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Abstract 1 

Vegetation phenology influences many ecosystem and climate processes, such as carbon 2 

uptake and energy and water cycles. Thus, understanding drivers of vegetation phenology is 3 

crucial for predicting current and future impacts of climate change on ecological systems. 4 

Existing models can accurately predict the date of spring green-up in temperate forests but tend 5 

to perform poorly in grassland systems. We hypothesize this is because most do not incorporate 6 

water availability, a primary limiting factor for grassland plants. In this study, we used long-term 7 

datasets of digital imagery from the PhenoCam Network of 43 diverse North American grassland 8 

sites (195 site-years) to test existing spring phenology models, as well as develop several new 9 

models that incorporate precipitation or soil moisture (53 models). Most of the new models 10 

performed substantially better, with the best model requiring sufficient accumulated precipitation 11 

followed by warm temperatures to trigger spring onset (root mean square error, RMSE, between 12 

predicted and observed dates = 16.0 days). Importantly, the best model performed well across all 13 

grassland types using a single set of parameters, from temperate to arid grasslands. Since plants 14 

are adapted to their local climates, model performance was further improved when parameters 15 

were independently optimized for four separate climate regions (RMSE = 10.4 days). Therefore, 16 

both sufficient precipitation and temperature are required for grassland green-up, but optimal 17 

thresholds vary by region. Running the top model with projected climate data (representative 18 

concentration pathway 8.5) suggests that, depending on the climate region, spring onset will 19 

occur up to 12 days earlier within 100 years in temperature-limited sites, but the trend is unclear 20 

for precipitation-limited sites (3.5 ± 8.0 days later). This new phenology model improves our 21 

ability to understand and predict grassland dynamics, with implications for both current and 22 

future ecosystem processes related to carbon and water cycling. 23 
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 25 

1. Introduction 26 

Phenology studies the timing of recurring biological events and their interactions with 27 

abiotic and biotic factors (Lieth, 1974). For instance, vegetation seasonality, such as the timing 28 

and length of the growing season, is influenced by climate patterns, but at the same time, also 29 

heavily influences many climate processes, such as water, energy, and carbon dioxide fluxes, as 30 

well as biological interactions (Richardson et al., 2013; Caparros-Santiago et al., 2021). In this 31 

way, vegetation phenology is a robust indicator of the influence of climate change on biological 32 

systems. Thus, understanding the drivers of vegetation phenology is crucial for predicting the 33 

current and future impacts of climate change on ecological systems. 34 

There have been numerous attempts to model vegetation phenology using standard 35 

climate variables, represented by two main approaches. The first method attempts to predict 36 

vegetation dynamics over the entire growing season (i.e., Jolly et al., 2005; Choler et al., 2010; 37 

Koen et al., 2016, Tian et al., 2019), while the other method predicts seasonal transition dates, 38 

such as the start and end of the growing season. For this study, we focused on this second 39 

modeling approach, with the goal of determining environmental triggers that initiate the start of 40 

the growing season (SOS). These models tend to be simpler, and thus, can be more easily 41 

incorporated into larger earth system models. For example, the Community Land Model (CLM) 42 

uses pre-determined thresholds of key environmental variables to initiate spring leaf-out (CLM5 43 

Documentation).  44 

The oldest and simplest spring onset model is the Growing Degree Day (GDD) model 45 

(also known as the Thermal Time (TT) model), which states that SOS occurs when enough heat 46 
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(degree-days) above a given base temperature has accumulated (Reaumur, 1735). More recent 47 

models have added requirements for chilling and photoperiod (daylength) to the GDD model in 48 

various configurations (Basler, 2016). These models can accurately predict the date of spring 49 

onset in temperate forests (Fu et al., 2012; Basler, 2016), but tend to perform poorly in drier 50 

ecosystems, such as grasslands (Fu et al., 2014; Xin et al., 2015; Cao et al., 2018). For example, 51 

Liu et al. (2018) used satellite imagery data to test the ability of six common spring phenology 52 

models to predict SOS across the Northern Hemisphere and found they worked relatively well 53 

for forested ecosystems, but not grasslands. This is likely because traditional forest models do 54 

not include water availability. Unlike most forest ecosystems, grasslands are inherently water-55 

limited, so spring green-up depends, not only on temperature, but also on sufficient precipitation 56 

inputs (Moore et al., 2015; Zhu et al., 2015). Given that grasslands account for 30% of the 57 

Earth’s ice-free land surface and are significant carbon sinks (Gao et al., 2016), understanding 58 

the drivers of grassland phenology represents a critical research priority. 59 

 In an attempt to better capture grassland dynamics, several spring phenology models have 60 

been developed that include a metric of water availability. For example, White et al. (1997) 61 

developed a grassland model that, in addition to temperature, requires a portion of mean annual 62 

precipitation for SOS to occur. Jolly et al. (2005) created the Growing Season Index model that 63 

uses minimum temperature, photoperiod, and vapor pressure deficit (VPD) to predict SOS. Xin 64 

et al. (2015) later adapted this model to create the Accumulated Growing Season Index (AGSI) 65 

model specifically for grasslands, as well as a variation in which they replaced VPD with soil 66 

moisture. Similarly, Chen et al. (2014) added precipitation to the traditional GDD model both in 67 

sequence (precipitation threshold must be met before temperature accumulation starts) and in 68 

parallel (precipitation and temperature accumulate at the same time). In all cases, the addition of 69 
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water availability significantly improved model performance in predicting SOS in grassland 70 

ecosystems. However, despite these advances, most large earth system models, such as CLM, are 71 

still unable to accurately capture grassland phenological transitions (Zhang et al., 2019; Li et al., 72 

2022), resulting in large uncertainties in estimating critical ecosystem processes and fluxes. 73 

The availability of high-resolution, long-term phenology datasets is a limitation for 74 

modeling grassland dynamics. Many existing models have only been tested with either spatially 75 

limited field data or with coarse resolution satellite data. Remote sensing products have inherent 76 

limitations, including coarse temporal and spatial resolution, resulting in multiple plant 77 

functional groups being included in a single pixel, thereby causing uncertainty in seasonal trends 78 

(Chen et al., 2018; Cui et al., 2019; Taylor et al., 2021). In addition, satellite data in locations 79 

with sparse vegetation cover, such as drylands, have high background noise due to bare soil 80 

reflectance. This results in low-amplitude seasonal signals (Taylor et al., 2021), so many remote 81 

sensing studies exclude dryland ecosystems, such as arid grasslands, from their analyses (e.g., 82 

Jeong et al., 2011; Xin et al., 2015; Ren et al., 2018, 2022; Liu et al., 2020). Likewise, 83 

Mediterranean annual grasslands (such as California grasslands) are often excluded due to 84 

inconsistent annual green-up patterns (Xin et al., 2015; Ren et al., 2018). Thus, the broader 85 

applicability of these models across diverse grassland types is still unknown.  86 

Repeat digital photography provides an alternative data source for assessing the viability 87 

of these models. PhenoCams are cameras mounted above ecosystem canopies that capture digital 88 

images at high temporal resolution (usually every 30 minutes). There are currently over 700 89 

cameras located within diverse ecosystems around the world, creating the PhenoCam Network 90 

(phenocam.nau.edu), which provides powerful, high resolution, long-term phenology data. By 91 

using the red-green-blue (RGB) color channels of the digital images, a robust measure of 92 
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vegetation greenness can be extracted, called the Green Chromatic Coordinate (GCC), which is 93 

highly correlated with other common vegetation indices, such as the Normalized Difference 94 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), as well as Gross Primary 95 

Production (GPP) (Migliavacca et al., 2011; Klosterman et al., 2014; Browning et al., 2017; Cui 96 

et al., 2019). This is an effective method for tracking seasonal changes in vegetation phenology 97 

(Richardson et al., 2013). Additionally, PhenoCam imagery is unique in that a designated portion 98 

of the image, referred to as the region of interest (ROI), can be identified for analysis. Thus, 99 

GCC can be extracted separately for distinct functional groups in an image and, by only focusing 100 

on vegetated areas, the influence of bare soil can be minimized (Browning et al., 2017). 101 

 Given that grassland ecosystems are water-limited, we hypothesized that incorporating a 102 

precipitation or soil moisture requirement into spring phenology models would improve model 103 

performance. In this study, we used PhenoCam imagery from 43 diverse grassland sites across 104 

North America (195 site-years) to improve upon existing models. We addressed the following 105 

questions: 1) Which model and model parameters best predict SOS across varied grassland 106 

ecosystems? 2) Does the use of region-specific parameters improve model performance? 3) 107 

According to the best-fit model, how will future climate change impact the timing of SOS? 108 

 109 

2. Methods 110 

2.1 Data Compilation  111 

 We downloaded metadata for all the PhenoCam sites, including location, climate, and 112 

primary vegetation type using the “phenocamapi” R package (R 4.1.0 Core Team, 2021; 113 

Seyednasrollah, 2018). We sorted the sites by vegetation type to include only those with a 114 

grassland region of interest (ROI) and excluded sites which were visually identified as mowed 115 
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fields, forest understory, or experimental plots. We geographically restricted our study area to 116 

sites within North America; this corresponds with the highest density of PhenoCam sites and 117 

coverage by a high-resolution climate dataset (Daymet, Thornton et al., 2021). In total, we 118 

identified 43 North American PhenoCam grassland sites to include in our analyses, totaling 195 119 

site-years of data and representing a spread of ~250 days in spring onset date (Fig 1; Table A.1). 120 

 For each site, the green chromatic coordinate (GCC) is calculated by the PhenoCam 121 

website (phenocam.nau.edu) for an identified ROI using the red-green-blue color channels of the 122 

digital images. GCC is a ratio of green intensity relative to the total brightness of each pixel and 123 

is robust to changes in image lighting (Richardson et al., 2018). We downloaded and processed 124 

the GCC dataset through 2020 for each grassland site using the “phenocamr” R package 125 

(Hufkens et al., 2018). The full procedure is explained in Hufkens et al. (2018), but briefly, this 126 

package removes outliers, smooths the data, and identifies spring transition dates for each site. 127 

To minimize day-to-day noise in the data due to changes in weather and illumination geometry, 128 

we used the 90th percentile GCC values from the 3-day data product (Richardson et al., 2018). 129 

We extracted the 50% spring green-up date (SOS) for each data-year, corresponding to the day 130 

of the year in which a site has reached 50% of its maximum annual greenness (GCC). We tried 131 

other common thresholds (10% and 25%), but found the models fit best with the 50% threshold. 132 

Because the GCC curve is rising steeply at the 50% threshold, these dates have lower 133 

uncertainties than those extracted from the shallower portion of the curve (lower thresholds). 134 

This allows us to better constrain model parameters while also giving us more power to reject 135 

models that are not well-supported by the data. 136 

California grasslands, located on the West Coast of the United States, required additional 137 

processing. Due to the Mediterranean climate, these grasslands often have two distinct green-up 138 
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peaks – one in the fall/early winter if there is sufficient moisture and then a larger one in the late 139 

winter/spring (Liu et al., 2021). However, the amplitude of the fall green-up was not always 140 

large enough to be detected, and no model could fit dates that included a mix of late fall and 141 

early spring dates. Thus, for sites with two separate greenness peaks, when the earlier green-up 142 

peak was identified (5 site-years), we instead estimated the later transition date using the same 143 

criteria (date when 50% of maximum greenness was reached) to use in model analyses. 144 

Model development and data compositing was supported by the “phenor” R package 145 

(Hufkens et al., 2018). Daymet climate data (1 km x 1km resolution; Thornton et al., 2021) was 146 

used for temperature, precipitation, and vapor pressure deficit, and photoperiod was based on site 147 

location. The climate data were included for the “water-year,” from September 21 of the prior 148 

year to September 20 of the year in which the transition date occurs. Interpolated datasets, such 149 

as Daymet, often have higher precipitation inaccuracies in the North American Southwest due to 150 

low gauge density and high spatial and temporal variability in rainfall (Jing et al., 2017; Henn et 151 

al., 2018). Therefore, we found better model accuracy using on-the-ground precipitation data for 152 

this region when available. For nine Southwest sites (Table A.1), we replaced Daymet 153 

precipitation values with site-level precipitation data collected by Ameriflux 154 

(https://ameriflux.lbl.gov/) or the Southwest Experimental Garden Array (SEGA, 155 

https://sega.nau.edu/). 156 

Soil moisture data was downloaded from the North American Land Data Assimilation 157 

System (NLDAS-2; https://ldas.gsfc.nasa.gov/nldas) due to limited and inconsistent in-situ 158 

measurements. NLDAS-2 provides three different gridded soil moisture datasets (Noah, Mosaic, 159 

VIC) at varying depths that are estimated using different methods. We found that the Mosaic 160 
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dataset at 0-10 cm soil depth resulted in the best model fits and retained these data in our final 161 

analysis. 162 

2.2 Model Structures 163 

We altered existing spring phenology models to include either a precipitation (“W”) or 164 

soil moisture (“SM”) component, as well as developed several novel model structures. The 165 

“phenor” R package provides a framework for easily fitting and comparing common phenology 166 

models (Hufkens et al., 2018). We fit 20 existing (“original”) spring phenology models and 167 

compared them to 33 new models (Tables 1 and A.2, Hufkens et al. 2018). The Water Time 168 

(WT) model is the simplest new model, which states that a site must accumulate enough 169 

precipitation for SOS to occur. We also tested a couple variations that include a photoperiod 170 

requirement, the Photo Water Time (PWT) and M1 (M1W) models. Unlike forests, grasslands 171 

have not been found to require chilling (Cao et al., 2018, Wang et al., 2022), so following Chen 172 

et al. (2014), we replaced the chilling requirement with a precipitation requirement in both the 173 

Sequential (SQW) and Parallel (PAW) models. These state that sufficient precipitation must 174 

occur either before (SQW) or concurrently (PAW) with temperature accumulation. We also tried 175 

a sequential model with the reverse order (SQWr), in which the temperature requirement must be 176 

met before precipitation accumulation begins. For all the models, we also included a model 177 

variant in which precipitation accumulates in a sigmoidal fashion, so that each precipitation 178 

event is given a weight between 0-1 (lowercase “s” added to model code, Table 1). Finally, soil 179 

moisture (SM) is often a better indicator of plant water availability than precipitation, which is 180 

subject to losses via evaporation and runoff (Liu et al., 2013; Tao et al., 2020), so we developed 181 

a final class of models that replaced precipitation with soil moisture (“SM” models; Tables 1 and 182 

A.2). 183 
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 For the best-fit model structure (SQW), we tested several additional model variants. We 184 

found that the optimized value for one parameter was usually close to zero (P-base: minimum 185 

precipitation event size added to the accumulated precipitation total), so we included a model 186 

variation without this parameter (SQW_NoPbase) and excluded it from all subsequent model 187 

variants. The other variants introduced a “reset” parameter, so that either precipitation or 188 

temperature accumulation restarted if a certain threshold was surpassed. Our thought was that 189 

certain extreme events might interrupt or delay plant development. For example, the SQW_cdd 190 

model states that precipitation accumulation restarts if a certain number of consecutive dry days 191 

(cdd) occur. Likewise, in the SQW_Tmin model, temperature accumulation restarts if the daily 192 

minimum temperature (Tmin) drops below a certain threshold. SQW_cdd_Tmin combines both 193 

reset thresholds, and SQW_Pi_Tmin states that precipitation accumulation resets if a minimum 194 

temperature threshold is reached. As with the other models, we also tried all the variants with a 195 

sigmoidal precipitation accumulation structure (Table 1). 196 

2.3 Fitting Models 197 

 We used generalized simulated annealing to optimize model parameters using the 198 

“GenSA” R package (Xiang et al., 2013). This process is commonly used for fitting phenological 199 

models (Chuine, 2000). Parameter ranges were selected to be wide enough to cover the full range 200 

of plausible values but narrow enough for an efficient parameter search (Appendix B). To 201 

identify the best-fit parameters, we ran the optimization algorithm 25 times for each model, with 202 

100,000 iterations each time. We selected parameters from the model run with the lowest RMSE 203 

for each model. Performance between models was compared using the Akaike Information 204 

Criterion (AIC). To visualize model performance, we used the site-year residuals (observed-205 
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predicted dates) for each model to build a hierarchical tree that grouped models based on similar 206 

performance (“hclust” function in R with the clustering method set to “average”). 207 

 For each of the top models, we validated the results using a leave-one-site-out method. 208 

We fit the model (100,000 iterations) excluding all data for one PhenoCam site (N = 1-16 years 209 

per site), and then used the resulting optimized parameters to predict the SOS dates for the 210 

excluded site based on its climate data. We repeated this process for each site and combined all 211 

the predicted SOS dates for the excluded sites into a single dataset, which we used to calculate 212 

the RMSE of the validation run. As above, this process was repeated 25 times to ensure the best-213 

fit parameters were identified. 214 

2.4 Dividing Sites by Climate 215 

Given that grassland plants in different climates likely have different temperature and 216 

precipitation requirements (White et al., 1997; Xin et al., 2015; Ren et al., 2018), we also divided 217 

the sites by climate and re-ran the models for each subset of sites to obtain region-specific 218 

parameters. We divided the sites based on their Köppen-Geiger (KG) climate classification (Peel 219 

et al., 2007), but to limit the number of groups and ensure a sufficient sample size for each, we 220 

only used the first two of the three nested climate criteria (general climate and seasonal 221 

precipitation timing, indicated by letters). The dry sites were an exception, which we combined 222 

into a single group because there were fewer of them. Therefore, the sites fell into four separate 223 

KG climate groups: B: arid and semi-arid (12 sites, 46 site-years), Cf: temperate and humid 224 

subtropical (8 sites, 32 site-years), Cs: Mediterranean/dry summer (10 sites, 43 site-years), and 225 

Df: humid continental (13 sites, 74 site-years).  226 

We ran the models separately for each KG group using the same methods described 227 

above. Then, for each of the top three regional models (and several extra), we combined the 228 
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predicted SOS dates for all four KG groups into one dataset and calculated the overall RMSE 229 

and AIC. Since AIC balances model fit with complexity, using regionally optimized parameters 230 

added extra complexity “cost” to the AIC calculation. For example, if a model had five 231 

parameters that were optimized separately for each of the four KG groups, when the results were 232 

combined, 20 parameters (5 parameters x 4 groups) were utilized in total (see Table A.5). This 233 

allowed for a direct comparison between model runs using a single parameter set (All Sites) and 234 

those using four separate climate-specific parameter sets (KG groups). For the best overall 235 

model, we performed separate leave-one-site-out validations for each KG group using the same 236 

methods as described above. We then combined those results into a single dataset to calculate the 237 

validation RMSE across all sites when each region was separately parameterized. 238 

2.5 Future Projections 239 

To determine how the timing of spring onset is predicted to shift as a result of climate 240 

change, we used the top model to predict future SOS dates across several grassland sites. Given 241 

the uncertainty of future climate projections, especially for precipitation patterns (Mishra et al., 242 

2012; Polley et al., 2013), we included an ensemble of projected climate scenarios. We chose a 243 

representative site from each KG climate zone that contained the most typical grassland type for 244 

the region and downloaded projected daily precipitation and temperature data (2007-2100) for 245 

each from the NA-CORDEX data collection 246 

(https://www.earthsystemgrid.org/search/cordexsearch.html) from several different regional 247 

climate models (RCM) under a “business as usual” (representative concentration pathway “RCP” 248 

8.5) scenario. Each RCM can be driven by various global climate models, and we chose to only 249 

use model output that had been bias-corrected against Daymet climate data (see https://na-250 

cordex.org/dataset-description) to better match the data used in our analyses. This resulted in a 251 
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total of 12 future climate scenarios. For each, we formatted the data for use in “phenor” and ran 252 

the top model using the optimized model parameters for each site’s respective KG climate zone 253 

to obtain predicted yearly SOS dates. To estimate the rate of change in SOS dates through time, 254 

we fit a Sen’s slope (SOS vs year, “zyp” package: Bronaugh & Werner, 2019) for each scenario 255 

and calculated the mean and standard deviation across all the scenarios for each location. Then, 256 

to evaluate the statistical significance of the trend, we used the median SOS dates across all the 257 

scenarios to perform a Mann-Kendall test for each site (“Kendall” package: McLeod, 2022). 258 

 259 

3. Results 260 

3.1 Model Performance 261 

The original spring phenology models (cells with black text, Table 1) fit poorly across the 262 

diverse grassland sites, with the RMSE between predicted and observed SOS dates ranging from 263 

26.9-40.3 days (Fig 2 and Table 2). The models were particularly poor at predicting the earliest 264 

and latest transition dates (Model II regression slopes = 0.22-0.76, Fig 2). Although, models that 265 

included VPD (SGSI, AGSI) fit better (both RMSE ~27 days) than those with only chilling 266 

and/or degree-days as drivers. Interestingly, the only model that included precipitation (GRP) 267 

had the worst overall performance (RMSE = 40 days). All model fits are reported in Table 2.  268 

Of the new models tested, those with only precipitation (with or without photoperiod) fit 269 

poorly (RMSE = 26-37 days). Instead, the best models included both precipitation and 270 

temperature (RMSE values: SQW = 18.4, SQWr = 21.5, PAW = 22.8 days). These performed 271 

better than any of the original models (Table 2). Models that used soil moisture instead of 272 

precipitation had similar patterns, but generally performed slightly worse (RMSE = 19.4 – 31.9 273 

days; Table A.3). Additionally, the sigmoidal precipitation accumulation structure, in which very 274 
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small and large events are given less influence, usually improved model fit (RMSE values: 275 

SQWs = 16.2, SQWrs = 20.5, PAWs = 22.0 days). Of these models, the sigmoidal sequential 276 

model (SQWs) was the best based on both RMSE and AIC (Table 2). Figure 3a shows how 277 

model predictions for individual site-years were altered by using a sigmoidal precipitation 278 

accumulation structure (SQWs) rather than a simple summation (SQW). Early transitioning sites 279 

were especially improved (closer to 1:1 line) largely due to differences in the t0 parameter, 280 

which determines the number of days after the start of the water year (Sept 21) that precipitation 281 

can start accumulating. SQWs started precipitation accumulation much earlier than SQW (t0 = 282 

47 vs 138 days), allowing the predicted SOS dates to be much closer to the observed dates for 283 

early transitioning sites. In contrast, the larger t0 value in SQW delayed precipitation 284 

accumulation until February, after the observed SOS date for some sites had already passed.  285 

The sigmoidal precipitation accumulation structure in SQWs is key to accommodating 286 

this earlier start date (t0). In this model structure, each precipitation event is assigned a value 287 

between 0-1 based on the optimized model parameters that determine the shape of the sigmoidal 288 

curve. For example, Figure 4a shows the sigmoidal relationship between rain event size and its 289 

assigned weight based on the best-fit “b” and “c” parameters from the model (Table 3). For the 290 

model fit with All Sites (grey line), any daily event less than ~3 mm is assigned a value less than 291 

1, and any event greater than ~3 mm is assigned a value of 1. Thus, small events do not influence 292 

the precipitation total as much as large events, but at the same time, all events > 3 mm are given 293 

equal weight. Large rain events do not cause the site to reach the required precipitation threshold 294 

(P-req) sooner because proportionally more water is usually lost to run-off (Fig 4b). This 295 

dampened impact of individual rainfall events allowed for the utilization of a larger collection 296 
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window starting earlier in the water-year, which consequently improved predictions for sites 297 

with early transition dates.  298 

Based on AIC comparisons, all the SQW model variants were better than any other 299 

model type, and those that included Tmin (SQWs_Tmin and SQWs_cdd_Tmin) performed better 300 

than SQWs (Table 2). This suggests that the addition of a temperature reset parameter, in which 301 

temperature accumulation resets when the minimum temperature drops below a certain 302 

threshold, such as during a spring cold snap, is beneficial for at least some sites by delaying their 303 

predicted SOS date (Fig 4c). Figure 3b shows how individual site-years were altered by the 304 

addition of this parameter; most were only slightly affected, but some individual points were 305 

significantly improved. However, the addition of a parameter that reset precipitation 306 

accumulation (SQW_cdd and SQW_Pi_Tmin) did not improve model performance. Thus, the 307 

best overall model for predicting SOS across diverse grasslands was SQWs_Tmin (RMSE = 16.0 308 

days, R2 = 0.85, Fig 5a). The RMSE of the best leave-one-site-out validation run was 19.1 days, 309 

and the average across all 25 validation runs was 21.04 ± 1.48 days. 310 

3.2 Models by Climate Group 311 

Unsurprisingly, model performance was further improved by separately optimizing 312 

model parameters for different climate regions – the model parameters can thus be interpreted as 313 

representing the phenological adaptation of populations or species to local conditions. When all 314 

the models and model variations were run separately for each KG group, SQWs_Tmin was 315 

consistently one of the top regional models. Based on RMSE, it was the top model for B (RMSE 316 

= 7.9 days), Cs (RMSE = 16.3 days), and Df (RMSE = 7.7 days), and within 0.5 days of the best 317 

model for Cf (RMSE = 8.4 days; Table A.4). However, based on AIC, slightly less-complex 318 

models (fewer parameters) performed marginally better for several of the KG regions, though 319 
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they all had the same basic model structure, with precipitation accumulating before temperature 320 

(Table A.4). 321 

When the results of the top regional models for each KG group were combined and 322 

analyzed, SQWs_Tmin was once again the best overall model, with a substantially lower AIC 323 

value than the same model using only a single set of parameters (AIC = 968.7 vs 1094.7; Table 324 

A.5). Using regionally optimized parameters also reduced the RMSE from 16.0 to 10.4 days (R2 325 

= 0.93, Fig 5b). The best-fit parameters and RMSE values for All Sites and each KG group for 326 

the SQWs_Tmin model are listed in Table 3. The combined RMSE for the leave-one-site-out 327 

regionally parameterized validation of SQWs_Tmin was 16.0 days. 328 

Running the model separately for each KG climate group improved performance because 329 

it allowed parameters to be optimized for region-specific attributes (Table 3). For example, Cs 330 

had a much lower t0 (34 days; number of days after the start of the water year before 331 

precipitation can start accumulating) than Cf (t0 = 198 days). This means that Mediterranean 332 

sites (Cs) started accumulating precipitation in October, which makes sense considering 333 

California grasslands can green-up as early as November. In contrast, temperate grasslands (Cf) 334 

become active later in the spring, so did not start accumulating precipitation until April since 335 

earlier precipitation (such as October rainfall) has little influence on their spring physiological 336 

activity. However, colder Northern Great Plains grasslands (Df) started accumulating 337 

precipitation early (t0 = 46) despite not greening up until later in the spring, but this was 338 

accounted for by requiring greater total accumulated precipitation. 339 

Precipitation requirements also differed by climate. Based on the optimal parameters for 340 

each KG group, precipitation accumulated differently (“b” and “c” parameters determine shape 341 

of sigmoid curve), as well as the required precipitation amount (P-req; Table 3, Fig 4a). For 342 
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example, in arid grasslands (B), the precipitation accumulation curve reaches a horizontal 343 

asymptote at a rain even size of ~1 mm, so all larger events provide an equal amount of forcing 344 

(Fig 4a). Therefore, based on the required precipitation parameter (P-req =22.6; Table 3), these 345 

sites must receive ~22 total rain events of at least 1 mm to surpass the precipitation threshold. In 346 

contrast, wetter regions require larger precipitation events to initiate spring green-up. Temperate 347 

grasslands (Cf) require a single (P-req = 0.9), but much larger (asymptote ~10 mm; Fig 4a) rain 348 

event, and Mediterranean grasslands (Cs) require about 3 events (P-req = 2.8) greater than ~8 349 

mm or several smaller events of equivalent size (shallower curve; Table 3, Fig 4a). Interestingly, 350 

because the y-intercept of the sigmoidal curve is 0.4 for cooler grasslands (Df), these sites 351 

accumulate “precipitation” even on days with no rain (i.e., days with 0mm of rainfall contribute 352 

0.4 in forcing; Fig 4a). Thus, since no-rain days advance the “state of water” in this region, P-req 353 

is a function of both precipitation and the amount of time that has passed since accumulation 354 

began. 355 

3.3 Visualizing Model Performance 356 

The hierarchical tree constructed using model residuals (observed-predicted SOS dates) 357 

provides a visual representation of the similarity between model performances (Fig 6). Models 358 

with more similar predicted SOS dates are grouped closer together and those with more different 359 

dates are farther apart. For ease of interpretation, the clustering algorithm divided the models into 360 

nine groups (salmon-colored boxes, numbered 1-9) based on similarity. From this, it is evident 361 

that the original models grouped separately (black text; Groups 7-9) from the new models that 362 

included precipitation or soil moisture as a driver (Groups 1-6), suggesting the addition of water 363 

availability altered model performance in a consistent fashion. Interestingly, the three original 364 

models that included a measure of water availability (GRP, SGSI, AGSI) grouped separately 365 
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(Groups 7 & 9) from the rest of the original models, but also did not cluster with the new models 366 

due to their unique model structures (Hufkens et al., 2018). Within the new models, those with 367 

both water availability (precipitation or soil moisture) and temperature had more similar 368 

predicted SOS dates (Groups 4-6) than those with only water availability (with or without 369 

photoperiod; Groups 1-3). Also, the soil moisture models (green text; Groups 2 & 5) clustered 370 

separately from the precipitation models (blue text; Groups 1, 3, 4, 6), and the precipitation 371 

models with a sigmoidal accumulation structure (lowercase “s” in model code) generally 372 

grouped separately from those with a simple precipitation summation (Groups 1 vs 3 and Groups 373 

4 vs 6). When the top three models based on AIC were identified for All Sites and each KG 374 

group (colored stars), with one exception, the top three models were all sequential with 375 

precipitation and temperature as drivers (Groups 4 & 6, SQW model structure). This confirms 376 

that, despite differences in the best SQW model variant for each KG group, all the top models 377 

perform similarly due to underlying commonalities in model structure, and the general 378 

precipitation-temperature sequential model structure is best for predicting SOS across diverse 379 

grassland types. 380 

3.4 Future Projections 381 

Forward projections for a representative site for each KG group using the top model 382 

(SQWs_Tmin) suggest that SOS will occur earlier across much of the North American grassland 383 

region by the end of the century. Ensemble means predicted that SOS in temperate grasslands 384 

will occur earlier, with the cooler grassland site (Df, North Dakota: 11.1 ± 2.7 days over 100 385 

years, p < 0.001) experiencing a greater shift than the warmer grassland site (Cf, Kansas; 4.7 ± 386 

2.3 days over 100 years, p < 0.001; Fig 7). Although, the warmer site was constrained by a much 387 

larger t0 value (198 days), which means precipitation cannot begin accumulating until early 388 
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April, limiting the amount that SOS can advance. Mediterranean grasslands (Cs, California) also 389 

exhibited a shift to earlier spring onset (12.3 ± 6.0 days over 100 years, p < 0.001), but the signal 390 

for arid grasslands was inconsistent (B, New Mexico; SOS delayed 3.5 ± 8.0 days over 100 391 

years, p = 0.776; Fig 7). This was because some of the climate scenarios suggested a slight delay 392 

in SOS for this region, and others a slight advancement, resulting in a large standard deviation 393 

and no clear directional shift.  394 

  395 

4. Discussion    396 

Grasslands cover 30% of North America and heavily influence both regional and global 397 

water and energy fluxes, as well as represent a significant carbon sink (Abberton et al., 2009; 398 

Pendall et al., 2018). Therefore, determining how various climate factors influence grassland 399 

plant phenology is important for understanding current ecological processes as well as future 400 

impacts of climate change. However, many established (“original”) phenology models were 401 

made for forested ecosystems and perform poorly in grasslands (Xin et al., 2015; Liu et al., 402 

2018), likely because most do not include water availability. We used PhenoCam images from 403 

43 diverse North American grassland sites to test numerous existing spring phenology models as 404 

well as several new model variations that incorporate precipitation or soil moisture. Our best new 405 

model suggests that grasslands require sufficient precipitation followed by warm temperatures to 406 

initiate spring green-up. 407 

4.1 Original Models 408 

In agreement with past studies (Fu et al., 2014; Xin et al., 2015; Cao et al., 2018; Liu et 409 

al., 2018; Ren et al., 2022), the original models poorly predicted the start of the growing season 410 

(SOS) in grassland ecosystems, with the difference between predicted and observed dates 411 
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(RMSE) ranging between 4-6 weeks (Fig 2 & Table 2). Similar to the findings of Liu et al. 412 

(2018), the original models were especially poor at predicting early and late SOS dates – they 413 

tended to predict SOS too late in early-transitioning Mediterranean grasslands and too early in 414 

late-transitioning arid grasslands (Fig 2). This is because these ecosystems need more than just 415 

temperature and/or daylength for spring initiation, but also sufficient precipitation inputs. 416 

California grasslands typically green-up early in the year, coinciding with a period of available 417 

moisture before the start of the summer dry season (Huenneke & Mooney, 1989; Liu et al., 418 

2021). Likewise, many Southwestern arid grasslands depend on monsoonal rains that occur later 419 

in the summer (Jul – Sept) to become active (Adams & Comrie, 1997), so their green-up dates 420 

occur much later in the year. Thus, the absence of a precipitation driver in most of the original 421 

models did not allow for this flexibility in timing and resulted in inaccurate predicted SOS dates.  422 

Several of the original models did incorporate a measure of water availability. AGSI and 423 

SGSI include vapor pressure deficit (VPD) as a driver (Xin et al., 2015), but while they did 424 

perform best of the original models, both still had errors of about four weeks (RMSE ~27 days; 425 

Fig 2 & Table 2). This suggests that either the model drivers (photoperiod, VPD, temperature) 426 

were not sufficient predictors of SOS or that the model structure was not appropriate. 427 

Interestingly, the only model that explicitly included precipitation as a parameter (GRP) 428 

performed the worst, with a RMSE of ~40 days (Fig 2). This could be because the GRP model 429 

only considers precipitation accumulated the week prior to the predicted SOS date and, as 430 

evidenced by the much longer precipitation accumulation period in our new best-fit model, this 431 

is not long enough to fully trigger spring green-up in most grassland ecosystems. 432 
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4.2 New Models 433 

 Most of the new spring phenology models performed significantly better than the original 434 

ones, and of those, precipitation models were generally better than soil moisture models. Past 435 

modeling studies have found mixed results using soil moisture in place of precipitation or VPD 436 

(Liu et al., 2013; Xin et al., 2015; Tao et al., 2020). This could be attributed to inaccurate soil 437 

moisture estimates from gridded data products (Xia et al., 2014), so with more accurate data, soil 438 

moisture could be a better driver of grassland phenology. However, in this study, we found the 439 

best new models included precipitation and temperature (SQW, SQWr, PAW); models with only 440 

one or the other performed poorly. Thus, in agreement with other studies (Chen et al., 2014; 441 

Moore et al., 2015; Ren et al., 2018, 2022; Fan et al., 2020; Fu et al., 2021), both sufficient 442 

temperature and precipitation are required for grasslands to become active in the spring. 443 

However, the order in which they accumulate is important. Our results suggest that a site must 444 

first accumulate enough precipitation, followed by temperature (sequential, SQW). This was 445 

better than the opposite order (temperature before precipitation; reverse sequential, SQWr; 446 

RMSE ~3 days greater) or accumulating both at the same time (parallel, PAW; RMSE ~4.5 days 447 

greater; Table 2). Several recent studies have found similar results (Chen et al., 2014; Ren et al., 448 

2022). For example, Ren et al. (2022) used satellite data to fit several spring phenology models 449 

across all Northern Hemisphere grasslands and found the sequential (SQW) model was best for a 450 

majority of the study region. This is likely due to the physiological requirements for grass 451 

germination and/or tiller emergence. As any gardener knows, seeds placed in dry soil will not 452 

grow, even with ample sunlight and warm temperatures. Likewise, grass seeds require moist soil 453 

conditions to germinate (Qi & Redmann, 1993; Abbott & Roundy, 2003; Springer, 2005; Durr et 454 

al., 2015), as do the belowground buds of perennial grasses to produce tillers (Korte & Chu, 455 
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1983; Russell et al., 2017). Thus, in water-limited environments, sufficient precipitation is a 456 

prerequisite to warm temperatures for the initiation of plant physiological processes. 457 

We also found that using a sigmoidal accumulation structure for precipitation generally 458 

improved model fit (SQWs). This introduces a minimum and maximum effective precipitation 459 

size, thereby altering the way that individual precipitation events contribute to the required 460 

precipitation accumulation. In agreement with prior studies, which have found small events to be 461 

less effective at stimulating plant growth in grasslands (Huxman et al., 2004; Heisler-White et 462 

al., 2009; Post & Knapp, 2021), events that are too small are not counted. Likewise, excess 463 

rainfall from large rain events can be lost via runoff or deep drainage, so does not promote 464 

greater plant available moisture (Sala et al., 1988; Ye et al., 2016). Thus, all events over a certain 465 

size threshold contribute equally to the precipitation accumulation. In this way, the sigmoidal 466 

accumulation structure improved model accuracy by accounting for ecologically relevant 467 

rainfall. 468 

Likewise, the addition of a temperature accumulation reset parameter improved model 469 

performance, making SQWs_Tmin the best overall model. In this model, temperature 470 

accumulation resets if the daily minimum temperature drops below a certain threshold (T-thres; 471 

Fig. 4c). This causes a delay in reaching the temperature accumulation threshold (F-crit), 472 

resulting in a later predicted SOS date. Thus, the temperature reset parameter improves model 473 

performance when spring temperatures are abnormally low. A late cold snap during the spring 474 

season can hinder the initiation of plant physiological processes and growth (Allen & Ort, 2001; 475 

Kovi et al., 2016; Kong & Henry; 2019), though more research is needed on the direct impacts 476 

on grassland systems (Kral-O’Brien et al., 2019).  477 
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Importantly, using a single set of parameters, the SQWs_Tmin model was able to 478 

accurately predict SOS across diverse grassland sites within about two weeks (RMSE = 16.0 479 

days; Fig 5a). This represents a significant improvement over the results from past studies, 480 

especially for warm, water-limited grasslands. Using remote sensing data, Liu et al. (2018) tested 481 

six traditional spring models across the Northern Hemisphere and found RMSE values of 15.7-482 

18.5 days for C3-dominated (cool) grasslands, and 25.8-27.3 days for C4-dominated (warm) 483 

grasslands. In a similar remote sensing study, Fu et al. (2014) found RMSE values of 18-37 days 484 

over North American grasslands for both a temperature-only (TT) model, as well as a model with 485 

both precipitation and soil temperature that is used in several common earth system models 486 

(Biome-Biogeochemical Cycle model; White et al., 1997; Zhang et al., 2019). Other studies have 487 

tested additional spring phenology models in various grassland regions, but their results are hard 488 

to compare with ours because they either fit models separately for each satellite pixel (Ren et al., 489 

2022) or cover a different and/or smaller geographic region (White et al., 1997; Chen et al., 490 

2014; Cao et al., 2018; Fan et al., 2020). For example, our model is about a day better than the 491 

AGSI model when fit across the Western US by Xin et al. (2015), but their study excluded 492 

regions with unique phenological signals (i.e., California & Southwest). Our inclusion of these 493 

regions likely led to slightly higher RMSE values in our analyses. Nonetheless, the SQWs_Tmin 494 

model represents a clear improvement for predicting SOS in grassland ecosystems, which can be 495 

attributed to two factors: 1) the use of fine-scale, near-surface remote sensing data (PhenoCam) 496 

instead of coarse resolution satellite data and 2) a new flexible model structure that better 497 

captures the influence of multiple climate variables across diverse grassland systems.  498 
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4.3 Regional models 499 

The SQWs_Tmin model worked well for all grasslands using a single set of parameters, 500 

but model performance was further improved by using region-specific parameters. Most regional 501 

fits (KG groups B, Cf, Df) predicted SOS within about a week of observed dates (Table 3; 502 

RMSE = 7.8-8.4 days). The exception was Cs, which had a larger error (RMSE = 16.4 days) 503 

because this group included two very different grassland types, despite both having extended dry 504 

periods (Fig 1). California grasslands green-up in late winter/early spring (DOY 1-100), whereas 505 

high elevation Southwestern grasslands green-up in response to late-summer monsoons (DOY 506 

150-200). Given this ~200-day spread in green-up dates, it is impressive that the model was 507 

accurate to within about two weeks. Notably, all the top models for each KG group had the same 508 

model structure with precipitation accumulating before temperature (Fig 6), and when regional 509 

results were combined, SQWs_Tmin was the best overall model with predictions within ~10 510 

days of observed transition dates (Fig 5b). Thus, using region-specific parameters improved 511 

model accuracy by about six days. 512 

Due to differences in species composition, it follows that grasslands in different climate 513 

zones have different temperature and precipitation requirements. For example, the Northern 514 

Great Plains consists of predominantly cool-adapted C3 grasses, whereas the Southern Great 515 

Plains and desert grasslands contain mostly warm-adapted C4 grasses (Paruelo & Lauenroth, 516 

1996; Wang et al., 2013). The KG climate zones Df (cool C3) and Cf (warm C4) roughly align 517 

with this functional group transition (Fig 1; Paruelo & Lauenroth, 1996; von Fischer et al., 518 

2008), which likely accounts for the difference in optimized parameters between these groups. 519 

For instance, Df has a much lower minimum temperature reset threshold (T-thres = -12.9 °C) 520 

than Cf (T-thres = -0.3 °C; Table 3) because plants in that region can tolerate colder temperatures 521 
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(Epstein et al., 1998; Liu & Osborne, 2008). Likewise, precipitation requirements differ 522 

substantially between climate groups. In agreement with prior studies that have found dryland 523 

plants to respond to small precipitation pulses (Sala & Lauenroth, 1982; Liang et al., 2021), arid 524 

grasslands (B) can utilize small rainfall events (~ 1 mm, Fig 4a). In contrast, mesic grasslands 525 

(Cf) require a larger precipitation pulse to activate spring growth (~ 10 mm, Fig 4a) because the 526 

plants are adapted to wetter soil conditions (Knapp et al., 2008). Interestingly, cooler grasslands 527 

(Df) continuously accumulated “precipitation” even when no rain occurred, suggesting a 528 

diminished importance of precipitation inputs for this system (Fig 4a). This is because the 529 

Northern Great Plains (Df) are more limited by temperature than by precipitation (Jolly et al., 530 

2005) since they can utilize moisture stored in the soil from snow melt and/or abundant spring 531 

rainfall (Ren et al., 2018, Mohammed et al., 2019). In fact, temperature-only models worked 532 

decently well in this region (RMSE ~ 9 days, Table A.4), and Ren et al. (2022) found that a 533 

temperature-only model (TT) was best for cool, wet grassland regions. Nonetheless, we found 534 

that precipitation-temperature models consistently out-performed temperature-only models in 535 

this region because they better accommodate years that are abnormally dry. 536 

 Given the unique climatological and phenological patterns of California grasslands 537 

(within KG group “Cs”), our models performed remarkedly well for this region. California 538 

grasslands tend to green-up much earlier than other North American grasslands, and depending 539 

on precipitation patterns, they can have two distinct seasonal green-up cycles – one in the late 540 

fall/early winter and another in the late winter/early spring (Huenneke & Mooney, 1989; Liu et 541 

al., 2021). They are also dominated by annual grasses, so species composition can change 542 

drastically from one year to the next depending on seed dispersal and recruitment (Huenneke & 543 

Mooney, 1989; Bart et al., 2017). For these reasons, many large-scale phenology studies have 544 
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excluded this region from analysis (e.g., Xin et al., 2015; Ren et al., 2018). Bart et al. (2017) is 545 

one of the few studies that has attempted to model the phenological drivers of California 546 

grasslands. They used MODIS satellite data at two different sites in California to develop a SOS 547 

grassland model using soil water potential, temperature, and VPD. However, even when the 548 

model was parameterized separately for each site, RMSE was still 20-22 days. Thus, our new 549 

model (SQWs_Tmin) is a significant improvement, with a RMSE of 16.4 days across all 550 

Mediterranean (Cs) grassland sites, including California grasslands. Although, it is important to 551 

note that our model is currently able to predict only a single annual green-up event, so there is 552 

opportunity for improvement with a model that could simulate multiple green-up events. 553 

4.4 Forward Projections 554 

 Using projected climate data and regionally optimized parameters for the top model 555 

(SQWs_Tmin), we found that spring onset in most North American grasslands is predicted to 556 

occur about 5-12 days earlier within the next 100 years (Fig 7). This aligns with previous studies 557 

that have forecasted earlier spring onset in grassland systems due to warming air temperatures 558 

(Zhang et al., 2013; Li et al., 2016; Chang et al., 2017; Wang et al., 2020). However, our 559 

observed shift is less drastic than the findings of a recent paper, which predicted spring to occur 560 

21-25 (± 3-4) days earlier by 2100 across most the Great Plains region (Hufkens et al. 2016). 561 

Similar to other studies (Polley et al., 2013; Hufkens et al., 2016), the largest shifts were in 562 

grassland systems that are primarily temperature limited at the beginning of the growing season, 563 

such as the Northern Great Plains (~11 days) and California grasslands (~12 days). In contrast, 564 

the arid grassland site did not exhibit a clear pattern (Fig 7). This is likely because, in arid 565 

grasslands, green-up is more sensitive to changes in precipitation than temperature (Currier & 566 

Sala, 2022), and highly variable SOS dates make it difficult to detect a clear trend in spring 567 
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onset. Overall, our results suggest that climate change will generally cause earlier spring onset 568 

across most North American grasslands, but the magnitude of that advancement will be highly 569 

region-specific. 570 

 571 

5. Conclusion 572 

Knowledge of grassland plant phenology and its drivers is crucial to developing a more 573 

complete understanding of both regional and global ecosystem processes. Using PhenoCam data, 574 

we found a new model (SQWs_Tmin) that accurately (within ~2 weeks) predicts SOS across 575 

diverse grassland types better than any previous model, from the Great Plains to Mediterranean 576 

annual grasslands to arid grasslands. This new model emphasizes the influence of precipitation 577 

on grassland phenology, in conjunction with temperature. While SQWs_Tmin works well across 578 

all grasslands with a single parameter set, our results highlight the advantages of using region-579 

specific parameters for improving overall model performance (from 16 to 10 days). This is 580 

because plants in different climates differ in their temperature and moisture requirements to 581 

initiate spring growth. Using this new model and projected climate data (RCP 8.5) for a 582 

representative site within each KG climate zone, we determined that spring onset is expected to 583 

occur 5-12 days earlier across most North American grasslands within 100 years. Arid grasslands 584 

were the exception, which exhibited no substantial shift because they are more limited by 585 

precipitation than temperature. By integrating SQWs_Tmin into larger earth system models, 586 

predictions of spring onset and associated ecosystem processes could be greatly improved. Our 587 

new grassland phenology model represents a significant development in understanding and 588 

predicting the drivers of spring onset across diverse grassland types, thereby improving estimates 589 

of carbon, nutrient, and water cycling across these prolific systems, both now and in the future. 590 
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Model Type Model Code Drivers # Param 
Linear LIN T 2 
Thermal time TT (TTs) T 3 (4) 
Photo thermal time PTT (PTTs) T, L 3 (4) 
M1 model M1 (M1s) T, L 4 (5) 
Sequential SQ (SQb) T, C 8 
Sequential M1 SM1 (SM1b) T, C, L 8 
Parallel PA (Pab) T, C 9 
Parallel M1 PM1 (PM1b) T, C, L 8 
Alternating AT T, C 5 
Unified M1 UM1 T, C, L 8 
Grassland pollen model GRP T, L, P 5 
Growing season index SGSI, AGSI T, L, V 7 
Water time WT (WTs) P 3 (4) 
Photo water time PWT (PWTs) P, L 3 (4) 
M1 model M1W (M1Ws) P, L 4 (5) 
Sequential SQW (SQWs) P, T 5 (6) 
Sequential reverse SQWr (SQWrs) P, T 5 (6) 
Parallel PAW (PAWs) P, T 6 (7) 
Sequential variation SQW_NoPbase P, T 4 
Sequential variation SQW_cdd (SQWs_cdd) P, T, cdd 5 (7) 
Sequential variation SQW_Tmin (SQWs_Tmin) P, T, Tmin 5 (7) 
Sequential variation SQW_cdd_Tmin (SQWs_cdd_Tmin) P, T, cdd, Tmin 6 (8) 
Sequential variation SQW_Pi_Tmin (SQWs_Pi_Tmin) P, T, Tmin 5 (7) 
Water time WT_SM (WTs_SM) SM 3 (4) 
Photo water time PWT_SM (PWTs_SM) SM, L 3 (4) 
M1 model M1W_SM (M1Ws_SM) SM, L 4 (5) 
Sequential SQW_SM (SQWs_SM) SM, T 5 (6) 
Sequential reverse SQWr_SM (SQWrs_SM) SM, T 5 (6) 
Parallel PAW_SM (PAWs_SM) SM, T 6 (7) 

 

 

 

 

 
 
 
 

Table 1. List of all 53 models included in the study along with their acronyms (Model Code), 
climate drivers (Drivers), and number of parameters (# Param). Models in parentheses are 
sigmoidal variations (lowercase “s” in Model Code). Black text represents the “original” models, 
blue text the new precipitation models, and green text the new soil moisture models. Drivers: T = 
temperature, P = precipitation, L = light (photoperiod), C = chilling, cdd = consecutive dry days, 
Tmin = minimum temperature, V = vapor pressure deficit, SM = soil moisture. 
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  Model AIC RMSE 
SQWs_Tmin 1094.691 15.975 
SQWs_cdd_Tmin 1099.191 16.077 
SQWs 1099.268 16.246 
SQWs_cdd 1100.391 16.210 
SQW_cdd_Tmin 1107.048 16.574 
SQW_Tmin 1114.479 16.979 
SQW_cdd 1137.597 18.016 
SQW_NoPbase 1143.222 18.372 
SQW 1145.316 18.376 
SQW_Pi_Tmin 1148.591 18.531 
SQWs_Pi_Tmin 1154.578 18.626 
SQWrs 1189.103 20.455 
SQWr 1205.958 21.468 
PAWs 1219.343 21.991 
PAW 1230.799 22.763 
M1Ws 1277.534 25.793 
PWTs 1277.819 25.944 
WTs 1281.842 26.213 
AGSI 1298.034 26.907 
SGSI 1300.073 27.048 
SM1b 1343.235 30.059 
SM1 1347.969 30.426 
PA 1366.084 31.710 
PAb 1367.015 31.786 
M1s 1391.955 34.587 
TTs 1393.778 34.928 
M1 1394.079 34.955 
PTT 1394.255 35.150 
PTTs 1395.109 35.047 
TT 1395.690 35.280 
UM1 1397.946 34.586 
LIN 1400.853 35.934 
AT 1400.895 35.389 
PM1 1404.309 35.155 
PM1b 1404.343 35.158 
SQ 1405.646 35.276 
SQb 1405.740 35.284 
WT 1416.319 37.196 
M1W 1418.319 37.196 
PWT 1418.696 37.423 
GRP 1451.200 40.261 

Table 2. Model performance for all original and new precipitation models using All Sites, 
listed from best to worst performance (lowest – highest AIC). Black text represents the 
“original” models and blue text the new precipitation models. Results for the soil moisture 
models are listed in Table A.3. 
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Sites t0 T-base b c F-crit P-req T-thres RMSE 

All Sites 47 4.03 3.57 1.38 192.00 20.17 -10.14 15.98 
B 80 6.68 13.24 0.44 59.20 22.59 -3.19 7.86 
Cf 198 -3.62 125.63 10.26 134.42 0.86 -0.27 8.40 
Cs 34 -8.65 1.06 4.29 1958.77 2.83 -17.61 16.35 
Df 46 -0.58 0.92 0.45 321.51 77.12 -12.87 7.75 

  

Table 3. The optimized parameters for the best model (SQWs_Tmin) run with All Sites and each of the four 
Köppen-Geiger (KG) climate groups, as well as the root mean square error (RMSE, in days) for each model fit. 
The text color matches Figures 2, 5, and 6 to distinguish the different KG groups. The parameters are as follows: 
t0 = the number of days after Sept 21 before precipitation can begin accumulating, T-base = the minimum 
average daily temperature (°C) for a day to be added to the temperature accumulation, b and c = values that 
determine the shape of the sigmoidal precipitation accumulation curve, F-crit = the required temperature 
summation (°C) for spring onset to occur, P-req = the required precipitation summation before temperature 
accumulation can begin, T-thres = the minimum temperature (°C) re-set threshold (temperature accumulation 
resets to zero if daily minimum temperature drops below this value). 
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Fig 1. Locations of PhenoCam grassland sites included in the study. Marker sizes indicate the number 
of available data years. Background colors designate the 2-letter Köppen-Geiger zones used to divide 
the sites by climate. 
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Fig 2. Scatterplots between predicted and observed spring onset dates (day of year, DOY) across all 
grassland sites for four “original” models. The R2 value and root mean square error (RMSE, in days) are 
reported for each. Black lines are Model II regression fits, and grey dotted lines are 1:1 lines. Included 
models are Thermal Time (TT), Sequential (SQ), Grassland Pollen (GRP), and Accumulated Growing 
Season Index (AGSI). See Table 1 for model descriptions. Colors indicate the Köppen-Geiger climate 
zone for each data point. 
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Fig 3. Scatterplots of predicted versus observed spring onset dates to compare model fits. The color and 
length of the arrows indicate the direction and magnitude, respectively, of shifts in predicted spring 
onset dates between different model structures. Red arrows indicate earlier dates, blue arrows later 
dates, and green points no change. The black dashed line is the 1:1 line. Panel a shows shifts in 
predicted dates between a model with a simple precipitation summation (SQW) and one with a 
sigmoidal precipitation accumulation structure (SQWs). Panel b shows how the addition of a minimum 
temperature reset parameter (Tmin) to SQWs influences predicted dates. The shift in RMSE (in days) 
between the models is included within each panel.  
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Fig 4. a) Sigmoidal precipitation accumulation curves (see Table A.2 for equation) for the best 
model (SQWs_Tmin) using the optimized parameters (see Table A.3) for All Sites and the four 
Köppen-Geiger climate groups (colored lines) over a range of precipitation event sizes. b) Example 
precipitation accumulation curve for a site in Illinois (uiefprairie) for SQWs_Tmin using the 
optimized parameters for All Sites. Colors indicate different years, and P-req (dashed line) is the 
required precipitation summation before temperature accumulation can begin. Precipitation is 
unitless since each event is assigned a weight (see panel a). c) Example temperature accumulation 
curve for the same model and site. Notice years 2017 and 2018 drop to zero (reset) because they 
exceeded the minimum temperature threshold. F-crit is the required temperature summation for 
spring onset to occur. Colors are the same as panel b. 
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 Fig 5. Scatterplots of predicted versus observed spring onset dates across all sites for the best new 
model (SQWs_Tmin) using either a single set of parameters (left) or separate regional parameter sets 
for each Köppen-Geiger climate group (right). The R2 value and root mean square error (RMSE, in 
days) are reported for each. Black lines are Model II regression fits, and grey dotted lines are 1:1 lines. 
Colors indicate the Köppen-Geiger climate zone for each data point.  
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Fig 7. Predicted spring onset (SOS) dates for a representative site from each Köppen-Geiger (KG) group for the 
best model (SQWs_Tmin). The optimized model parameters for each site’s respective KG climate zone were used 
to fit 12 future climate scenarios (RCP 8.5, 2007-2100). The predicted SOS dates from each scenario are shown 
by the grey lines. The black line represents the median, and the red line the average Sen’s slope fit, across all 12 
scenarios. The Sen’s slope (mean ± sd) is listed in red text and the Mann-Kendall p-value in black text. The sites 
include oakville (North Dakota), kansas (Kansas), vaira (California), and Jornada (“ibp”, New Mexico). 




