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Abstract. Despite the success of fully-supervised human skeleton
sequence modeling, utilizing self-supervised pre-training for skeleton
sequence representation learning has been an active field because acquir-
ing task-specific skeleton annotations at large scales is difficult. Recent
studies focus on learning video-level temporal and discriminative infor-
mation using contrastive learning, but overlook the hierarchical spatial-
temporal nature of human skeletons. Different from such superficial
supervision at the video level, we propose a self-supervised hierarchi-
cal pre-training scheme incorporated into a hierarchical Transformer-
based skeleton sequence encoder (Hi-TRS), to explicitly capture spatial,
short-term, and long-term temporal dependencies at frame, clip, and
video levels, respectively. To evaluate the proposed self-supervised pre-
training scheme with Hi-TRS, we conduct extensive experiments cov-
ering three skeleton-based downstream tasks including action recogni-
tion, action detection, and motion prediction. Under both supervised and
semi-supervised evaluation protocols, our method achieves the state-of-
the-art performance. Additionally, we demonstrate that the prior knowl-
edge learned by our model in the pre-training stage has strong transfer
capability for different downstream tasks. The source code can be found
at https://github.com/yuxiaochen1103/Hi-TRS.

Keywords: Skeleton representation learning · Self-supervised
learning · Action recognition · Action detection · Motion prediction

1 Introduction

Human skeleton data [25,26,37] are sequences of human body joints with 2D
or 3D coordinates that are extracted from human activity videos. Compared
with data from other modalities such as RGB frames [9,44] and depth images
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Fig. 1. Comparison of pre-training strategies. Left: Previous methods apply pretext
tasks to supervise the final output of a skeleton encoder. Right: We propose to hier-
archically supervise outputs of the encoder at different levels during pre-training

[47,48], human skeletons are light-weight and more robust against variations in
illumination, texture, and background [15,40]. Therefore, leveraging skeletons as
the input in deep neural networks to understand human activities has become
prevalent recently [15,20,40,46,52,56].

Different from other modalities, skeletons have naturally inherent spatial-
temporal hierarchies. The main challenge of skeleton-based methods is how to
properly capture the domain knowledge (i.e., the correlations among the joints in
the spatial and temporal domains) while extract effective feature representations
from skeletons. Recent studies [38,40,50] have achieved remarkable performance
improvement by learning skeleton encoders in a fully-supervised manner. These
methods require massive skeleton training data with task-specific annotations
which are expensive and labor-intensive to be collected. Some studies [22,24,
43] tackle the problem by directly applying the self-supervised learning scheme
designed for videos or images to skeleton data. Their pretext tasks extract video-
level temporal and discriminative information but are only employed to supervise
the final encoder outputs, as shown in Fig. 1 (Left). However, these approaches
do not consider the hierarchical nature of human skeletons and thus ignore the
structural domain knowledge carried by them.

To address the above limitations, we propose a novel skeleton representa-
tion learning framework to capture the hierarchical spatial-temporal domain
knowledge of human skeletons. As shown in Fig. 1 (Right), it consists of (1)
a hierarchical Transformer-based skeleton sequence encoder, namely Hi-TRS,
incorporating with (2) a hierarchical self-supervised pre-training scheme.

Specifically, the proposed Hi-TRS models skeleton sequence in three levels.
Given a skeleton sequence, the Frame Transformer (F-TRS) and the Clip Trans-
former (C-TRS) learn the spatial structures (frame level) and short-term fine-
grained temporal dynamic dependencies (clip level) among the skeleton joints
by applying self-attentions [45] on the spatial and temporal domains, respec-
tively. Then, the clip-level embeddings are fed to the Video Transformer (V-TRS)
to summarize long-term abstract information from clips (video level) and pro-
duce the feature representation of the skeleton sequence. The clip-level embed-
dings can be applied to short-term skeleton-based tasks, such as action detec-
tion [23,25], while embeddings from V-TRS can be used in long-term skeleton-
based tasks, such as action recognition [50] and motion prediction [28].
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Instead of only supervising the final output of the encoder as in previous
work [22,24,43], our framework leverages different pretext tasks to supervise
the encoder at different levels. As a result, the encoder acquires different types
and levels of prior knowledge on human skeletons. To be specific, the spatial
pretext task infers the information of one joint conditioned on the other joints
from the same time step. It is applied to the output of the F-TRS for learning
the spatial dependencies among joints. The temporal pretext task assists our
model to capture the temporal dynamic prior by distinguishing between valid
and invalid motion patterns. It supervises the outputs of C-TRS and V-TRS. The
discriminative pretext task captures discriminative information for supervising
the output of V-TRS, which enforces the model to predict future information in
a contrastive manner.

We conduct extensive experiments covering a wide range of tasks and problem
settings to evaluate the proposed method. Our approach outperforms the state-
of-the-art skeleton representation learning methods on three downstream tasks,
including action recognition, action detection, and motion prediction, under both
semi-supervised and supervised learning evaluation protocols. Most noticeably,
Hi-TRS improves previous state-of-the-art methods on action recognition by
5.8% (semi-supervised), by 8.1% (supervised) on action detection, and by 4.2%
(4.6mm) (semi-supervised) on motion prediction. Additionally, we conclude the
following key observations: (1) With the help of our hierarchical supervision,
the prior knowledge learned during pre-training is more versatile to support
downstream tasks at different levels than prior work using contrastive learning
only on the video level (see Sects. 4.5 and 4.6); (2) Our approach demonstrates
strong transfer capability under the transfer learning setting, where we achieve
significant improvement on action recognition, action detection, and motion pre-
diction tasks by 5%, 4.5%, and 11.7% (12.3 mm), respectively; (3) Our ablation
study shows that pre-training at lower levels is beneficial to higher level down-
stream tasks. Interestingly, we observe similar improvement obtained on lower
level downstream tasks when leveraging higher level pre-training.

2 Related Work

Self-supervised Learning. Self-supervised learning targets learning effective
feature representations from unlabeled data. It trains the model to solve pre-
designed pretext tasks, where labels are automatically generated from data with-
out human efforts. Great efforts have been made in previous work to design pre-
text tasks [7,33,53]. In computer vision, colorizing grayscale images [53], image
inpainting [33], and image jigsaw puzzles [31] are proposed to learn image feature
representations. Motion prediction [12], temporal jigsaw puzzle recognition [31],
clip orders prediction [49], and sequential verification [29] tasks are employed
to learn temporal dynamic information in videos. Recently, contrastive-based
pretext tasks [4,13] are introduced to learn instance discriminative information.
On the other hand, language-based pre-training objectives are widely used in
language domains [2,7,34]. Motivated by the success of these methods, our work
leverages in-domain pretext tasks to supervise the encoder at different levels.
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Skeleton Representation Learning. Early skeleton representation learning
methods [5,11,19,42,55] are mainly based on the encoder-decoder architecture.
Zheng et al. [55] trained a GAN-based model to reconstruct the original skeleton
information from the corrupted input. Su et al. [42] trained the model to decode
the future motion of the input skeleton sequences. Recent studies adopt the
self-supervised learning schemes designed for videos or images to skeleton data.
Lin et al. [24] trained the model to jointly solve motion prediction, temporal jig-
saw puzzle, and contrastive learning discriminative tasks. Li et al. [22] presented
a memory augmented contrastive learning framework and further improved its
performance by pursuing cross-view consistency constraints. Su et al. [43] guided
the model to learn motion consistency and continuity from videos. A shortcom-
ing of these methods is that they do not explicitly encourage the model to learn
the spatial structure of skeletons. Yang et al. [51] proposed to represent skeleton
sequences as skeleton clouds and learn the spatial and temporal information of
skeletons by solving the skeleton cloud colorization problem. However, it required
training two different models to learn the spatial and temporal information,
respectively. Different from these methods, we use multiple pretext tasks hier-
archically to train our model so that the spatial structure, temporal dynamics,
and discriminative information can be learned simultaneously.

Downstream Tasks. Action recognition aims to predict the action category
of a skeleton sequence. Studies in this area mainly focus on designing skeleton-
specific architectures for feature encoding. Early methods [16,17,20,40,52,56]
applied CNNs or RNNs to extract the representation of skeleton data. Recent
methods [38,50] modeled the skeleton data as spatial-temporal graphs and
extracted skeleton embeddings from graphs by Graph Convolutional Networks
[18]. More recent studies [6,36] leveraged the self-attention mechanism to extract
global dependencies among joints. In this work, we use this task to evaluate the
effectiveness of skeleton representation learning methods for long-term discrimi-
native tasks. Action detection temporally localizes and recognizes the presence of
the action in untrimmed videos [23,25,41]. Studies in this area can be categorized
into two streams. The first stream [23,25] formulates the task as a frame predic-
tion problem, and generates detection results directly from the predicted cate-
gories of each frame in a skeleton sequence. The second stream [21,41] first gen-
erates action proposals, and then recognizes action categories from them. This
paper follows the first stream to evaluate skeleton representation learning meth-
ods for short-term discriminative tasks. Motion prediction targets predicting
future human poses based on a short observation of human motion [1,3,27,54].
Previous methods employed RNNs to encode observed information and pre-
dict future motions [10,28]. These models are trained to generate deterministic
results. Recent work incorporated VAEs or GANs to decode multiple possible
motions [1,3,27,35]. To evaluate the effectiveness of learned prior knowledge, we
fine-tune models to predict deterministic motion in generation tasks.
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3 Our Method

3.1 Hierarchical Transformer-Based Encoder

The Hi-TRS model consists of three components: F-TRS, C-TRS, and V-TRS.
Given a skeleton sequence, the F-TRS first learns the spatial dependencies among
the joints by applying the self-attention operation on the spatial domain. Then,
the obtained results are fed to the C-TRS model to further encode the tem-
poral fine-grained dynamics dependencies among joints and extract a feature
representation at the clip level. Finally, the V-TRS infers the temporal relations
among the clips and extracts the embedding of the input skeleton sequence. In
the following sections, we provide details on each component.

Frame Transformer (F-TRS). Given a skeleton sequence, the positional fea-
ture of each joint is first extracted from its coordinates by a fully-connected layer
with the GELU activation [14]. F-TRS utilizes the positional features from all
the joints within a frame of the skeleton sequence as input. It is composed of a
stack of F-TRS layers, each of which encodes the spatial dependencies among
the joints based on the self-attention mechanism.

To be specific, in the l-th F-TRS layer, the model starts by projecting the
input feature of each joint to query, key, and value vectors [45] by three learnable
project matrices Wl

Q, Wl
K , and Wl

V , respectively, as described by the following
equation:

Ql
t = Wl

QX
l−1
t , Kl

t = Wl
KXl−1

t , Vl
t = WV Xl−1

t , (1)

where Xl−1
t is the matrix of the input features. When l = 1, it consists of the

positional features of the joints at the t-th frame; otherwise, it is the output of
the previous F-TRS layer. Ql

t, K
l
t and Vl

t are the transformed outputs of query,
key, and value vectors, respectively. We note that the i-th rows of these four
matrices are correspondent to the i-th joint in the skeleton.

The dot-product between each pair of query and key vectors is then calculated
and scaled by the dimension number of the key or value vectors. Finally, the
attention weights are obtained by normalizing the scaled dot-product with a
Softmax function. This process is defined in the following equation:

Al
t = Softmax(

Ql
t(K

l
t)

T

√
dk

), (2)

where (Kl
t)

T is the transpose of Kl
t; dk is the dimension number of key or value

vectors; Al
t is the matrix of spatial attention weights among the joints at the

t-th frame, and its element at the i-th row and j-th column is the attention
weight of the i-th joint with respect to the j-th joint. These attention weights
can be regarded as the measure of the spatial dependencies among the joints.
The output feature of each joint is updated as the weighted sum of the value
vectors, as shown in the following equation:

Xl
t = Al

tV
l
t. (3)

As a result, the spatial dependence among joints is encoded into their features.
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Following the multi-head attention mechanism [45], the above self-attention
operation is performed h times with h different learnable projection matrices
Wl

Q, Wl
K , Wl

V , and the obtained h outputs for each joint are concatenated.
The results are then fed to the Feedforward Network (FFN) [45], generating the
final output of the l-th F-TRS laye.

Clip Transformer (C-TRS). Since a skeleton sequence typically contains a
large number of joints and the self-attention operation scales quadratically with
respect to the number of joints, learning the fine-grained temporal dependencies
over the entire skeleton sequence using self-attention is computationally expen-
sive. To alleviate this problem, we temporally split a skeleton sequence into a
sequence of clips C with a sliding window. Then, the temporal dependencies
among the joints within each clip of C are learned using the C-TRS model.

Specifically, the input of C-TRS contains the spatial features of the joints
within a clip and a [CLS] token [7]. The [CLS] token summarizes useful informa-
tion from all the joints of the clip, because its output embedding is the weighted
sum of all joints features, where the weights are calculated using self-attention
[7,8]. The output of the [CLS] token from the C-TRS model is used as the fea-
ture representation of the entire clip. The C-TRS model is composed of a stack
of C-TRS layers, each of which learns the temporal dependencies among joints
by applying the multi-head self-attention mechanism on the temporal domain.
We leverage the following equation to compute the attention weights Ac:

Ac = Softmax(Mask(
Qc(Kc)T√

dk
)), (4)

where Qc and Kc are the matrices of the query and key vectors for all the
joints within the c-th skeleton clip of C, which are generated following the same
way as Eq. 1. More importantly, the Mask function is used for discarding spatial
attention weights. It achieves this by setting the scaled dot-product among the
joints from the same frame as the negative infinity, and keeps the other joints
unchanged. After Softmax, all spatial attention weights in Ac are equal to 0.

The joint features are updated following the same method as in Eq. 3 to
further encode the temporal dependencies information. The output clip-level
embeddings of all the clips in C are fed to the V-TRS model to extract the
feature representation of the skeleton sequence.

Video Transformer (V-TRS). The V-TRS model summarizes the long-term
abstracted video level information. It consists of stacked standard transformer
encoder layers [45] and takes clip-level embeddings of all the clips in C together
with a [CLS] token as inputs. Each of the V-TRS layers learns the temporal
dependencies among the clips. The output embedding of the [CLS] token is used
as the feature representation of the skeleton sequence.

3.2 Hierarchical Self-supervised Pre-training

In this section, we introduce the proposed pre-training tasks and describe how
they can be applied to supervise the training of the proposed model.
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Fig. 2. Overview of our pre-training tasks which include: (a) Spatial pretext task:
predicting the 3D coordinates of joints based on those of other joints from the same
time step; (b) Temporal pretext task: predicting whether the temporal dynamic pattern
of a skeleton clip or sequence is valid; (c) Discriminative pretext task: forecasting the
embedding of the next clip of a skeleton sequence

Spatial Pretext Task. The spatial task is to predict the coordinates of a joint
based on other joints from the same time step, as shown in Fig. 2(a). Given a
skeleton sequence, we first randomly sample 15% of the joints and replace the
coordinate of the i-th sampled joints by: (1) the randomly generated coordinate
80% of the time, (2) the coordinate randomly sampled from other joints 10%
of the time, and (3) the unchanged coordinate 10% of the time. These strate-
gies are inspired by the masking strategies in BERT [7]. The modified skeleton
sequence is fed to the F-TRS model, and then the extracted spatial embeddings
of the modified joints are fed to a fully-connected layer to regress their original
coordinates. The model is trained to minimize the absolute error between the
predicted and ground truth coordinates by the following L1 loss LS :

LS =
1

|M |
∑

i∈M

||ȳi − yi||1, (5)

where M is the set of modified joints; |M | is the size of M ; ȳi and yi are the
predicted and ground truth coordinates of the i-th modified joint, respectively.

Temporal Pretext Task. The temporal task requires the model to determine
whether the temporal dynamic pattern of a skeleton clip or sequence is valid,
as shown in Fig. 2(b). This is a binary classification problem, where the positive
samples are the original skeleton sequences or the skeleton clips cropped from the
original skeleton sequences, while negative samples are generated by permuting
the temporal order of the positive samples. It guides the model to learn the prior
knowledge of temporal dynamics. When this task is applied to the output of C-
TRS, a positive skeleton clip is generated by temporally cropping a few frames
from the skeleton sequence, while the negative sample is created by swapping two
randomly sampled frames of the positive clips. The output embeddings from the
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C-TRS model of the two clips are fed to a fully connected layer for prediction.
We train the model by using the cross-entropy loss LC

T :

LC
T = −(log(p+) + log(1 − p−)), (6)

where p+ and p− are the predicted positive possibilities for the positive and
negative samples, respectively.

When this task is applied to the output of V-TRS, a negative sample is
generated by temporally swapping two randomly sampled clips in the skeleton
clip sequence C. We then use a linear layer to classify whether a sample is
negative or positive. The model is trained by the loss function LV

T , which follows
the definition in Eq. 6.

Discriminative Pretext Task. This task predicts the embedding of the future
clip of a skeleton sequence, as shown in Fig. 2(c). It encourages the model to
learn discriminative information by supervising the task in a contrastive way.
Specifically, the model is trained to predict the embedding of the last clip in C
based on the information from all other clips in C. The output from the C-TRS
model of the last clip is used as the ground truth, and all other clips are fed to the
V-TRS to extract a video-level embedding, which encodes the past information
of the last clip. The obtained video-level embedding is fed to a fully-connected
layer to regress the feature of the last clip. The model is trained by using the
InfoNCE loss [32] LD:

LD =
exp(ēi · ei/τ)

∑B
j=1 exp(ēi · ej/τ)

, (7)

where ēi and ei are the predicted and ground truth embedding of the last clip of
the i-th video, respectively; τ is a temperature hyper-parameter [33]; B is batch
size. LD enforces the predicted embedding of a sample to be more similar to its
ground truth than to those of other negative samples. Compared with previous
studies where the contrastive learning methods are based on data augmenta-
tion [22,24], our method potentially requires lower computation as it does not
require encoding augmented views of input data.

Full Pre-training Objective. The full objective of the proposed hierarchical
self-supervised pre-training framework LH is: LH = LS + LC

T + LV
T + LD.

4 Experiments

To evaluate the proposed method, we begin by introducing the datasets, evalua-
tion protocols, and implementation details in Sects. 4.1, 4.2, and 4.3, respectively.
We then compare our method with the state-of-the-art skeleton representation
learning approaches for the action recognition, action detection, and motion
prediction tasks in Sects. 4.4, 4.5, and 4.6, respectively. We further evaluate the
transfer capability of the learned prior knowledge on human skeletons through
pre-training in Sect. 4.7. Finally, we conduct an ablation study to evaluate the
proposed pre-training strategy in Sect. 4.8.
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4.1 Datasets

NTU RGB+D 60 Dataset (NTU-60). The NTU-60 dataset [37] contains
56,880 videos of 60 action categories. These videos are performed by 40 actors
and captured by three Microsoft Kinect v2 cameras from different views. Each
video contains at most two subjects. A subject has 25 joints per frame. The 3D
joint locations of these joints are extracted by the Microsoft Kinect cameras.
Two common evaluation benchmarks [37] are recommended on this dataset.
In Cross-Subject (xsub) benchmark, the training videos are from 20 selected
subjects, and the testing videos are from the other 20 subjects. In Cross-View
(xview) benchmark, the videos from the second and third cameras are used for
training, while the videos from the first camera are used for evaluation purpose.

NTU RGB+D 120 Dataset (NTU-120). The NTU-120 dataset [26] is an
extended version of the NTU-60 dataset. It contains 113,945 skeleton sequences
from 120 action categories. There are two common protocols [26] for this dataset.
In Cross-Subject (xsub) benchmark, the samples of the selected 53 subjects are
used for training, and the samples of the remaining subjects are used for testing.
In Cross-Setup (xset) benchmark, the samples with even setup IDs are used for
training, and those with odd setup IDs are used for testing.

PKU Multi-Modality Dataset (PKUMMD). PKUMMD [25] is a new
large-scale benchmark for continuous multi-modality 3D human action under-
standing. It contains almost 20,000 action instances and 5.4 million frames from
52 action categories. Actions are labeled at frame level [25]. The 3D joints are
also extracted via the Microsoft Kinect v2 cameras. PKUMMD consists of two
subsets: Part I and Part II. Following the common settings [24,25], the training
and testing data are split under the Cross-Subject [25] protocol for each subset.

4.2 Evaluation Protocol

Following previous work [22,51], our model is evaluated under two settings: (1)
the supervised setting and (2) the semi-supervised setting. Under the supervised
setting, the pre-trained encoder is jointly fine-tuned with a linear classifier or
a LSTM-based motion decoder [28] for downstream tasks using all the labeled
pre-training data. Under the semi-supervised setting, we use the same setup as
the supervised setting described above except that the amount of annotated
training samples used for fine-tuning is limited.

4.3 Implementation Details

In the F-TRS, C-TRS, and V-TRS models, the number of their layers, attention
heads, and dimensions of query vectors are all set as 2, 8, and 64, respectively.
The input and output dimensions of the F-TRS, C-TRS, and V-TRS model
are 128, 256, and 512, respectively. Before being fed to F-TRS, the input 3D
coordinates of each joint are projected to 128 dimensions by a fully connected
layer with the GELU activation [14]. The output of F-TRS and C-TRS are
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Table 1. Top-1 classification accuracy (%) for action recognition on the NTU-60 and
NTU-120 datasets under the supervised setting. “-2S” and “-3S” mean two-stream and
three-stream based models, respectively. The best results are highlighted in bold

Method NTU-60 NTU-120

xsub xview xsub xview

MS2L [24] (ACMMM’20) 78.8 81.8 – –

VPD [30] (ECCV’20) – 81.4 – –

MCC [43] (ICCV’21) 83.0 89.7 77.0 77.8

MCC-2S [43] (ICCV’21) 89.7 96.3 81.3 83.3

CrosSCLR-3S [22] (CVPR’21) 86.2 92.5 80.5 80.4

SCC-3S [51] (ICCV’21) 88.0 94.9 – –

Hi-TRS (Ours) 86.0 93.0 80.6 81.6

Hi-TRS-2S (Ours) 89.2 95.1 84.7 86.6

Hi-TRS-3S (Ours) 90.0 95.7 85.3 87.4

fed into a fully-connected layer to increase feature dimension to 256 and 512,
respectively, before being fed into C-TRS and V-TRS. Positional encodings [45]
are added to the joint features or clip features to retain their spatial identity and
temporal information. Specifically, standard learnable 1D positional embeddings
[8] are added to the input of F-TRS and V-TRS, while learnable 2D positional
embeddings [8] are used for the input of C-TRS. More details can be found in
the supplementary materials.

4.4 Results on Action Recognition

In this section, we evaluate our method on the action recognition task. Given
a skeleton sequence, the entire Hi-TRS model is used as the encoder, and the
outputs from the V-TRS model are fed into a linear classifier (i.e., a fully-
connected layer) to predict action categories. For a fair comparison with the two-
streams (2S) and three-streams (3S) based methods [22,43,51], we implement a
2S and a 3S version of our method. Specifically, we train three individual models
from three different views of skeleton sequences, including joints, motions, and
bones following [22]. During the evaluation, the 3S prediction results are obtained
by fusing the prediction scores of the three models [22], while the 2S prediction
results are obtained by fusing the results of the joint and bone models [22,43].

Supervised Setting. We compare the proposed Hi-TRS with other approaches
on NTU-60 and NTU-120 under the supervised setting. The top-1 classification
accuracy is reported on each benchmark. The obtained results are shown in
Table 1. We can see that our 3S method achieves the state-of-art performance on
NTU-60 and NTU-120. Note that the encoders used by several previous methods
achieve better performance than our model when the parameters are randomly
initialized. For example, when trained from scratch , MCC outperforms the pro-
posed Hi-TRS by 1.9% under the cross-subject setting on the NTU-60 dataset,
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Table 2. Top-1 classification accuracy (%) for action recognition on the NTU-60
dataset under the semi-supervised setting. “-2S” and “-3S” mean two-stream and three-
stream based models. The best results are highlighted in bold

Method 1% data 5% data 10% data

xsub xview xsub xview xsub xview

ASSL [39] (ECCV’20) – – 57.3 63.6 64.3 69.8

MS2L [24] (ACMMM20) 33.1 – – – 65.2 –

MCC-2S [43] (ICCV21) – – 47.4 53.3 60.8 65.8

CrosSCLR-3S [22] (CVPR21) 51.1 50.0 – – 74.4 77.8

SCC-3S [51] (ICCV21) 48.3 52.5 65.7 70.3 71.7 78.9

Hi-TRS (Ours) 39.1 42.9 63.3 68.3 70.7 74.8

Hi-TRS-3S (Ours) 49.3 51.5 71.5 74.8 77.7 81.1

Fig. 3. Left: mAPv (%) results on the action detection task (the higher the better).
Right: MPJPE (mm) results on the motion prediction task (the lower the better). We
note that the reported results of both MCC [43] and CrosSCLR [22] are based on our
implementation. Please refer to the supplementary material for the implementation
details and exact numbers of each model

and the 3S-encoders used by CrosSCLR outperforms Hi-TRS by around 3% on
the NTU-120 dataset. However, our method is able to outperform them when
the models are pre-trained. These results demonstrate that the proposed hierar-
chical pre-training scheme enables Hi-TRS to learn powerful prior knowledge on
human skeletons which can be successfully leveraged in the downstream task.

Semi-Supervised Setting. Following the standard setup in [22,24,51], we
fine-tune our pre-trained encoder and the randomly initialized linear classifier
with randomly sampled 1%, 5%, and 10% of the training data on the NTU-60
dataset, respectively. From the results reported in Table 2, we observe that the
proposed Hi-TRS outperforms the state of the art by a large margin under the
5% and 10% settings. On the other hand, we note that our model performs
slightly worse under 1% setting. We hypothesize this is due to the fact that 1%
of the training data is insufficient to train Transformer-based encoders with a
large number of parameters as explained in [45].
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4.5 Results on Action Detection

In this section, we compare our method with previous approaches on the action
detection task. This experiment aims to evaluate the effectiveness of the learned
skeleton representations for short-term discriminative tasks.

We formulate the action detection task as a per-frame classification problem
following the setting in [23,25]. Given one certain frame, we extract a short
clip that contains its surrounding information from the entire skeleton sequence.
(Due to space limitation, please refer to the supplementary material for more
details on how video clips are extracted). The obtained video clip is then fed
into F-TRS and C-TRS to extract its feature representation. Finally, a linear
classifier is applied to predict the action category of the input frame based on
the obtained feature representation.

Following the evaluation setting of [22,23,38], the experiments are conducted
on PKUMMD Part I subset. According to [25], we adopt mAPv (mean average
precision of different videos) and mAPa (mean average precision of different
actions) with the overlapping ratio of 0.5 as the evaluation metrics. The experi-
mental results of the mAPv metric are presented in Fig. 3 (Left). From this figure,
we can find that our method outperforms previous approaches under both super-
vised and semi-supervised settings. More importantly, we find that MCC under-
performs its randomly initialized encoder by 2.1% and 1.8% in the supervised
and semi-supervised settings, respectively. Meanwhile, CrosSCLR-3S also under-
performs its randomly initialized encoder by 0.5% in the semi-supervised setting.
One possible reason is that these two methods focus on learning long-term tem-
poral representations [22,43]. As a result, their learned prior knowledge is not
effective for short-term downstream tasks. In contrast, the proposed Hi-TRS
surpasses its randomly initialized counterpart by a large margin. This demon-
strates that our method can capture powerful prior knowledge for short-term
downstream tasks, thanks to the proposed hierarchical pre-training strategy. We
also have the same observations when the mAPa metric is utilized, and please
refer to the supplementary material for the corresponding results and qualitative
analysis.

4.6 Results on Motion Prediction

In this task, the model is trained to predict the motions in the future 400 millisec-
onds based on an observation of two seconds, following the short-term motion
prediction protocol defined in [28]. We adopt this task to evaluate the effective-
ness of learned prior knowledge for generation tasks.

Specifically, the observed skeletons are fed into the proposed Hi-TRS to
extract feature representations. The outputs of the V-TRS model are fed into
a GRU-based decoder [28] to predict the joint coordinates of skeletons for the
future 400 ms. The model is then trained to minimize the Euclidean distance
between the predicted poses and ground truths.

Following previous work [3,54], we employ MPJPE (mm) as the evaluation
metric, which measures the distance between the ground truths and the gen-
erated results. The experiments are conducted on the NTU-60 cross-subject
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Table 3. Results of motion prediction, action recognition, and action detection under
the transfer learning setting. The best results are highlighted in bold

Pre-training Dataset PKU Part II PKU Part I

MPJPE ↓ Accuracy ↑ mAPa ↑ mAPv ↑
Randomly Initialized Encoder 105.4 50.9 53.4 63.2

NTU-60-xsub 94.2 55.0 55.2 66.6

NTU-120-xsub 93.1 55.9 57.9 67.3

benchmark as shown in Fig. 3 (Right). From this figure, we can find that our
method outperforms previous methods by a large margin under both supervised
and semi-supervised settings. Additionally, the learned prior knowledge of the
previous methods is not useful under the semi-supervised setting. On the other
hand, our method significantly outperforms the randomly initialized counter-
part under different settings. It is consistent with the observations on the action
detection task, demonstrating that our learned prior knowledge is more versatile
to support different downstream tasks than the previous approaches. We also
provide qualitative results in the supplementary material.

4.7 Evaluation of Transfer Learning

In this section, we evaluate whether the learned knowledge of Hi-TRS through
the pre-training process is transferable across datasets. To this end, we first pre-
train two encoders under the cross-subject protocol on NTU-60 and NTU-120,
respectively. The pre-trained encoders are then fine-tuned on PKUMMD Part
I and PKUMMD Part II for action detection, action recognition, and motion
prediction. The obtained results are then compared with the ones of a randomly
initialized encoder. These results are reported in Table 3. We can observe that
pre-training can improve performance for different-level downstream tasks by a
large margin, because the learned prior knowledge is transferable and versatile.
Additionally, from the results of “NTU-120-xsub” and “NTU-60-xsub”, we find
that pre-training on larger datasets can further improve transfer capability.

4.8 Ablation Study

In this section, we evaluate the effectiveness of the proposed hierarchical pre-
training strategy. This is achieved by comparing the performance of the encoders
that are pre-trained on different levels.

We first show how pre-training on low levels affects the performance of the
high-level downstream tasks. The experiments are conducted on the NTU-60
cross-subject benchmark for action recognition and motion prediction under the
supervised protocol. The obtained results are reported in Table 4. We find that
pre-training on each level (frame level, clip level, and video level) can achieve
performance improvement over the randomly initialized encoder, thanks to the
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Table 4. Results of the ablation study under the supervised setting on the NTU-60
cross-subject benchmark for action recognition and motion prediction. “-” means the
encoder’s parameters are randomly initialized. F, C, and V mean that the pre-training
tasks are applied on the output of F-TRS, C-TRS, and V-TRS, respectively. The best
results are highlighted in bold

Pre-trained Level – F C V F+C F+V C+V F+C+V

Accuracy(%) ↑ 79.6 80.8 81.1 82.0 83.9 84.1 84.0 86.0

MPJPE(mm) ↓ 98.4 97.3 96.7 88.1 95.4 87.4 90.2 85.6

Table 5. Results of the ablation study under the supervised setting on the PKUMMD
Part I subset for action detection. “-” means that the encoder’s parameters are ran-
domly initialized. F, C, and V mean that the pre-training tasks are applied on the
output of F-TRS, C-TRS, and V-TRS, respectively. The best results are in boldface

Pre-trained Level – F+C F+C+V

mAPa 53.4 55.6 58.4

mAPv 63.2 65.1 66.3

powerful prior knowledge learned from the pre-training tasks of each level. Addi-
tionally, pre-training on any combination of two levels achieves higher perfor-
mance improvement than pre-training on only one level. More importantly, the
best improvement is achieved when the encoder is pre-trained on all levels. This
confirms the fact that our full model manages to combine prior knowledge con-
taining spatial structure, temporal dynamics, and discriminative information for
human skeletons during the pre-training stage.

To further explore how the high-level pre-training tasks affect the low-level
downstream tasks, we conduct experiments on the PKUMMD Part I subset for
action detection. The results are shown in Table 5. Please refer to the supplemen-
tary material for the results of more model variants. We can see that pre-training
on high level (video level) leads to performance improvement on the low level
downstream task as well, since it can introduce temporal dynamic information
and complementary discriminative information.

5 Conclusion

In this work, we proposed a novel method that encodes skeleton sequences
using a hierarchical Transformer-based encoder and designed a pre-training
scheme consisting of three pretext tasks at three different levels. We conducted
extensive experiments under different learning settings. For the supervised and
semi-supervised settings, our method achieves the state-of-the-art performance
against competitive baselines. Moreover, the learned prior knowledge through
hierarchical pre-training shows strong transfer learning capability for down-
stream tasks at different levels. The experimental results demonstrate that our
method is an effective way for learning feature representations of skeleton data.
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