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ARTICLE INFO ABSTRACT

Keywords: Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area
Leaf area index index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active
Fr:':t“m of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and
radiation

fAPAR. However, while many studies have examined both empirical and model-based relationships among LAI,
fAPAR, and spectral vegetation indices (SVI) from remote sensing, few studies have systematically and empiri-
cally examined how relationships among these variables change over the growing season. In this study, we
examine how and why seasonal-scale covariation differs among time series of remotely sensed SVIs and both LAI
and fAPAR based on current understanding and theory. To do this we use newly available remote sensing data
sets in combination with time series of in-situ measurements and a canopy radiative transfer model to analyze
how seasonal variation in canopy and environmental conditions affect relationships among remotely sensed SVIs,
LAI, and fAPAR at a temperate deciduous forest site in central Massachusetts. Our results show that accounting
for seasonal variation in canopy shadowing, which is driven by variation in solar zenith angle, improved remote
sensing-based estimates of LAI, fAPAR, and daily total APAR. Specifically, we show that the phenology of SVIs is
strongly influenced by seasonal variation in near infrared (NIR) reflectance arising from systematic variation in
the canopy shadow fraction that is independent of changes in LAI or fAPAR. Results of this work provide a
refined basis for understanding how remote sensing can be used to monitor and model the phenoclogy of LAIL
fAPAR, APAR, and gross primary productivity in temperate deciduous forests.

Vegetation indices

Remote sensing

Harmonized landsat-sentinel 2
Phenoclogy

1. Introduction been shown to increase respiration and decrease net carbon uptake (D.
Liu et al., 2018). Because global ecosystems are coupled to the climate

Climate change is affecting the growing season of terrestrial eco- system (Anav et al., 2015; Bonan & Doney, 2018; Friedlingstein, 2015;

systems in myriad ways (Richardson et al. 2013). One of the most widely
cited examples of such impacts is changes in the length of the growing
season from warming temperatures (Piao et al., 2019). These changes
directly influence ecosystem-atmosphere exchanges of carbon, energy,
and water budgets at seasonal time scale (Bonan & Doney, 2018). For
example, a number of studies have shown that earlier leaf emergence in
spring increases carbon uptake early in the growing season (Buermann
et al., 2013; Keenan et al., 2014; A. D. Richardson et al., 2009, 2010),
but can also reduce carbon uptake later in the growing season due to the
effects of moisture limitations (Buermann et al. 2013, Wolf et al. 2015,
He et al. 2020), carbon saturation (Zani et al. 2020), or nitrogen limi-
tation (Elmore et al., 2016). Similarly, longer and warmer autumns have
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Le Quere et al., 2018; Schimel et al., 2015), better understanding is
needed regarding how changes in phenology will impact terrestrial
carbon, energy, and water budgets in the future.

Seasonal variation in leaf area index (LAI) is the primary biophysical
manifestation of vegetation phenology. Phenology in LAI, in combina-
tion with seasonal variation in solar geometry, drive concomitant
changes in the fraction of photosynthetically active radiation absorbed
by vegetation (fAPAR). Supported by theoretical results from canopy
radiative transfer models (Baret & Guyot, 1991; Goward & Huemmrich,
1992; Sellers, 1985), spectral vegetation indices (SVIs) have been used
for decades to monitor and map both phenology (Jonsson & Eklundh,
2002; X. Zhang et al., 2003) and variation in canopy LAI and fAPAR
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Fig. 1. (A) fAPAR and LAI measurements versus day of year at the Harvard Forest from 2016-2019. (B) SVIs (EVI2, NDVI, NIR,) and red and near-infrared

reflectance versus day of year at the Harvard Forest for HLS data from 2016-2019.

(Daughtry et al., 1982; Gitelson et al., 2003; Hipps, 1983; Penuelas et al.,
1995; J. Xiao et al., 2019). In deciduous forests, seasonal variation in LAI
is the primary driver of seasonal variation in fAPAR. However, addi-
tional factors that vary over the growing season, including solar geom-
etry, moisture stress, changes in canopy chemistry and leaf orientation,
and the ratio of direct to diffuse incident radiation, can influence the
relationship between SVIs and fAPAR (e.g., Reaves et al. 2018). While
many studies have examined both empirical and theoretical relation-
ships among SVIs, LAIL, and fAPAR (e.g Asrar et al. 1984, Baret and
Guyot 1991, Myneni and Williams 1994, Myneni et al. 1995, Knyazi-
khin et al. 1998a, 1998b, Fensholt et al. 2004, Baret et al. 2007, Yan
et al. 2016a, 2016b), incomplete understanding regarding how seasonal
changes in canopy properties and environmental conditions impact
these relationships is a significant source of uncertainty in remotely
sensed estimates of LAI and fAPAR.

With this context in mind, the goal of this paper is to use newly
available remote sensing data sets in combination with time series
measurements of both LAI and fPAR collected in-situ to improve un-
derstanding of how seasonal variation in canopy and environmental
conditions affect the relationship between remotely sensed SVIs and LAI
and fAPAR. Specifically, our analysis examines the following question:
what controls changes in the relationship between remotely sensed SVI's
and both LAI and fAPAR at seasonal time scale? To address this question,
we use in-situ measurements and satellite imagery in combination with
a canopy radiative transfer modeling framework to perform a systematic
analysis of seasonal-scale co-variation between SVIs and both LAI and
fAPAR at the Harvard Forest Long Term Ecological Research/AmeriFlux
site in central Massachusetts.

2. Data and methods

Our analysis uses field measurements of LAI and fAPAR in combi-
nation with time series of remotely sensed surface reflectance data from
the Landsat 8 Operational Land Imager and the Sentinel 2 Multispectral
Instrument collected over four growing seasons. Specifically, we per-
formed three main tasks: (1) analysis and modeling of seasonal co-
variation in LAI and remotely sensed SVIs; (2) analysis and modeling
of seasonal co-variation in fAPAR and remotely sensed SVIs; and (3)
estimation of daily integrated APAR based on remotely sensed SVIs and
diurnal variation in modeled instantaneous fAPAR.

2.1. Site description

We conducted our analysis using data collected at the Harvard Forest
Long Term Ecological Research/AmeriFlux site located in Petersham,
MA (https://harvardforest.fas. harvard.edu/). Species composition at
the Harvard Forest is representative of a transitional New England for-
est, with more than 90% of the forest composed of a closed canopy
dominated by red oak (Quercus rubra), red maple (Acer rubrum), yellow
birch (Betula alleghaniensis), and Eastern Hemlock (Tsuga canadensis).
The climate is humid continental with four distinct seasons, including
warm summers (average daily July temperature of 20 C) and cold
winters (average daily January temperature of -4 C). As a long-term
ecological research site and an AmeriFlux core site, Harvard Forest
has a long history of research and a large archive of historical data sets
including eddy covariance and meteorological measurements, along
with field-measured LAI and fAPAR data. The site is also a part of the
National Ecological Observatory Network (NEON) network, which
provides systematic monitoring of diverse ecological variables and
processes that are relevant to this study, including tower-based micro-
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meteorological measurements and LAI measurements.

2.2. Data

We use time series of LAI and fAPAR data collected in the footprint of
the Harvard Forest Environmental Measurement Station (EMS) eddy
covariance flux tower (Munger & Wofsy, 2022). in combination with
time series of surface reflectance data from Landsat 8 and Sentinel 2 at
30 m spatial resolution (Fig. 1). We restrict our analyses to data collected
during the growing season at Harvard Forest, which we define here as
extending from April 10 to December 1 and use data from 2016-2019.
Note that prior to 2016 Sentinel 2 data was acquired at roughly
monthly frequency in North America. As a consequence, after cloud
screening (which eliminates roughly 50% of the data during the growing
season) HLS data do not provide sufficient temporal to resolve pheno-
logical processes before 2016.

Systematic LAI measurements have been collected at Harvard Forest
since 2005 and are collected bi-weekly in the spring and fall and
monthly during the mid-summer using LI-COR LAI2000 (and more
recently LAI2200) optical LAI meters (LI-COR Biosciences, Lincoln, NE).
Measurements are collected at 36 plots located along six 500 m transects
extending radially in a cone facing to the west and extending outward in
the footprint of the EMS tower. The plots are located inside 34 unique
30-meter Landsat and Sentinel-2 pixels (see below). The LAI measure-
ments estimate total plant area index (PAI), which includes both woody
and leaf components. To estimate LAI, which is our primary interest
here, we adjust the measured PAI values using the woody fraction (Wg),
which accounts for the effects of woody plant materials (branches,
stems) on PAI measurements (J. M. Chen, 1996; G. Yan et al., 2019):

(€8]

@

where P is the measured PAI, and P, and P, are the growing season
minimum and maximum PAI, respectively. W changes as a function of
the LAI and so exhibits seasonal variation during spring and fall (Ryu
et al., 2012; Toda & Richardson, 2018). For the analyses we present
below, we interpolate the periodic measurements of LAI to daily time
step during the growing season using a cubic spline.

In situ fAPAR was estimated using 30- and 60-minute values
(depending on the source) of above- and below-canopy measurements of
photosynthetically active radiation (PAR) (400-700 nm) collected at
three locations: (1) the EMS tower; (2) a walk-up tower located about
400 meters to the southwest of the EMS tower; and (3) the National
Ecological Observatory Network (NEON) tower located about 240 me-
ters to the Northeast of the walk-up tower. The walk-up and NEON
towers are in the footprint of the EMS tower adjacent to the LAI tran-
sects. To ensure high-quality estimates of fAPAR, we excluded mea-
surements under low light conditions (when total downwelling above
canopy PAR was 200 molm 2s !)and for large solar zenith angles
(outside of 7 AM to 5 PM local solar time). The resulting set of PAR
measurements were used to calculate the absorbed photosynthetically
active radiation (APAR, hereafter ) and fAPAR. As part of this pro-
cedure, 3 cases with out-of-range fAPAR values below 0 or above 1 (i.e.,

0 or 1) were assumed to reflect low quality data and were removed.

To calculate  we assume that PAR reflected by the forest floor is
negligible (Asner, 1998; D Odorico et al., 2014; Jenkins et al., 2007; Li &
Fang, 2015; Russell et al., 1989) and that can be estimated using:

3

where PAR; is the incident downwelling PAR above the canopy, PAR,, is
the upwelling PAR reflected by the canopy, and PAR is the transmitted
PAR (i.e., measured below the canopy). fAPAR was then estimated by
dividing by PAR;. For PAR; and PAR,, we used the average of
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measurements collected across all three towers at each time step. For
PARy, we used PAR sensors collected at 1 m above the ground surface at
the hardwood walk up and EMS towers (Ellison & Munger, 2021; A.
Richardson & Hollinger, 2019). PAR. measurements at the EMS data
were available at 60-minute time steps and we linearly interpolated
these data to a 30-minute time step.

Remotely sensed time series of surface reflectance and SVIs used in
this analysis were derived from version 1.4 of NASA s Harmonized
Landsat Sentinel-2 (HLS) dataset (https://hls.gsfc.nasa.gov/). This data
set provides ‘harmonized surface reflectance values from imagery ac-
quired by the Landsat 8 Operational Land Imager and Sentinel-2 Mul-
tispectral Sensor Instrument, where data from each instrument have
been co-registered to a common 30 m grid, normalized to adjust for
radiometric differences across sensors, corrected for solar and view ge-
ometry effects, and used to estimate surface reflectance imagery based
on a common atmospheric radiative transfer model (for details, see
Claverie et al. 2018). The HLS dataset includes all imagery collected by
Landsat 8 and Sentinel 2A and 2B. For this analysis we use imagery
collected between 2016-2019 from HLS tile T18TYN, which covers the
Harvard Forest. Note that because Sentinel 2B was launched in 2017,
HLS imagery has fewer images in 2016 than in 2017-2019. Because LAI
and fAPAR vary at seasonal time scale (i.e., not daily) and we are
interested in daily estimates of LAI and fAPAR, we interpolate the HLS to
provide daily imagery using the approach described by Bolton et al.
(2020) based on penalized cubic smoothing splines. Using this approach,
daily values of the normalized difference vegetation index (NDVI;
Tucker 1979), two-band Enhanced Vegetation Index (EVI2; Jiang et al.
2008), and near-infrared vegetation index (NIRy; Badgley et al. 2017)
for the 2016-2019 growing seasons were generated for individual HLS
pixels located over each of the fixed plots where LAl measurements were
collected (34 pixels, ~30,600 m?). In the results presented below, we
include values for LAI and fAPAR estimated directly from imagery and
from the interpolated values of the SVIs.

2.3. Analysis

2.3.1. Estimating LAI from SVIs

In the first element of our analysis, we used the modeling framework
developed by Baret and Guyot (1991) in association with measurements
of NDVI, EVI2, and NIR, derived from HLS imagery to estimate the forest
canopy LAI in the EMS tower footprint at daily time step during the
growing seasons of 2016-2019. In this framework, which was originally
derived using the SAIL canopy radiative transfer model (Verhoef, 1984),
canopy LAI is estimated as a function of remotely sensed SVI measure-
ments using a formulation based on Beer s Law:

4

where VIpoy is the vegetation index on any given day of year, VI, is the
bare ground vegetation index (i.e., the VI value when no green leaves are
present in the canopy), VI is the deep canopy vegetation index (the VI
value for a canopy with very large LAI; here we use LAl  10), and ky; is
an extinction coefficient that depends on leaf optics, the canopy leaf
angle distribution, and solar geometry (see next section). Because the
LAI and HLS data were not acquired on the same dates, we compared LAI
values estimated from remotely sensed SVIs to field measurements of
LAI interpolated to the HLS image acquisition dates.

2.3.2. Two-stream modeling of canopy reflectance

Both VI and ky; depend on solar geometry and canopy conditions,
and so our approach includes parameterizations that capture variation
in each of these terms over the course of the growing season. For
example, Fig. 1 clearly shows that even though field-measured LAI is
effectively constant outside of the greenup and senescence periods, EVI2
and NIRv (and to a lesser degree, NDVI) decrease monotonically after



Fig. 2. Camera image of representative forest canopy in the Harvard Forest
EMS tower footprint acquired from an unmanned aerial vehicle at 14:35 pm
EDT on Oct 16, 2016. Note that even though the forest canopy is relatively
uniform, shadowing from within and between crown gaps and 3-D structure is
substantial.

reaching peak values around the summer solstice. This seasonal pattern
has been noted in other studies (e.g., Elmore et al. 2012) and was
examined in detail by Reaves et al. (2012), who concluded that about
50% of the observed seasonal variation is related to topographic effects.
However, Reaves et al. (20138) were not able explain the remaining
variance, nor do their results explain systematic seasonal decline in
vegetation indices over relative flat sites such as the Harvard Forest.
Here we use the two-stream canopy radiative transfer model described
by Sellers (1985) in combination with a simple parameterization for
canopy shadowing as a function of solar zenith angle to model seasonal
variation in VI,. Specifically, we define canopy shadows as areas in the
canopy that are not illuminated by beam irradiance. To parameterize
canopy properties (including variation in leaf optics) we use measure-
ments of leaf-level red and near-infrared reflectance for dominant tree
species at Harvard Forest collected by Dillen et al. (2012), and following
Raabe et al. (2015), we parameterize the canopy leaf angle distribution
to be planophile (i.e., we set the parameter describing the departure
from a spherical LAD in the two stream model y; = 0.5).

2.3.3. Modeling the Impact of Canopy Shadows on Surface Reflectance

The two-stream approximation for radiative transfer in vegetation
canopies assumes a uniform optical medium. Hence, it does not account
for the effects of spatial variability and three-dimensional forest struc-
ture, especially from shadows, which affect the pixel-scale surface
reflectance from forest canopies (Fig. 2). To capture the impact of sea-
sonal changes in canopy shadowing on surface reflectance, which is
measured at near-nadir view angles by Sentinel 2 and Landsat 8, we
implemented a simple parameterization that quantifies how the pro-
portion of canopy that is sunlit versus shadowed changes with solar
zenith angle over the growing season. The parameterization includes
two parts.

First, to model the proportion of canopy that is shaded as a result
mutual shadowing by leaves within crowns (fy,,), we use the ratio of
sunlit LAI at the time of satellite overpass to the sunlit LAI when the Sun
is at nadir (g = 1):

o)

Lsi',y:l

In this Eq., Ly, is the sunlit leaf area for a given solar zenith angle
(specified here using the cosine of the solar zenith angle, u) for the date
and time of interest, which is estimated using (Campbell & Norman,
1998):
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Fig. 3. NEON Digital surface model from discrete return lidar imagery for the
study area where LAI and remote sensing samples were collected at the Harvard
Forest. The EMS tower is identified by the red triangle in the upper right corner.
Units for color scale are meters above sea level.
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1— E_K" =L

Ls.!,u = T (6)
where L is the canopy LAI for the date in question and K, is a shape factor
that depends on p (Sellers, 1985). Hence, f,, varies over the growing
season as a function of both the canopy LAI (L) and p.

Second, to estimate the proportion of the surface that is shadowed on
any given date and time as a result of 3-D crown structure (fi,) (i.e.,
shadowed crowns and shadows cast by 3-D crown structure), we used a
high spatial resolution (1m) digital surface model (DSM) for the Harvard
Forest in combination with the algorithm described by (Corripio, 2003)
to model shaded versus non-shaded canopy surfaces as a function of
solar zenith angle. The DSM was generated by the National Ecological
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Fig. 5. Left panel: UAV image mosaic for the area corresponding to LAI plots and Landsat and Sentinel pixels used in this analysis. Right panel: shadowed (green)
versus illuminated canopy mapped using NEON lidar imagery. Red triangle shows the location of the EMS tower. Note, the classification map has been reprojected to

a UTM coordinate system, while the image at left is unprojected.

Observatory (NEON) using discrete return lidar imagery collected by the
NEON airborne observatory at Harvard Forest (NEON data product ID
DP3.30024.001), and captures high-resolution spatial variation in can-
opy height, including the effect of underlying topography (which is
modest in the EMS footprint but can influence shadows). To estimate
shade fractions for our region of interest, we extracted DSM data for the
footprint of the EMS tower corresponding to the same area where the
LAI and HLS data used in this study were collected (Fig. 3).

Using the DSM data, we used the ‘hillshading’ function implemented
in Version 1.2.2 of the R package ‘insol’ (which implements the algo-
rithm desecribed in Corripio (2003)) to identify locations where the
where the local solar zenith angle of 1m pixels exceeded 90° or where
3-D canopy structure resulted in shadows casted onto other 1m cells at
the overpass time of Landsat and Sentinel 2 at Harvard Forest. The total
shade fraction for the canopy was then computed as the sum of the
fraction of shade from the crowns (fi,) and the fraction of shade from
leaves (fy,,), correcting for overlap:

ﬁs =fsc;| + (1 _fsr,s} *ng_, (7)

Fig. 4 plots seasonal variation in the modeled proportion of the total
shaded area (f,;) as well as the components of this shade from leaves and
crowns (fi,, and f.,, respectively) at the nominal overpass time of
Landsat and Sentinel 2. On the summer solstice (~June 21), the modeled
shadow fraction is 9.9%, whereas by the end of the growing season (Oct
31) the fraction increases to 29.9%.

To evaluate the realism of model results shown in Fig. 4, we created a
mosaic of high-resolution imagery collected from an unmanned aerial
vehicle at the Harvard Forest and cropped the resulting image to cover
the same study region that we used for the DSM-based modeling. We
then manually labeled 506 pixels in this mosaic (251 as shadowed and
255 as sunlit), and used these pixels to train a random forest model
(Breiman, 2001) that classifies each pixel as either sunlit or shaded.
Using this classifier, we created a high-spatial resolution (10cm) map of
sunlit versus shaded canopy in the study region (Fig. 5). The overall
classification accuracy of the model (estimated via cross-validation) was
99.2% correctly classified and the proportion of the area mapped as
shadow was 33.6%. For comparison the shade fraction modeled using
Egs. (5)-(7), is 28.1% for the date and time when the UAV imagery was
acquired, which suggests that our approach modestly (~16% for the
date and time the UAV imagery were acquired) underestimates shadow

fraction.

2.3.4. Estimating fAPAR from In-Situ Measurements

To estimate fAPAR absorbed by leaves in the canopy (fAPAR), in situ
measurements of total fAPAR (fAPARy) were adjusted to exclude radi-
ation intercepted by branches and stems (fAPARg) (ie., fAPAR; =
fAPART - fAPARs, where fAPART = ®/PAR;). Note that fAPARs varies
with leaf area in the canopy and so is not constant over the growing
season. To account for this, we used an approach based on Beer’s law to
partition fAPARy between fAPAR¢ and fAPARg (Fig. 2):

fAPARc = P, — exp(—K,L) ®

fAPARs = (P, — exp(—K,S) x (1 — fAPARc) (9)
where L and S are the canopy and stem area index (i.e., the plant area
index when LAI = 0), respectively, K, is the canopy extinction coeffi-
cient derived from observations, and P, is the deep canopy fAPAR
(=0.94).

2.3.5. Estimating fAPAR from remote sensing

We evaluate two different approaches for estimating fAPAR; from
vegetation indices: (1) the method deseribed by Baret and Guyot (1991),
which estimates fAPAR; directly from SVIs; and (2) the method
deseribed by Fensholt et al. (2004), which estimates fAPAR¢ from can-
opy LAL Because our interest is in estimating fAPAR¢ from remote
sensing, here we evaluate this latter approach using LAI estimated from
SVIs (Section 2.3.1).

The method deseribed by Baret and Guyot (1991) (hereafter, BG91)
is an extension of the approach we previously described above to esti-
mate LAI:

K
Vi, — VI

where P, is the asymptotically limiting value of fAPAR for an infinitely
thick canopy (= 0.94), K is an extinction coefficient defined as the ratio
between ky; and K,, at the time of satellite overpass, and VIpgy, VIg, and
VI, are from Eq. (4).

The method described by Fensholt et al. (2004) (hereafter FT04) uses
a shape factor (G(#), solar zenith angle (), and the canopy LAI to

(10)
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Table 1

R?, RMSE, and bias of LAI estimated from each vegetation index at the Harvard
Forest. Note that the field LAI data were linearly interpolated between mea-
surements to estimate in-situ LAI for HLS overpass dates.

SVI R? RMSE Bias
EVI2 0.72 0.49 0.17
NDVI 0.79 0.47 0.14
NIRy 0.79 0.42 0.24
< |
Q|
o
© |
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Fig. 6. Contributions of stems and leaves to total and canopy fAPAR at Harvard
Forest. Lines show modeled values for mid-day conditions, and points show
tower measurements, which include diurnal variation.

estimate transmittance of PAR through the canopy under clear sky
conditions:

_ —G(#) x L
where G(#) is defined as:
i
GO = v/xIcos?@ + sinZ@ a2

x+ 1.774(x + 1.182) — 0.733

and x is the ratio of the average projected area of leaves on horizontal
and vertical surfaces (e.g., for a spherical distribution, x is 1.0). For this
study, we set x to be 3, which is consistent with y; in the two-stream
model simulations (i.e., a planophile leaf angle distribution, de Wit
(1965)). fAPAR¢ was then estimated by:

fAPARc = P, — fAPAR, (13)

2.3.6. Estimating daily APAR
In the final element of our analysis, we use estimates of fAPAR¢
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derived from remote sensing to estimate daily total APAR. To do this, we
model diurnal variation in fAPAR over the course of the growing season
using FT04, which captures the effect of diurnal and seasonal variation
in solar geometry on fAPAR, applied at 30-minute intervals between 7
AM and 5 PM local solar time from DOY 100 - 330. Then, using the
downwelling incident PAR (PAR;) measured above the canopy at Har-
vard Forest, we compute daily total APAR absorbed by the canopy (®p;
MJ/m2/day) as:

A
®p =Y fAPARc(f) x PAR(r) x 1800 s

]

a4

where ¢ is the timestep, t; is 7:00 AM, t, is 5:00 PM, and PAR; is the
average incident PAR in the 30 minutes preceding timestep i.

3. Results
3.1. Remotely sensed Estimates of LAI

LAI values retrieved from EVI2, NDVI and NIRy have similar accu-
racy, and all three vegetation indices realistically reproduce seasonal
variation in LAI (Table 1, Fig. 7). More generally, the results shown in
Figs. 7 and & and demonstrate that all three SVIs capture the overall
magnitude and seasonal variation in LAI well. Note that even after
careful quality control and filtering for clouds, the time series for each
vegetation index includes variability that is primarily caused by noise in
the NIR reflectance (Fig. 1) that propagates into retrieved LAI values.
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Table 2
Agreement between field measurements of FAPAR; and corresponding values
retrieved from remote sensing.

BG91 FT04

R? RMSE Bias R? RMSE Bias
EVI2 0.88 0.05 0.00 0.89 0.05 0.02
NDVI 0.85 0.06 0.00 0.84 0.07 0.03
NIRy 0.85 0.05 0.00 0.87 0.05 0.03

Overall, seasonal variation in LAI estimated from each SVI follows the
pattern described by Elmore et al. (2012) and Reaves et al. (2018), with
maximum values around the time of the summer solstice, systematic
decrease over the mid-growing season, and rapid decline in the fall
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related to leaf senescence and leaf drop. Fig. 7 also suggests that NDVI
does a modestly better job of estimating LAI in the second half of the
growing season than EVI2 or NIRy. This reflects the fact that each of
these latter two indices weight NIR reflectance more heavily than the
NDVI. Hence, NDVI is less impacted by shadowing than EVI2 or NIRy.
However, results shown in Table 2 demonstrate that differences in ac-
curacy are negligible among the three indices. Consistent with these
results, Fig. 5 shows a scatterplot comparing field-measurements with
remotely sensed LAI derived from each vegetation index. Significantly,
results shown in Fig. S suggest that field-based measurements of LAI
saturate at LAI values ~3.2. More generally, these results indicate that
LAT estimated by all three vegetation indices tend to underestimate field
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Table 3

Agricultural and Forest Meteorology 333 (2023) 109389

Agreement between measured and modeled 30-minute canopy fAPAR using the method described by Fensholt et al. (2004). Bias values are provided for the whole
season (All), as well as for early, mid, and late season periods determined from HLS data for Harvard Forest (Bolton et al., 2020). The table shows agreement for dates
when HLS imagery was acquired (HLS Acquisition Dates) and for all dates based on LAl estimated from daily interpolated SVI values (Observed + Interpolated SVI).

HLS Acquisition Dates Observed + Interpolated SVI
R2 RMSE Bias (All) Bias (Early) Bias (Mid) Bias (Late) R2 EMSE Bias (All) Bias (Early) Bias (Mid) Bias (Late)
EVI2 0.91 0.07 -0.04 -0.04 -0.06 -0.01 0.94 0.06 -0.02 -0.03 -0.02 -0.01
NDVI 0.88 0.07 0.02 0.03 -0.03 0.04 0.92 0.06 0.01 0.03 -0.01 0.04
NIRy 0.89 0.06 -0.01 0.00 -0.05 -0.02 0.92 0.05 -0.01 0.00 -0.01 -0.02
measurements of LAI throughout much of the growing season. (Fig. 10).

3.2. Remotely sensed estimates of fAPAR

Both methods that we tested to estimate fAPAR¢ performed well for
all vegetation indices, with a few subtle differences (Figs. 9 and 10,
Tables 2 and 3). Overall agreement between field measurements of
fAPAR( and fAPAR( retrieved from HLS using BG91 or FT04 was high
for all three SVIs, which suggests that either method can be used to
estimate daily fAPARc with good accuracy. Note that these results show
fAPAR( estimated at the time of the satellite overpass (nominally, be-
tween 10:00 and 10:15 am local time), with a large majority of data
points collected during the June-September period with maximum leaf
area (cf., Fig. 7). Retrieved fAPARc values estimated using both methods
modestly underestimate field measurements during the spring greenup
and fall greendown periods when LAl is < ~2 (i.e., when fAPAR < ~0.8)

Based on the results shown in Table 2 and Fig. 5 and leveraging the
fact that FT04 includes the effect of solar zenith angle on fAPAR, we used
FT04 in combination with remotely sensed estimates of LAI interpolated
to daily values to estimate fAPAR¢ at 30-minute time steps for all days
during the growing seasons of 2016-2019 (Fig. 11). Results based on all
three SVIs showed the same general pattern, with high agreement and
low bias between modeled and observed values of fAPARc.

3.3. Estimating daily APAR

Daily absorbed photosynthetically active radiation by the canopy
(®p) computed from 30-minute measurements of PAR; and modeled
fAPARc values showed strong agreement with in-situ measurements
(Fig. 12 and Table 4). Anomalously high ®p, values are the by-product of
noise in the SVI observations (specifically, in the NIR measurements on

EVI2 NDVI NIR,
Q | Q | Q |
© % o0 by © 2
i . O-_ o . Ci_ &
[&] [4] [&]
% ; EE L ] % o
o © o 9] o @
£° o <° 3 ° o
8 o g 8 [
O o D O <
gos 3 2 s ) 8o o
(=] ° o r.:% o )
Z o = ; s o
o e o] o]
© Observed SVI
g ] i ; i i g 1% ; j i g ] i ; Interpolated S\{I
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Tower fAPAR Tower fAPAR, Tower fAPAR

Fig. 11. Modeled 30-minute canopy fAPAR( estimated from EVI2, NDVI, and NIRy data using FT04 to estimate half hourly fAPAR for observed (filled circles) and
daily interpolated SVIs for each (open circles) for 7:00 am to 5:00 pm local time. Note, this figure includes data from all four years.

EVI2
(=T
o~
I o8
-
=
= 2
=
<C
-
3 © ;
k) 2
[=]
=
o
0 5 10 15 20

Tower APAR, (MJ m2d")

Modeled APAR,, (MJ m?d")

20

15

10

NDVI NIR,
o |
o™
) ) $ ;'U ° g
e 4 g 0.
Iﬁ:' IIU =
&
<
(- Sl 2
i ° % w4
[ " o0 [r.~
g 0 Ay
< © Observed SVI
o ) Interpolated SVI
0 5 10 15 20 5 10 15 20

Tower APAR, (MJ m?d)

Tower APAR_ (MJ m2d™)

Fig. 12. Daily total PAR absorbed by the canopy (APAR; = @p) at Harvard Forest estimated from HLS EVI2, NDVI and NIRy versus ®p estimated from tower
measurements. Observed SVI indicates @y values estimated from imagery, while interpolated SVI refers to @y values estimated from daily SVI values that were
interpolated to daily values from imagery. Note, this figure includes data from all four years.



L.X. Lee et al.

Table 4
Agreement between observed and modeled values of daily APAR. Bias is defined
as Observed Modeled.

Observed SVI Only Observed Interpolated SVI

R? RMSE Bias R? RMSE Bias
EVI2 0.90 1.57 0.00 0.94 1.22 -0.42
NDVI 0.90 1.50 0.00 0.93 1.24 -0.04
NIRy 0.91 1.41 0.00 0.95 1.10 -0.24

the dates). In general, all three of the SVIs captured seasonal variation in
p with high accuracy.

4. Discussion
4.1. Estimating LAI phenology from remote sensing

LAI controls a wide array of ecosystem functions related to carbon,
water, and energy budgets in terrestrial ecosystems. In temperate de-
ciduous forests, LAI exhibits variation at multiple spatial scales and
varies both seasonally and interannually as a function of bioclimatic
forcing (e.g., Moon, Seyednasrollah, et al., 2021). In-situ measurements
at Harvard Forest demonstrate that during the mid-season period (i.e.,
after leaf out and prior to senescence) LAI is very stable. Similarly,
leaf-level measurements show that foliar spectral reflectance among
dominant deciduous tree species at the Harvard Forest is stable during
the mid-season (Yang et al., 2016). However, remote sensing-based
studies conducted at the Harvard Forest (E. Melaas et al., 2013) and in
a Mid-Atlantic temperate forest (Elmore et al., 2012) demonstrate that
remotely sensed SVIs exhibit systematic seasonal decrease (aka ‘green-
down ) prior to senescence that is unrelated to changes in LAI and is
largely driven by changes in NIR reflectance. Reaves et al. (2018)
collected field data designed to explore and explain the source of this
pattern. They found that 50% of spatial variation in observed green-
down across multiple sites at a mixed oak forest in western Maryland
was explained by a combination of species composition and topography.
Significantly, Reaves et al (2018) found no consistent seasonal trends in
foliar NIR reflectance and no correlation between leaf-level reflectance
measurements and satellite-observed greendown patterns. These pat-
terns are consistent with our results. Indeed, our results, in combination
with results from Reaves et al. (2018), suggest that the impact of
shadowing on surface reflectance will be stronger in forested areas
where topography increases the proportional area of shadow in
remotely sensed images.

Results from our analysis show that model-based retrievals of LAI
estimated from remotely sensed spectral vegetation indices agreed well
with ground-based measurements of LAI collected using indirect optical
methods (Figs. 7 and 8, Table 1). However, it s important to note that
these ground-based estimates include non-trivial uncertainty. Indirect
optical LAI measurements, such as the ones used in this work, measure
the plant area index (PAI), not LAI To compute LAI from PAI (Eq. (2)),
we estimated the woody fraction (W¢) of the PAI using the method
described by Chen et al. (1997). Kucharik et al. (1998) showed that
branches can be occluded by leaves, which can lead to over-estimation
of Wr, However, Kucharik et al. (1998) also state that the PAI of stems
need to be accounted for independent of branches. Further, Yan et al.
(2019) found that occlusion of branches is not a major source of error
and conclude that the method described by (Chen et al., 1997) provides
a practical approach for operational estimation of LAI from PAI mea-
surements. That said, as we previously noted in reference to Fig. 8, the
ground-based measurements of LAI (after correcting for woody fraction)
appear to saturate around 3.2. It s also worth noting that the transects
that where indirect optical measurements of LAI are collected include a
modest number of conifer species, which will modestly increase mini-
mum PAI values. Hence, it s possible that the parameterization of W¢
that we use for this work modestly over-estimates PAI during the middle
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of the growing season when PAI tends to be quite stable, leading to
modest underestimation of LAI

Estimation of LAI from remote sensing has been a topic of research
for well over three decades and there is a deep literature focused on both
theory and applications on this topic (e.g. Asrar et al. 1984, Myneni et al.
1995, Knyazikhin et al. 1998b, 1998a, Weiss et al. 1999, Fang et al.
2003, Vina et al. 2011). The goal of this work is not to develop new
theory or methods to estimate LAI from remote sensing. Rather, our goal
was to test the feasibility of using the relatively simple model described
by Baret and Guyot (1991) to estimate seasonal variation in canopy LAI
from newly available remote sensing data sets. As part of our analysis,
we modified the general approach described Baret and Guyot (1991) to
account for variation in canopy properties over the growing season by
including seasonal variation in ky; and VI . In doing so, our approach
attempts to balance model complexity and realism with practical con-
siderations involved in operational estimation of LAI from remote
sensing.

Recent and ongoing changes in climate have shifted the timing of
phenophase transition dates in temperate forests (Cleland et al., 2007;
Gill et al., 2015; Jeong et al., 2011; Menzel et al., 2006; Piao et al., 2006;
A. D. Richardson et al., 2013), which can impact community structure
and ecosystem function, including ecosystem primary productivity
(Keenan et al., 2014; L. Liu & Zhang, 2020; Piao et al., 2019; A. D.
Richardson et al., 2009; Wehr et al., 2016). While previous studies have
successfully mapped phenological metrics or LAI from Landsat (J. M.
Chen & Cihlar, 1996; E. Melaas et al., 2013; Turner et al., 1999), this
study provides a demonstration of 30 m LAI time series retrieval at
sub-seasonal time scale, which is made possible by the availability of
HLS data. In this context, our results demonstrate the importance of
parameterizing seasonal scale variation in environmental properties,
especially solar zenith angle, in this process. As we illustrate in Fig. 1,
both EVI2 and NIRy systematically decrease after the summer solstice
even though in-situ measurements show that LAI is stable until much
later in the growing season. Because leaves are strongly absorptive in the
visible wavelengths, canopy reflectance in the HLS red band is unaf-
fected by variation in solar zenith angle. In contrast, NIR reflectance
shows strong seasonal co-variation with solar zenith angle, which we
parameterized using a first-order model of canopy shadowing. Relative
to NDVI, both EVI2 and NIRy weight NIR reflectance more heavily, and
so both indices exhibit seasonal variation that is unrelated to changes in
canopy properties that is somewhat less evident in NDVI time series.

A novel aspect of our analysis is that it demonstrates the feasibility of
retrieving LAI with sufficient temporal frequency to resolve the
phenology of forest canopies at a spatial resolution that captures
landscape-scale patterns in phenology. This capability provides sub-
stantial information related to spatial variability in canopy LAI that is
not detected at coarser spatial resolutions. To illustrate, Fig. 9 shows
maps of LAI estimated for two adjacent days at 500 m spatial resolution
from the MODIS Collection 6 LAI/fPAR product (K. Yan, Park, Yan,
Chen, et al., 2016; K. Yan, Park, Yan, Liu, et al., 2016) and at 30 m
resolution estimated from HLS. Inspection of this figure clearly illus-
trates the additional granularity of landscape-scale information afforded
by 30 m HLS imagery relative to MODIS. Because LAI is non-linearly
related to both spectral vegetation indices and a wide array of bio-
physical processes (Friedl et al., 1995; Garrigues et al., 2006; Jin et al.,
2007; Y. Xiao et al., 2014), the higher spatial resolution afforded by
Landsat and Sentinel 2 imagery has potential to substantially improve
not only the spatial representation of seasonal variation in LAI, but also
to reduce bias introduced via scaling processes in models that use
remotely sensed LAI as inputs.

4.2. Estimating fAPAR phenology from remote sensing
We compared two methods for estimating variation in fAPAR¢ over

the growing season. The first method (BG91) estimates fAPAR( directly
from vegetation indices, while the second method (FT04) estimates
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fAPAR( using remotely sensed estimates of LAI and a first-order model
of canopy absorption based on Beer s Law. Our results indicate that both
methods were able to accurately estimate seasonal variation in instan-
taneous fAPAR( across the growing season. Because FT04 parameterizes
the effect of diurnal variation in solar zenith angle on fAPAR, we used
this method to estimate half-hourly fAPAR¢ and then aggregated 30-
minute values of fAPAR¢ with corresponding values of incoming PAR
(PAR;) to estimate daily total PAR absorbed by the canopy ( ).

Significantly, even though FT04 relies on remotely sensed estimates
of LAI, when aggregated to daily values derived from 30-minute values
of fAPARg, exhibited only modest bias and was relatively insensitive
to uncertainty in remotely sensed LAIL This was especially true during
the mid-growing season when LAI was high and fAPAR¢ was relatively
stable. This occurs because the relationship between fAPAR( and LAI is
asymptotic, and for LAI values greater than ~2.0 fAPAR was relatively
insensitive to changes in LAI Fig. 2. During the spring greenup and fall
greendown periods when LAI is lower, however, instantaneous values of
fAPAR( estimated via FT04 were modestly biased, especially for time
periods when solar zenith angles were large. Fortunately, because PAR;
is low under these conditions the impact of these systematic errors on
was relatively minor. However, given the growing importance of the
spring and fall phenological sub-periods to changes in net growing
season carbon budgets (e.g., Richardson et al. 2009, Keenan et al. 2014),
accounting for and correcting the source of this bias is an important issue
that needs to be addressed in future work.

It s important to note that our analysis specifically focused on
fAPAR(¢ rather than total fAPAR absorbed by all canopy elements
(leaves, branches, and stems; i.e., fAPART). Some studies either explicitly
or implicitly include woody canopy elements (i.e., branches, trunks) in
estimates of fAPAR, while others have showed the importance of dis-
tinguishing between photosynthetic and non-photosynthetically active
parts of the canopy (Cheng et al., 2014; Gitelson & Gamon, 2015; Hall
et al., 1992; Hanan et al., 2002; Vina & Gitelson, 2005; Q. Zhang et al.,
2014). Indeed, many indirect methods for estimating LAI do not
distinguish between photosynthetically active and
non-photosynthetically active canopy elements (discussed in Yan et al.
2019, Rogers et al. 2021). Hence, model-based estimates of fAPAR( that
use LAI values estimated by these indirect methods may not accurately
represent fAPAR from leaves (i.e., fAPAR(), which is of primary interest.
Because remotely sensed estimates of LAI and fAPAR are most relevant
to studies and models focused on ecosystem processes (i.e., carbon,
energy and, water budgets), it s important that model-based estimates of
fAPAR to distinguish between PAR absorbed by woody elements versus
PAR absorbed by leaves in the canopy.

4.3. Relevance to ecosystem models and carbon budgets

The ability to measure and monitor fine-scale spatial heterogeneity
in LAI and fAPAR at sub-seasonal to interannual time scales from remote
sensing has two important implications for ecosystem monitoring
modeling. First, the realism of phenology in ecosystem models is poor
(A. D. Richardson et al., 2012), which introduces substantial error and
uncertainty in model-based estimates of the current and future carbon
budgets of terrestrial ecosystems (M. Chen et al., 2016; E. K. Melaas
et al., 2016). Hence, the availability of accurate, fine-scale, and spatially
explicit information related to phenology in LAI and fAPAR provides a
valuable source of data that can be used to parameterize and refine the
representation of phenology in ecosystem models.

Second, multi-year time series of remote sensing provide a valuable
source of information related to interannual variability in LAI and
fAPAR, and by extension, ecosystem productivity. Because the HLS re-
cord is short, the range of interannual variability in phenology at the
Harvard Forest for the period we examined is relatively low. Pheno-
logical metrics from the 30m Multisource Land Surface Phenology
product (Bolton et al., 2020), which is derived from HLS imagery
(MSLSP30NA; https://lpdaac.usgs.gov/products/mslsp30nav011),

10
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show a total range of 6 days for the date of mid-greenup in spring (DOY
138-144) and 8 days for the date of mid-greendown in fall (DOY
289-297) across the four years included in this study. There is, however,
ample evidence that the range of phenological variability at Harvard
Forest is substantially greater than 6-8 days in both the spring and fall
(Finzi et al., 2020). Further, climate change is likely to increase vari-
ability in phenology (e.g., Friedl et al. 2014), and by extension, carbon,
energy, and water budgets. Under the assumption that phenological
variation in green leaf area is the primary driver of variation in light use
efficiency during spring and fall at the Harvard Forest, we estimate that
a shift to earlier greenup of 10 days increases GPP by 83.7 gm 2 for the
period from April 1 to June 21. This translates into an increase in
springtime GPP of 22.8% and an increase in annual GPP by 5.6%.
Similarly, we estimate that a corresponding shift to later greendown of
10 days increases fall GPP by 18.2 g m 2 for the period between the
September 21 and December 1 (increases of 10.0% and 1.2% for fall and
annual GGP, respectively). These estimates are based on long-term mean
data and are thus approximate. However, they are consistent with re-
sults from more detailed studies focused on this question (Finzi et al.,
2020; A. D. Richardson et al., 2009), and more importantly, they illus-
trate why improved characterization of sub-seasonal and interannual
variation in LAI and fAPAR is important for modeling and quantifying
dynamics in the energy, water and carbon budgets in terrestrial
ecosystems.

5. Conclusions

In this study, we examined how the relationships between SVIs
computed from time series of optical imagery at 30 m spatial resolution
and LAI and fAPAR vary over the growing season. Using three different
vegetation indices (EVI2, NDVI, and NIRy) computed from HLS image
time series, we estimated LAI time series using the framework originally
described by Baret and Guyot (1991), which we adapted to account for
seasonal variation in canopy properties and solar zenith angle. We then
used the remotely sensed LAI values to estimate 30-minute fAPAR¢ and
up-scaled these data in combination with 30-minute values of incoming
PAR to compute daily values of the total PAR absorbed by the canopy.
Our results demonstrate that the relationship between vegetation
indices and LAI (and therefore fAPAR() varies seasonally (primarily
because of variation in solar zenith angle), but if this seasonal variation
is accounted for, phenological variation in LAL, fAPAR¢ and daily APAR
can be retrieved using time series of HLS imagery with good accuracy.

Remote sensing has been used for decades to map and monitor LAI
and fAPAR. With the launch of Sentinel 2A and 2B by the European
Space Agency in 2015 and 2017, respectively, the potential for remote
sensing-based monitoring vegetation properties and function has
dramatically increased. We can now monitor the phenology of canopy
properties at spatial resolutions that are an order of magnitude higher
than was previously possible from instruments such as MODIS. Indeed, a
variety of recent studies have demonstrated that this is possible at even
higher spatial resolution using commercial imagery (Houborg &
McCabe, 2018; Moon, Richardson, et al., 2021). Because ecosystems are
spatially and temporally heterogeneous and are increasingly subject to
disturbance and changes in phenology, the ability to monitor these
changes at spatial resolutions that resolve landscape properties provides
important new capabilities and opportunities to improve understanding
of how ecosystem properties and processes are changing in response to
climate change. The results we present here provide an important
proof-of-concept regarding both the feasibility of monitoring
sub-seasonal variation in vegetation canopy properties, as well as the
potential value and utility of mapping these properties at spatial reso-
lutions that capture landscape-scale variation in vegetation in a way that
was not previously possible (Figs. 6 and 13).
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Fig. 13. (a) MODIS LAI data on July 3, 2016, and (b) LAI estimated at 30 m spatial resolution from Landsat data at Harvard Forest for July 4, 2016. Each MODIS
pixel includes 238 HLS pixels. Note that the color scale is different in each figure because the MODIS LAI product is systematically higher than LAI values from HLS.
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