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Pion exchange is the central ingredient to nucleon-nucleon interactions used in nuclear structure
calculations, and one pion exchange (OPE) enters at leading order in chiral effective field theory. In
the 29+1L; = 1S, partial wave, however, OPE and a contact term needed for proper renormalization
fail to produce the qualitative, and quantitative, features of the scattering phase shifts. Cutoff
variation also revealed a surprisingly low breakdown momentum Ay, ~ 330 MeV in this partial wave.
Here we show that potentials consisting of OPE, two pion exchange (TPE), and a single contact
address these problems and yield accurate and renormalization group (RG) invariant phase shifts in
the 1Sy partial wave. We demonstrate that a leading-order potential with TPE can be systematically
improved by adding a contact quadratic in momenta. For momentum cutoffs A < 500 MeV, the
removal of relevant physics from TPE loops needs to be compensated by additional contacts to keep
RG invariance. Inclusion of the A isobar degree of freedom in the potential does not change the

Two-pion exchange as a leading-order contribution in chiral effective field theory

strong contributions of TPE.

I. INTRODUCTION

Ever since its introduction by Yukawa [I], boson ex-
change has been central to the theory of nuclear inter-
actions. In quantum chromodynamics, chiral symme-
try is spontaneously and explicitly broken, and the pion
emerges as the corresponding pseudo Nambu-Goldstone
boson. Pion exchange, together with contact interactions
that account for unknown short-range physics, thus are
the ingredients in a chiral effective field theory (EFT)
description of the nucleon-nucleon interaction [2-9].

In chiral EFT, and within the commonly employed
Weinberg power counting, the leading-order contribu-
tions to the nucleon-nucleon interaction consist of OPE
and one contact each in the 1Sy and 25; partial waves.
At next-to-leading order (NLO) in Weinberg counting the
leading TPE contributions as well as contacts quadratic
in momenta enter.

Statistical analyses of higher-order chiral EFT predic-
tions for nucleon-nucleon scattering data infer a break-
down momentum Ap = 600 — 700 MeV, and that higher
chiral orders yield systematical improvements in powers
of @/min(A, Ap) beyond the leading-order results in the
Weinberg power counting [10H12]. Here Q is the low-
momentum scale of interest, e.g., the external momen-
tum in nucleon-nucleon scattering, and A is the cutoff
employed in the regularization of the theory. While this
looks encouraging, there are well-known challenges [13],
and we mention two of them.

First, recent computations in the Weinberg [14] and
a modified power counting [15] show that leading-order
chiral EFT potentials predict light-mass nuclei that
are unstable with respect to breakup into a particles
and lighter-mass clusters, raising questions about what
should be expected from a nuclear EFT at leading or-
der. Of course, the lack of any spin-orbit contributions
at leading order in the Weinberg power counting would
also presumably make well-known nuclear shell-structure

a subleading effect.
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FIG. 1. (Color online) Nucleon-nucleon phase shifts in the
1Sy partial wave versus the laboratory scattering energy E
for various chiral interactions. The momentum cutoff is set
to 4 GeV and in all cases a single contact Vc(to) is adjusted to
match the phase shift to that of the reference potential (high-
precision Idaho-N3LO) by Entem and Machleidt [16] (solid
black line) at Ey = 15 MeV. The dotted blue line shows phase
shift obtained for OPE, the dashed orange line for OPE plus
the leading TPE, the dash-dot-dotted green line for OPE plus
subleading TPE, and the dash-dotted red line for the inter-
action Vi - consisting of OPE and leading plus subleading
TPE (see text for details).

Second, the leading-order description of nucleon-
nucleon phase shifts in the 1Sy partial wave are prob-
lematic in the Weinberg power counting [15 [17H32], see
Ref. [33] for a recent review. The combination of OPE
and a single contact fails qualitatively to capture the pro-
nounced peak at 60 — 70 degrees in the phase shift at
about 8 MeV of laboratory scattering energy, see blue
dotted line in Fig. m For all results in this figure, the 'Sy



contact is adjusted to the reference phase shifts of the po-
tential [16] (shown as a solid black line) at a laboratory
scattering energy E = 15 MeV. This energy matches the
relevant scale of pion physics as m2 /my =~ 20 MeV us-
ing the pion and nucleon mass m, and my, respectively.
The OPE phase shifts are much too attractive beyond
the matching point and clearly fail to capture the char-
acteristics of the reference phase shifts. Also, the slope
of the OPE phase shift has the wrong sign. We note that
the interaction consisting of OPE plus subleading TPE
is more accurate than OPE plus leading TPE. This is an
indication that the role of subleading TPE might not be
correctly reflected in the Weinberg power counting.

Another problem concerns the breakdown momentum
Ap. The analysis of the 1Sy phase shifts by Lepage [34]
showed that a potential consisting of OPE plus leading
an subleading contacts leads to Ay, =~ 330 MeV in the
1Sy partial wave. Later analyses exploring perturbative
inclusion of subleading TPE contributions [23] [35] con-
firmed this finding and estimated the breakdown momen-
tum to be even lower, i.e., A, ~ 200 MeV. This ques-
tions whether leading-order chiral EFT based on OPE
physics is consistent with the general assumption that
the breakdown momentum is somewhere between ~ 500
and ~ 1000 MeV.

Several researchers addressed the shortcoming of too
attractive 1Sy phase shifts by adding effective-range cor-
rections [15] [36], energy-dependent potentials generated
by di-baryon fields [30], or separable potentials [32] to the
OPE as leading-order contributions. These approaches
improve the phase shifts at a cost of introducing addi-
tional parameters. The promotion of TPE to leading
order in chiral EFT was proposed already a decade ago
by Birse [26] and Pavén Valderrama [37]. We investigate
this further; see also the recent papers [38] [39].

In this paper we show that chiral physics in the form
of TPE, a higher-order correction in the Weinberg power
counting, remedies the shortcomings of highly attrac-
tive 1Sy phase shifts and without increasing the num-
ber of parameters. As Fig. || shows, the inclusion of
the long-range part of TPE at leading order significantly
improves the accuracy of the 'Sy phase shifts. We will
also show that the estimated breakdown momentum in
this approach is consistent with expectations from chiral
EFT. Of course, promoting TPE to leading order raises
the question whether to promote also the momentum-
dependent counterterms that accompany it in the Wein-
berg power counting. Here, we will follow the simplest
approach by promoting only the long-range part and re-
quiring renormalizability at the level of amplitudes, i.e.
cutoff independence of observables. It is known [40]
that one momentum-independent counterterm (bound-
ary condition) is sufficient to renormalize the singular
TPE interaction in the 1Sy channel.

Phenomenology connects TPE with the strong mid-
range attraction of the nucleon-nucleon force [41] 42]
which is also attributed to the fp(500) resonance [43] or
the sigma meson whose width and mass was determined

model-independently in Ref. [44]. The latter is a central
ingredient of relativistic mean-field theories [45H49] and
of alternative proposals to chiral EFT which include the
effects of the fy(500) resonance at leading order via the
sigma meson [50] or the dilaton [51152], i.e. the Nambu-
Goldstone boson of a broken and hidden scale symmetry.

In the Weinberg power counting TPE enters at NLO,
but its strongest contributions involving the pion-nucleon
coupling constants ¢;, with ¢« = 1, 3,4, enter at next-to-
next-to-leading order (NNLO). It is known that these
subleading TPE contributions are crucial for quanti-
tatively reproducing the 'S, phase shifts, see, e.g.,
Refs. [22] [53]. We note, however, that the role of TPE
is somewhat obscured in chiral potentials. First, an ad-
ditional contact potential quadratic in momentum also
enters in the 1S, partial wave at NLO in the Wein-
berg power counting. Second, several popular poten-
tials [16, [54H57] employ relatively low momentum cutoffs
and thereby truncate some parts of the TPE strength.

This manuscript is ordered as follows: In Sec. [[]we give
the explicit form of the OPE and TPE potentials, dis-
cuss their relative strengths, and show results for phase
shifts in the 'Sy partial wave obtained using the pro-
posed leading-order potential where we have promoted
TPE. In Sec. [[II we show that a subleading contact that
is quadratic in momenta systematically improves upon
these results. In Sec. [V we show that the inclusion of A
isobar degrees of freedom does not alter our conclusions
about promoting TPE to leading order. We end with a
summary in Sec. [Vl

II. CHIRAL OPE AND TPE POTENTIALS

Canonical chiral EFT descriptions of the nuclear in-
teraction employ a power counting for the pion-nucleon
potential as done in chiral perturbation theory. The OPE
enters at leading order, and subleading contributions are
presumably suppressed by powers of gam, /(47 fr) < 1,
where g4 &~ 1.28 is the axial-vector constant, m, =~
140 MeV is the pion mass, and f; =~ 92 MeV is the
pion-decay constant. The OPE potential is given by

2
g (01-9)(o2-q)
Vope(q) = —4?2 TUTe e (1)

Here, q = p’ — p is the momentum transfer. The Pauli
matrices of nucleon j in spin and isospin space are de-
noted as o; and 7;, respectively. The TPE potentials
considered in this work can be written as

Vrre(q) = Ve(q) + 71 - 72 Wel(q)
+ [Vr(q) + 71 - m2Wr(q)] (o1 - q) (o2 - q)
+ [Vs(q) + 71 - T2 Ws(q)] o1 - 02 . (2)

The leading TPE potential, i.e., the contributions that
enter at NLO in the Weinberg power counting is given
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while the subleading contributions that enter at NNLO
are [6], [7, [53]

3 ~
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Here, we used the short-hands
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w=
w w+q
L(q) = — log 3
q 2m, (5)
w=+/2m2 + ¢,
1
(q) = Q—arctanmiﬂ ,
with ¢ = |q|, and the pion-nucleon constants c¢; are
of the order of m]_\,1 with mpy denoting the nucleon
mass my. In what follows we use ¢; = —0.74 GeV ™1,

c3 = —3.61 GeV~! and ¢4 = 2.44 GeV~! from Ref. [11],
obtained from Roy-Steiner relations [58| [59]. (Using ¢;
values from Ref. [53] did not qualitatively change our
findings.) We note here that we have neglected any rela-
tivistic corrections (proportional to my') to the TPE at
NNLO, omitted any polynomial contributions, and sup-
pressed the dependence of the functions on the spec-
tral function regulator. In what follows, we discuss these
points in more detail.

Relativistic corrections are small and contribute
O(g4mr/(16my)) to the dominant potential V. The
NLO potentials also come with a term quadratic
in momentum exchange whose strength depends on the
renormalization scale [6]; it is usually neglected because
a contact quadratic in momenta also enters in the Wein-
berg power counting at NLO. We neglect this contact
here initially because we will focus on the long-range be-
havior of TPE predicted by chiral EFT. The TPE in the
1Sy partial wave can be renormalized without it. In other
words, we choose the contact quadratic in momenta such
that it exactly cancels the purely quadratic term in TPE.

The functions L and A in () are shown as computed
using dimensional regularization [6]. When using spec-
tral function regularization [60} [61], they also depend on
the cutoff Aspr, and the expressions are obtained
when taking Agpr — o0o0. In this work we use spectral
function regularization and set Agpr = 700 MeV, except
as indicated otherwise.

We evaluated the long-range pion-exchange potentials
in the spin-singlet / isospin-triplet partial waves [where
(01 - q)(o2 - q) — —¢?] and show their magnitudes in
Fig. |2| comparing the OPE from Eq. , leading TPE
from Eq. (3), and subleading TPE from Eq. con-
tributions. As expected, OPE is a dominant contribu-
tion around ¢ = m, while the subleading TPE poten-
tial of Eq. cannot be neglected around momentum
transfers of about 1 fm~!. Clearly, at momentum trans-
fers of the order of the pion mass (m, ~ 0.7 fm~!) or
the Fermi momentum in nuclear matter at saturation
(kp ~ 1.35 fm™1), the placement of this TPE poten-
tial at NNLO does not reflect its actual strength. Two
comments are in order. First, for large momentum trans-
fers ¢ > m, we have Vo — ¢°, Varo — ¢%logq, and
Vanro — ¢3. Second, for small momentum transfers
g — 0, the OPE indeed scales as ¢? in spin-singlet par-
tial waves
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FIG. 2. (Color online) Long ranged pion-exchange contri-

butions to the nucleon-nucleon potentials in the spin-singlet
/ isospin-triplet partial wave at various orders in Weinberg
power counting as a function of momentum transfer. The
OPE potential (black solid line) is leading order in the Wein-
berg power counting, the leading TPE (dashed blue line) is
NLO, and the subleading TPE (dash-dotted red line) enters
at NNLO. Any contributions from terms purely polynomial
in momenta are neglected.

Let us study the impact of TPE added to OPE in the
1Sy phase shifts. We define a nucleon-nucleon potential
in this partial wave that is of the form

V(plvp) = Vﬂ',7r7r + ‘/Ct . (6)

Here, Vi »r consists of OPE and the leading and sub-
leading TPE, while V; denotes the contact potential to
be specified.

At leading order and NLO, the contact potentials are
given by

v p) =0, (7)

and
Vo (0 p) = C0? +p?) | (8)



respectively. The potentials are also regularized via the
non-local separable regulator

V= F A2V F(p?/A?) (9)
using p = |p|, P’ = [P’

fl@)=e™"", (10)

and n = 3.

At leading order we adjust the low-energy constant
(LEC) C such that the phase shift at the laboratory en-
ergy Eg = 15 MeV reproduces the value from the high-
precision Idaho-N3LO potential [16], which we take as
a reference throughout this work. The precision of this
reference is sufficient for our purposes, as the phase shifts
of this potential are virtually indistinguishable from a re-
cent partial-wave analysis of nucleon-nucleon scattering
data [62].

The 'Sy phase shifts for our leading-order potential
are shown as the red dash-dotted line in Fig.[l] For com-
parison, we also show the results from potentials with
other combinations of pion exchanges; such as the sum
of OPE and leading TPE (orange dashed line) and OPE
plus subleading TPE (green dash-dot-dotted line). The
chiral potential V; .. stands out through its accuracy for
scattering energies below and above the energy Fy used
for renormalizing the contact LEC. This suggests that
the combination V; ., of OPE and TPE should be taken
as the leading-order contribution from chiral physics in
the 1Sy partial wave. This is the main result of this pa-
per. It is consistent with the anticipation obtained from
Fig. Pl Although the combination of OPE and leading
TPE (shown as the orange dashed line in Fig. brings
the phase shift closer to reference, it fails to reproduce
the characteristic decrease of the phase shifts with in-
creasing energy, i.e., a lack of increasing repulsion with
FE, and the amplitude zero is nowhere near ¥ ~ 250 MeV.
It is also less accurate than the combination of OPE and
subleading TPE. This motivates us to promote both the
leading and subleading TPE contributions to LO.

We note that the phase shifts presented in Fig. [1] in-
clude chiral physics plus a single LEC that accounts for
unknown short-range physics. Figure |3| demonstrates

that the potential Vi .. + Vc(to) yields RG invariant Sg
phase shifts as the cutoff A is increased. For a compari-
son, the reference phase shifts are shown as black stars.
Figure[3|also shows that the phase shifts are strongly cut-
off dependent for A < 750 MeV. This can be understood
as follows: In coordinate space, the OPE potential ex-
hibits a 1/r® behavior at short distances, where r denotes
the two-nucleon relative distance. The TPE potential
exhibits a significantly more singular 1/7% short-distance
behavior with a typical momentum scale k,, ~ 115 MeV
set by the chiral couplings employed in the TPE poten-
tial [35]. The cutoff needs therefore to be significantly
larger than k.. to reach convergence. Alternatively, the
relevant scale of the TPE interaction can also naively be
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FIG. 3. (Color online) 'Sy phase shifts as a function of the
momentum regulator cutoff A at laboratory energies of £ = 4
(dashed), 15 (solid), 75 (dash-dotted), and 225 MeV (dot-
ted) for the potential Vi rr + VC(tO)A The black stars show the
reference phase shifts at these energies.

estimated by

ATPE = ZmeN ~ 510 MeV . (11)

Cutoffs lower than Arpg therefore remove physics from
the TPE. This effect is highlighted in Fig. [4 As before,
we adjusted the leading-order contact Vc(to) to reproduce
the reference phase shift at Fy = 15 MeV. We clearly
see the effects of removing TPE physics for cutoffs A <
500 MeV. Indeed, comparison with Fig. |l|shows that the
phase shifts at a cutoff of A = 475 MeV are close to those
of OPE plus a contact. As we will see below, adding the
subleading contact Vc(f) will restore RG invariance in this
case.

Figure 4] also allows us to estimate the breakdown mo-
mentum in this partial wave as the momentum regula-
tor cutoff value for which the phase shift predictions are
closest to the reference [34]. Following this strategy we
infer Ay, =~ 500 — 520 MeV. This is significantly larger
than what was found when only OPE physics is included
at leading order [23] [34] [35]. Tt is also in line with ex-
pectations from neglecting the physics of more massive
exchange mesons.

We repeated the above calculations with cutoffs
Aspr = 900 MeV and 2 GeV in the spectral function
regulator. The phase shifts were consistent with RG in-
variance in these cases as well. Fig. |5| demonstrates this
for Agpr = 2 GeV. Our analysis yields a breakdown scale
of about 475 MeV and 425 MeV for Agrr = 900 MeV
and 2 GeV, respectively.

III. SYSTEMATIC IMPROVEMENTS

We propose to employ higher-order contacts to system-
atically improve upon the results of our leading-order po-
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FIG. 4. (Color online) Phase shifts as a function of laboratory
energy of the interaction Vi rr + VC(tO) at low momentum cut-
offs as indicated and compared to the reference (solid black
line). The phase shifts become increasing repulsive as the
cutoff is increased. For E > 15 MeV they cross over and
become more repulsive than the reference for cutoffs in the

range 500 < A < 520 MeV.
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FIG. 5. (Color online) 'Sy phase shifts as a function of the
momentum cutoff A using the cutoff Aspr = 2 GeV in the
spectral function regularization. Phase shifts are shown at
laboratory energies of E = 4 (dashed), 15 (solid), 75 (dash-
dotted), and 225 MeV (dotted) for the potential Vi rr —|—Vc<to).
The black stars show the reference phase shifts at these ener-
gies.

tential Vi on + Vc(to). Thus, the contact enters as the
subleading correction [34]. This introduces a new LEC,
C, and we adjust C and C' such that the reference phase
shift and its slope is reproduced at the laboratory energy
Ey =15 MeV. In our numerical work, we used the secant
slope between Fy and a second point just below this en-
ergy rather than the exact tangent slope. We work at a
cutoff of A = 800 MeV.

The question then arises whether one should treat the

subleading correction perturbatively, or not. In the non-
perturbative approach, the full potential is iterated to
solve the Lippmann Schwinger equation, while the per-
turbative approach is linear in the subleading correction.
We followed both approaches and found similar results
for the phase shifts.

Let us discuss the non-perturbative approach. A si-
multaneous fit of the two LECs (C, C') to the phase shift
and its slope at Ey is somewhat challenging. Instead, we
first calibrated C' and subsequently determined C such
that the reference phase shift is reproduced at Ey. Re-
peating this procedure for various values of C' yields a
one-parameter curve C(C'). Interestingly, we found that
this is a quadratic function to very high accuracy. We
then moved along this parabola and determined the point
where the slope of the phase shift agrees with the ref-
erence as well. The resulting phase shifts are shown
as a dashed blue line in Fig. [6] and compared to our
leading-order results (red dash-dotted line). The im-
provement is clearly visible. Figure [7| shows the absolute

. Vrr,rm + Vé?)
%01 ——= Vom+ VY +V® (non i
m, ot ct perturbative)
501 | 0\ 0 Vi mn + V) + V) (perturbative)
a —— Reference
O 40 4
©
— 301
o
D20
w0
10 A iy
0- \\~-_
~. .
\_\
-101_, . . . . |
0 50 100 150 200 250

E (MeV)

FIG. 6. (Color online) Systematic improvements of the ' So
phase shifts by adding the subleading contact Vc(f) to the po-
tential Vi rr + Vc(to). The cutoff is 800 MeV. Results for the
potentials Vi rr + Vc<t0> and Vi xr + Vc(to) + Vc(tz) are shown
as a dash-dotted red line and as blue lines, respectively.
The dashed and the dotted blue line correspond to the non-
perturbative and the perturbative inclusion of the subleading

contact Vc(f), respectively, and the solid black line shows the
reference.

differences between our phase shifts and the reference on
a log-log plot. The systematic power-law improvement
from the quadratic contact is evident. We also note that
CA2/C ~ —4, and this is consistent with EFT expecta-
tions, where this dimensionless number should be O(1)
in size.

In a second approach, we treated the contact in per-
turbation theory. Our leading-order theory is adjusted
to the reference phase shift at £y and the corresponding
LECs are (C,C) = (Cp,0). In a perturbative approach
the LECs become (Cy + 6C,8C) in presence of the po-
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FIG. 7. (Color online) Log-log plot of absolute differences
to the reference phase shifts versus the energy difference to
the matching point. The cutoff is 800 MeV. Results for the
potentials Vi rr + Vc(to) and Vi nr + Vc(to) + Vc(tz) are shown as
dash-dotted red and as blue lines, respectively. The dashed
and the dotted blue line correspond to the non-perturbative
and the perturbative inclusion of the subleading contact Vc(f)7
respectively.

tential Vc(tz). We expand the phase shift as

3(8) ~ (), + P0E)

6C + 9E)

12

0

Here, the subscript 0 implies that all functions are eval-
uated at (Cp,0). We determine the derivatives numeri-
cally. Keeping the phase shift at Ey unchanged implies

95(Ey)

. 96(E)
90+ =55

5C =0, (13)
0

and, thus, a linear relation between 6C and 6C. A one-
parameter search along this line yields the optimal point
that also reproduces the slope of the reference phase
shifts at Ey. We can estimate this parameter by look-
ing at

§(E) = 6o(E) +afo(E) , (14)

with

ey = (LDBE)_BBBE)

We seek the parameter « such that the phase shift be
reproduced at the neighboring point E. Thus,

- Onat(E) = do(E)
fo(E)
We then compute the resulting phase shifts using

Eq. . The corresponding results are shown as blue
dotted lines in Figs. [6] and []] We see that the phase

(16)

shifts from perturbative and non-perturbative solutions
are close to each other, and that both yield a power-law
improvement of our leading-order results. We also note
that A26C/(Co + 6C) ~ —0.03, and this is smaller in
magnitude than expected from EFT estimates.

We also revisited the low cutoffs at and below the scale
Arpg in Eq. and employed the subleading contact
Vc(tz) in Eq. non-perturbatively by matching the phase
shift and its slope to the reference at a laboratory energy
of 15 MeV. The results are shown in Fig. |8|and compari-
son with Fig. |4{ shows that RG invariance is restored also
at low momentum cutoffs.
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FIG. 8. (Color online) The 'Sy phase shifts as a function of
the laboratory energy E with the interaction Vi »r + Vc(to) +
Vc(f) at low cutoffs as indicated and compared to the reference

(solid black line). The additional contact Vc(t2> restores the RG
invariance that was lacking in Fig. E[

Let us discuss other cutoffs. First, we checked whether
the systematic improvements from the additional contact
involving the LEC C' discussed above are reproduced at
larger cutoffs A while keeping Agpgr fixed at 700 MeV.
Both, perturbatively and nonperturbatively, we obtain
improvements qualitatively identical to those shown in
Fig. [7] for cutoff values up to A =~ 2 GeV. Second, we
changed Agpr to 900 MeV. In this case, we were able
to obtain the same improvements, nonperturbatively, for
cutoffs A as large as 4 GeV. Likewise, for Agpr = 2 GeV
we also obtain the same power-law improvements up to
A = 4 GeV in the nonperturbative approach. In the per-
turbative approach, however, fitting the additional con-
tact to match the slope at Ey at these larger values of
Aspr becomes numerically challenging for A > 1 GeV.

IV. THE ROLE OF A ISOBAR DEGREES OF
FREEDOM

The strong contributions of the subleading TPE in
chiral EFT, i.e., the relatively large values of the pion-
nucleon LECs ¢;, are usually attributed to “resonance
saturation.” Consequently, these couplings become more



natural in size when the A isobar degrees of freedom are
included. Notably, such chiral EFTs have TPE terms
that involve a A excitation already at NLO in the Wein-
berg power counting. The corresponding expressions for
the potentials (2)) were derived by Kaiser et al. [63] and we
use those published by Krebs et al. [64] in their Egs. (2.5)
to (2.8). The chiral potential we employ thus consists
of the OPE [given in Eq. (I)], leading TPE [given in
Eq. ], the contact , and the leading A contribu-
tions to TPE. In our numerical implementation this po-
tential is regularized with n = 4 in the regulator and
spectral-function regularization was used with a cutoff of
ASFR =700 MeV.

We repeated the calculations presented above and
found very similar results regarding the quality of the
phase shifts in the 1S, partial wave, a breakdown mo-
mentum Ay, ~ 500 MeV, and a systematic power-law im-
provement when the contact quadratic in momenta is
included. An example is shown in Fig.[9] to be compared
with Fig. [6]
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FIG. 9. (Color online) The 'Sy phase shifts as a function
of the laboratory energy E for the Vﬁ” interaction, i.e., our
leading-order potential with A isobars included in the leading
TPE potential. The dash-dotted red line uses a single contact
Vc(to) to reproduce the value of the reference phase shift at
Eo = 15 MeV. The dashed blue line shows the phase shift
when leading and subleading contacts Vc(t0> + Vc(tz) are fit to
reproduce the value and the slope of the reference phase shift
at Fop. The cutoff is 800 MeV, and the reference phase shifts
are shown as a solid black line. The results are close to those
shown in Fig. [f]

V. SUMMARY AND DISCUSSION

We analyzed chiral EFT in the 1S, partial wave and
propose to promote the long-range parts of the leading
and subleading TPE to accompany OPE along with a
single contact Vc(to) at leading order. Naturally, power
counting in EFT applies to observables or amplitudes.

Nevertheless, the promotion of the long-range parts of

the TPE to leading order is inspired by the unexpectedly
large matrix elements of the TPE potential that formally
enter at NNLO in the Weinberg power counting. We
find that our leading-order interaction cures two prob-
lems with the standard approach. First, the phase shifts
in the 1Sy partial wave are accurately reproduced and
RG invariant for scattering energies of the order m2 /my
and for large cutoffs. Second, the estimated breakdown
momentum Ay ~ 500 MeV in 15; is consistent with as-
sumptions from chiral EFT. We also showed that adding
a contact quadratic in momenta as a subleading correc-
tion leads to a systematic power-law improvement of the
phase shifts. These results are based on an implementa-
tion of chiral EFT using spectral function regularization,
and they are robust as the corresponding cutoff Agpr is
varied from 700 MeV to 900 MeV and to 2 GeV. We also
pointed out that chiral EFTs with momentum cutoffs be-
low about 500 MeV are really “two-pion-less” EFTs as
they cut off parts of the TPE; in such cases higher-order
contacts are needed for maintaining proper RG invari-
ance. Lastly, we found that including the leading A con-
tributions to TPE as a new leading-order contribution
yields similar results.

We note that the proposed promotion of solely the
long-range parts of TPE — while sufficient from an RG
perspective — would preclude one to explore the quark-
mass dependence of the resulting nucleon-nucleon poten-
tials. Such studies need to include the polynomial terms
of the TPE potential, see, e.g., Ref. [65].

We also note that the chiral expansion of nucleon-
nucleon forces converges only slowly, see Refs. [56, [66].
This raises the question if higher orders of TPE should
also also be promoted. While we do not have a rigorous
answer to this question, this work demonstrates that the
proposed promotions are sufficient to address two known
problems in the 'Sy partial wave.

We finally remark that results shown in Fig. [1f seem
to be consistent with model-independent large-N, argu-
ments from quantum chromodynamics [67H70]. In the
limit of a large number of colors, N., potentials with
the same spin/isospin structure as Wr, V¢, and Wy in
Eq. are leading order. We can easily identify the po-
tential W with OPE, while V& and Wy appear as con-
tributions to subleading TPE. In contrast all potentials
contributing to the leading TPE are suppressed by fac-
tors 1/N? from large-N, arguments. Figureshows that
the 1Sy phase shifts are well described by a combination
of OPE with subleading TPE while the impact of leading
TPE is significantly smaller. Thus, promoting sublead-
ing TPE to one order before leading TPE could be seen
as natural from the 1/N. expansion. We therefore specu-
late that a combination of arguments from large N, and
chiral perturbation theory [71H76] could guide us in the
construction of nuclear potentials.
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