based signatures using the same
hardware PEs and dataflow used for DNN operations. We
show how signature calculation can be further pipelined.

3) Input similarity causes irregularity in the original com-
putation pattern of an accelerator due to the reuse of
computations. We propose to add a cache, MCACHE,
along with a bitmap (Hitmap) and some shared structures
to make the dataflow and computations regular.

4) We implemented MERCURY in Virtex 7 FPGA board [60].
We showed a scalable implementation of MCACHE to meet

the demand of the MERCURY. We evaluated MERCURY
using twelve DNN models (including a transformer model)
with three different dataflows and achieved an average
speedup of 1.97⇥ with an accuracy similar to the baseline.

II. BACKGROUND

A. Random Projection with Quantization (RPQ)
Random Projection [5] is a dimensionality reduction

technique often used in the similarity estimation of high-
dimensional data. Given a vector, X of size 1⇥m, random
projection works by multiplying X with a random matrix R of
size m⇥n. The elements of R are randomly populated from
a normal distribution with mean = 0 and variance = 1. The
multiplication produces a projected vector Xp of size 1⇥ n.
Thus, random projection converts one vector to another with a
different dimension (often a lower one). Random projection
ensures that if two vectors are close (similar) in their original
dimension, their projected vectors will also be close (with a
Euclidean distance scaled accordingly) in the newer dimension.
Elements of Xp can be quantized further. One approach is
sign-based. So, if an element of Xp has a sign bit equal to 0,
it is quantized to 0. Otherwise, it is quantized to 1. Thus, RPQ
converts X into a bit sequence, called signature. Figure 2 shows
an example of how RPQ converts a vector into a signature. If
RPQ converts two vectors, X1 and X2, into the same signature,
their Euclidean distance in the new dimension is 0. Therefore,
their distance in the original dimension is ⇡ 0. So, X1 ⇡ X2.

0.7 0.1 -0.3 0

-0.2 0.01 -0.15
-0.4 0.3 0.1

0.13 0.04 0
-0.03 0.08 0.4

X -0.21 0.02 -0.09 1 0 1

R

X Xp SignatureSign

Quantization

Fig. 2: An example of how RPQ converts a vector X into a
projected vector Xp and eventually, a signature.

RPQ is used in many domains such as learning [25], com-
pression [8], etc. To show how RPQ behaves, we experimented
with 10 (ten) randomly generated unique vectors of dimension
10. We generated 10 (ten) more similar vectors from each of
the vectors (by adding some random e to each dimension). We
generate signatures of all vectors and compare them with each
other to determine unique vectors. Since we started with ten
unique vectors, a comparison should find a similar number of
unique vectors. Figure 3 shows the number of unique vectors
found by RPQ. It also shows results with another technique,
Bloom Filter [6], [7]. For smaller signatures, both methods
declare many dissimilar vectors as similar. However, RPQ
can detect unique vectors better than Bloom Filters at longer
signatures.

(a) RPQ (b) Bloom Filter
Fig. 3: Unique vectors found by a) RPQ b) Bloom Filter.

2

B. DNN Accelerator and Dataflow
A typical DNN accelerator is shown in Figure 4. The

accelerator has a number of hardware PEs. Each PE has vertical
and horizontal connections with neighboring PEs using on-chip
networks. There is a global buffer to hold inputs, weights, and
partial-sums. The chip is connected to off-chip memory to
receive inputs and store outputs. Each PE contains registers to
hold inputs, weights, and partial sums. Each PE also contains
multiplier and adder units. Each PE distributes inputs and
weights and generates partial sums based on a dataflow.

…

…

…

… … ……

PE PE PE

PE PE PE

PE PE PE

Gl
ob

al
 B

uf
fe

r

x

+

Input Reg

Weight RegWeights

Activations

Inputs

Fig. 4: Baseline hardware accelerator.
Different dataflows have been proposed in literature [10],

[11], [38] to optimize different aspects of the DNN operations.
Examples are Weight-Stationary, Output-Stationary, Input-
Stationary, and Row-Stationary. The dataflow name often
reflects which data is kept unchanged in the PE unit throughout
the computation. In Weight-Stationary, each PE statically holds
a weight inside its register file. Those operations that use the
same weight are mapped to the same PE unit [11]. Output-
Stationary [50] localizes the partial result accumulation inside
each PE unit. For Row-Stationary, each PE processes one row of
the input. Filter weights stream horizontally, input rows stream
diagonally, and partial sums are accumulated vertically. Row-
Stationary has been proposed in Eyeriss [10] and is considered
one of the most efficient dataflows for reuse.
C. Extending Row-Stationary for Training

Eyeriss [10] used row stationary dataflow for inference.
However, it can be easily extended for training. During the
back propagation, each layer performs two computations - one
for the weight update and the other for calculating the gradient
of the inputs. Consider a convolution between the input of
dimension H ⇥W and the weight of dimension k1 ⇥ k2. This
results in an output of size (H � k1 + 1)⇥ (W � k2 + 1). For
simplicity, let us assume that there is one channel in the input
and output. We can easily update the equations with more
channels. For updating weights, we measure ∂E

∂wl
m0 ,n0

which is

interpreted as how changing a single-point wm0,n0 of the weight
affects the loss function E.

∂E
∂wl

m0,n0
=

H�k1

Â
i=0

W�k2

Â
j=0

d l
i, jO

l�1
i+m0, j+n0 (1)

In this equation 1, d l
i, j, and Ol�1

i+m0, j+n0 represent the gradients
of outputs in layer l and outputs of layer l � 1 respectively.
Equation 1 shows that for calculating the gradient of weights
in layer l, the convolution between gradients of outputs in layer
l and outputs of layer l � 1 is needed. Similar to inference,
this convolution can be done with row-stationary dataflow. For
the second computation of the back propagation, we compute

∂E
∂xl

i0 , j0
, which can be interpreted as how changing in a single-

point xi0, j0 of the input feature map affects the loss function
E. As shown in Figure 5, we can see that the output region
affected by point xi0, j0 of the input is the output region bounded
by the dashed lines where the top left corner point is given
by (i0 � k1 +1, j0 � k2 +1) and the bottom right corner point
is given by (i0, j0). Based on this figure, the gradient of input
xi0, j0 can be calculated as:

∂E
∂xl

i0, j0
=

k1�1

Â
m=0

k2�1

Â
n=0

d l+1
i0�m, j0�nwl+1

m,n| {z }
Convolution

f 0
⇣

xl
i0, j0

⌘

| {z }
Partial Derivative

(2)

The first part of this equation 2 contains the convolution
operation between gradients of layer l+1 and weights of layer
l +1. This is Âk1�1

m=0 Âk2�1
n=0 d l+1

i0�m, j0�nwl+1
m,n , and the second part

is the partial derivative of the activation function. So, similar
to inference, we can also use the row-stationary dataflow for
this part of back propagation. We can pad the gradient matrix
by zeros for pixels in corners to have a generic formula for
all pixels. Thus, we can use the row-stationary dataflow for
training as it contains similar computations as the inference.

Input xl

Wl
Output Ol / Input xl+1…

* =H

W Pixel Xi’j’

(i’-k1+1, j’-k2+1)

(i’, j’)
…

… …

…

…

… …… ……

…

k1

k2

Fig. 5: The region in the output affected by the input xi0, j0 .

D. Computation Reuse

UCNN [30] exploits weight repetitions in a CNN model.
At the core of UCNN is the factorized dot product dataflow
and activation group reuse. SumMerge extends the idea of
UCNN into CPU-based implementation [51]. TensorDash [42]
accelerates DNN training by skipping ineffective multiply-
accumulate (MAC) computation. Eager-Pruning [64] speeds up
training by detecting and pruning insignificant weights early.

DeepReuse [47] and Adaptive Deep Reuse (ADR) [46]
exploit similarity in inputs to improve inference and training per-
formance, respectively. The scope of both approaches is limited
to software-implemented CNN models. Both approaches use
Locality Sensitive Hashing (LSH) to find the similarity among
input vectors. Although MERCURY shares some similarities
with ADR at a high level, ADR cannot be directly implemented
in hardware because of the following issues. First, the use
of LSH requires a computationally expensive pre-processing
step to build clusters and determine the centroids. This step
is not trivial to do in a hardware accelerator. That is why
Cicek et al. [14] proposed to design a separate accelerator just
for detecting input similarities and interface it with a CNN
accelerator to improve the inference performance. Second, ADR
interleaves LSH calculations with convolution operations to
determine whether some results are already computed. Such
interleaving of operations in an accelerator will interfere with
its original dataflow, thereby reducing the potential benefit of
computational similarity. Thanks to our formulation of RPQ as
a convolution operation (§ III-B1), additional calculations for

3

detecting input similarities blend in with the original operations
without interfering with the accelerator’s dataflow. Furthermore,
due to the use of Hitmap along with some extra hardware
resources, the reuse of already computed results does not
modify the dataflow either.

Diffy [43] and Riera et al. [53] propose to exploit similarity
in pixelated or streaming video to accelerate DNN inference.
Both approaches use element-wise comparison to detect similar
elements. This is inefficient since the comparison either needs to
be done serially over all elements or only within a limited num-
ber of neighboring elements. Recently, Servais et al. [54] exploit
similarity in consecutive rows or columns of inputs and weights
for CNN training. Unlike prior approaches, MERCURY uses a
well-established hashing technique, RPQ, to check similarity
at vector granularity across all vectors in constant time. RPQ
is hardware-friendly and can be easily used in both forward
and backward propagation. Moreover, unlike MERCURY, prior
approaches require a new dataflow in the accelerator and cannot
be used on top of an existing dataflow. Another line of work
looks at redundancy in training data. However, MERCURY
is orthogonal to that approach and can be applied on top of
it [4], [16], [24], [34], [35], [37], [45], [58], [23].

III. MAIN IDEA: MERCURY

A. Overview

MERCURY works on vectors extracted from multidimen-
sional inputs. The overview of MERCURY is shown in Figure 6.
First, MERCURY determines which input vectors are similar.
This is done before the input vectors are multiplied with weight
vectors. MERCURY calculates an RPQ-based signature for an
input vector by multiplying the vector with a random projec-
tion matrix followed by quantization. MERCURY formulates
signature calculation as a convolution operation and reuses
the same hardware PEs with the original dataflow. MERCURY
generates one signature for each input vector. If two signatures
are identical, the corresponding vectors are similar. Therefore,
the computed dot product between one of the input vectors
and a weight vector can be reused for that of the other input
vector and the same weight vector. MERCURY uses a cache,
called MCACHE, to store computed results corresponding to
different signatures. A Hitmap keeps track of the signatures
that cause a hit. When MERCURY performs a dot-product
between an input vector and a weight vector (or derivatives
during the backward propagation), MERCURY checks if this
vector is similar to any prior vector using the Hitmap; if so,
the result stored in MCACHE is reused. MERCURY stores
the signatures calculated during the forward propagation and
reuses them during the backward propagation to skip similar
computations. As the training proceeds, MERCURY increases
signature length to adjust to the extent of similarity among
vectors. Only vectors with a higher degree of similarity are
allowed to reuse computed results in the later stages of training.
Thus, MERCURY dynamically adjusts computation reuse to
keep accuracy degradation insignificant.

Next, we will elaborate on MERCURY operations. We choose
row-stationary [10] dataflow as our baseline (§II-C shows how

Apply RPQ
algorithm using
hardware PEs

Signature

Input
Vectors

Random Matrix

MCACHE

Generate Hitmap
Insert

Inputs/Derivatives

Weights

Check Hitmap before a
dot product between an
input vector/derivative
and a weight vector

Hit?

Reuse an earlier
computed result from
MCACHE

Perform a dot product
and store result (if
needed) in MCACHE

End

Dot Product Operations (Forward
and Backward Propagation)

MCACHE

Hitmap

Yes

No

Detecting Similarity Using Signatures

Exploiting Input SimilaritySignature

Fig. 6: Overview of MERCURY operations. MERCURY first
generates RPQ signatures and Hitmap for detecting similarity
among input vectors. The signatures are used during dot
products to skip computations and reuse results.
it can support training). We will first explain how MERCURY
works in this baseline accelerator. Then, we will discuss how
other dataflows are supported.

B. Detecting Similarity Using Signatures

MERCURY detects similarity dynamically among input
vectors before performing any operation with weights. To
simplify hardware and keep dataflow the same, MERCURY
formulates signature calculation as a convolution operation,
where the convolution is performed between the input vectors
and some random projection matrix. This is done every time
there is a new set of input vectors (e.g., when a new channel is
processed). When the actual filters of a channel are convoluted
with the input vectors, signatures are used to determine if
similar dot products are already computed.

1) Signature as a Convolution Operation: Let us assume that
a 5⇥5 input is convoluted with 3⇥3 kernels in each channel.
Since the kernel size is 3⇥3, the input vectors extracted from
the input matrix are of size 3⇥3 as shown in Figure 7a. Since
each input vector has 9 elements, the random projection matrix,
R, is of size 9⇥N for N > 0. We can re-organize each column
vector of R into the shape 3⇥3. With this organization, we
can treat each column vector of R (i.e., R1 to RN) as a random
filter of size 3⇥3.

Let us consider an input vector I1. R converts I1 into a
signature Sig1 consisting of N bits (i.e., S1,1 to S1,N) using
RPQ algorithm (§II-A). S1,1 is calculated by performing a dot
product between R1 and I1 followed by a sign comparison.
Other bits, S1,2 to S1,N , are calculated similarly. Similarly, Sig2
can be calculated from I2 and so on. In other words, if we
perform a 2D convolution followed by a sign comparison by
sliding R1 over all input vectors from I, we can calculate the
first bit of each signature (i.e., S1,1, S2,1, S3,1, . . .). Similarly, the
2D convolution between R2 and the input vectors will produce
the second bit of each signature and so on. In other words,
the signature calculation can be formulated as 2D convolutions
between input vectors and random filters R1 to RN. Therefore,
we can easily map it to a row-stationary accelerator.

Assume that the accelerator has 3 PEs. Figure 7b shows
the signature calculation process. MERCURY starts with the
random filter R1 and computes 2D convolutions with each input
vector. Filter rows stream horizontally while input rows stream
diagonally. So PE1 to PE3 perform 3(three) 2D convolutions

4

Random Projection Matrix, R (9 x N)

R1 RNR2 …
R1

RN

Random Filters (3 x 3)

i1,1 i1,2 i1,3
i2,1 i2,2 i2,3
i3,1 i3,2 i3,3 I1 I2 I3

Input Matrix, I
(5 x 5) …

Input Vectors (3 x 3)

(a) Organization of input matrix and projection matrix

S3,
1S2,

1

i1,1 i1,2
i1,3

i2,1 i2,2
i2,3

i3,1 i3,2
i3,3

Sign

S1,
1

S1,
N Sig1

Sig2
Sig3

PE Set1 Processes

PE Set2 PE Set3

Signatures are generated through convolution operations

Sign Sign

I1 I2 I3

PE1

PE2

PE3

(b) Signature calculation

Fig. 7: Overview of how MERCURY generates signatures for
input vectors. Input Ii is associated with Sigi for i > 0. We
refer to the set of PEs performing a 2D convolution as a PE
Set. Each PE Set calculates 3 signatures in this example.
in a streaming fashion - I1 •R1, I2 •R1, and then, I3 •R1. •
indicates a 2D convolution. We refer to the set of PEs working
on a 2D convolution as a PE Set. Thus, PE Set1 consists of
PE1 to PE3. With R1 streaming first, PE Set1 calculates S1,1,
S2,1 and then, S3,1. After that, R2 is loaded, and the second bit
of each signature is calculated. Thus, N bits of all signatures
are calculated through 2D convolutions with random filters.

2) Dataflow of Signature Calculation: Let us continue with
our example in §III-B1. i1,1 to i3,1 are the elements of I1
and r1,1 to r1,9 are the elements of R1. Figure 8a shows the
timing of signature calculation in a row-stationary accelerator.
With 3⇥3 input vectors, it takes four cycles to multiply and
accumulate the result of each row and two cycles to accumulate
across rows. Thus, it takes six cycles to generate a single bit
of a signature. Similarly, the first bit of subsequent signatures
takes six cycles each. In general, for x⇥x input vectors, it takes
2x cycles to calculate each bit of a signature. However, the
calculation of one bit of one signature does not overlap with
that of another signature (as shown in Figure 8c(a)). Note that
we do not assume a separate multiplier and adder unit in each
PE. Instead, if we assume a multiply-accumulate (MAC) unit,
it takes 2x�1 cycles to calculate a single bit of a signature
(because row accumulation takes one less cycle). However,
still, each signature is calculated in a non-overlapping fashion.

We propose to pipeline the calculation of one signature
with another. The core idea is to add a register, named
Overlapped register (ORg), in each PE and intentionally delay
the calculation starting time of PE2 and PE3 by 1 and 2 cycles,
respectively (as shown in Figure 8b). This is reminiscent of
software pipelining [52]. ORg register is used to hold the
result of multiplying the first element of each row of input
and random vectors. For example, ORg of PE1 is used to hold
i1,1 ⇤ r1,1 in cycle 2 and i1,2 ⇤ r1,1 in cycle 5. When the register
holds i1,2 ⇤ r1,1 in cycle 5, it frees up the adder unit which can
be used to pass the row accumulation result from PE1 to PE2

in cycle 6. Similarly in cycle 6, ORg of PE2 holds i2,2 ⇤ r1,4
which frees up the adder. Therefore, the adder accumulates
the result from PE1 with PE2 and passes it to PE3 in cycle
7. In cycle 7, ORg of PE3 holds i3,2 ⇤ r1,7 which frees up the
adder to finish the accumulation of all rows. Thus, Sig1,1 takes
seven cycles to calculate. However, the calculation of Sig2,1
has already started. Therefore, following the same flow, Sig2,1
will finish in cycle 10, i.e., it takes only three more cycles.
Similarly, the first bit of subsequent signatures produced by
the same PEs will take 3 more cycles each. Generally, for x⇥x
input vectors, the first bit of the first signature calculated by a
set of PEs takes 2x+1 cycles, while other bits of any signature
take x cycles to finish. This is illustrated in Figure 8c(b).

3) Signature Management: MERCURY manages signatures
using three structures - Signature Table, MCACHE, and Hitmap.
The Signature Table stores the signatures, MCACHE keeps dot
product results computed between different input and weight
vectors, and the Hitmap keeps track of which signature causes
a hit in MCACHE. The Signature Table is indexed by the
input vector number so that MERCURY can easily find it for
a particular input vector. When a signature is calculated by
the PEs, MERCURY stores it in the signature table and then
accesses MCACHE. MCACHE is indexed and tagged with the
signature. MCACHE keeps computed dot product results so that
input vectors with similar signatures can reuse them. The data
portion of MCACHE contains the results. MCACHE differs from
a normal cache in two ways. First, since a tag (i.e., signature) is
produced before the data (i.e., computed results), the cache tag
and data are not updated together. To accommodate that, each
cache line has two valid bits - Valid Tag (VT) and Valid Data
(VD). When a signature is used to initialize the tag section of
a cache line, its VT is set while VD remains unset. The data
portion of MCACHE is populated and used as a weight vector
(or derivative) multiplied by the input vector. Different weight
vectors populate the data portion with different results (details
in § III-C). Second, there is no replacement in MCACHE. When
a set is full, no new entries are inserted into MCACHE. We
choose this no-replacement policy approach to simplify the
design of MCACHE.

Figure 9 shows what happens when a signature, Sig for a
new input vector is calculated. If Sig is already in MCACHE,
we have a hit. So, the Hitmap entry is set to HIT. Otherwise,
Sig is a new signature; therefore, MCACHE checks if the
corresponding set is full. If it is not full, Sig is inserted into
the cache by updating the tag portion of an entry. Since the
data portion will be updated later, the Hitmap entry is marked
as Miss And Update (MAU). If the set is full, Sig will not be
inserted into MCACHE. Since no cache entry will be updated,
the Hitmap entry is marked as Miss No Update (MNU). When
a new set of input vectors are extracted from an input matrix,
MCACHE, Signature table, and Hitmap are cleared.

C. Exploiting Input Similarity
Here, we explain how signatures along with MCACHE can be

utilized to skip similar computations in the forward propagation
followed by the backward propagation. We will first explain it

5

i1,1*r1,1

+

i1,2*r1,2 i1,3*r1,3

+ +
0

+

i2,1*r1,4

+

i2,2*r1,5 i2,3*r1,6

+ +
0

+

i3,1*r1,7

+

i3,2*r1,8 i3,3*r1,9

+ +
0

+

+

+
0

+
Sign
Extract

Cycle: 1 2 3 4 5 6

PE3

PE2

PE1

Partial Sum

Partial Sum

S1,1

(a) Row-stationary

i1,1*r1,1

+

i1,2*r1,2 i1,3*r1,3

+ +

Cycle: 1 2 3 4 5 6

PE1
ORg

+

i1,2*r1,1

+
ORg

+0

i1,3*r1,2 i1,4*r1,3

+

i1,3*r1,1
OR
g+0

i1,4*r1,2

+

i1,5*r1,3

+

i1,4*r1,1

7 8 9 10

i2,1*r1,4

+

i2,2*r1,5 i2,3*r1,6

+ +
ORg

+

i2,2*r1,4

+
ORg

+

i2,3*r1,5 i2,4*r1,6

+

i2,3*r1,4
ORg

+

i2,4*r1,5

+

i2,5*r1,6

+

i3,1*r1,7

+

i3,2*r1,8 i3,3*r1,9

+ +
ORg

+

i3,2*r1,7

+
ORg

+

i3,3*r1,8 i3,4*r1,9

+

i3,3*r1,7
ORg

+

i3,4*r1,8

++

S1,1

S2,1

PE2

PE3

Partial Sum

Partial Sum

Partial Sum

Partial Sum

Sign

Extract

Sign

Extract

(b) With pipelining (c) Speed up

Fig. 8: (a) Timing of how MERCURY generates signatures for input vectors in a row-stationary machine. Red arrow indicates a
partial sum of a row and a shaded adder means an idle adder. (b) shows the same with pipelining. Here Sig1,1 calculation spans
from cycle 1 to 7 while that of Sig2,1 spans from cycle 4 to 10. Thus, signature calculations are overlapped. (c) Speed up with
pipelined signature calculations.

An Input vector extracted
from an input matrix

Signature, Sig, calculated and
stored in the Signature Table

Sig present
in MCACHE?

Set Hitmap
entry to HIT

Is cache
set full?

Update tag and set
Hitmap entry to MAU

Set Hitmap
entry to MNU

YesNo

YesNo

Fig. 9: How MCACHE is updated with signatures.

for a convolution layer (§ III-C1 & III-C2). In § III-C3 and
§ III-C4, we will address it for other layers.

1) Computation Reuse in Forward Propagation: During
the forward propagation of a convolution layer, a 2D input
convolves with a number of filters in a channel. The 2D input
consists of a number of input vectors, each with the same size
as a filter. Thus, for each channel, an accelerator performs a
number of dot products between the input vectors and filters
in that channel. The PEs load one filter and a number of input
vectors at a time and perform the dot products. The input
vectors and filters are passed through the PEs in a streaming
fashion. Rows of input vectors are passed through diagonally,
whereas rows of filters are passed through horizontally. Partial
sums are accumulated vertically. Figure 10 shows this flow.
Here, we assume that PE1, PE2, and PE3 perform a dot product
between an input vector and a filter. Thus, PE Set 1 consists
of PE1 to PE3. Similarly, PE Set 2 consists of PE4 to PE6.

f1 row1

f1 row2

f1 row3

PE Set1 PE Set2

PE1

PE2

PE3

MAU MNU MNU HIT …

Input row1

Input row2

Input row3

f1 row1

f1 row2

f1 row3

Input vector 1 Input vector 4

HIT

HIT

HIT

PE4

PE5

PE6

Fig. 10: Overview of how computation is reused in the forward
propagation. f1 indicates a particular filter.

Each PE has an input buffer, a number of input and weight

registers, a multiplier, and an adder. The input buffer holds
inputs as they arrive at the PE. Input registers load values from
the input buffer. As filter weights arrive, they are stored in
the weight registers. The multiplier and adder work with the
values from the input and the weight registers. Each PE in PE
set starts with the first input vector from its input buffer. Each
PE checks whether the corresponding entry in the Hitmap is a
HIT. Remember that the Hitmap and signatures are calculated
before the convolution operations for a channel begin. A HIT
indicates that the input vector is similar to an earlier one; hence,
the dot product result stored in the MCACHE can be reused
instead of calculated again. That is why the PE skips the dot
product. Instead, using the signature of the input vector, the
stored result is fetched from MCACHE and used as the PE
set result. On the other hand, if the entry in the Hitmap is
MAU or MNU, the PEs in the PE set perform the dot product.
If the Hitmap entry is MAU, the corresponding MCACHE
line contains the signature of this input vector, but the result
(data) portion is still empty. So, the data portion is updated
with the dot product result, and its VD is set. If the Hitmap
entry is MNU, MCACHE does not contain the signature at
all. So, MERCURY does not store the dot product result in
the cache. The PEs in the PE set proceed with the next input
vector from the respective input buffer. Note that although
a PE set might skip computations occasionally, the dataflow
(filter streaming horizontally and inputs streaming diagonally)
remains unchanged due to the Hitmap.

If we assume the same inputs as in § III-B1, then PE Set1
operates on input vectors 1, 2, and 3 whereas PE Set2 operates
on input vectors 4, 5, and 6 in Figure 10. Therefore, at first,
the PEs in PE Set1 check entry 1 of the hitmap. Based on that
entry, the PEs either reuse results from MCACHE or compute
dot products using input vector 1 and the current filter. For
the example in Figure 10, PE Set1 will compute dot product
because entry 1 is MAU. On the other hand, the PEs in PE Set2
check entry 4 in the hitmap and act accordingly. Note that
each PE set acts independent of other PE sets. As a result,
one PE set might reuse a lot of computed results and finish
computations early whereas another PE set may lag behind
computing many dot products. We propose two designs to

6

address this - synchronous and asynchronous.
- Synchronous Design: In synchronous design, when a PE

set finishes computation, it waits until all other PE sets are
done. Each PE set maintains a busy bit (B). A controller checks
all B bits. If none of them are busy (i.e., B = 0), the controller
instructs the PEs to load with the next filter and input vectors.
At this point, MCACHE may contain computed results from the
previous filter and input vectors. Those results cannot be used
because weights change in the new filter. Therefore, MCACHE
invalidates all VD bits. A bitline connecting all VD bits is used
for this purpose. The input vectors remain the same within the
same channel. Therefore, VT flags and Hitmap are still valid
and kept as they are. When MERCURY proceeds with the next
channel, the signatures in the signature table, MCACHE, and
Hitmap are recalculated and reinitialized.

- Asynchronous Design: The synchronous design is
intuitive and simpler but limits performance improvement
because the faster PE sets remain idle until the slowest one
completes. Therefore, we propose an asynchronous design
where the faster PE sets can work on the next filter and input
vectors while the slower ones work on the previous filter and
input vectors. However, this requires an additional buffer and
coordination scheme. Figure 11 shows the changes required for

…

…

…

… … ……

PE PE PE

PE PE PE

PE PE PE

Gl
ob

al
 B

uf
fe

r

Tag

VT

Data

VD1 VDM

Way 1 Way N

MCACHE

Filter 1

BusyMap

Filter 2

Filter M

…

Signature Table Hitmap

x

+

Input Reg

Weight Reg

ORg

Input Buffer 2
Input Buffer 1 V

V
InUse

FlUse

Random
Generator

…

VT VD1 VDM

Fig. 11: Detailed modified design for the asynchronous design.
Added structures are shown in color. PE-level changes allow a
PE to operate on different input vectors, multiple filters allow
different PE sets to operate on different filters, and the multi-
version MCACHE allows to keep multiple filters’ computations.

the asynchronous design. There are 3 major changes. First, to
store new input vectors each PE is extended to have two input
buffers. Each buffer has an associated valid (V) bit to indicate
whether it contains valid inputs or not. Moreover, each PE has
a register, named InUse, to indicate which of the two buffers is
currently used. All PEs in a PE set will have the same value in
the InUse register. With the extra buffer, whenever the fastest
PE set completes computation, it loads the next input vectors
in a streaming fashion as before. PEs in other PE sets store
the new input vectors in the unused input buffer. That way,
when those PE sets finish computations, new input vectors
are already available in one of the input buffers. Second, the
accelerator stores multiple filters in a shared buffer so that each
PE can access it. Each filter has an associated BusyMap to
indicate which PE sets are currently busy with that filter. Each
PE maintains a register, named FlUse, to indicate which filter
it is using. Like InUse, the FlUse register has the same value
in each PE of a PE set. When all PE sets finish using a filter,

it is loaded with a new filter and the BusyMap is initialized.
Third, since each input vector and filter produces a new dot
product result, we propose to make MCACHE a multi-version
cache where each cache line has multiple versions of data.
Each data portion has a VD bit to indicate whether it is valid
or not. Note that there are as many versions as the number of
filters. Thus, if a PE set tries to use a new filter when there is
no space to store it (because all M filters are marked busy with
at least one PE set), then the PEs in the PE set will remain
idle until a filter is completely used up in all PE sets. When
the PEs in a PE set access a cache line, they use FlUse register
to determine which data version should be used.

2) Input Similarity in Backward Propagation: There are
two major computations - (i) calculation of weight derivatives
(dWi) of the current layer (say, layer i), and (ii) calculation
of output derivatives of the previous layer (dOi�1). Here,
boldfaced letters indicate multidimensional tensors. Now, let
us consider the computation of dOi�1. We observe that Oi is
the same as Ii+1. Therefore, if the filters of layer i+1 have the
same dimension as those of layer i, the signatures and Hitmap
produced by layer i+1 for Ii+1 can be applied to dOi to find
similarity. In that case, this computation scenario is the same as
the forward propagation computation of layer i+1. Based on
this observation, we propose saving signatures and the Hitmap
of each layer during the forward propagation and reloading
them during the previous layer’s backward propagation. Then,
MERCURY applies the same technique as in § III-C1. However,
if the filter’s dimensions do not match, MERCURY recalculates
the signatures of gradient vectors and repopulates the Hitmap
to reuse computations.

Input 1
Block 1 Block 2

Bl
oc

k
1

Bl
oc

k
2Input 2

Input N
…

W1 W2 WM…

Fig. 12: Computations in a fully connected layer. Input 1 to N
forms a minibatch. The weight matrix has M columns.

3) Input Similarity in a Fully Connected Layer: Figure 12
shows the high-level computations for a minibatch (size N) of
inputs. Inputs and weights are divided into blocks based on the
number of PEs. Suppose there are two input blocks and two
weight blocks. One PE multiplies Input 1 of block 1 with W1
of weight block 1 followed by W2, W3, ... WM . Concurrently
another PE multiplies Input 2 and W1 followed by W2 to WM .
This continues up to Input N. Thus, if one input is similar to
another, the earlier one’s multiplication with Wi (1  i  M)
can be reused for the later one. Before the multiplication with
weights begins, signatures and Hitmap are initialized based
on the inputs of block 1 as in § III-B. Before a PE multiplies
an input vector (e.g., Input 2) with a weight vector (e.g., W1),
the Hitmap of that input is checked. Depending on a HIT,
MAU, or MNU, the result is either reused or calculated. This
is similar to that of a convolution layer (§ III-C1). In the case
of a HIT, we store the id of the newly matched signature in
the PE (that is processing the input corresponding to the stored

7

signature causing the match). Let us refer to this PE as the
earlier PE. During the multiplication with weights, whenever
the result for one weight gets ready, the earlier PE sends the
result to later PEs (that are processing the inputs of the matched
signatures) one by one to update their output. Sending results
to other PEs is done in parallel with the regular operation.
The earlier PE will start the operation of the next weight
immediately after finishing with the current weight. In case
the earlier PE is done with the next weight before the result
is sent to all of the matched signature-related PEs, the earlier
PE is stalled until the send operations finish. The earlier PE
(after finishing block 1 input) loads an input from block 2 and
starts signature generation while other PEs keep processing
inputs and weights from block 1. For doing this, we break the
MCACHE into two separate caches, and PEs in each block will
write and update the associated cache. The earlier PE can start
multiplication with weights immediately after the signature
generation process since the required results from block 1 have
already been computed and sent to the PEs that need it. Race
can arise when one PE wants to write to its related output
memory while the earlier PE’s results are ready, and it needs
to write them into memory output too. We designed a simple
conflict handler for handling these simultaneous write requests.
Once all the inputs from block 1 are multiplied by the weights
from block 1, PEs can start the operation of block 2 of inputs.
Similar to block 1, they will start with signature generation
and Hitmap initialization. Some PEs may have already started
the operation of block 2 inputs, and their signatures are in the
related MCACHE part, and new PEs can get results from these
PEs in case of a signature match.

4) Input Similarity in an Attention Layer: An attention layer
is used in a sequence-to-sequence model [59]. Let’s assume that
the input vectors are Xt⇤k = x1,x2, ...,xt and the output vectors
are Yt⇤k = y1,y2, . . . ,yt. For simplicity, assume both X and Y
to have the same sequence length (i.e., t) and the same vector
representation of length k. To produce output vector yi, the
attention layer simply takes a weighted average over all input
vectors, Yj = Â j Wi jXj. Here Wt⇤t is not parametric but rather
a weighted matrix representing the correlation between each
element of X. W can be calculated as W = X⇤XT. We can
calculate Yt⇤k = Wt⇤t ⇤Xt⇤k. Here Y is simply a matrix-matrix
multiplication. Thus, we can apply our idea of input similarity
to calculate Y by exploiting the similarity among xi vectors.
Because this computation is similar to a fully connected layer,
we apply the same technique as in § III-C3.

D. Adaptation in MERCURY

As training proceeds, DNN models become more sensitive to
computation reuse. So, we propose MERCURY to be adaptive.

Increase in Signature Length: If signature length increases,
vectors v1 and v2 are found to have similarity only when
v1 �v2 = e becomes significantly smaller. So, a larger signature
has a lesser effect on model accuracy but it may reduce
computation reuse. Therefore, MERCURY starts with a smaller
signature size (e.g., 20 bits long) and progressively increases
signature length as the model is trained more. Towards this

end, MERCURY calculates the average loss in each iteration.
If there is no change in the loss for K consecutive iterations,
MERCURY increments signature length by 1.

Stoppage of Similarity Detection: MERCURY analytically
determines if detecting similarity can save computations or
not. If no computation can be saved, then MERCURY turns
off the similarity detection phase. In order to implement this,
MERCURY records the total computation cost (i.e., cycles) CS
for signature generation in forward and backward propagation
when some computations are reused. This cost is compared with
the total computation cost CB of the baseline system without
any computation reuse. CB can be calculated analytically using
different hardware components’ latency. If the former cost
is more than the latter for T consecutive batches of inputs,
MERCURY stops generating signatures.

IV. SUPPORT FOR DIFFERENT DATAFLOWS

MERCURY can be easily implemented in other dataflows.
Here we explain it for weight and input stationary dataflows.

Weight-Stationary Dataflow: Weights are stationary in the
PEs, and input vectors are broadcasted to PEs. MERCURY keeps
the original dataflow structure the same and loads random
vectors as the first part of filters. So, random vectors will
initially be loaded to different PEs, and one input vector will
be broadcasted to PEs. The signatures are generated using the
original Weight-Stationary dataflow. However, after loading
random vectors, one input vector’s signature will be stored in
several PEs, and several PEs will update the signature table
for different vectors. Then, using the generated signature table
and the proposed MCACHE structure, MERCURY will detect
similarity using signatures and specify the hit/miss for them.
The next step is loading the regular filters, but MERCURY
already knows which input vectors are similar. So, while
reading vectors from global memory, MERCURY skips similar
vectors and reuses the results.

Input-Stationary Dataflow: Inputs are stationary in PEs,
and weights will be broadcasted. The hardware first finishes
the operation of one input vector before loading a new input
vector. The global structure of MERCURY in Input-Stationary
dataflow is similar to Weight-Stationary dataflow, which loads
random vectors as the first part of filters. So, one input vector
will be loaded to different PEs, random vectors will be loaded
to different PEs at the beginning, and weight matrices will
be streamed into PEs. The signatures are generated using the
original Input-Stationary dataflow and the Hitmap is initialized
accordingly. During actual operation, if there is a hit for an input
vector, MCACHE skips the rest of the weights and loads the
next input vector. However, MERCURY will continue streaming
the weights if there is a miss for the current input.

V. IMPLEMENTATION DETAILS

MCACHE Design: To make MCACHE scalable, we make
two design decisions. First, MCACHE is implemented in shared
memory using slice registers (flip flops in FPGA) that can be
accessed through id. Multiple PE sets can read the same cache
entry within a fixed delay using the id. That is why the entry

8

id is saved along with the signature in the signature table.
Since an inserted signature is not removed from the cache
until a new channel starts, further accesses to that signature
are done through the id without requiring comparison. Second,
we add a queue and a simple controller for each cache set.
Thus, a cache set can be updated independently. To insert
multiple signatures simultaneously into a cache set, the queue
records the requests, and the controller serializes them - one
at a time. Multiple signature insertions for different cache sets
can proceed simultaneously without any issue. Although these
techniques are specifically for FPGA, for an ASIC accelerator,
similar techniques such as banked cache [31], multi-signature
cache line, and PE set wise smaller cache can be used. We
leave the details of ASIC design for the future.

PE Implementation: The structure of PE in MERCURY is
similar to a typical PE [10] as shown in Figure 11. Each PE has
an extra block memory to store one input row. The original Row
Stationary dataflow needs enough input buffers to store one
row of one vector in each PE. This is implemented using Slice
Registers which are limited in FPGA. In PE implementation,
we reduce the input buffer to only one register and use the
local block memory to process the inputs and store the results
back. For Synchronous design, since all PEs are in the same
phase at a time, one extra block memory is enough. However,
since the first and second phases can be done by different
PE sets independently in Asynchronous design, we implement
multiple filters using block memory. Table I shows the types
of memories used in the implementation of MERCURY .

TABLE I: Detailed memory types in MERCURY design.
Memory Type MERCURY Components
Block Memory Global Buffer, Input Buffer, Signature Table
Slice Register MCACHE, Filters, Hitmap, Input/Weight registers,

InUse/FIUse flags, ORg

VI. EXPERIMENTAL SETUP

The hardware implementation of MERCURY is done on
a Virtex 7 FPGA board [60] configured using the Xilinx
Vivado [61] software. We used an Eyeriss-style [10] row
stationary accelerator with the same number of PEs (i.e., 168)
as the baseline. The model’s inputs and weights are stored in
an external SSD connected to the FPGA. We use 1024 entries
and associativity of 16 for MCACHE. § VII-C analyzes the
performance impact of different MCACHE organizations. All
performance, power consumption, hardware utilization, and
other hardware-related metrics are collected from the synthe-
sized FPGA design using Vivado. Different model accuracy
results are collected from PyTorch [49] implementation. We
consider 12 networks: AlexNet, GoogleNet, VGG13, VGG16,
VGG19, ResNet50, ResNet101, ResNet152, Inception-V4,
MobileNet-V2, SqueezeNet-1-0, and Transformer. We use 80
image classes from ImageNet and report the top 1% accuracy
for CNN models. For transformer, we use Multi30k dataset
and report accuracy and Bleu score. We train the models until
the highest reported accuracy is reached in the baseline system.
For MERCURY, we trained the models with the same number
of epochs. § VII-D provides a comparison with UCNN [30],
Unlimited Zero-Pruning, and Unlimited Similarity Detection.

VII. EVALUATION

A. Accuracy and Performance Comparison
Figure 13 shows the impact of MERCURY on the models’

accuracy. Overall, there is a 0.7% reduction in validation
accuracy *. Considering the inherent randomness during the
training process, we argue that MERCURY’s accuracy is
comparable to the baseline system. Also, we got the same
bleu score of 33.52 on test data for the transformer.

0

20

40

60

80

100

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Va
lid
at
io
n
Ac
cu
ra
cy

(%
) Baseline

MERCURY

Fig. 13: Validation accuracy for MERCURY vs baseline.
Figure 14a shows the adaptivity of MERCURY across differ-

ent models. Based on the similarity detection costs in layers and
the overall performance during the model training, MERCURY
may turn off similarity detection in some layers during the
training. Figure 14b shows the computational cycle breakdown
of MERCURY and baseline. This includes computation cycles
of convolutional, fully connected, and attention layers as well
as signature calculation. Most of the cycles belong to the layer
computations. The signature computation accounts for only
a fraction of the total cycles. Overall, MERCURY can reduce
the total computation time by about 50%, which results in an
average speedup of 1.97⇥, as shown in Figure 14c. For bigger
networks, such as ResNet152, VGG19, and Inception-V4, there
are more saving opportunities since there are more chances of
similarity between vectors.
B. Case Study: VGG13

We conduct a detailed analysis of VGG13 to show how
MERCURY works at runtime, focusing on the characterization
of the MCACHE access, the savings, and the number of unique
vectors found across layers. The results are shown in Figure 15.
Figure 15a shows a gradual increase in MCACHE Hit and MAU
percentage due to the reduction in the number of input vectors
and cache occupants. Figure 15b shows that the computational
cycles may vary across layers of VGG13 due to the difference
in layers’ size and channels. Some layers have a higher cycle
count related to the input size and number of input and output
channels, and the amount of savings differs. The number of
unique vectors is also different across layers. As shown in
Figure 15c, the first few layers have the highest number of
unique vectors since they have a large input size. This value
is lower for the later layers due to the smaller input size.

C. Performance Impact of Different Organizations of MCACHE

This section analyzes the impact of different MCACHE sizes
and organizations on the performance of MERCURY. As shown
in Figure 16, MERCURY performance increases with cache

*Hyper-parameters are adjusted in training to achieve optimal accuracy

9

0

20

40

60

80

100

120

140

160

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

N
um

be
ro
fL
ay
er
s

On
Off

(a) Adaptivity across layers of models

0

100000

200000

300000

400000

500000

600000

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

Ba
se
lin
e

M
er
cu
ry

#c
yc
le
s
*1
e9

Signature
Layer Computation

Ge
om
ea
n

Tra
ns
for
me
r

Sq
ue
ez
e1
.0

Mo
bN
et-
V2

Inc
ep
-V4

VG
G-
19

VG
G-
16

VG
G-
13

Re
sN
et1
52

Re
sN
et1
01

Re
sN
et5
0

Go
og
leN
et

Ale
xN
et

(b) Computational cycle breakdown

0

0.5

1

1.5

2

2.5

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

Sp
ee
d
up

(c) Speed up
Fig. 14: MERCURY performance with respect to the baseline.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lay
er-
1

lay
er-
2

lay
er-
3

lay
er-
4

lay
er-
5

lay
er-
6

lay
er-
7

lay
er-
8

lay
er-
9

lay
er-
10

M
C
ac
he

Ac
ce
ss
Ty
pe

(%
) HIT

MAU
MNU

(a) Characterization of MCACHE access

0

0.2

0.4

0.6

0.8

1

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

ba
se
lin
e

ME
RC
UR
Y

#c
yc
le
s
*1
e9

Signature
Convolution

ge
om
ea
n

lay
er-
10

lay
er-
9

lay
er-
8

lay
er-
7

lay
er-
6

lay
er-
5

lay
er-
4

lay
er-
3

lay
er-
2

lay
er-
1

(b) Cycles across layers

0

200

400

600

800

1000

lay
er-
1

lay
er-
2

lay
er-
3

lay
er-
4

lay
er-
5

lay
er-
6

lay
er-
7

lay
er-
8

lay
er-
9

lay
er-
10

N
um

be
ro
fu
ni
qu
e
ve
ct
or
s

(c) Number of unique vectors across layers
Fig. 15: Characterization of MERCURY in VGG13.

size and associativity. Unfortunately, Vivado did not finish the
synthesis of 32-way cache-based designs even after one day
(our time limit for the server). Thus, we had to limit ourselves
to 8 or 16-way. Combining with Table III shows that moving
from a 512-entry, 8-way to a 1024-entry, 16-way cache only
increases the power consumption by 2.85% while giving 4.88%
more speed up. Doubling the cache size to 2048 entries gives
insignificant performance gains; thus, 1024-entry and 16-way
are selected as the default configuration for MCACHE.

D. Comparative Analysis
1) Comparison with UCNN in inference mode: To compare

with UCNN during inference, we perform the following
scenario. First, we compute the static quantization for all layers
of the pretrained model with a different number of bits. We only
considered 6 to 8-bit quantizations since there was a significant
loss in accuracy beyond this point. With 6-bit quantization, the
final accuracy drops by about 3%. Second, based on [30], we
need to find similar items in one filter, do the activation group
reuse, and then save all the additions with totally or partially
similar activation groups. Due to the lack of access to the
implementation of [30], we considered the maximum saving
in each filter. In other words, in an activation group reuse with
length k, suppose we have similar indices in other filters, and
we can save additions between all members. Figure 17a shows a
comparison between MERCURY and the maximum achievable
speedup of UCNN with different quantization policies. On
average, MERCURY outperforms UCNN with 7 and 8-bit
quantization while achieving comparable performance gains to
the 6-bit quantization version.

2) Comparison with Unlimited Zero Pruning: Here, we
compare MERCURY against the theoretical upper bound of
Zero-Pruning, which assumes the accelerator can detect and
save all zero-related computations in both input and weights.

Figure 17b shows the comparison between MERCURY versus
the theoretical maximum achievable speedup of Zero Pruning.
On average, MERCURY outperforms by 4%. Note that in actual
hardware, the performance gains of Zero Pruning will be limited
by hardware resource constraints and zero-value detection and
bypass overhead.

3) Comparison with Unlimited Similarity Detection: This
scenario finds and saves all similar elements in a model’s
inputs and weights. Similar to the Zero Pruning scenario,
we did not consider any limitations on the amount of sim-
ilarity. We assumed that the accelerator could find and save
the computation of all similar elements. Figure 17c shows
the speedup of MERCURY versus the Unlimited Similarity
Detection scheme. On average, our approach performs 2%
better than the Unlimited Similarity technique.

E. Results with Other Dataflows
Figure 18a and 18b shows the speedup of our scheme when

deployed on top of the Input-Stationary and Weight-Stationary
dataflow. For Input-Stationary, MERCURY gives an average
performance gain of 1.55⇥ over the baseline. The maximum
speedup of 1.72⇥ is achieved in VGG-19. MERCURY works
better with Weight-Stationary as it achieves an average speedup
of 1.66⇥ over the baseline. The maximum speedup of 1.89⇥
is observed in ResNet101.

F. Hardware Utilization Analysis
In this section, we provide a detailed analysis of the resource

usage and power consumption of MERCURY implementation
on the Virtex 7 FPGA board. Table II compares the resource
usage and on-chip power consumption of MERCURY for
different MCACHE sizes. Specifically, quadrupling the number
of MCACHE sets only increases the overall power consumption
by 6.5%. If we fix the number of sets to 64 and increase the

10

0

0.5

1

1.5

2

2.5

3

3.5

4

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

Sp
ee
d
up

8-way
16-way
32-way

(a) Cache size = 512 entries.

0

0.5

1

1.5

2

2.5

3

3.5

4

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

Sp
ee
d
up

8-way
16-way
32-way

(b) Cache size = 1024 entries.

0

0.5

1

1.5

2

2.5

3

3.5

4

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

Sp
ee
d
up

8-way
16-way
32-way

(c) Cache size = 2048 entries
Fig. 16: Impact of MCACHE organizations on the performance of MERCURY.

0

0.5

1

1.5

2

2.5

3

3.5

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

Sp
ee
d
up

UCNN-6bits-Q
UCNN-7bits-Q
UCNN-8bits-Q

MERCURY

(a) UCNN

0

0.5

1

1.5

2

2.5

3

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

Sp
ee
d
up

zero-prune(input+weight)
MERCURY

(b) Unlimited zero pruning

0

0.5

1

1.5

2

2.5

3

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Tra
ns
for
me
r

Ge
om
ea
n

Sp
ee
d
up

Similarity-Input+Weight
MERCURY

(c) Unlimited similarity detection
Fig. 17: Speed up of MERCURY and other techniques.

TABLE II: a) Resource usage and b) On-
Chip Power Consumption (watt) Compar-
ison of MERCURY vs baseline for number
of ways=16 and different set size.

Cache # #Slice #Slice #Block
Size Sets LUTs Registers RAM #DSP48E1s
256 16 140597 62620 1177.5 198
512 32 211437 69536 1193.5 198
768 48 216544 74925 1209.5 198
1024 64 216918 81332 1225.5 198

(a) Resource usage
Block

Sets Clocks Logic Signals RAM DSPs Static Total
16 0.138 0.102 0.18 0.516 0.087 0.681 1.811
32 0.154 0.104 0.175 0.524 0.087 0.683 1.833
48 0.155 0.103 0.201 0.548 0.087 0.685 1.884
64 0.166 0.105 0.216 0.561 0.087 0.687 1.929

(b) On-chip power consumption (watt)

TABLE III: a) Resource usage and b)
On-chip power consumption (watt) of
MERCURY vs baseline for set size=64
and different number of ways.

Cache #Slice #Slice #Block
Size #Ways LUTs Registers RAM #DSP48E1s
128 2 216777 65727 1225.5 198
256 4 216618 67897 1225.5 198
512 8 216758 71999 1225.5 198

1024 16 216918 81332 1225.5 198

(a) Resource usage
Block

Ways Clocks Logic Signals RAM DSPs Static Total
2 0.146 0.1 0.176 0.555 0.087 0.686 1.855
4 0.151 0.104 0.197 0.543 0.087 0.686 1.874
8 0.157 0.101 0.18 0.559 0.087 0.686 1.876
16 0.166 0.105 0.216 0.561 0.087 0.687 1.929

(b) On-chip power consumption (watt)

TABLE IV: a) Resource usage and b)
On-Chip Power Consumption (watt) Com-
parison of MERCURY vs baseline (cache
size=1024 and number of ways=16).

#Slice #Slice #Block
Method LUTs Registers RAM #DSP48E1s
Baseline 56910 48735 1161.5 198

MERCURY 216918 81332 1225.5 198

(a) Resource usage

Block
Method Clocks Logic Signals RAM DSPs Static Total
Baseline 0.112 0.07 0.138 0.511 0.087 0.678 1.703

MERCURY 0.166 0.105 0.216 0.561 0.087 0.687 1.929

(b) On-chip power consumption (watt)

0

0.5

1

1.5

2

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Ge
om
ea
n

Sp
ee
d
up

Baseline-IS
MERCURY-IS

(a) Input-stationary dataflow

0

0.5

1

1.5

2

Ale
xN
et

Go
og
leN
et

Re
sN
et5
0

Re
sN
et1
01

Re
sN
et1
52

VG
G-
13

VG
G-
16

VG
G-
19

Inc
ep
-V4

Mo
bN
et-
V2

Sq
ue
ez
e1
.0

Ge
om
ea
n

Sp
ee
d
up

Baseline-WS
MERCURY-WS

(b) Weight-stationary dataflow
Fig. 18: MERCURY with different dataflows.

number of ways from 2 to 16, the power consumption increases
by 3.98%, as shown in Table III. This result indicates that
MERCURY design can work with different sizes of cache and
various number of ways with reasonable overhead. As shown
in Table IV, MERCURY increases resource usage and power
consumption by 1.135⇥. The majority of this increment is
related to the power of Signals and Logic which is the result
of using an adaptable cache-based structure in the proposed
design. However, as explained in § V, since we fixed the cache
size and number of ways to an optimal value, the MERCURY
resource consumption will be almost the same even if we
increase the size of input images and number of PEs.

VIII. CONCLUSIONS

We proposed a novel scheme based on RPQ to exploit
the similarity of computations during DNN training in a
hardware accelerator. The proposed scheme, called MERCURY,
uses a cache (MCACHE) to store signatures of recent input
vectors along with the computed results. If a new input
vector’s signature matches with an existing signature in the
MCACHE, the already-computed result is reused for the new
vector. MERCURY is the first work that exploits computational
similarity using RPQ for accelerating DNN training in hardware.
We present a detailed design, workflow, and implementation of
MERCURYfor multiple layers and dataflows. This work opens
up a new direction for speeding up hardware accelerators. Our
experimental evaluation with twelve different deep learning
models shows that MERCURY speeds up the training by 1.97⇥
with an accuracy similar to the baseline system.

ACKNOWLEDGEMENTS

We thank the members of PALab for the discussions. This
work is supported by the TAMU start up grant, NSF grant
1931078 and HPRC machines.

11

REFERENCES

[1] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Es-
maeilzadeh, “Snapea: Predictive early activation for reducing computation
in deep convolutional neural networks,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
662–673.

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016, pp. 1–13.

[3] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–12.

[4] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,”
Large-scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.

[5] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: Applications to image and text data,” in Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 245–250. [Online].
Available: https://doi.org/10.1145/502512.502546

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation
of speculative threads in multiprocessors,” in Proceedings of the 33rd
Annual International Symposium on Computer Architecture, ser. ISCA
’06. USA: IEEE Computer Society, 2006, p. 227–238. [Online].
Available: https://doi.org/10.1109/ISCA.2006.13

[8] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proceedings of the Thiry-Fourth Annual ACM Symposium
on Theory of Computing, ser. STOC ’02. New York, NY, USA:
Association for Computing Machinery, 2002, p. 380–388. [Online].
Available: https://doi.org/10.1145/509907.509965

[9] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ser. ASPLOS ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 269–284. [Online]. Available:
https://doi.org/10.1145/2541940.2541967

[10] Y. Chen, J. Emer, and V. Sze, in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp.
367–379.

[11] Y. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy
efficiency of deep neural network accelerators,” IEEE Micro, vol. 37,
no. 3, pp. 12–21, 2017.

[12] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning super-
computer,” in 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, 2014, pp. 609–622.

[13] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), 2016,
pp. 27–39.

[14] N. M. Cicek, L. Ning, O. Ozturk, and X. Shen, “General reuse-centric
cnn accelerator,” IEEE Transactions on Computers, pp. 1–1, 2021.

[15] N. M. Cicek, X. Shen, and O. Ozturk, “Energy efficient boosting
of gemm accelerators for dnn via reuse,” ACM Trans. Des. Autom.
Electron. Syst., dec 2021, just Accepted. [Online]. Available: https:
//doi.org/10.1145/3503469

[16] C. Coleman, C. Yeh, S. Mussmann, B. Mirzasoleiman, P. Bailis, P. Liang,
J. Leskovec, and M. Zaharia, “Selection via proxy: Efficient data selection
for deep learning,” arXiv preprint arXiv:1906.11829, 2019.

[17] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks
with weights and activations constrained to +1 or -1,” in Conference on
Neural Information Processing Systems (NIPS), 2016.

[18] D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha,
K. Banerjee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas,
A. Heinecke, P. Dubey, J. Corbal, N. Shustrov, R. Dubtsov, E. Fomenko,
and V. Pirogov, “Mixed precision training of convolutional neural
networks using integer operations,” in International Conference on
Learning Representations (ICLR), 2018.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. a. Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and

A. Ng, “Large scale distributed deep networks,” in Advances
in Neural Information Processing Systems, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/
6aca97005c68f1206823815f66102863-Paper.pdf

[20] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-tactical: A
software/hardware approach to exploiting value and bit sparsity in
neural networks,” ser. ASPLOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 749–763. [Online]. Available:
https://doi.org/10.1145/3297858.3304041

[21] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), 2015, pp. 92–104.

[22] R. D. Evans, L. Liu, and T. M. Aamodt, “Jpeg-act: Accelerating
deep learning via transform-based lossy compression,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA ’20. IEEE Press, 2020, p. 860–873. [Online].
Available: https://doi.org/10.1109/ISCA45697.2020.00075

[23] Y. Fan, F. Tian, T. Qin, J. Bian, and T.-Y. Liu, “Learning what data to
learn,” 2017.

[24] D. Feldman, Core-Sets: Updated Survey. Cham: Springer International
Publishing, 2020, pp. 23–44. [Online]. Available: https://doi.org/10.1007/
978-3-030-29349-9 2

[25] Y. Freund, S. Dasgupta, M. Kabra, and N. Verma, “Learning the
structure of manifolds using random projections,” in Advances
in Neural Information Processing Systems, J. Platt, D. Koller,
Y. Singer, and S. Roweis, Eds., vol. 20. Curran Associates,
Inc., 2007. [Online]. Available: https://proceedings.neurips.cc/paper/
2007/file/9fc3d7152ba9336a670e36d0ed79bc43-Paper.pdf

[26] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural networks,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 151–165. [Online].
Available: https://doi.org/10.1145/3352460.3358291

[27] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural
networks,” Pattern Recogn., vol. 77, no. C, p. 354–377, May 2018.
[Online]. Available: https://doi.org/10.1016/j.patcog.2017.10.013

[28] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations (ICLR), 2016.

[29] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 243–254.

[30] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
“Ucnn: Exploiting computational reuse in deep neural networks via weight
repetition,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 2018, pp. 674–687.

[31] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition:
A Quantitative Approach, 5th ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

[32] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, “Gist:
Efficient data encoding for deep neural network training,” in Proceedings
of the 45th Annual International Symposium on Computer Architecture,
ser. ISCA ’18. IEEE Press, 2018, p. 776–789. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00070

[33] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in 2017 ACM/IEEE 44th Annual

12

https://doi.org/10.1145/502512.502546
https://doi.org/10.1109/ISCA.2006.13
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/3503469
https://doi.org/10.1145/3503469
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1109/ISCA45697.2020.00075
https://doi.org/10.1007/978-3-030-29349-9_2
https://doi.org/10.1007/978-3-030-29349-9_2
https://proceedings.neurips.cc/paper/2007/file/9fc3d7152ba9336a670e36d0ed79bc43-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/9fc3d7152ba9336a670e36d0ed79bc43-Paper.pdf
https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/ISCA.2018.00070

International Symposium on Computer Architecture (ISCA), 2017, pp.
1–12.

[34] K. Killamsetty, S. Durga, G. Ramakrishnan, A. De, and R. Iyer, “Grad-
match: Gradient matching based data subset selection for efficient deep
model training,” in International Conference on Machine Learning.
PMLR, 2021, pp. 5464–5474.

[35] K. Killamsetty, D. Sivasubramanian, G. Ramakrishnan, and R. Iyer,
“Glister: Generalization based data subset selection for efficient and
robust learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 9, 2021, pp. 8110–8118.

[36] U. Köster, T. J. Webb, X. Wang, M. Nassar, A. K. Bansal, W. H.
Constable, O. H. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi,
C. Kloss, R. J. Pai, and N. Rao, “Flexpoint: An adaptive numerical
format for efficient training of deep neural networks,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 1740–1750.

[37] M. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models,” Advances in neural information processing systems,
vol. 23, 2010.

[38] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable interconnects,”
SIGPLAN Not., vol. 53, no. 2, p. 461–475, 2018. [Online]. Available:
https://doi.org/10.1145/3296957.3173176

[39] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolu-
tional neural networks: Analysis, applications, and prospects,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–21, 2021.

[40] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “Pudiannao: A polyvalent machine learning
accelerator,” SIGPLAN Not., vol. 50, no. 4, p. 369–381, Mar. 2015.
[Online]. Available: https://doi.org/10.1145/2775054.2694358

[41] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie, “Dynamic
sparse graph for efficient deep learning,” in 7th International Conference
on Learning Representations, ICLR 2019, 2019.

[42] M. Mahmoud, I. Edo, A. H. Zadeh, O. Mohamed Awad, G. Pekhimenko,
J. Albericio, and A. Moshovos, “Tensordash: Exploiting sparsity to
accelerate deep neural network training,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020, pp. 781–
795.

[43] M. Mahmoud, K. Siu, and A. Moshovos, “Diffy: a déjà vu-free differential
deep neural network accelerator,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp. 134–
147.

[44] R. Mayer and H.-A. Jacobsen, “Scalable deep learning on distributed
infrastructures: Challenges, techniques, and tools,” ACM Comput.
Surv., vol. 53, no. 1, feb 2020. [Online]. Available: https:
//doi.org/10.1145/3363554

[45] B. Mirzasoleiman, J. Bilmes, and J. Leskovec, “Coresets for data-efficient
training of machine learning models,” in International Conference on
Machine Learning. PMLR, 2020, pp. 6950–6960.

[46] L. Ning, H. Guan, and X. Shen, “Adaptive deep reuse: Accelerating
cnn training on the fly,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE), 2019, pp. 1538–1549.

[47] L. Ning and X. Shen, “Deep reuse: streamline cnn inference on the fly via
coarse-grained computation reuse,” Proceedings of the ACM International
Conference on Supercomputing, 2019.

[48] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 27–40.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[50] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric
accelerator design for convolutional neural networks,” in 2013 IEEE 31st
International Conference on Computer Design (ICCD). IEEE, 2013,
pp. 13–19.

[51] R. B. Prabhakar, S. Kuhar, R. Agrawal, C. J. Hughes, and C. W.
Fletcher, “Summerge: An efficient algorithm and implementation for
weight repetition-aware dnn inference,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 279–290.

[52] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and
an easily schedulable horizontal architecture for high performance
scientific computing,” in Proceedings of the 14th Annual Workshop
on Microprogramming, ser. MICRO 14. IEEE Press, 1981, p. 183–198.

[53] M. Riera, J.-M. Arnau, and A. Gonzalez, “Computation reuse in dnns by
exploiting input similarity,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 57–68.

[54] J. Servais and E. Atoofian, “Adaptive computation reuse for
energy-efficient training of deep neural networks,” ACM Trans.
Embed. Comput. Syst., vol. 20, no. 6, oct 2021. [Online]. Available:
https://doi.org/10.1145/3487025

[55] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 14–26.

[56] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[57] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li, “Prediction based execution
on deep neural networks,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 752–763.

[58] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and
G. J. Gordon, “An empirical study of example forgetting during deep
neural network learning,” arXiv preprint arXiv:1812.05159, 2018.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: https://arxiv.org/abs/1706.03762

[60] Xilinx, “Virtex 7 fpga.” [Online]. Available: https://www.xilinx.com/
products/silicon-devices/fpga/virtex-7.html

[61] Xilinx, “Vivado.” [Online]. Available: https://www.xilinx.com/products/
design-tools/vivado.html

[62] J. Xing, G. Fang, J. Zhong, and J. Li, “Application of face recognition
based on cnn in fatigue driving detection,” in Proceedings of the
2019 International Conference on Artificial Intelligence and Advanced
Manufacturing, ser. AIAM 2019. New York, NY, USA: Association
for Computing Machinery, 2019. [Online]. Available: https://doi.org/10.
1145/3358331.3358387

[63] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, and M. Lis,
“Procrustes: a dataflow and accelerator for sparse deep neural network
training,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020, pp. 711–724.

[64] J. Zhang, X. Chen, M. Song, and T. Li, “Eager pruning: Algorithm
and architecture support for fast training of deep neural networks,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), 2019, pp. 292–303.

[65] B. Zheng, N. Vijaykumar, and G. Pekhimenko, “Echo: Compiler-based
gpu memory footprint reduction for lstm rnn training,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA ’20. IEEE Press, 2020, p. 1089–1102. [Online].
Available: https://doi.org/10.1109/ISCA45697.2020.00092

[66] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
in 5th International Conference on Learning Representations, ICLR 2017,
2017.

13

https://doi.org/10.1145/3296957.3173176
https://doi.org/10.1145/2775054.2694358
https://doi.org/10.1145/3363554
https://doi.org/10.1145/3363554
https://doi.org/10.1145/3487025
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1706.03762
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://doi.org/10.1145/3358331.3358387
https://doi.org/10.1145/3358331.3358387
https://doi.org/10.1109/ISCA45697.2020.00092

	Introduction
	Computations with Input Similarity
	State of the Art
	Proposed Approach

	Background
	Random Projection with Quantization (RPQ)
	DNN Accelerator and Dataflow
	Extending Row-Stationary for Training
	Computation Reuse

	Main Idea: Mercury
	Overview
	Detecting Similarity Using Signatures
	Signature as a Convolution Operation
	Dataflow of Signature Calculation
	Signature Management

	Exploiting Input Similarity
	Computation Reuse in Forward Propagation
	Input Similarity in Backward Propagation
	Input Similarity in a Fully Connected Layer
	Input Similarity in an Attention Layer

	Adaptation in Mercury

	Support for different dataflows
	Implementation Details
	Experimental Setup
	Evaluation
	Accuracy and Performance Comparison
	Case Study: VGG13
	Performance Impact of Different Organizations of MCache
	Comparative Analysis
	Comparison with UCNN in inference mode
	Comparison with Unlimited Zero Pruning
	Comparison with Unlimited Similarity Detection

	Results with Other Dataflows
	Hardware Utilization Analysis

	Conclusions
	References

