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Abstract

Vegetation phenology influences many ecosystem and climate processes, such as carbon
uptake and energy and water cycles. Thus, understanding drivers of vegetation phenology is
crucial for predicting current and future impacts of climate change on ecological systems.
Existing models can accurately predict the date of spring green-up in temperate forests but tend
to perform poorly in grassland systems. We hypothesize this is because most do not incorporate
water availability, a primary limiting factor for grassland plants. In this study, we used long-term
datasets of digital imagery from the PhenoCam Network of 43 diverse North American grassland
sites (195 site-years) to test existing spring phenology models, as well as develop several new
models that incorporate precipitation or soil moisture (53 models). Most of the new models
performed substantially better, with the best model requiring sufficient accumulated precipitation
followed by warm temperatures to trigger spring onset (root mean square error, RMSE, between
predicted and observed dates = 16.0 days). Importantly, the best model performed well across all
grassland types using a single set of parameters, from temperate to arid grasslands. Since plants
are adapted to their local climates, model performance was further improved when parameters
were independently optimized for four separate climate regions (RMSE = 10.4 days). Therefore,
both sufficient precipitation and temperature are required for grassland green-up, but optimal
thresholds vary by region. Running the top model with projected climate data (representative
concentration pathway 8.5) suggests that, depending on the climate region, spring onset will
occur up to 12 days earlier within 100 years in temperature-limited sites, but the trend is unclear
for precipitation-limited sites (3.5 £ 8.0 days later). This new phenology model improves our
ability to understand and predict grassland dynamics, with implications for both current and

future ecosystem processes related to carbon and water cycling.
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1. Introduction

Phenology studies the timing of recurring biological events and their interactions with
abiotic and biotic factors (Lieth, 1974). For instance, vegetation seasonality, such as the timing
and length of the growing season, is influenced by climate patterns, but at the same time, also
heavily influences many climate processes, such as water, energy, and carbon dioxide fluxes, as
well as biological interactions (Richardson et al., 2013; Caparros-Santiago et al., 2021). In this
way, vegetation phenology is a robust indicator of the influence of climate change on biological
systems. Thus, understanding the drivers of vegetation phenology is crucial for predicting the
current and future impacts of climate change on ecological systems.

There have been numerous attempts to model vegetation phenology using standard
climate variables, represented by two main approaches. The first method attempts to predict
vegetation dynamics over the entire growing season (i.e., Jolly et al., 2005; Choler et al., 2010;
Koen et al., 2016, Tian et al., 2019), while the other method predicts seasonal transition dates,
such as the start and end of the growing season. For this study, we focused on this second
modeling approach, with the goal of determining environmental triggers that initiate the start of
the growing season (SOS). These models tend to be simpler, and thus, can be more easily
incorporated into larger earth system models. For example, the Community Land Model (CLM)
uses pre-determined thresholds of key environmental variables to initiate spring leaf-out (CLM5
Documentation).

The oldest and simplest spring onset model is the Growing Degree Day (GDD) model

(also known as the Thermal Time (TT) model), which states that SOS occurs when enough heat
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(degree-days) above a given base temperature has accumulated (Reaumur, 1735). More recent
models have added requirements for chilling and photoperiod (daylength) to the GDD model in
various configurations (Basler, 2016). These models can accurately predict the date of spring
onset in temperate forests (Fu et al., 2012; Basler, 2016), but tend to perform poorly in drier
ecosystems, such as grasslands (Fu et al., 2014; Xin et al., 2015; Cao et al., 2018). For example,
Liu et al. (2018) used satellite imagery data to test the ability of six common spring phenology
models to predict SOS across the Northern Hemisphere and found they worked relatively well
for forested ecosystems, but not grasslands. This is likely because traditional forest models do
not include water availability. Unlike most forest ecosystems, grasslands are inherently water-
limited, so spring green-up depends, not only on temperature, but also on sufficient precipitation
inputs (Moore et al., 2015; Zhu et al., 2015). Given that grasslands account for 30% of the
Earth’s ice-free land surface and are significant carbon sinks (Gao et al., 2016), understanding
the drivers of grassland phenology represents a critical research priority.

In an attempt to better capture grassland dynamics, several spring phenology models have
been developed that include a metric of water availability. For example, White et al. (1997)
developed a grassland model that, in addition to temperature, requires a portion of mean annual
precipitation for SOS to occur. Jolly et al. (2005) created the Growing Season Index model that
uses minimum temperature, photoperiod, and vapor pressure deficit (VPD) to predict SOS. Xin
et al. (2015) later adapted this model to create the Accumulated Growing Season Index (AGSI)
model specifically for grasslands, as well as a variation in which they replaced VPD with soil
moisture. Similarly, Chen et al. (2014) added precipitation to the traditional GDD model both in
sequence (precipitation threshold must be met before temperature accumulation starts) and in

parallel (precipitation and temperature accumulate at the same time). In all cases, the addition of
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water availability significantly improved model performance in predicting SOS in grassland
ecosystems. However, despite these advances, most large earth system models, such as CLM, are
still unable to accurately capture grassland phenological transitions (Zhang et al., 2019; Li et al.,
2022), resulting in large uncertainties in estimating critical ecosystem processes and fluxes.

The availability of high-resolution, long-term phenology datasets is a limitation for
modeling grassland dynamics. Many existing models have only been tested with either spatially
limited field data or with coarse resolution satellite data. Remote sensing products have inherent
limitations, including coarse temporal and spatial resolution, resulting in multiple plant
functional groups being included in a single pixel, thereby causing uncertainty in seasonal trends
(Chen et al., 2018; Cui et al., 2019; Taylor et al., 2021). In addition, satellite data in locations
with sparse vegetation cover, such as drylands, have high background noise due to bare soil
reflectance. This results in low-amplitude seasonal signals (Taylor et al., 2021), so many remote
sensing studies exclude dryland ecosystems, such as arid grasslands, from their analyses (e.g.,
Jeong et al., 2011; Xin et al., 2015; Ren et al., 2018, 2022; Liu et al., 2020). Likewise,
Mediterranean annual grasslands (such as California grasslands) are often excluded due to
inconsistent annual green-up patterns (Xin et al., 2015; Ren et al., 2018). Thus, the broader
applicability of these models across diverse grassland types is still unknown.

Repeat digital photography provides an alternative data source for assessing the viability
of these models. PhenoCams are cameras mounted above ecosystem canopies that capture digital
images at high temporal resolution (usually every 30 minutes). There are currently over 700
cameras located within diverse ecosystems around the world, creating the PhenoCam Network
(phenocam.nau.edu), which provides powerful, high resolution, long-term phenology data. By

using the red-green-blue (RGB) color channels of the digital images, a robust measure of
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vegetation greenness can be extracted, called the Green Chromatic Coordinate (GCC), which is
highly correlated with other common vegetation indices, such as the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), as well as Gross Primary
Production (GPP) (Migliavacca et al., 2011; Klosterman et al., 2014; Browning et al., 2017; Cui
et al., 2019). This is an effective method for tracking seasonal changes in vegetation phenology
(Richardson et al., 2013). Additionally, PhenoCam imagery is unique in that a designated portion
of the image, referred to as the region of interest (ROI), can be identified for analysis. Thus,
GCC can be extracted separately for distinct functional groups in an image and, by only focusing
on vegetated areas, the influence of bare soil can be minimized (Browning et al., 2017).

Given that grassland ecosystems are water-limited, we hypothesized that incorporating a
precipitation or soil moisture requirement into spring phenology models would improve model
performance. In this study, we used PhenoCam imagery from 43 diverse grassland sites across
North America (195 site-years) to improve upon existing models. We addressed the following
questions: 1) Which model and model parameters best predict SOS across varied grassland
ecosystems? 2) Does the use of region-specific parameters improve model performance? 3)

According to the best-fit model, how will future climate change impact the timing of SOS?

2. Methods
2.1 Data Compilation

We downloaded metadata for all the PhenoCam sites, including location, climate, and
primary vegetation type using the “phenocamapi” R package (R 4.1.0 Core Team, 2021;
Seyednasrollah, 2018). We sorted the sites by vegetation type to include only those with a

grassland region of interest (ROI) and excluded sites which were visually identified as mowed
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fields, forest understory, or experimental plots. We geographically restricted our study area to
sites within North America; this corresponds with the highest density of PhenoCam sites and
coverage by a high-resolution climate dataset (Daymet, Thornton et al., 2021). In total, we
identified 43 North American PhenoCam grassland sites to include in our analyses, totaling 195
site-years of data and representing a spread of ~250 days in spring onset date (Fig 1; Table A.1).

For each site, the green chromatic coordinate (GCC) is calculated by the PhenoCam
website (phenocam.nau.edu) for an identified ROI using the red-green-blue color channels of the
digital images. GCC is a ratio of green intensity relative to the total brightness of each pixel and
1s robust to changes in image lighting (Richardson et al., 2018). We downloaded and processed
the GCC dataset through 2020 for each grassland site using the “phenocamr” R package
(Hufkens et al., 2018). The full procedure is explained in Hufkens et al. (2018), but briefly, this
package removes outliers, smooths the data, and identifies spring transition dates for each site.
To minimize day-to-day noise in the data due to changes in weather and illumination geometry,
we used the 90™ percentile GCC values from the 3-day data product (Richardson et al., 2018).
We extracted the 50% spring green-up date (SOS) for each data-year, corresponding to the day
of the year in which a site has reached 50% of its maximum annual greenness (GCC). We tried
other common thresholds (10% and 25%), but found the models fit best with the 50% threshold.
Because the GCC curve is rising steeply at the 50% threshold, these dates have lower
uncertainties than those extracted from the shallower portion of the curve (lower thresholds).
This allows us to better constrain model parameters while also giving us more power to reject
models that are not well-supported by the data.

California grasslands, located on the West Coast of the United States, required additional

processing. Due to the Mediterranean climate, these grasslands often have two distinct green-up
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peaks — one in the fall/early winter if there is sufficient moisture and then a larger one in the late
winter/spring (Liu et al., 2021). However, the amplitude of the fall green-up was not always
large enough to be detected, and no model could fit dates that included a mix of late fall and
early spring dates. Thus, for sites with two separate greenness peaks, when the earlier green-up
peak was identified (5 site-years), we instead estimated the later transition date using the same
criteria (date when 50% of maximum greenness was reached) to use in model analyses.

Model development and data compositing was supported by the “phenor” R package
(Hufkens et al., 2018). Daymet climate data (1 km x 1km resolution; Thornton et al., 2021) was
used for temperature, precipitation, and vapor pressure deficit, and photoperiod was based on site
location. The climate data were included for the “water-year,” from September 21 of the prior
year to September 20 of the year in which the transition date occurs. Interpolated datasets, such
as Daymet, often have higher precipitation inaccuracies in the North American Southwest due to
low gauge density and high spatial and temporal variability in rainfall (Jing et al., 2017; Henn et
al., 2018). Therefore, we found better model accuracy using on-the-ground precipitation data for
this region when available. For nine Southwest sites (Table A.1), we replaced Daymet
precipitation values with site-level precipitation data collected by Ameriflux
(https://ameriflux.lbl.gov/) or the Southwest Experimental Garden Array (SEGA,
https://sega.nau.edu/).

Soil moisture data was downloaded from the North American Land Data Assimilation
System (NLDAS-2; https://ldas.gsfc.nasa.gov/nldas) due to limited and inconsistent in-situ
measurements. NLDAS-2 provides three different gridded soil moisture datasets (Noah, Mosaic,

VIC) at varying depths that are estimated using different methods. We found that the Mosaic
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dataset at 0-10 cm soil depth resulted in the best model fits and retained these data in our final
analysis.
2.2 Model Structures

We altered existing spring phenology models to include either a precipitation (“W”) or
soil moisture (“SM”) component, as well as developed several novel model structures. The
“phenor” R package provides a framework for easily fitting and comparing common phenology
models (Hufkens et al., 2018). We fit 20 existing (“‘original”) spring phenology models and
compared them to 33 new models (Tables 1 and A.2, Hufkens et al. 2018). The Water Time
(WT) model is the simplest new model, which states that a site must accumulate enough
precipitation for SOS to occur. We also tested a couple variations that include a photoperiod
requirement, the Photo Water Time (PWT) and M1 (M1W) models. Unlike forests, grasslands
have not been found to require chilling (Cao et al., 2018, Wang et al., 2022), so following Chen
et al. (2014), we replaced the chilling requirement with a precipitation requirement in both the
Sequential (SQW) and Parallel (PAW) models. These state that sufficient precipitation must
occur either before (SQW) or concurrently (PAW) with temperature accumulation. We also tried
a sequential model with the reverse order (SQWr), in which the temperature requirement must be
met before precipitation accumulation begins. For all the models, we also included a model
variant in which precipitation accumulates in a sigmoidal fashion, so that each precipitation
event is given a weight between 0-1 (lowercase “s” added to model code, Table 1). Finally, soil
moisture (SM) is often a better indicator of plant water availability than precipitation, which is
subject to losses via evaporation and runoff (Liu et al., 2013; Tao et al., 2020), so we developed
a final class of models that replaced precipitation with soil moisture (“SM” models; Tables 1 and

A2).



184 For the best-fit model structure (SQW), we tested several additional model variants. We
185  found that the optimized value for one parameter was usually close to zero (P-base: minimum
186  precipitation event size added to the accumulated precipitation total), so we included a model
187  variation without this parameter (SQW_NoPbase) and excluded it from all subsequent model
188  variants. The other variants introduced a “reset” parameter, so that either precipitation or

189  temperature accumulation restarted if a certain threshold was surpassed. Our thought was that
190 certain extreme events might interrupt or delay plant development. For example, the SQW _cdd
191  model states that precipitation accumulation restarts if a certain number of consecutive dry days
192 (cdd) occur. Likewise, in the SQW_Tmin model, temperature accumulation restarts if the daily
193  minimum temperature (Tmin) drops below a certain threshold. SQW _cdd Tmin combines both
194  reset thresholds, and SQW _Pi Tmin states that precipitation accumulation resets if a minimum
195 temperature threshold is reached. As with the other models, we also tried all the variants with a
196  sigmoidal precipitation accumulation structure (Table 1).

197 2.3 Fitting Models

198 We used generalized simulated annealing to optimize model parameters using the

199  “GenSA” R package (Xiang et al., 2013). This process is commonly used for fitting phenological
200 models (Chuine, 2000). Parameter ranges were selected to be wide enough to cover the full range
201  of plausible values but narrow enough for an efficient parameter search (Appendix B). To

202  identify the best-fit parameters, we ran the optimization algorithm 25 times for each model, with
203 100,000 iterations each time. We selected parameters from the model run with the lowest RMSE
204  for each model. Performance between models was compared using the Akaike Information

205  Criterion (AIC). To visualize model performance, we used the site-year residuals (observed-
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predicted dates) for each model to build a hierarchical tree that grouped models based on similar
performance (“hclust” function in R with the clustering method set to “average”).

For each of the top models, we validated the results using a leave-one-site-out method.
We fit the model (100,000 iterations) excluding all data for one PhenoCam site (N = 1-16 years
per site), and then used the resulting optimized parameters to predict the SOS dates for the
excluded site based on its climate data. We repeated this process for each site and combined all
the predicted SOS dates for the excluded sites into a single dataset, which we used to calculate
the RMSE of the validation run. As above, this process was repeated 25 times to ensure the best-
fit parameters were identified.
2.4 Dividing Sites by Climate

Given that grassland plants in different climates likely have different temperature and
precipitation requirements (White et al., 1997; Xin et al., 2015; Ren et al., 2018), we also divided
the sites by climate and re-ran the models for each subset of sites to obtain region-specific
parameters. We divided the sites based on their Képpen-Geiger (KG) climate classification (Peel
et al., 2007), but to limit the number of groups and ensure a sufficient sample size for each, we
only used the first two of the three nested climate criteria (general climate and seasonal
precipitation timing, indicated by letters). The dry sites were an exception, which we combined
into a single group because there were fewer of them. Therefore, the sites fell into four separate
KG climate groups: B: arid and semi-arid (12 sites, 46 site-years), Cf: temperate and humid
subtropical (8 sites, 32 site-years), Cs: Mediterranean/dry summer (10 sites, 43 site-years), and
Df: humid continental (13 sites, 74 site-years).

We ran the models separately for each KG group using the same methods described

above. Then, for each of the top three regional models (and several extra), we combined the
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predicted SOS dates for all four KG groups into one dataset and calculated the overall RMSE
and AIC. Since AIC balances model fit with complexity, using regionally optimized parameters
added extra complexity “cost” to the AIC calculation. For example, if a model had five
parameters that were optimized separately for each of the four KG groups, when the results were
combined, 20 parameters (5 parameters x 4 groups) were utilized in total (see Table A.5). This
allowed for a direct comparison between model runs using a single parameter set (All Sites) and
those using four separate climate-specific parameter sets (KG groups). For the best overall
model, we performed separate leave-one-site-out validations for each KG group using the same
methods as described above. We then combined those results into a single dataset to calculate the
validation RMSE across all sites when each region was separately parameterized.
2.5 Future Projections

To determine how the timing of spring onset is predicted to shift as a result of climate
change, we used the top model to predict future SOS dates across several grassland sites. Given
the uncertainty of future climate projections, especially for precipitation patterns (Mishra et al.,
2012; Polley et al., 2013), we included an ensemble of projected climate scenarios. We chose a
representative site from each KG climate zone that contained the most typical grassland type for
the region and downloaded projected daily precipitation and temperature data (2007-2100) for
each from the NA-CORDEX data collection
(https://www.earthsystemgrid.org/search/cordexsearch.html) from several different regional
climate models (RCM) under a “business as usual” (representative concentration pathway “RCP”
8.5) scenario. Each RCM can be driven by various global climate models, and we chose to only
use model output that had been bias-corrected against Daymet climate data (see https://na-

cordex.org/dataset-description) to better match the data used in our analyses. This resulted in a
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total of 12 future climate scenarios. For each, we formatted the data for use in “phenor” and ran
the top model using the optimized model parameters for each site’s respective KG climate zone
to obtain predicted yearly SOS dates. To estimate the rate of change in SOS dates through time,
we fit a Sen’s slope (SOS vs year, “zyp” package: Bronaugh & Werner, 2019) for each scenario
and calculated the mean and standard deviation across all the scenarios for each location. Then,
to evaluate the statistical significance of the trend, we used the median SOS dates across all the

scenarios to perform a Mann-Kendall test for each site (“Kendall” package: McLeod, 2022).

3. Results
3.1 Model Performance

The original spring phenology models (cells with black text, Table 1) fit poorly across the
diverse grassland sites, with the RMSE between predicted and observed SOS dates ranging from
26.9-40.3 days (Fig 2 and Table 2). The models were particularly poor at predicting the earliest
and latest transition dates (Model II regression slopes = 0.22-0.76, Fig 2). Although, models that
included VPD (SGSI, AGSI) fit better (both RMSE ~27 days) than those with only chilling
and/or degree-days as drivers. Interestingly, the only model that included precipitation (GRP)
had the worst overall performance (RMSE = 40 days). All model fits are reported in Table 2.

Of the new models tested, those with only precipitation (with or without photoperiod) fit
poorly (RMSE = 26-37 days). Instead, the best models included both precipitation and
temperature (RMSE values: SQW = 18.4, SQWr = 21.5, PAW = 22.8 days). These performed
better than any of the original models (Table 2). Models that used soil moisture instead of
precipitation had similar patterns, but generally performed slightly worse (RMSE =19.4 —31.9

days; Table A.3). Additionally, the sigmoidal precipitation accumulation structure, in which very
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small and large events are given less influence, usually improved model fit (RMSE values:
SQWs =16.2, SQWrs = 20.5, PAWs = 22.0 days). Of these models, the sigmoidal sequential
model (SQWs) was the best based on both RMSE and AIC (Table 2). Figure 3a shows how
model predictions for individual site-years were altered by using a sigmoidal precipitation
accumulation structure (SQWs) rather than a simple summation (SQW). Early transitioning sites
were especially improved (closer to 1:1 line) largely due to differences in the t0 parameter,
which determines the number of days after the start of the water year (Sept 21) that precipitation
can start accumulating. SQW:s started precipitation accumulation much earlier than SQW (t0 =
47 vs 138 days), allowing the predicted SOS dates to be much closer to the observed dates for
early transitioning sites. In contrast, the larger t0 value in SQW delayed precipitation
accumulation until February, after the observed SOS date for some sites had already passed.

The sigmoidal precipitation accumulation structure in SQWs is key to accommodating
this earlier start date (t0). In this model structure, each precipitation event is assigned a value
between 0-1 based on the optimized model parameters that determine the shape of the sigmoidal
curve. For example, Figure 4a shows the sigmoidal relationship between rain event size and its
assigned weight based on the best-fit “b” and “c” parameters from the model (Table 3). For the
model fit with All Sites (grey line), any daily event less than ~3 mm is assigned a value less than
1, and any event greater than ~3 mm is assigned a value of 1. Thus, small events do not influence
the precipitation total as much as large events, but at the same time, all events > 3 mm are given
equal weight. Large rain events do not cause the site to reach the required precipitation threshold
(P-req) sooner because proportionally more water is usually lost to run-off (Fig 4b). This

dampened impact of individual rainfall events allowed for the utilization of a larger collection
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window starting earlier in the water-year, which consequently improved predictions for sites
with early transition dates.

Based on AIC comparisons, all the SQW model variants were better than any other
model type, and those that included Tmin (SQWs_Tmin and SQWs_cdd Tmin) performed better
than SQWs (Table 2). This suggests that the addition of a temperature reset parameter, in which
temperature accumulation resets when the minimum temperature drops below a certain
threshold, such as during a spring cold snap, is beneficial for at least some sites by delaying their
predicted SOS date (Fig 4c¢). Figure 3b shows how individual site-years were altered by the
addition of this parameter; most were only slightly affected, but some individual points were
significantly improved. However, the addition of a parameter that reset precipitation
accumulation (SQW_cdd and SQW_Pi_Tmin) did not improve model performance. Thus, the
best overall model for predicting SOS across diverse grasslands was SQWs_Tmin (RMSE = 16.0
days, R? = 0.85, Fig 5a). The RMSE of the best leave-one-site-out validation run was 19.1 days,
and the average across all 25 validation runs was 21.04 + 1.48 days.

3.2 Models by Climate Group

Unsurprisingly, model performance was further improved by separately optimizing
model parameters for different climate regions — the model parameters can thus be interpreted as
representing the phenological adaptation of populations or species to local conditions. When all
the models and model variations were run separately for each KG group, SQWs_ Tmin was
consistently one of the top regional models. Based on RMSE, it was the top model for B (RMSE
=7.9 days), Cs (RMSE = 16.3 days), and Df (RMSE = 7.7 days), and within 0.5 days of the best
model for Cf (RMSE = 8.4 days; Table A.4). However, based on AIC, slightly less-complex

models (fewer parameters) performed marginally better for several of the KG regions, though
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they all had the same basic model structure, with precipitation accumulating before temperature
(Table A.4).

When the results of the top regional models for each KG group were combined and
analyzed, SQWs_Tmin was once again the best overall model, with a substantially lower AIC
value than the same model using only a single set of parameters (AIC = 968.7 vs 1094.7; Table
A.5). Using regionally optimized parameters also reduced the RMSE from 16.0 to 10.4 days (R?
=0.93, Fig 5b). The best-fit parameters and RMSE values for All Sites and each KG group for
the SQWs_Tmin model are listed in Table 3. The combined RMSE for the leave-one-site-out
regionally parameterized validation of SQWs_Tmin was 16.0 days.

Running the model separately for each KG climate group improved performance because
it allowed parameters to be optimized for region-specific attributes (Table 3). For example, Cs
had a much lower t0 (34 days; number of days after the start of the water year before
precipitation can start accumulating) than Cf (t0 = 198 days). This means that Mediterranean
sites (Cs) started accumulating precipitation in October, which makes sense considering
California grasslands can green-up as early as November. In contrast, temperate grasslands (Cf)
become active later in the spring, so did not start accumulating precipitation until April since
earlier precipitation (such as October rainfall) has little influence on their spring physiological
activity. However, colder Northern Great Plains grasslands (Df) started accumulating
precipitation early (t0 = 46) despite not greening up until later in the spring, but this was
accounted for by requiring greater total accumulated precipitation.

Precipitation requirements also differed by climate. Based on the optimal parameters for
each KG group, precipitation accumulated differently (“b” and “c” parameters determine shape

of sigmoid curve), as well as the required precipitation amount (P-req; Table 3, Fig 4a). For
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example, in arid grasslands (B), the precipitation accumulation curve reaches a horizontal
asymptote at a rain even size of ~1 mm, so all larger events provide an equal amount of forcing
(Fig 4a). Therefore, based on the required precipitation parameter (P-req =22.6; Table 3), these
sites must receive ~22 total rain events of at least | mm to surpass the precipitation threshold. In
contrast, wetter regions require larger precipitation events to initiate spring green-up. Temperate
grasslands (Cf) require a single (P-req = 0.9), but much larger (asymptote ~10 mm; Fig 4a) rain
event, and Mediterranean grasslands (Cs) require about 3 events (P-req = 2.8) greater than ~8
mm or several smaller events of equivalent size (shallower curve; Table 3, Fig 4a). Interestingly,
because the y-intercept of the sigmoidal curve is 0.4 for cooler grasslands (Df), these sites
accumulate “precipitation” even on days with no rain (i.e., days with Omm of rainfall contribute
0.4 in forcing; Fig 4a). Thus, since no-rain days advance the “state of water” in this region, P-req
is a function of both precipitation and the amount of time that has passed since accumulation
began.
3.3 Visualizing Model Performance

The hierarchical tree constructed using model residuals (observed-predicted SOS dates)
provides a visual representation of the similarity between model performances (Fig 6). Models
with more similar predicted SOS dates are grouped closer together and those with more different
dates are farther apart. For ease of interpretation, the clustering algorithm divided the models into
nine groups (salmon-colored boxes, numbered 1-9) based on similarity. From this, it is evident
that the original models grouped separately (black text; Groups 7-9) from the new models that
included precipitation or soil moisture as a driver (Groups 1-6), suggesting the addition of water
availability altered model performance in a consistent fashion. Interestingly, the three original

models that included a measure of water availability (GRP, SGSI, AGSI) grouped separately
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(Groups 7 & 9) from the rest of the original models, but also did not cluster with the new models
due to their unique model structures (Hufkens et al., 2018). Within the new models, those with
both water availability (precipitation or soil moisture) and temperature had more similar
predicted SOS dates (Groups 4-6) than those with only water availability (with or without
photoperiod; Groups 1-3). Also, the soil moisture models (green text; Groups 2 & 5) clustered
separately from the precipitation models (blue text; Groups 1, 3, 4, 6), and the precipitation
models with a sigmoidal accumulation structure (lowercase “s” in model code) generally
grouped separately from those with a simple precipitation summation (Groups 1 vs 3 and Groups
4 vs 6). When the top three models based on AIC were identified for All Sites and each KG
group (colored stars), with one exception, the top three models were all sequential with
precipitation and temperature as drivers (Groups 4 & 6, SQW model structure). This confirms
that, despite differences in the best SQW model variant for each KG group, all the top models
perform similarly due to underlying commonalities in model structure, and the general
precipitation-temperature sequential model structure is best for predicting SOS across diverse
grassland types.
3.4 Future Projections

Forward projections for a representative site for each KG group using the top model
(SQWs_Tmin) suggest that SOS will occur earlier across much of the North American grassland
region by the end of the century. Ensemble means predicted that SOS in temperate grasslands
will occur earlier, with the cooler grassland site (Df, North Dakota: 11.1 & 2.7 days over 100
years, p < 0.001) experiencing a greater shift than the warmer grassland site (Cf, Kansas; 4.7 +
2.3 days over 100 years, p < 0.001; Fig 7). Although, the warmer site was constrained by a much

larger t0 value (198 days), which means precipitation cannot begin accumulating until early
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April, limiting the amount that SOS can advance. Mediterranean grasslands (Cs, California) also
exhibited a shift to earlier spring onset (12.3 + 6.0 days over 100 years, p < 0.001), but the signal
for arid grasslands was inconsistent (B, New Mexico; SOS delayed 3.5 + 8.0 days over 100
years, p = 0.776; Fig 7). This was because some of the climate scenarios suggested a slight delay
in SOS for this region, and others a slight advancement, resulting in a large standard deviation

and no clear directional shift.

4. Discussion

Grasslands cover 30% of North America and heavily influence both regional and global
water and energy fluxes, as well as represent a significant carbon sink (Abberton et al., 2009;
Pendall et al., 2018). Therefore, determining how various climate factors influence grassland
plant phenology is important for understanding current ecological processes as well as future
impacts of climate change. However, many established (“original”’) phenology models were
made for forested ecosystems and perform poorly in grasslands (Xin et al., 2015; Liu et al.,
2018), likely because most do not include water availability. We used PhenoCam images from
43 diverse North American grassland sites to test numerous existing spring phenology models as
well as several new model variations that incorporate precipitation or soil moisture. Our best new
model suggests that grasslands require sufficient precipitation followed by warm temperatures to
initiate spring green-up.
4.1 Original Models

In agreement with past studies (Fu et al., 2014; Xin et al., 2015; Cao et al., 2018; Liu et
al., 2018; Ren et al., 2022), the original models poorly predicted the start of the growing season

(SOS) in grassland ecosystems, with the difference between predicted and observed dates
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(RMSE) ranging between 4-6 weeks (Fig 2 & Table 2). Similar to the findings of Liu et al.
(2018), the original models were especially poor at predicting early and late SOS dates — they
tended to predict SOS too late in early-transitioning Mediterranean grasslands and too early in
late-transitioning arid grasslands (Fig 2). This is because these ecosystems need more than just
temperature and/or daylength for spring initiation, but also sufficient precipitation inputs.
California grasslands typically green-up early in the year, coinciding with a period of available
moisture before the start of the summer dry season (Huenneke & Mooney, 1989; Liu et al.,
2021). Likewise, many Southwestern arid grasslands depend on monsoonal rains that occur later
in the summer (Jul — Sept) to become active (Adams & Comrie, 1997), so their green-up dates
occur much later in the year. Thus, the absence of a precipitation driver in most of the original
models did not allow for this flexibility in timing and resulted in inaccurate predicted SOS dates.
Several of the original models did incorporate a measure of water availability. AGSI and
SGSI include vapor pressure deficit (VPD) as a driver (Xin et al., 2015), but while they did
perform best of the original models, both still had errors of about four weeks (RMSE ~27 days;
Fig 2 & Table 2). This suggests that either the model drivers (photoperiod, VPD, temperature)
were not sufficient predictors of SOS or that the model structure was not appropriate.
Interestingly, the only model that explicitly included precipitation as a parameter (GRP)
performed the worst, with a RMSE of ~40 days (Fig 2). This could be because the GRP model
only considers precipitation accumulated the week prior to the predicted SOS date and, as
evidenced by the much longer precipitation accumulation period in our new best-fit model, this

is not long enough to fully trigger spring green-up in most grassland ecosystems.
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4.2 New Models

Most of the new spring phenology models performed significantly better than the original
ones, and of those, precipitation models were generally better than soil moisture models. Past
modeling studies have found mixed results using soil moisture in place of precipitation or VPD
(Liu et al., 2013; Xin et al., 2015; Tao et al., 2020). This could be attributed to inaccurate soil
moisture estimates from gridded data products (Xia et al., 2014), so with more accurate data, soil
moisture could be a better driver of grassland phenology. However, in this study, we found the
best new models included precipitation and temperature (SQW, SQWr, PAW); models with only
one or the other performed poorly. Thus, in agreement with other studies (Chen et al., 2014;
Moore et al., 2015; Ren et al., 2018, 2022; Fan et al., 2020; Fu et al., 2021), both sufficient
temperature and precipitation are required for grasslands to become active in the spring.
However, the order in which they accumulate is important. Our results suggest that a site must
first accumulate enough precipitation, followed by temperature (sequential, SQW). This was
better than the opposite order (temperature before precipitation; reverse sequential, SQWr;
RMSE ~3 days greater) or accumulating both at the same time (parallel, PAW; RMSE ~4.5 days
greater; Table 2). Several recent studies have found similar results (Chen et al., 2014; Ren et al.,
2022). For example, Ren et al. (2022) used satellite data to fit several spring phenology models
across all Northern Hemisphere grasslands and found the sequential (SQW) model was best for a
majority of the study region. This is likely due to the physiological requirements for grass
germination and/or tiller emergence. As any gardener knows, seeds placed in dry soil will not
grow, even with ample sunlight and warm temperatures. Likewise, grass seeds require moist soil
conditions to germinate (Qi & Redmann, 1993; Abbott & Roundy, 2003; Springer, 2005; Durr et

al., 2015), as do the belowground buds of perennial grasses to produce tillers (Korte & Chu,
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1983; Russell et al., 2017). Thus, in water-limited environments, sufficient precipitation is a
prerequisite to warm temperatures for the initiation of plant physiological processes.

We also found that using a sigmoidal accumulation structure for precipitation generally
improved model fit (SQWs). This introduces a minimum and maximum effective precipitation
size, thereby altering the way that individual precipitation events contribute to the required
precipitation accumulation. In agreement with prior studies, which have found small events to be
less effective at stimulating plant growth in grasslands (Huxman et al., 2004; Heisler-White et
al., 2009; Post & Knapp, 2021), events that are too small are not counted. Likewise, excess
rainfall from large rain events can be lost via runoff or deep drainage, so does not promote
greater plant available moisture (Sala et al., 1988; Ye et al., 2016). Thus, all events over a certain
size threshold contribute equally to the precipitation accumulation. In this way, the sigmoidal
accumulation structure improved model accuracy by accounting for ecologically relevant
rainfall.

Likewise, the addition of a temperature accumulation reset parameter improved model
performance, making SQWs_Tmin the best overall model. In this model, temperature
accumulation resets if the daily minimum temperature drops below a certain threshold (T-thres;
Fig. 4c). This causes a delay in reaching the temperature accumulation threshold (F-crit),
resulting in a later predicted SOS date. Thus, the temperature reset parameter improves model
performance when spring temperatures are abnormally low. A late cold snap during the spring
season can hinder the initiation of plant physiological processes and growth (Allen & Ort, 2001;
Kovi et al., 2016; Kong & Henry; 2019), though more research is needed on the direct impacts

on grassland systems (Kral-O’Brien et al., 2019).
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Importantly, using a single set of parameters, the SQWs_Tmin model was able to
accurately predict SOS across diverse grassland sites within about two weeks (RMSE = 16.0
days; Fig 5a). This represents a significant improvement over the results from past studies,
especially for warm, water-limited grasslands. Using remote sensing data, Liu et al. (2018) tested
six traditional spring models across the Northern Hemisphere and found RMSE values of 15.7-
18.5 days for C3-dominated (cool) grasslands, and 25.8-27.3 days for C4-dominated (warm)
grasslands. In a similar remote sensing study, Fu et al. (2014) found RMSE values of 18-37 days
over North American grasslands for both a temperature-only (TT) model, as well as a model with
both precipitation and soil temperature that is used in several common earth system models
(Biome-Biogeochemical Cycle model; White et al., 1997; Zhang et al., 2019). Other studies have
tested additional spring phenology models in various grassland regions, but their results are hard
to compare with ours because they either fit models separately for each satellite pixel (Ren et al.,
2022) or cover a different and/or smaller geographic region (White et al., 1997; Chen et al.,
2014; Cao et al., 2018; Fan et al., 2020). For example, our model is about a day better than the
AGSI model when fit across the Western US by Xin et al. (2015), but their study excluded
regions with unique phenological signals (i.e., California & Southwest). Our inclusion of these
regions likely led to slightly higher RMSE values in our analyses. Nonetheless, the SQWs_Tmin
model represents a clear improvement for predicting SOS in grassland ecosystems, which can be
attributed to two factors: 1) the use of fine-scale, near-surface remote sensing data (PhenoCam)
instead of coarse resolution satellite data and 2) a new flexible model structure that better

captures the influence of multiple climate variables across diverse grassland systems.
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4.3 Regional models

The SQWs_Tmin model worked well for all grasslands using a single set of parameters,
but model performance was further improved by using region-specific parameters. Most regional
fits (KG groups B, Cf, Df) predicted SOS within about a week of observed dates (Table 3;
RMSE = 7.8-8.4 days). The exception was Cs, which had a larger error (RMSE = 16.4 days)
because this group included two very different grassland types, despite both having extended dry
periods (Fig 1). California grasslands green-up in late winter/early spring (DOY 1-100), whereas
high elevation Southwestern grasslands green-up in response to late-summer monsoons (DOY
150-200). Given this ~200-day spread in green-up dates, it is impressive that the model was
accurate to within about two weeks. Notably, all the top models for each KG group had the same
model structure with precipitation accumulating before temperature (Fig 6), and when regional
results were combined, SQWs_Tmin was the best overall model with predictions within ~10
days of observed transition dates (Fig 5b). Thus, using region-specific parameters improved
model accuracy by about six days.

Due to differences in species composition, it follows that grasslands in different climate
zones have different temperature and precipitation requirements. For example, the Northern
Great Plains consists of predominantly cool-adapted Cs grasses, whereas the Southern Great
Plains and desert grasslands contain mostly warm-adapted C4 grasses (Paruelo & Lauenroth,
1996; Wang et al., 2013). The KG climate zones Df (cool C3) and Cf (warm Cs) roughly align
with this functional group transition (Fig 1; Paruelo & Lauenroth, 1996; von Fischer et al.,
2008), which likely accounts for the difference in optimized parameters between these groups.
For instance, Df has a much lower minimum temperature reset threshold (T-thres = -12.9 °C)

than Cf (T-thres = -0.3 °C; Table 3) because plants in that region can tolerate colder temperatures
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(Epstein et al., 1998; Liu & Osborne, 2008). Likewise, precipitation requirements differ
substantially between climate groups. In agreement with prior studies that have found dryland
plants to respond to small precipitation pulses (Sala & Lauenroth, 1982; Liang et al., 2021), arid
grasslands (B) can utilize small rainfall events (~ 1 mm, Fig 4a). In contrast, mesic grasslands
(Cf) require a larger precipitation pulse to activate spring growth (~ 10 mm, Fig 4a) because the
plants are adapted to wetter soil conditions (Knapp et al., 2008). Interestingly, cooler grasslands
(Df) continuously accumulated “precipitation” even when no rain occurred, suggesting a
diminished importance of precipitation inputs for this system (Fig 4a). This is because the
Northern Great Plains (Df) are more limited by temperature than by precipitation (Jolly et al.,
2005) since they can utilize moisture stored in the soil from snow melt and/or abundant spring
rainfall (Ren et al., 2018, Mohammed et al., 2019). In fact, temperature-only models worked
decently well in this region (RMSE ~ 9 days, Table A.4), and Ren et al. (2022) found that a
temperature-only model (TT) was best for cool, wet grassland regions. Nonetheless, we found
that precipitation-temperature models consistently out-performed temperature-only models in
this region because they better accommodate years that are abnormally dry.

Given the unique climatological and phenological patterns of California grasslands
(within KG group “Cs”), our models performed remarkedly well for this region. California
grasslands tend to green-up much earlier than other North American grasslands, and depending
on precipitation patterns, they can have two distinct seasonal green-up cycles — one in the late
fall/early winter and another in the late winter/early spring (Huenneke & Mooney, 1989; Liu et
al., 2021). They are also dominated by annual grasses, so species composition can change
drastically from one year to the next depending on seed dispersal and recruitment (Huenneke &

Mooney, 1989; Bart et al., 2017). For these reasons, many large-scale phenology studies have
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excluded this region from analysis (e.g., Xin et al., 2015; Ren et al., 2018). Bart et al. (2017) is
one of the few studies that has attempted to model the phenological drivers of California
grasslands. They used MODIS satellite data at two different sites in California to develop a SOS
grassland model using soil water potential, temperature, and VPD. However, even when the
model was parameterized separately for each site, RMSE was still 20-22 days. Thus, our new
model (SQWs_Tmin) is a significant improvement, with a RMSE of 16.4 days across all
Mediterranean (Cs) grassland sites, including California grasslands. Although, it is important to
note that our model is currently able to predict only a single annual green-up event, so there is
opportunity for improvement with a model that could simulate multiple green-up events.
4.4 Forward Projections

Using projected climate data and regionally optimized parameters for the top model
(SQWs_Tmin), we found that spring onset in most North American grasslands is predicted to
occur about 5-12 days earlier within the next 100 years (Fig 7). This aligns with previous studies
that have forecasted earlier spring onset in grassland systems due to warming air temperatures
(Zhang et al., 2013; Li et al., 2016; Chang et al., 2017; Wang et al., 2020). However, our
observed shift is less drastic than the findings of a recent paper, which predicted spring to occur
21-25 (* 3-4) days earlier by 2100 across most the Great Plains region (Hufkens et al. 2016).
Similar to other studies (Polley et al., 2013; Hufkens et al., 2016), the largest shifts were in
grassland systems that are primarily temperature limited at the beginning of the growing season,
such as the Northern Great Plains (~11 days) and California grasslands (~12 days). In contrast,
the arid grassland site did not exhibit a clear pattern (Fig 7). This is likely because, in arid
grasslands, green-up is more sensitive to changes in precipitation than temperature (Currier &

Sala, 2022), and highly variable SOS dates make it difficult to detect a clear trend in spring
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onset. Overall, our results suggest that climate change will generally cause earlier spring onset
across most North American grasslands, but the magnitude of that advancement will be highly

region-specific.

5. Conclusion

Knowledge of grassland plant phenology and its drivers is crucial to developing a more
complete understanding of both regional and global ecosystem processes. Using PhenoCam data,
we found a new model (SQWs_Tmin) that accurately (within ~2 weeks) predicts SOS across
diverse grassland types better than any previous model, from the Great Plains to Mediterranean
annual grasslands to arid grasslands. This new model emphasizes the influence of precipitation
on grassland phenology, in conjunction with temperature. While SQWs_Tmin works well across
all grasslands with a single parameter set, our results highlight the advantages of using region-
specific parameters for improving overall model performance (from 16 to 10 days). This is
because plants in different climates differ in their temperature and moisture requirements to
initiate spring growth. Using this new model and projected climate data (RCP 8.5) for a
representative site within each KG climate zone, we determined that spring onset is expected to
occur 5-12 days earlier across most North American grasslands within 100 years. Arid grasslands
were the exception, which exhibited no substantial shift because they are more limited by
precipitation than temperature. By integrating SQWs_Tmin into larger earth system models,
predictions of spring onset and associated ecosystem processes could be greatly improved. Our
new grassland phenology model represents a significant development in understanding and
predicting the drivers of spring onset across diverse grassland types, thereby improving estimates

of carbon, nutrient, and water cycling across these prolific systems, both now and in the future.
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Model Type Model Code Drivers # Param
Linear LIN T 2
Thermal time TT (TTs) T 3 (4)
Photo thermal time PTT (PTTs) T, L 3 (4)
M1 model M1 (M1s) T, L 4 (5)
Sequential SQ (SQb) T,C 8
Sequential M1 SM1 (SM1b) T,C L 8
Parallel PA (Pab) T,C 9
Parallel M1 PM1 (PM1b) T,C L 8
Alternating AT T,C 5
Unified M1 umMi T,C L 8
Grassland pollen model | GRP T,LP 5
Growing season index SGSI, AGSI T,LV 7
Water time WT (WTs) P 3(4)
Photo water time PWT (PWTs) P, L 3(4)
M1 model M1W (M1Ws) P, L 4 (5)
Sequential SQW (SQWs) P, T 5(6)
Sequential reverse SQWr (SQWrs) P, T 5(6)
Parallel PAW (PAWSs) P, T 6 (7)
Sequential variation SQW_NoPbase P, T 4
Sequential variation SQW_cdd (SQWSs_cdd) P, T, cdd 5(7)
Sequential variation SQW_Tmin (SQWs_Tmin) P, T, Tmin 5(7)
Sequential variation SQW_cdd_Tmin (SQWs_cdd_Tmin) | P, T, cdd, Tmin 6 (8)
Sequential variation SQW_Pi_Tmin (SQWSs_Pi_Tmin) P, T, Tmin 5(7)
Water time WT_SM (WTs_SM) SM 3(4)
Photo water time PWT_SM (PWTs_SM) SM, L 3(4)
M1 model M1W_SM (M1Ws_SM) SM, L 4 (5)
Sequential SQW_SM (SQWs_SM) SM, T 5(6)
Sequential reverse SQWr_SM (SQWrs_SM) SM, T 5(6)
Parallel PAW_SM (PAWSs_SM) SM, T 6 (7)

Table 1. List of all 53 models included in the study along with their acronyms (Model Code),
climate drivers (Drivers), and number of parameters (# Param). Models in parentheses are

sigmoidal variations (lowercase

[t
S

in Model Code). Black text represents the “original” models,

blue text the new precipitation models, and green text the new soil moisture models. Drivers: T =
temperature, P = precipitation, L = light (photoperiod), C = chilling, cdd = consecutive dry days,
Tmin = minimum temperature, V = vapor pressure deficit, SM = soil moisture.
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Model AIC RMSE
SQWs_Tmin 1094.691 | 15.975
SQWSs_cdd_Tmin | 1099.191 | 16.077
SQWs 1099.268 | 16.246
SQWs_cdd 1100.391 | 16.210
SQW_cdd_Tmin | 1107.048 | 16.574
SQW_Tmin 1114.479 | 16.979
SQW_cdd 1137.597 | 18.016
SQW_NoPbase | 1143.222 | 18.372
sQW 1145316 | 18.376
SQW_Pi_Tmin 1148.591 | 18.531
SQWs_Pi Tmin | 1154.578 | 18.626
SQWrs 1189.103 | 20.455
SQWr 1205.958 | 21.468
PAWSs 1219.343 | 21.991
PAW 1230.799 | 22.763
M1Ws 1277.534 | 25.793
PWTs 1277.819 | 25.944
WTs 1281.842 | 26.213
AGSI 1298.034 | 26.907
SGSI 1300.073 | 27.048
SM1b 1343.235 | 30.059
SM1 1347.969 | 30.426
PA 1366.084 | 31.710
PAb 1367.015 | 31.786
M1s 1391.955 | 34.587
TTs 1393.778 | 34.928
M1 1394.079 | 34.955
PTT 1394.255 | 35.150
PTTs 1395.109 | 35.047
T 1395.690 | 35.280
UM1 1397.946 | 34.586
LIN 1400.853 | 35.934
AT 1400.895 | 35.389
PM1 1404.309 | 35.155
PM1b 1404.343 | 35.158
sQ 1405.646 | 35.276
SQb 1405.740 | 35.284
WT 1416.319 | 37.196
M1W 1418.319 | 37.196
PWT 1418.696 | 37.423
GRP 1451.200 | 40.261

Table 2. Model performance for all original and new precipitation models using All Sites,
listed from best to worst performance (lowest — highest AIC). Black text represents the
“original” models and blue text the new precipitation models. Results for the soil moisture
models are listed in Table A.3.



Sites t0 T-base b c F-crit P-req T-thres RMSE
All Sites 47 4.03 3.57 1.38 192.00 20.17 -10.14 15.98
B 80 6.68 13.24 0.44 59.20 22.59 -3.19 7.86
Cf 198 -3.62 125.63 10.26 134.42 0.86 -0.27 8.40
Cs 34 -8.65 1.06 4.29 1958.77 2.83 -17.61 16.35
Df 46 -0.58 0.92 0.45 321.51 77.12 -12.87 7.75

Table 3. The optimized parameters for the best model (SQWs_Tmin) run with All Sites and each of the four
Koppen-Geiger (KG) climate groups, as well as the root mean square error (RMSE, in days) for each model fit.

The text color matches Figures 2, 5, and 6 to distinguish the different KG groups. The parameters are as follows:

t0 = the number of days after Sept 21 before precipitation can begin accumulating, T-base = the minimum
average daily temperature (°C) for a day to be added to the temperature accumulation, b and ¢ = values that
determine the shape of the sigmoidal precipitation accumulation curve, F-crit = the required temperature
summation (°C) for spring onset to occur, P-req = the required precipitation summation before temperature
accumulation can begin, T-thres = the minimum temperature (°C) re-set threshold (temperature accumulation

resets to zero if daily minimum temperature drops below this value).
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Fig 1. Locations of PhenoCam grassland sites included in the study. Marker sizes indicate the number
of available data years. Background colors designate the 2-letter Kppen-Geiger zones used to divide
the sites by climate.
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Fig 2. Scatterplots between predicted and observed spring onset dates (day of year, DOY) across all
grassland sites for four “original” models. The R? value and root mean square error (RMSE, in days) are
reported for each. Black lines are Model II regression fits, and grey dotted lines are 1:1 lines. Included
models are Thermal Time (TT), Sequential (SQ), Grassland Pollen (GRP), and Accumulated Growing
Season Index (AGSI). See Table 1 for model descriptions. Colors indicate the Koppen-Geiger climate
zone for each data point.
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Fig 3. Scatterplots of predicted versus observed spring onset dates to compare model fits. The color and
length of the arrows indicate the direction and magnitude, respectively, of shifts in predicted spring
onset dates between different model structures. Red arrows indicate earlier dates, blue arrows later
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predicted dates between a model with a simple precipitation summation (SQW) and one with a
sigmoidal precipitation accumulation structure (SQWs). Panel b shows how the addition of a minimum
temperature reset parameter (Tmin) to SQWs influences predicted dates. The shift in RMSE (in days)
between the models is included within each panel.
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Fig 4. a) Sigmoidal precipitation accumulation curves (see Table A.2 for equation) for the best
model (SQWs_Tmin) using the optimized parameters (see Table A.3) for All Sites and the four
Koppen-Geiger climate groups (colored lines) over a range of precipitation event sizes. b) Example
precipitation accumulation curve for a site in Illinois (uiefprairie) for SQWs_Tmin using the
optimized parameters for All Sites. Colors indicate different years, and P-req (dashed line) is the
required precipitation summation before temperature accumulation can begin. Precipitation is
unitless since each event is assigned a weight (see panel a). ¢) Example temperature accumulation
curve for the same model and site. Notice years 2017 and 2018 drop to zero (reset) because they
exceeded the minimum temperature threshold. F-crit is the required temperature summation for
spring onset to occur. Colors are the same as panel b.
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Fig 7. Predicted spring onset (SOS) dates for a representative site from each Koéppen-Geiger (KG) group for the
best model (SQWs_Tmin). The optimized model parameters for each site’s respective KG climate zone were used
to fit 12 future climate scenarios (RCP 8.5, 2007-2100). The predicted SOS dates from each scenario are shown
by the grey lines. The black line represents the median, and the red line the average Sen’s slope fit, across all 12

scenarios. The Sen’s slope (mean =+ sd) is listed in red text and the Mann-Kendall p-value in black text. The sites

include oakville (North Dakota), kansas (Kansas), vaira (California), and Jornada (“ibp”, New Mexico).
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