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1. INTRODUCTION AND MAIN RESULTS

Throughout this article, all functions are real valued, T" denotes a positive real number,
B denotes the origin centered open unit ball in R¢ for any positive integer d and, for p > 0,
pB is the origin centered open ball of radius p in R%.

For functions a(z,t), c(z,t) and the vector field b(x,t) = (b'(z, 1), v*(z,t),b*(x,t)) on R? x
R, define the hyperbolic operator
Lope = (0 —a)* = (V=0 +c=0-2ad;+2b-V +q (1.1)
where
q=c—a;+V-b+a — b
To avoid introducing too many symbols, we use L,;. and L,;, interchangeably since the

form of the operator will be clear from the context.

Suppose a(z,t), c(x,t) and b(x,t) are smooth compactly supported functions and a vector

field on R? x R with support in B x R. Given ¢ € R*\ B, 7 € R, let U(x,t;&,7) be the
solution of the IVP

LopcU(x,t;6,7)=41H(t —7)d(x — &), in R® x R, (1.2)
Uz, t;¢,7) =0, forx €R® t <7, (1.3)
1
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where H is Heaviside function, and let V' (z,¢;&,7) be the solution of the IVP
LapeV(r, 16, 7) =4nd(x — &t —7), inR® xR, (1.4)
V(z,t;¢,7) =0, forx e R® t<7.
Define the forward map
F i (a,b,c) = [U U, V, Vi (xvT;§7T)|JER3,§EE7TE(—OO,T] (1.6)

which measures the medium response at the final time ¢ = T, to waves generated by a
point source at £ in a finite subset E of R3, with sources activated at times 7 varying over
the interval (—oo,T]. Here (a,b,c) represents the medium properties and the medium is
uniform outside the cylinder B x [0, T]. Our goal is to study the injectivity and stability of
F. The problem is formally determined in the sense that the data set depends on four real
parameters - three for the receiver locations (z,t=T) € R3 x {t=T} and one for the time

delay 7 € R - while the unknown coefficients (a, b, ¢) are also functions of the four variables
(z,t) € R x R.

This work is a follow up of our previous work [4], in which we derived Lipschitz stability
estimates for the determination of the coefficients a, b (up to a gauge term) and ¢ in (1.1)
in space dimensions d > 2, where we used plane wave sources; our current work uses point
sources. Our current results are only for the three dimensional case (d = 3) since the ansatz
for the fundamental solution of £, ;. becomes unwieldy for d # 3, 1.

Similar to the work [4], we derive uniqueness and Lipschitz stability estimates for the
recovery of time-dependent coefficients a, b (up to a gauge term) and ¢ for a formally deter-
mined inverse problem with point sources. Our proofs are based on suitable modifications
of the ideas of Bukhgeim and Klibanov [2] which were based on Carleman estimates. A
part of our current work as well as [4] used ideas from [5] about extending results for the
a =0,b =0, arbitrary ¢ case to the general a, b, c case. The work [5] deals with the recovery
of time-independent first order coefficients of a hyperbolic PDE in a formally determined
set-up as well, and extends the ideas in [6] to the general a, b, ¢ case.

A point source inverse back-scattering problem in R? involving the recovery of time-
independent potential, with data coming from coincident source-receiver pairs varying over
the surface of a sphere, was considered in [7]. They showed the unique recovery of angularly
controlled potentials, in particular, radial potentials, from such formally determined data.
This was further investigated in [1], where a logarithmic stability estimate for the recovery of
time-independent angularly controlled potentials for the point source inverse backscattering
problem was shown.

Our earlier work [4] has a detailed survey of the literature on hyperbolic inverse prob-
lems for the operator L,p. (and some work even for non-constant velocity) with time-
independent /time-dependent coefficients where the data is either measured on the lateral
boundary and on t = T, or the data is measured only on the lateral boundary or a part of
it, or the sources are located only on the lateral boundary but not in the initial data, or the
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data is the far-field pattern in the frequency domain. For this reason, we do not repeat the
literature review here.

Before discussing the main results of the article, we introduce some definitions and nota-
tion. Given £ € R®*\ B and 7 € R, define the conical region

Qer ={(z,t) ER* xR; |z —&|+7 <t < T}
and denote its top (horizontal) and conical boundaries by
H{,T :Qﬁ,Tm{t:T}u Cﬁ,T :QE,Tm{t:T+ ’l’—§|},

respectively.

FIGURE 1. The conical domain ()¢, and its boundaries

Given ¢ > 0, M a submanifold of R3 x R, and a function f : M — R, define the weighted

norms
1/2 1/2
||f||o,M,a=(/M e2”t|f|2) , ||f||1,M,a=(/M e2”t<|va|2+02|f|2))

where V; consists of the first order derivatives in directions tangential to M. For z, ¢ € R3,
x # &, define

=&

r= x_éa 9:—7
ot =

0, =0-V. (1.7)

For a compactly supported smooth function a and vector field b on R? x R, and ¢ € R3
such that {{} x R is disjoint from the supports of a, b, define

oz, t: ) = %exp (/OT(a—l—Hb)(x 0.t —s) ds) Ry (1.8)
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Note that a(z,t;€) = r~! in a punctured cylindrical neighborhood of {¢} x R and « satisfies
the equivalent transport equations

(O +0-V+ra=(a+0-ba, (O + 0, —(a+0-b))(ra) =0, x££ (1.9)
This follows from the identity
r (0 +60-V+r ) a=(0,+09,)(ra)
and that
(ra)™" (0 + 0,)(ra)

~ exp (—/J(a%—@-b)(x—s&,t—s) ds> (0 + 0,) exp (/Or(a—l—ﬁ-b)(x—sé’,t—s) ds)
—/Or(at—i—@-bt+aT+9~bT)(x—59,t—s) ds+ (a+0-b)( — 16, — 1)

:—/ %(a+9-b)(m—s€,t—s) ds+(a+6-b)(z —1r0,t —1).
0

= (a+0-b)(z,1).
We also define the useful first order operators
M=-200,+20-V+q T=0,+60-V—(a+0-b)+r" T # &

note that M is zero in a punctured cylindrical neighborhood of {¢} x R and (1.9) may be
rewritten as

Ta=0, x#¢ (1.10)

We first address the structure of U, V' and the well-posedness of the IVPs defining U, V.

Proposition 1.1. Ifa,c, and b are compactly supported smooth functions and a vector field
on R x R, respectively and {£} x R is disjoint from the support of a,b,c, then the IVP

LopU(x,t;6,7) =4nH(t —7)6(z — €), in R® x R, (1.11)
Uz, t;€,7) =0, forz R t <7, (1.12)
admits a unique distributional solution U(x,t;&, 7). Further,

Ht =7 — |z = &)

Uz, t;€,7) = +u(r, ;6 T)H(E -7 — 2 = E]),

where u(z,t;&,7) is a smooth function in the region {(z,t) € R®* x R; t > 7+ |v — £|} and
1s a smooth solution of the characteristic BVP

Lopeu=-M(lz =€), t>7+|z—¢, (1.13)
u(z, ;6,7) = alx, t;6) — |z — &7 t=T4|v ¢, v #£E (1.14)
Finally, if the compactly supported coefficients a, b, c satisfy ||[a, b, c]||c2omsxr) < M, then
lullesiae. < €
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where C' depends only on T, M and the reciprocal of the distance of {£} xR from the support
of a,b,c.

Proposition 1.2. If a,c and b are compactly supported smooth functions and a vector field
on R3 x R, respectively, and {£} x R is disjoint from the support of a,b,c, the IVP

LopgV(v,t;6,7) =4n6(x — &t —7), in R® xR, (1.15)
V(z,t;:6,7) =0, forx cR® (<. (1.16)

admits a unique distributional solution V(x,t;&,7) of the form
Ve, t;6,7) = a(x,t;)0(t — 7 — |[x = &|) +v(z, 6, 7)H(t — 7 — |x — &)

where v(z,t;£,7) is a smooth function in the region {(z,t) € R®* X R; t > 7+ |z — &|} and
solves the characteristic BVP

Lope =0, t>7+|r—¢| (1.17)
1
Tv = —§£a,bvca, t=7+|x—¢, x#¢. (1.18)

Finally, if the compactly supported coefficients a, b, c satisfy ||[a,b, c|||c22@sxry < M, then

[vllese) < C

where C' depends only on T, M and the reciprocal of the distance of {{} X R from the support
a,b, c

For future use we make several observations about w and wv.

e Since a, b, ¢ are supported away from (x=¢, t=7), in some neighborhood of (z=¢, t=7)
we have

M = 07 Oé(l’,tg) = |ZL’ - 5’717 Ea,b,ca = —A(|I’ - 5‘71) = 07 for % 67
Hit—7— |z —¢&) ot —7 — [z —¢|)
|z —¢] ’ |z —¢]
Hence u=0 and v=0 in a neighborhood of (z=¢, t=7) and the singular terms |z —&|™*
in (1.13), (1.14), (1.17), (1.18) will never be an issue.
e Suppose a, b, ¢ are supported in B x [0, T]. We claim that for 7 > T'4+1— || the values

of u, v and their derivatives are zero on ¢t = T'. This is so because, for 7 > T+ 1 —|¢|,
we have

Uz, t;&,7) =

Vz,t;€,1) =

H(t =7 — |z —¢]) 0t —7 — [z —¢])
|z — ¢ ’ |z — ¢ ’

which may be readily verified because L, . = 1 on the supports of the right hand
sides of the two expressions.

Uz, t;€,7) = Vi, t;6,7) =
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e Suppose a, b, ¢ are supported in B x [0,T]. If 71 < 7, < —(1 + |€]) then the values of
[u,v](+,-,&,m) and [u,v](+,-, &, 7o) and their derivatives on t = T are the same. This
is so because, for 1 < 7 < —(1+ [¢]), we have

Vo t6m) - Ulatit ) — BT —le =€) H =7 —|r =]

|z — ¢ |z — ¢
Ve, t;6,m) = Ve, t;:6,m) = 5(t_|T;:|;|; —&)_ot- ‘T;:Z - £|);

this may be readily verified because L, . = [ on the supports of the right hand
sides of the two expressions.

e The previous two observations show that there is no new information about a, b, ¢ in
the values of w,v and their derivatives on ¢ = T for 7 outside the interval [—(1 +
&N, + 1 I¢]].

e The relations between a, b, ¢ and the traces of v and v on the conical surface C¢ . are
what makes the proofs possible. The trace of u on C¢, depends only on a,b so for
the recovery of a,b for a given ¢, our data is the trace of v on t = T, as in Theorem
1.5. A tangential derivative of the trace of v on Cf . equals a known positive multiple
of ¢, if a,b are known, so for the recovery of ¢ or ¢, given a, b, our data is the trace
of v ont =T, as in Theorem 1.3. For the recovery of a, b, ¢, our data consists of the
traces of both v and v on ¢t =T, as in Theorems 1.6, 1.7.

e From the uniqueness of solutions of initial value problems for hyperbolic PDEs, one
can see that V(-,-,-,7) = =U,(-,+,-,7), so there must be a relation between u and
v. We have not explored this question - note u, v are defined on regions in x,t space
which depend on 7 (and &).

Now we describe the main results in our article. Our first result is about the stability for
the problem of recovering ¢ from the data generated by a point source at a fixed location in
space but activated at different times 7.

Theorem 1.3 (Stability_for q). Let a,b be a smooth function and a smooth vector field on
R3? x R with support in B x [0,_T] and £ € R\ B. Given M > 0, for all smooth functions
q,q on R* x R with support in B x [0,T] and ||[q,q, a,b|| o= 5w < M, we have

T+1-[¢|
la = dllogexpm) 4/ (1w =) T56 D)l + (v = 0)CT5€,7) o ,) dr

—1-¢]

Here the constant is independent of q,q, and v, U are the functions associated to (a,b,q) and
(a,b,q) guaranteed by Proposition 1.2.

The rest of our results pertain to the recovery of the vector field b and perhaps the
functions a, c. For such results, we need sources at 4 locations diverse enough to generate
data to separate a, b.
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Definition 1.4. Suppose d is a positive integer and D is a non-empty bounded open subset
of R%. A set of locations &, - -+ ,€q41 in RE\ D is said to be diverse with respect to D if

@, b]]| < C|lla+6i(x) b, ,a+0q1(z)-b]|l, VxeD, YacR, ¥beR? (1.19)
for some constant C' independent of a,b,z. Here || -|| is the I vector norm in R4 and
=& =
0;(z) = : r € D.

We do not have a characterization of all possible sets of locations diverse with respect to D
but Proposition 8.1 gives two ways to construct many such sets. A consequence of Proposition
8.1 (see the remark after Proposition 8.1) is that if p > 0 then Ne;, Nea, Neg, N(e1+ex+e3)/3
is a diverse set of locations with respect to pB if N > py/3. Here ey, ey, e3 are the standard
basis vectors in R3.

Our next result addresses the recovery of a,b when ¢ is known.

Theorem 1.5 (Stability for a,b). Suppose q is a compactly supported smooth function in
R? x R with support in B x [0,T], and &, -+ , &, is a diverse set of locations with respect to
B. Giwen M > 0, if a,a, b,Z; are smooth functions and vector fields on R? x R with support
in B x [0,T] and ||[a, b, d, b, Aero@xom) < M, we have

fla = .5~ Bllozsron < 3 [

i=1 Y —1-1&|

T+1—|&]

(Il = &), T3 e,

=) T3 7)o, )

Here the constant is independent of a, b, a, l;, and u, 4 are the functions associated to (a,b,q)
and (G,b,q) guaranteed by Proposition 1.1.

Our next result addresses the uniqueness in the recovery of (a,b,c). As shown earlier,
one expects to recover only curl(a,b) and c¢. Unfortunately, to obtain this result we need to
restrict a, b to those for which a+ 6, -b and a; + 04 - b; satisfy a certain integral relation; here

:x—§4’ r € B.
|z — &4

This relation and the proof of the uniqueness result were inspired by a relation and an argu-
ment in [5], where a similar uniqueness question was studied though in the time-independent
setting.

84((13)

There is a gauge invariance associated with the problem of recovering a, b, c. If ¢(z,t) and
f(z,t) are smooth functions on R* x R, we have

O —a—¢)(f)=e" (O —a)f, (V-b=-Ve)(e’f)=e"(V-1)f,
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resulting in
Lorivivec€f) =e’Lapef.
Hence, if ¢(§,t) =0 for t € R, we have
Lot iniivee(€®U) =€ Loy (U) = 4ne H(t — 7)6(x — &) = 4rH(t — 7)5(x — €)
and
Lot inbivee(€®V) =4nd(t — 1,2 — ).

As a consequence, F(a,b,c) = F(a + ¢,b+ V¢, c) for any smooth function ¢(z,t) with
support in B x [0,7] and ¢(-,T) = 0, ¢4(-,T) = 0. This suggests we can hope to recover at
most the curl of [a, b], that is d(adt + b'dx' + b*dz? + b3 dz?).

Theorem 1.6 (Uniqueness for curl(a,b) and ¢). Suppose a,c,a,é and b,é are smooth func-
tions and vector fields on R x R with support in B x [0,T]. Let &, ,& be a diverse set
of locations with respect to (T 4+ 1)B and u, 4 and v, the functions associated with (a, b, c)

and (d,[), ¢), respectively, guaranteed by Propositions 1.1 and 1.2. If
[w—1,(u—"10)](z,T,&,7) =0, Vo€ He,, Te[-1—|&,T+1—1&]], i €{1,2,3,4},
v —"10,(v—="2)(z,T,&4,7) =0, Vo€ He, 7e[-1—|&[,T+1—]&],

and
lz—£al ,
/ ((a—d)+94-(b—b))(:L‘—594,T—5)ds:O, Vr € R?,
0
|z —Eal ,
/ <(a—a’)t—|—94-(b—b)t>(m—304,T—s) ds=0, VreR?
0
then
3 3
d (adt +) b"dxl) =d (ddt +) bidxi) —
i=1 i=1
Note that we use data from the u, @ solutions for all four source locations &, --- , &4 but

we use data from the v, ¥ solutions only for the source at &,.

We also have a Lipschitz stability result for the recovery of curl(a,b) and c¢. However, we

require more data than was needed for the uniqueness result in Theorem 1.6. Let 1 be the
solution of the IVP

Oy =c—a;+V-b, inR*x (—o0,T; (1.20)
Y(-,t) =0, t<O0. (1.21)

For the stability result, in addition to F(a,b,c), we need the traces of ¥, 1, ¢y on t = T;
this replaces the integral condition used in Theorem 1.6. We do not know whether there is
stability without this extra data.
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Theorem 1.7 (Stability for curl(a, b) and ¢). Suppose &, -+, &4 is a diverse set of locations
with respect to (T + 1)B. Given M > 0, if a,c,d, ¢ and b, b are smooth functions and vector
fields on R® x R with support in B x [0,T] and ||[a,b, ¢, d,b, || gz gy < M, then

|[dn — dr,c = || 2@sx o)

1 T+
<[ (= 6T Dl + = @) T )

=1 _1_‘51"
4. TG
+ Z/ | (uee — tie) (- T3 i, ) llo e, . AT
=1 _1_‘§i|

Lite o (0= 60 T, o, ) dr

+i/T+l—|§i (H(v—ﬁ)("T5’f"’T)

i=1 7 —1-1&l
(W =) (-, T)

where n and 1 are the 1-forms

2,R3 =+ H(wt - zﬂ/t)(',T)Hl,W + H(wtt - l/;tt)('aT)”O,]I@a

3 3
n = adt + Z bidz', 7= adt + Z bda’
i=1 i=1
and the constant is independent of a,b,c, a, l;,c'. Here 9,4 are the solutions of the IVP
(1.20), (1.21) and u,4,v, 0 are the functions corresponding to (a, b, c) and (a,b, é) guaranteed
by Propositions 1.1 and 1.2 .

A fundamental aspect of our work is the Lipschitz stability results for the space and time
dependent coefficients obtained by the use of Carleman estimates on domains depending on
the parameter 7 and the integral of these estimates with respect to 7. We very much exploit
the relation between the unknown coefficients and the traces of the solutions of the IVP on
the characteristic cones.

We introduce some notation used in the rest of the article. For convenience, we denote
the operators Lqp and L, ; . by £ and £ respectively. We define the differences

G:=a—aG, b:i=b—0b, Ti=c—¢ qi=q—¢ Ui=u—14, V:i=v—"70. (1.22)
Also, given a £ € R3\ B and = € B, recall that we have defined

O(x) := ﬁ, reR x#E

We use 6 instead of 6(z) most of the time and we use §; when ¢ is replaced by &;.

A key ingredient of the proofs of the theorems is a Carleman estimate, with explicit
boundary terms, for the operator L,;., in the region Q¢,. We state it here and give the
proof in Section 7.
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Proposition 1.8. Suppose 7 € R, £ € R3 and a, q, b are smooth functions and vector fields
in R3 x R with {£} x R disjoint from the supports of a,b,q. Then there is a g > 0 so that

a/ et (|Vpw]? + ow?) + a/ e*! ([Vow|? 4+ o*w?)
Qé,‘r Cﬁy"’

< / 62"t|£a7b7qw|2 + a/ g2t (|ngf,w|2 + 02w2) , (1.23)
Qe,r He

,T

for every w € C*(Q¢.;) and every o > oy. Here Vo represents the gradient on the subman-
ifold C¢ . Further, the constant is independent of w and o and depends only on T, €|, |7|

and ||, b, q]llco(qe..)-

The rest of the article gives the proofs of the propositions and the theorems stated above

2. PROOF OF THEOREM 1.3

We have a = G, b= b and a single source & € R3\ B. For any 7 € [—(1+¢]), T+1—¢[], let
v, ¥ be the functions guaranteed by Proposition 1.2 for the coefficients (a,b,q) and (a, b, §).
Taking the differences of (1.17), (1.18) for the two sets of coefficients, we obtain

Ly = _qﬁv in Q&,T;

S

(2.2)

2(0,+60-V—(a+0-b)+r")v=—ga, onCe,,

where ¢, 7 were defined in (1.22). Applying Proposition 1.8 to the function v in the region

Q¢ -, we have
%,U,H&T + O-HﬁtHS,U,HEHJ

S,U,Qgﬂ- + 0-||@

%,O’,C&y,— % ||£@

ol|v
with the constant dependent only on [], T, ||[a,b,q]l|co(q, ). Hence, using (2.1), (2.2) and

that ra is a positive continuous function on Q) ., we have

boce, S ollradlg e, < olr(@+60-V —(a+0-b)+r )ollg,c, .
Lote, T OG0 me - (2:3)

ol

< ollvlioe., < lalseq., +ol@

Here the constant depends on [¢],T', ||[a, b, g]||co(q, ) and [|¥][co. Using Proposition 1.2, the
constant depends only on T, M and |£|.
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Noting that ¢, ¢ are supported in B x [0,7] and B x [0, 7] does not intersect Cg, if 7 is
outside the interval [—(1 + |£]), T + 1 — [¢]], we have

T+1-[¢]
/ / g2t |g(x,t |2 dsS dr = // g2t |q(x, 15)|2 dsS dr
1-¢] Ce,r Ce.-

:\/5// e |q(z, )2 0(t — 7 — |x — &]) dadt d7

R JR3xR

=2 et |§(:v,t)|2/5(t —7— |z —¢|) dr dadt
R

R3xR

=2 e?7! |g(z, t)|? dadt

R3xR

x[0,T]"
Hence integrating (2.3) w.r.t 7 over the interval [—1 — [¢|,T + 1 — |£]], we obtain

> dr,

T+1-[¢

N oo, < N gomy + o [ (I,

—1-[¢]

which proves Theorem 1.3 if we take o to be large enough.

3. PROOF OF THEOREM 1.5

Fixa g andart e [—(1+(&|), T+ 1—1&]|]- Let u, @ be the solutions corresponding to the
coefficients (a, b, q) and (4,0, q) guaranteed by Proposition 1.1. Note that u, are zero in a
neighborhood of (z=¢;,t=7) and a, b, q, 4, b, § are supported away from {£} x R.

Taking the differences of versions of (1.13), (1.14) associated to (a,b,q) and (d,b, q), for
each &;, we have

_ 2b- (z — &
L7 = 2at, — 2b- Vi + % in Qe (3.1)
T =G
u=a—a&, onCCg . (3.2)
Applying Proposition 1.8 to u in the region )¢, ,, we have
—12 —112 —112 — 112
ol <NET . + ol i+ Tl (3.3)

with the constant dependent only on &;, T, ||[a, b, ql|co-
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Now, using (1.10), we have
0 +0-V —(a+0;-b)+r 1) (a—ad)
—(0,4+0-V —(a+0;-b) + —Ud
(O +0-V —(G+0;-0)+r N~ (@+6;-b)é
—(@+0; - b)d. (3.4)
So, using (3.1) - (3.4) and noting that b is supported away from {£;} x R, we obtain
ola+ 6, B, <01 e SN, + ol e, + Tl (35)

with the constant dependent only on &;, T ||[a, b, q]||co and ||4]|c1, hence on [&4], T and M.

Imitating the integral relation calculation in the proof of Theorem 1.3, we have

T+1- ¢ ~
/ / @+ 6; - b]*dS, dr = V2 e*! @+ 0; - b dx dt.
C T

1-1&| Bx[0,T]

Hence integrating (3.5) w.r.t 7 over [—1 — ||, T + 1 — |&]]
T+1-1i]

olla+0: - Bl12 5o <N@ B2, o + 0 / (113 v, + 1Tl s, ) 7 (3.6)

—1—(&]
Using (3.6) for each ¢ = 1,2, 3,4 and noting that &, i = 1,--- ,4, is a diverse set of locations
w.r.t B, we obtain

M 50 < T 0 +o—Z/

The theorem follows if we choose o large enough.

T+1— |£Z )
TR ) dr

1—[&|

4. PROOF OF THEOREM 1.6

We seek to prove the uniqueness in the recovery curl(a,b) and ¢ from the values of
UU,V,Vion He; for { =&, =1,--- ,4.

At first glance it would seem that we just need to imitate and combine the arguments
used in the proofs of Theorems 1.3 and 1.5. In fact, imitating the approach in the proof of
Theorem 1.5, one obtains the estimate

ollf@, bllloo=<I@, b, o (4.1)
However, if we imitate the proof of Theorem 1.3, there is a difficulty in obtaining the estimate
ol[@llo.o<dllo.s + ollf@ bflo-

Before, we describe the difficulty and how we resolve it, we note that the two estimates
mentioned above would give us stability in the inverse problem of determining a, b, ¢, which
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of course is not feasible since the problem is gauge invariant and one can hope to recover
only curl(a@,b) and €.

Now the difficulty mentioned in the previous paragraph is addressed. To estimate § we
would use the PDE for 7, the difference of (1.18) for a, b, ¢ and a, b, ¢, combined with a hoped
for estimate of the form

|7 = dI=ILapqc — Ly 461+ [[@, bl (4.2)

This was straightforward in the proof of Theorem 1.3 because there a = d,b = b and hence
a = & (which was bounded away from 0); therefore the RHS of (4.2) was just |¢ — ¢|a. For
Theorem 1.6, we do not have a = 4,b = b or a = ¢&. In this case, instead of (4.2) one can
show

G|+ [[a,b, Vo (@+0-b)], (4.3)

q
because L, ,« requires first order derivatives of a 4 6 - b. An estimate of the type (4.3) is

not useful since our other estimate (4.1), is for the zeroth order norm of @, b.

g — 4= Lapg — ﬁa,l'),

The article [5] showed the way to resolve this difficulty; replace @, b by a gauge equivalent
@, b for which @+ 6-b = 0 (for one of the #) and the issue of first order derivatives of a+6-b
in (4.3) goes away. Such gauge equivalent @,b exist but the gauge affects the data unless
we impose conditions on the gauge - that is the null integral condition the hypothesis of
Theorem 1.6.

We now proceed with the proof of the theorem.

The u, %, v, ¥ are the solutions guaranteed by Propositions 1.1 and 1.2 for the coefficients
a,b,c and da, l;, ¢. Since a, b, c are supported in B x [0,T] and £ € R*\ (T + 1)B, one may
check that for a fixed £ € (T + 1)B, the values of u,uy, v, v; and 4, i, 0,9, on R3 x {¢t=T}
are zero for 7 > T + 1 — |£| and do not change as 7 varies over 7 € (—oo, —1 — |£|]. Hence,
from the hypothesis of Theorem 1.6, we may assume that

w—a, (u—"10))(z,T,&,7) =0, VoeH,, i€{l,2,3,4},
v =10, (v—"0)](z,T,&,7) =0, VreHg,,,

for all 7 € R rather than for a limited range of 7.

As discussed in the introduction, due to gauge invariance, there is a natural obstruction
to uniqueness when attempting to recover a, b, c. For x #£ &, define

lz—&al
o(x,t) = —/0 (a+0,-b)(x— syt —s) ds,

, =4l ,
¢(:E,t):—/ (G+04-b)(x — s04,t—s) ds.
0

Since & ¢ (T+1)B and a, b, ¢, 4, b, ¢ are supported in B x [0, 7], we have ¢ = 0 and ¢ = 0 in

a punctured cylindrical neighborhood of {£,} x R. Hence, defining ¢(&4,-) := 0, ¢(&4,) :=0
gives us smooth functions on R* x R which are zero in a cylindrical neighborhood of {0} x R.
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We also ) note that the intersection of the supports of ¢, gb with R? x (—oo, T is contained in
(T'+1)B x (—o00,T].

As shown in the introduction, e®u, e®% e®v, e®? are the functions guaranteed by Propo-
sitions 1.1 and 1.2 for the coefficients a + ¢;,b + Vo, c and d + qﬂt, b+ Vgﬁ, ¢, provided the
hypotheses of these propositions are satisfied. The propositions require that the cylinder
{&} x R not intersect the supports of the coefficients, which seems not to be true for the

modified a,b,c. However, we will be using the values of e®u, el efv, b only on sub-
sets of the region R3 x (—oo,T], so we need Propositions 1.1 and 1.2 only for the region
R3 x (—oo, T]. Since || > T+ 1, the cylinders {f’l} (—o00,T],i=1,2,3,4, do not intersect
the supports of a + ¢1,b+ Vo, cand a+ ¢t, b+ ngﬁ ¢, so Prop0s1t10ns 1.1 and 1.2 are valid
on R? x (—oo,T] for the coefficients a + ¢, b+ V¢, ¢ and d + b1, b+ Vo, ¢

From our hypothesis, we have
6(x,T) = o, T), ¢i(x,T) = Gy(w,T)
Hence, on Hy, ;, @ =1,2,3,4, we have
e, (ePu) ), T, &, )] = [, ()] T.6, 7)), VT €R,
€%, (e?0)] (-, T, &4, 7)] = [€%6, (e?6))(-, T, &4,7)], V7 € R.

Thus to prove Theorem 1.6, it suffices to work with the modified coefficients (a+ ¢y, b+V ¢, ¢)
and (4+ ¢, b+ Vo, ¢) because (a+ ¢y, b+ V) has the same curl as (a, b) and (d+ ¢4, b+ Vo)
has the same curl as (G,b). Further, since a, b, G, b are supported away from {£} x R, we have

(O +04-V)p = /Olz ! %(a—i—& b)(x — sb4,t — ) ds
—(a+04-b)(x, 1)
which implies
(@+¢) +0,-(b+Vp)=0,  (G+&)+bs-(b+V)=0
So, to prove Theorem 1.6, we may assume that
a+0s-b=d+0,-b=0. (4.4)

We show that (a,b,q) = (4,b,q) for these modified triples, which will prove the theorem.
There is a subtle point here which we discuss next.

We have replaced a, b (and do the same for a, b) by a special a,b (for which a+64-b = 0),
which, just for this paragraph, we call @ := a + ¢, b := b+ V. Now curl(a, b) = curl(a, b)
and the corresponding values of u, %, v, v; and 1~1 ’1~2t, 1~' 77;1 agree on He, because they agree
for w, us, v, v; and 4,4, 0,0, and also for ¢, ¢, and (;5 (/3, We have not modified ¢, ¢. Now
G=c—a;+V-b+ |al? |b\2 and there is a similar expression for ¢. If we show that
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a=a,b=>bq =, then we get ¢ = ¢ and curl(a,b) = curl(a,b) = curl(a,b) = curl(d, b),
proving the theorem, but note that we cannot claim ¢ = ¢.
Define
Tmin = min{—(|&| + T+ 1) : 1 =1,2,3,4}, Tmaz = max{2T + 1 —|&| :i=1,2,3,4},

and our 7 will vary in the interval [T in, Timaz|- For use below, observe that the intersection
of the supports of the modified a,b, ¢ with R? x (—o00, T} is contained in (7' + 1)B x [0, T]
and the union of the C¢ ., as 7 varies over [Tyin, Tmas|, contains (7' + 1)B x [0, .

From (1.13) - (1.14), for each ¢ = 1,--- ,4, we obtain

o - 2 (x—&)  qlat)
Lu = 2au; — 2b- Vi —qu + — . in Qg 7.
' |z — & |z — & ¢

u=a—d, onCg,. (4.5)

Noting that {&} x (—oo, T] does not intersect the supports of b and g, we have

|| EEHO,U,Qgﬂ- < || [aa [_)7 q] ||0,0',Q§Z,77. .

So applying Proposition 1.8 to w on the region )¢, -, using 4.5, and proceeding as in the proof
of Theorem 1.5 including the fact that the locations &, -+ , &, are diverse w.r.t (T + 1)B,
for large enough o we obtain

o[@ B3 oz xiory < Cr (1,53 psonior) - (4.6)

Note the G term on the RHS of (4.6). This was absent from the RHS of the similar inequality,
when proving Theorem 1.5, because § = 0 for Theorem 1.5.

Next we estimate the norm of § using the data coming from v, ¥. Taking the differences
of (1.17), (1.18) for the coefficients (a, b, q) and (4, b, ¢), we have

LTy = 2a 0y — 2b- Viy — Gy, in Qg r, (4.7)
20,404 -V — (a4 6y -b) + 770 = Ldy — Lay + 2@+ 04 -b)ty, on Ce, . (4.8)
Sincea+94-b:d+94-l5:0, we have
1
ay(x,t) = ay(x,t) = ———,
4( ) 4( ) |ZL’ _ £4|

hence, for x # &4,

b(l‘,t) ’ ('T — 54) B q<x?t)
|z — & v =&’

ﬁd4—£a4:—<£—é)@4:

so (4.8) gives us

. 20400 g(x,t)
2(0,+04-V—(a+0,-0)+r 1)1 = — , on Cg, ;. 4.9
(t 4 ( 4 ) ) |£L’—£4|2 ‘$—§4| &4, ( )
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From (4.9), noting that {£,} x (—o0, T] does not intersect the supports of @, b, g and 7, we
have

7| <[b] + Ve + 0],  onCg,,

where V¢ is the gradient on C¢, , and the constant is dependent only on 7', &4 and ||[a, b, V4] || co,
hence only on T, M and |&]|. Therefore

[@llo.c.ce,.. < @ Bllloce, . + I17]

Also, from (4.7), we have

Lo.Cey,r

1£04ll0.0.e,. < M1 b: @ ll0.0.e .-
with the constant dependent only on 7" and ||[04]]|c1, hence dependent only on T" and M.
Using these observations in Proposition 1.8 applied to ¥ on the region ()¢, - and noting that
v, v; are zero on He, ,, we obtain

U||§||(2),a7054,T<||[aa Bv@”%,mQ&M + UH[a? B” (%,0,054777 VT € [Tmim Tmax]?

for o large enough. Integrating this inequality w.r.t 7, over the interval [Tyin, Timaz), Using
integral relations similar to the one in the proof of Theorem 1.3, we obtain

UHQHwa[o,T} <Gy (HGH]%@X[O,T] + ol|[a, [_)]H]%@X[O,T]) )
for o large enough. So adding to this a Cy 4+ 1 multiple of (4.6) we obtain
0” [av E’ (_]] ||g,a',]R3><[O,T] < || [E, l_)a 6] ||3,0,R3><[O,T]7

for o large enough. Hence, choosing o large enough, we obtain @ = 0,b = 0, = 0, proving
the theorem.

5. PROOF OF THEOREM 1.7

In Theorem 1.6 our aim was uniqueness in the recovery of curl(a, b) and ¢ and that followed
from uniqueness in the recovery of a gauge equivalent a, b, ¢ for which a+6-b = 0. It did not
require estimating first order derivatives of the gauge equivalent a,b. The situation in the
proof of Theorem 1.7 is different as a stability estimate is desired in the recovery of curl(a, b)
and ¢; so we must estimate first order derivatives of the gauge equivalent a, b, c.

We estimate the first order derivatives of @, b using the PDEs and the boundary conditions
for w and . We note that

L—L=0-2a0,+2b-V+(a® =0~ @+ 0 +(c—a+V-b).

The —a; + V - b term prevents us from getting useful estimates on @,b because this term
results in ||[@, b]||o being estimated by ||/[a, b]||; and ||[@, b]||; estimated by ||[@, b]|>. The way
out is to replace a,b (and 4, b) by a gauge equivalent a, b such that c—a; +V -b = 0. Such a
gauge equivalent a, b may be constructed with the gauge v in the statement of the theorem,
but the data for this gauge equivalent a, b, ¢ requires the original data and the value of 1) on
t =T. That is why the statement of Theorem 1.7 has the ¢ terms on the RHS. Note that
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when we have estimated the first order derivatives of @, b, we automatically get an estimate
for ¢ since ¢ =a; — V - b.

The PDE and the boundary condition for @ are used to estimate @, b, as done in the proof
of Theorem 1.5. We also differentiate this PDE in directions tangential to the cone C¢ ; to
estimate these directional derivatives of @, b. However, to estimate the derivative of @,b in
the remaining direction, the normal to Cg ., we use the PDE and the boundary condition
for 7 equation, and a decomposition of Lo as the sum of the normal (to Cg¢ ) derivative of
(a+ 6 -b) and derivatives of a in directions tangential to C¢ , - see (5.20).

We now proceed with the proof of the theorem.

The u, 1, v, ¥ are the solutions guaranteed by Propositions 1.1 and 1.2 for the coefficients
a,b,cand a,b, é. Since a, b, ¢ are supported in B x [0,T] and ¢ € R3\ (T+1)B, one may check
that for a fixed € € (T + 1) B, the values of u, ug, ug, v, vy and 1, U, Uy, 0, 0, on R x {t=T'}
are zero for 7 > T+ 1 —|¢| and do not change as 7 varies over 7 € (—o0, —1 — |£|]. Hence, in
the statement of Theorem 1.7, the 7 integrals may be replaced by 7 integrals over any finite
interval that contains [—1 — |&], T+ 1 — |&]].

We note that ¥ (z, t) is a smooth function on R3 xR and its support intersects R? x (—oo, T
in a region contained in (7'+ 1)B x (—o0,T].

We recall from the first section that, if U and V are the solutions, corresponding to
the a,b, c, guaranteed by Propositions 1.1 and 1.2, then e¥U and e¥V are the solutions,
corresponding to the coefficients a + ¢y, b + V1), ¢, guaranteed by Propositions 1.1 and 1.2.
Further one may verify that [a,b] and [a + ¢4, b+ V)] have the same curl and

c—(a+¢),+V-(b+Vy)=0.

We also observe that the intersection of the supports of a+ 1, b+ V1, ¢, with R? x (—oo, T
are contained in (7' + 1)B x (—oo,T]. In particular, {&;} x (—oo,T] does not intersect the
supports of a + 1y, b+ V1, ¢ so Propositions 1.1 and 1.2 apply even to these modified a, b, c.

(=)

§C<|w—wl+‘ew—ew’)>
< O (=il + [o = o).

and one has similar estimates for the first and second order derivatives of e¥w, e also.

For bounded functions 1), qﬁ,, w, w, we have

eVw — eﬁu')‘ < ‘e¢(w — w)‘ +

Keeping the above observations in mind, it is enough to prove Theorem 1.7 for a, b, c and
a, b, ¢ which are supported in (7' + 1)B x (—oo, T] for which

c—a;+V-b=0, ¢—a+V-b=0,
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and the 7 integrals in the statement of Theorem 1.7 are over [Tpin, Timaz] Where
Tin = min{—(|&§|+ T+ 1) :i=1,2,3,4}, Tmaz = max{2T +1—1&|:i=1,2,3,4}.

For use below, observe that the union of the C¢ ., as 7 varies over [Tyin, Tmaz|, CcOntains
(T + 1)B x [0,T1], so, in particular, it contains the intersection of R3 x (—oo,T] with the
supports of the modified a, b, ¢, a, b, ¢.

Note that ¢ = 0 and w = 0 for these modified a, b, c and a, l;, ¢ and the operators £ and L
become

L=0-2a0,+2b-V+a>—b, L=0-240,+2b-V+a>—0

To keep the expressions simple, while we work with a fixed but arbitrary ¢ € R3\ (T+1)B

and T € [Timin, Tmaz|, We suspend showing the dependence on &, 7. We write Q¢ ,, He, and
Cer as @, H and C. Further, we define
r—¢

D=Vu,  r(@)=lz-¢| 9($)2m7 T 7 &

and we write them as r, 6.
We have
(@®=|b]?) = (@2 = |b>) = (a+d)(a—d) — (b+b)- (b—0) = (a+d)a— (b+b)-b.
Hence @ := u — 4 is a solution of the characteristic BVP

L = 2at, —2b- Vi +2r 20 -b+ ((b +b)b— (a+ a)a) (¢+r7"), nQ, (5.1)
[0

So applying Proposition 1.8 to @ on (), we obtain
o (@)% o + lla = &l o.c) <@ O)l[6.0.0 + Il o1 + 105G .11 (5.3)

Next, we obtain higher order estimates on @ by differentiating (5.1) in directions tangential
to C. If we write z = (2!, 2%, 23) and £ = (£1,£2,£3), the vector fields

Oh+0-V, Q= ("0, — (" =™, I,m=1,2,3,
span the tangent space to C' at any point on C. Differentiating (5.1), (5.2) by €, we obtain
£ (QunT) = Y (20— 20 V6 +20720 - D+ (0 + D) — (a + )a) (i +717"))
+[£, QJu,  in Q, (5.4)
(@) = Q (e — &),  on C. (5.5)

Since principal part of £ is a constant coefficient operator, the operator [L£,€),,] is a first
order operator, hence (5.4) implies

L ()| < |[@, b, Da, Db)| + |[u, Du]| , on Q. (5.6)
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Hence, using (5.5) and (5.6) and Proposition 1.8 applied to 2,7 on ), we obtain

JHle(Oz - 0/4)”%70,0 < ” [57 B’ Da? DE]H(QJ,O',Q + ”[ﬂ’ Dﬂ]”(z),a,Q
+ 0| QT3 6,11 + 110 (@) (15 6,17 (5.7)

Using a similar argument for the vector field 9; + 0 - V, we obtain

ol|(0 +0-V)(a— )7, =< @b DaDi; o+ I[E, Dallf .0
+ o|| [, VUll7 5. + o lTael[§ .- (5.8)

Combining (5.3), (5.7) and (5.8) we obtain

ollla = 6,0 + 0 - V) (o = d), Qum(a = d)]|[i 5.
< M@0, D@, DI 5. + (I3 0.0 + [GellL g0 + et .0, (5.9)

for large enough o, where the ||u, Dullp» o term on the RHS of (5.7) is absorbed by the
0||tl|1,0.0 term on the LHS of (5.3).

Below, we will need the observations that & —a’ = 0 in a neighborhood of {¢;} x (—o0, 7]
and « and its derivatives are bounded on the supports of @,b. Further, « is positive and
bounded away from zero on (T'+ 1)B x (—oo, T1.

We use (5.9) and the relation between o — & and @+ 6 - b to obtain estimates for @+ 6 - b.
Using (1.9), we observe

(B, +0-V)(a—d)=(a+0-ba—(Gd+0-b)d—ra—d)
=a@+0-b)+(@+0-b—r"(a-d). (5.10)

This implies
[@+0-bl5ec <10 +0-V)(a =&+ lo—dlf,c (5.11)
Next, differentiating (5.10) w.r.t 9; + 6 - V we obtain

0 +0-V)(a—d&)=a@+0-V)(@a+0-b)+f@+0-b)+g0 +0-V)(a—ad)
+h(a—d) (5.12)

for some bounded functions f, g, h. Similarly, differentiating (5.10) w.r.t €y, we obtain
Um0 +0-V)(a—d)=aQu@+0-b)+ f(@+0-b) + gQm(a—d) +h(a—d&) (5.13)

for some bounded functions f, g, h.
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Using (5.12), (5.13), we obtain

3
1@ +6-V)@+6-Dlgoc+ D 1n(@+6-b)l,c

I,m=1
3
<l@a+0- b5+ 10 +0-V) (@=&) |5 pe+ D 1 (a=&) 1,0+ llo = &l 0
I,m=1

If we use (5.11) in this, we obtain

3
Ja+0-blli oo+ 1@ +0-V)@+0-b)g,c+ Y Im@+0-0)5,c

l,m=1

3
<@ +0-V)(@=&) T po+ Y 1 (@ =) [} g0+ la—dli o (5.14)

Il,m=1

So combining (5.9) and (5.14) we obtain

3
[@+6-0l5,c+ 1@ +60-V)@+0-D)5 50+ D 1Qm@+6-D)ll5,c

I,m=1

1+ o Ar _ e _
< ~l@,b, D@, Db][lg,5.q + lls.0.1r + [Tl 10,11 + [1Tusll6.0,11-
(5.15)

We now obtain estimates of a derivative of @ + 6 - b in a direction not tangential to C,
using the V' solution. We note that v := v — ¥ is a solution of the characteristic BVP

£ = 2at, — 26 Vi+ ((b+0)b— (a+ @)a) 3, inQ, (5.16)

2(0,+0-V—(@+0-0)+r )o=Ld~La+2(@+0-b)o, onC. (5.17)

So applying Proposition 1.8 to ¥ on the region ) and using (5.16), we obtain
o0l o < M@ 015 0q + oIt on + ollTelE o m

so, in particular,

050c + 118+ 0 - V)Tl pc < éll[ﬁa V6.0 + IT11% 0.1 + 1057115 .11 (5.18)
From (5.17) we have

(0, + 6 - V)o| + || = |[Lé — La| —|[a@,b]|,  on C.

So using this in (5.18) we obtain

Y _ 7 17 _ _
1£a = L4850 <@ BllG0c + @ 0600 + P10t + 10016011 (5.19)
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We claim
La=a(0,—0-V)(a+0-b)—Asa+2b"-Va— (|b-]>+2r710-b)a, (5.20)

where Ag denotes the spherical Laplacian and b+ = b — (b - 0)0. This identity expresses the
normal (to C¢ ;) derivative of a + 6b in terms of La and the tangential (to C¢ ;) derivatives
of a. We restate this relation as Lemma 5.1 and its proof is given at the end of the proof of
Theorem 1.7

Using (5.20) for Lo and £ and subtracting those identities, we obtain
Lo—Lé=a@—0-V)@+0-b)+ (a—a&)0,—0-V)(a+0-b) —Ag(a—a&)
20 V) (o — o) — 26 - Vi — (b1 + 27720 - b) (o — &)
— (b + 65 B+ 20710 - B)d,
implying
|[La— L& = (0, = - V)(@+6-b)| —|a—d&| = (0" - V)(a = )| - [As(a — &) - o],

where we have used the fact that o has a positive lower bound on C'. Hence using this in
(5.19) we obtain

_ - 1, - _ - _ _
10— 0-V)(@+0-b)[5,0 < . OllIs 0.0 + 1@ BIII5 0. + 1T113 5 2 + [Tl[5 o 0
+ o=, (b - V) (o — &), Ag(or — @)][I§ 5.c0- (5:21)
Now we combine the estimates obtained from the U and the V solutions. Now bt :=

b— (6 -b)0 is perpendicular to 6 (the radial direction) and has no component in the ¢ axis
direction, so b* - V is in the span of the €,,. Further, Ag is a second order operator made

3
up of Q. That is, Ag =55 > QF,. Hence

I,m=1

1" - V(e = &), As(a = @[l o < Z [€2m (@ = &)[1,0.0,

I,m=1

so using (5.9) in (5.21) we obtain

1
10 = 6-V)@+0- 0[50 < ~la,b, D@ D][l5 .o + 1@ llo.oc + I7l5.0.1

[ TN o + e DG o1 (5.22)

Now -V represent the radial derivative 0, in R3. Further 0, —0,, 9, +0,, Ym, l,m = 1,2, 3,
span the tangent space to R*. Hence (5.15) and (5.22) give us

1
ID@+ 0 D)l[50,c < =@, b, D, D] 5. + 1@ 8116 0. + 750,

1[N o + e NG 6.1 (5.23)
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Also, from (5.15), we can extract
1 _
@+ 6 56.0.c < ~l@,b, D D5 5. + Il15.0,01 + 1 DN 11+ N, BlIG o (5:24)

Note that ||[@, b]]|o.c term is absent from the RHS of (5.24). This will be significant.

We integrate the last two inequalities w.r.t 7, over the interval [Tin, Timaz). Using integral
relations similar to those used in the proof of Theorem 1.3, we obtain

_ _ 1, - .,
D@+ 0 - b)”%,a,RSX[O,T] < ;H[a, b, Da, Db]||é,a,R3x[o,T} + ||[a, b]”é,o,RSx[o,T]

T / (2 s+ 1T g+ T2 ) dr (5.25)

and

1
[+ 0Bl o < 13,5, D@, DB o

4 / (2 5+ N B s+ B2 ) dre (5.26)

We have (5.26) for £ = &;, i = 1,2, 3,4 and the locations &, - - - , &4 are diverse with respect
to (T'+ 1) B, hence

. |
[a, 0] ||§,G,R3x[o,T] < ;” [@,b, Da, Dbmé,a,RSx[O,T]

Tmax 4
+/ > (Wl o + W 3 oty + e 05 0,10) 7 (5.27)

i=1

Using this in (5.25) we obtain (for each &;)

1
[, b]“OJ]R3 o+ |D@+0- b)HOU]R3 0,17 ||[a b, Da, Db]||ooR3x[0T}

4

+/ Z [ll2 0. + 1T, TN oy + | [Tt TG, 0.) T (5.28)

=1
Now

|D@ + 60 - Db|<|[@, b)| + |D(@+ 6 - b)|
and the locations &, - -+ , &, are diverse with respect to (7' + 1) B, hence

18,5, D8, DB 01 = 18,5, D DB oo

o~

S W 1 T 1+ G, 5 )

min  j—=]1
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so taking o large enough, we obtain

Tmazx 4
If@. b, D@, DY]|[5 o 25501y < / > Nl o + 1 D3 g + [t TG 1)

min =1

Now ¢ =@, — V - b, so the proof of Theorem 1.7 is complete.

Lemma 5.1. For a defined in (1.8), we have
La=a(0,—0-V)(a+6-b)—Aga+20"-Va— (|br>+2r710-b)a,
where Ag denotes the spherical Laplacian and b = b — (b - 0)0.

Proof. For convenience, we consider £ = (0. The general case follows by translation. We have

Lo = (83—83—gar—As—2a8t+2b-V+a2—\b[Q)a

= (10— 102~ 20,) 0 — (As + 200, — 2V — a” +]pf’) o

_ % (07 — 07) (ra) — (A +2a0; —2b-V — a® + b) a

_ % (0 —8,) (0 + ) ra) — (As +2a0, — 20V —a+ ) a (5.29)
— L0 - 0) (rata+0-b) — (As+2a0 — 25V —a® + ) a

r

:a(at—ar)(a+0-b)—M%—(a%—@-b)(at—ar)

— (As+2a0, —2b-V — a* + |b]*) o
we used (1.9) in (5.29). As a consequence, we have
La—a(0—0.)(a+0-b)+ Asa
(a+0-b)a N
r
(a+ z ‘b N

(a+0-b)(ay — a,) — 2ac; +2((0 - 0)0 +b") - Va + (a* — |b]*)

(a+0-b)(ay — a,) — 2ac; +2(0 - b)ay, + 2b~ - Va + (a* — |b]*) o

- _w —(a—0-b) (e, +a,) + 205 - Va+ (a® — |b]*) a (5.30)
_ a0 e et 0-b— Tt 2t Va (@~ ) a

,
=2b" - Va—2r""(0-b)a— (¢ — (6-b)*) a+ (a® — b]*) @
=2b-Va—2r(0-ba— [b-Pa,

where we used (1.9) again in (5.30). O
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6. THE FORWARD PROBLEMS

We give proofs of Propositions 1.1 and 1.2 using the standard progressing wave expansion
method; one has to go through the computations to be certain that everything works, partic-
ularly in a cylindrical neighborhood of {{} x R. It is enough to prove the proposition when
7 =0, £ = 0 since the general case follows from a translation argument. So a,b,q are com-
pactly supported smooth functions on R* xR which are zero on B, xR for some € > 0. Here B,
is the origin centered open ball of radius e. Also, we write U(x,t;0,0),V (z,t;0,0), a(z,t;0)
as U(x,t),V(z,t), ax,t).

The uniqueness of the distributional solution follows from the proof of uniqueness for
Proposition 9.3. It remains to prove the existence and the structure of U, V.

We recall
M=-2a0,+20-V+q, T=0+0-V—(a+0-b)+r"
and
L:=(0—a) (V-0 +c=0-2a0,+2b-V+q=0+M
Also, for z # 0 we define r = |z| and 0 = z/|x|. We will need two observations, described

next, in the proofs of Propositions 1.1 and 1.2.

For an arbitrary smooth function i on (R*\ {0}) x R and an arbitrary distribution F on
R, we claim

L(h(z,t)F(t —|z|) = 2T (h)F'(t — |x|) + (Lh) F(t — |z|), x # 0. (6.1)
We give its brief derivation. For x # 0, we have
(0 = a) (hF(t — |2])) = hF'(t — |2|) + F(t — |2])(0; — a)h,
(0 —a)? (hF(t — |z|)) = hF"(t — |z|) + 2F'(t — |2|)(0; — a)h + F(t — |2|)(0; — a)*h.
Similarly
(V = b)(h(z, ) F(t — |z[)) = =6hF(t — |2|) + F(t — |2[)(V = b)h,
(V = b)*(h(z, ) F(t — |z[))
= —(V —=b) - (OhF'(t — |z|)) +
= hF"(t — [x]) = F'(t = [z[)(V = b) - (0h)
—0-((V=0)h) F'(t = |z]) + ((V = b)* h) F(t — |])
=hF"(t —|z]) = 2(0- (V=b)h+r'h) F'(t — |z|) + (V= b)*h) F(t — |z])
Hence (6.1) follows.

(V =b)- (F(t —[z[)(V = b)h)

We will also need the solution of the transport equation

(Tl to+71)=g(ro,to+ 1), r #0. (6.2)
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We summarise the claim as the following lemma.

Lemma 6.1. Suppose g(z,t) is a smooth function on R? X R which is zero on B, X R and

the restriction of g to the region t < T is compactly supported for each T. Then (6.2) has a
solution given by

" g(s0,tg+ s)

0 tg) = 0,t ==

f(r0, 7+ to) = alrd, O+T>/0 a(sh tg+ s)

with f smooth on R3 x R and zero on B. x R. Further, the restriction of f tot < T is
compactly supported with

(6.3)

| fller®3x(—oom) < Cllgller®sx(—oo,17)s (6.4)

with the constant C' determined by €, T and ||[a, b]||cr @3 x (—0o,1))-

We give the short proof of the lemma. For any smooth function f(z,t) and any ¢, we have

s 010+ 1) = b4 0-V1) + [0t +7), 740

hence

r(Tf)(rb,to+1r) = d%(rf(re,to—i-r)) —(a+0-b)(rf(ro,to+r)), r#0. (6.5)

Therefore (6.5) may be rewritten as the ODE

di;(?“f(rﬁ,to +7))—[(a+8-b)(rf)](rl,to+1r)) =rg(rd, to + 1), r # 0.

An integrating factor for this ODE is (note a, b are zero in B, x R)

exp <—/ (a+6-D)(s0,ty+ s) ds) = exp (—/ (a+60-b)((r—s)0,to+r—2s) ds)
0 0
1
ra(rd, to +r)
so the ODE may be rewritten as

d (f(roto+r)\ _ g(ré,to+r) "0
dr \a(ro,to+7))  a(rf to+r)’ '
Hence, one solution of (6.2) is
" g(s0,to+ s)
0t = a(rd,t =1 =~d ;
Rl e L

note that f(z,t), is zero in B, x R and smooth on R? x R. Further f is compactly supported
when restricted to ¢t < 7T and

[ fller@3x (=01 < Cllgller®sx(—oo,m))s
with the constant C' determined by €, 7" and ||[a, b]||cr (&3 x (—o00,17)-
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6.1. Proof of Proposition 1.1. One may verify with a standard argument that

O (M) =4rH(t)0(x). (6.6)

]

We seek a solution U(z,t), of the IVP (1.2), (1.3), of the form

Uz, t) = H(%”x‘) +u(x, t)H(t — |z|),

with u(z,t) a smooth function in the region ¢t > |z|, satisfying u(z,t) = 0 in a neighborhood
of (+ =0,t=0).

Clearly such a U satisfies (1.3). So we need to find such a u(z,t) so that

L(u(z, t)H(t — |z|)) = —M (W) .
Since M =0,a=0,b=0on B, x R, we have
M (H“l;ﬂ')) — M2 )H(t — Ja]) — 2] (a + 0 -5)6(t — |,

hence we want

Llu(w, ) H(t — |2[)] = 2lz[ " (a+0-b) o(t — [a]) — M(|=z[) H(t — |z[).  (6.7)
For N large enough to be chosen later, we seek u(z,t)H (t — |z|) in the form
w(z, t)H(t — |z|) = ag(x, ) H(t — |z|) + Zak z, t M) + Sn(z,t) (6.8)

for suitably chosen smooth functions a; which will be zero on B, x R, and a Sy which will
be highly differentiable as N increases, zero in a neighborhood of (0,0) and supported in
t > |z|. With such an expansion we will define

u(z,t) == ak(x,t)% + Sn(z,t). (6.9)

k=0

We construct the aj and Sy so that (6.7) holds. Since the a are to be zero on B, X R, it
is clear that

L (ao(x,t)H(t —|z|) + Zaﬂx,t)%) =0, on B, x R.

Further, for x # 0, noting that

0 d d dsh sh!

H) =, 06 =0, ) =), =gt k2l
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and using (6.1) we obtain (for z # 0)

k=1
N k-1 k
(t —[z)3 (t — =)}
= 2(Tao)6(t — |2[) + (Lao)H(t — |z]) + > 2(Ta )W + (Lar)—
k=1
N k-1 N
_ (t — =)} (t —|=)¥
= 2(7—@0)5(1} — |l’|) + ;(27—&]4 + L’ak,l)w + £CLNT
Keeping in mind (6.7), we choose ag(z,t) and a;(z,t) so that
2T ap = 2|z| " (a+ 6 -b), onx#0 (6.10)
2Tay + Lag = —M(|z|™"), on x #0, (6.11)
and, for 2 < k < N, we choose a;, so that
2T ar, + L(ax—1) = 0, on z #0. (6.12)

Assuming for the moment that we have constructed smooth a;, satisfying these equations
with ay, zero on B, X R, keeping in mind (6.7), we need to find Sy which solves

t — N
LSy = — (Lay) (N—lfm on R?® x R, (6.13)
Sy =0, ont <0. (6.14)

Since ay is a smooth function that is zero in B, x R, the function EaN(t_]lV—x!')ﬂX is in CV1(IR3 x
R), zero in a neighborhood of (0,0) and supported in the region ¢t > |z|. Hence, if N > 5,
then by Proposition 9.3 with m = N — 1 the IVP (6.13), (6.14) has a unique distributional
solution which is in C¥=3(R3 x R). Further

”SNHC'N*C"(R?’X(—OO,T]) S CH‘CaN|’CN*1(R3><(—oo,T])'> (615)
with C' determined by T" and ||[a, b, q]|| o~ —1(R3 x (—c0,17)-

Hence Sy is at least C2, so by a standard energy estimate argument, one can show that
Sy is supported in the region ¢ > |z| and Sy = 0 in a neighborhood of (0,0). Hence, if we
take N > 5 then the u defined by (6.9) is in C¥~3(R3 x R), zero in a neighborhood of (0, 0)
and u(z,t)H (t—|z|) is the (unique) distributional solution of the IVP (1.11), (1.12). Now N
was arbitrary and u is uniquely determined on ¢ > |z|, hence w is smooth on t > |z|. Since
(6.7) holds, we see that (1.13) holds.

If remains to prove that there are smooth ay(x,t) which satisfy (6.10), (6.11), (6.12), are
zero in B, x R, that for the u defined by (6.9) the relation (1.14) holds, and we have the

estimate on ||ul|¢s(,,) claimed in Proposition 1.1.
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Since the RHS (6.10) is smooth, compactly supported and zero on B, x R, from Lemma
6.1, we can construct a smooth ag satisfying (6.10), which is zero on B, x R and its restriction
to t < T is compactly supported. Further

|aol|cr@sx(—oor)) < C

with C' dependent only on €, T and ||[a, b]||cr(r3x (—oo,77)- Next, rewriting (6.11) as

1
Tay = —5(5% + M(|z| 1), r #0,

again, from Lemma 6.1, there is a smooth solution a; of (6.11), which is zero on B, x R and
its restriction to ¢ < T' is compactly supported. Further, using the estimate on ag
lar|ler@s x(—oory < CllLao + M|z ™) |lor @ x (o)
< C(||ao||cp+2(R3x(—oo,T}) + [[a, b, Q]||CP(R3><(—OO,T]))
<y

where () is a constant determined by e, T" and ||[a,b, q]||crt2(r3x(—co,r))- Next, for any
2 < k < N we may write (6.12) as

1
Ta, = —55%—1, r #0,

hence, from Lemma 6.1, there is a smooth solution ay, of (6.12) which is zero on B, x R and
its restriction to t < T' is compactly supported. Further

Ak ||CP(R3x (=00, T]) = Ak—1]|CP(R3x(—o0,T]) = L2]|Ak—1{|CP+2(R3x (—00,T])"
[l | < Cl|Lag-] < Callag—]

with Cy determined by €, 7" and ||[a, b, q]||cr (@3 x (—c0,r7)- SO by induction,

l|axllcr @3 x (—00ry) < C

with C' determined by €, T, k and ||[a, b, ¢ cr+2k (3 x (—00,r7) for 0 <k < N. In particular

lan!lcr@sx(—oo,ry) < C
with C determined by ¢, T, N and |[[a, b, ¢]||cr+2v (3 x (—oo,r))- We use this estimate in (6.15)
to obtain

1SN llev-3@sx(—oo)) < Cllan|lent1msx(-oo,r) < Ch

with C} determined by €,T" and ||[a, b, q]||csn+1(r3x(—co,r]- In particular, taking N = 6 we
have

[S6lcs®sx (0o < C
where C' is determined by ¢, 7" and ||[a, b, ¢]||c19(®3 x (—00,1]-

From the uniqueness of the distributional solution, we know that the u defined by (6.9) is
independent of N on the region t > |z|, hence using the estimates on ag, aq, -+ ,as and Sg
we have

lulles@on < €
with C' determined by €, 7" and ||[a, b, q]||c19 (3 x (—o0,r)- Here Qoo is {(z,1) : 2] <t < T'}.
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Finally, since Sg is in C* and supported on t > |z|, we observe from (6.9) that
u(w, 2]) = aole 2l),  « RS
From Lemma 6.1 applied to (6.10), and taking ¢ty = 0, we have

a+6-b)(sb,s)

ds.
sa(sh, s) 8

ag(rf,r) = a(ré, r) /0 "

Now, from (1.8)

(a+6-b)(s0,s)
sa(sb, s)

— (a+0-b)(s8,5) exp (—/Oswe.b><<s_p>e,s_p>dp)
— (a+0-b)(s8,5) exp (— @000 dp)

_ _% {exp (— /Os(a +0-5)(p8, p) dp)}

- (o)

Noting that lim, .o+ (ra(rf,r)) = 1, we obtain
ap(rf,r) = a(rf,r) —r

proving (1.14).

6.2. Proof of Proposition 1.2. We have £ = 0,7 = 0 and a, b, ¢ are zero in B, x R. We
seek a solution of the IVP (1.15) - (1.16) in the form

V(x,t) = |z| 710t — |2|) + f(2,8)0(t — |2|) + v(z, ) H(t — |z]), (6.16)

with v(z,t) a smooth function in ¢ > |z|, f(x,t) a smooth function on R3 x R, v(z,t) zero in
a neighborhood of (z=0,t=0) and f(x,t) zero on B, x R. Clearly such a V(z,t) will satisfy
the initial condition (1.16), so we just need to find a solution of this form for (1.15).

Since
Oz~ o(t — [2)) = 4md(x)é(t)
we have (note M, a,b are zero in B, x R)
L]0t — |z])) = M| 0t — |2])) = M| 7)d(t — |2]) — 2lz| " (a + 0 - b) '(t — |z]).
Hence using (6.1) (we assume f =0 in B, x R) we have
L(|2| 70t — |2]) + f(z, )3(t — [2])) — 4md(x)d(t)
=2Tf — ol a+0-0)]5'(t —|al) + [Lf + M(Jz| D)]o(t — |z])-
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Since |x|~!(a + 0 -b) is zero on B, x R, from Lemma 6.1, we can find a smooth f(z,t) which
is zero on B. X R and Tf = |z|"*(a+ 6 - b). In fact, from Lemma 6.1, we have

a+60-b)(sl,ty+ s)

_ " (
f(ro,r+1ty) = a(rd, to +r) /0 o
1

=a(rf,ty+r)—r,

by the calculation at the end of subsection 6.1. Hence
f(z,t) = a(z,t) — |zt
Note that, from (1.8), we have a(z,t) — |z~ = 0 in B, x R.

So, keeping in mind (6.16) and (1.15), we seek v(x,t), a smooth function on ¢ > |z| which
is zero near (0,0) and

Llo(e, H(E — |al)] = (£l 1) — 2] ™) + M2 )6 — [2).  (6.17)
We seek v(z,t)H(t — |z|) in the form
3 (t = |t

v(z, ) H(t — |z|) = Zbk(:c,t)T + Ry(z,1), (6.18)

for some large N, for smooth functions b, which are zero in B, x R and for some regular
enough function Ry which is supported in ¢ > |z| and zero in a neighborhood of (0,0). Then
we will take

v(z, 1) _Zbk(x,t)%umx,t), t>|x|. (6.19)

k=0

As seen in the proof of Proposition 1.1, we have

= 2(Tho)d(t — |z|) + Z(QTbk + Ebk_l)% + (Lby) (t —]\Lff)t,

N
k—
So keeping in mind (6.17), we seek by, such that

Tbo = L(a(x,t) — 2|7 + M(|z| ), x #0, (6.20)

1

Since the RHS of (6.20) is smooth, zero on B, x R and its restriction to ¢ < T' is compactly
supported, Lemma 6.1 guarantees a smooth solution by of (6.20) with by zero on B, x R and
its restriction to t < T" compactly supported. Further

160l cp (8 x (—00,1) < C
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with C' determined by €, T and ||[a, b, ¢]||cr+2(r3x(—co,77). ApPplying Lemma 6.1 recursively to
(6.21) we conclude that, for 1 < k < N, there is a smooth solution by, of (6.21) with b, zero
on B, x R and its restriction to t < T compactly supported. Further

10kl cr (3 x (—00,17) < Cllbk=1||cr+2(®3 x (—00,17)» 1<k<N,
with C' determined by €, T and ||[a, b]||cr+2(r3x(—oo,r7)- Hence, by an induction argument,
1o~ [l or (RS % (00 < C
with C' determined by €, T and ||[a, b, g co+2v+2(R3 x (—c0,7])-

With the b, chosen above we have

(Z bk xZ, t |x|) —f—RN(l’,t)) == (/;bN)<t_]V—|:|C|>]J\: +£RN

Hence for (6.17) to hold, we need to find a Ry which is supported on ¢t > |z|, zero in a
neighborhood of (0,0) and is the solution of the IVP

t — N
crm e g

Ry =0, for t << 0.

Then repeating the argument used in the proof of Proposition 1.1, we can show that the v
defined by (6.19) is smooth on ¢ > |z|, zero in a neighborhood of (0,0) and

HUHC'3(Q0,0) <C
with C' determined by €, T and ||[a, b, ¢]|| c21 (r3x (—c0,77)-

Noting that (6.17) implies (1.17), it remains to verify (1.18). From (6.19), we see that for
t > |x| we have
6
v(x,t) = bo(x,t) + by(x, t)(t — |z|) + Zbk(x,t)(t — |2)*/k! + Rg(x,t).

k=2

Since Ry is supported in ¢ > |z| and is at least C?, we see that TRg = 0 on ¢ = |z|. Further,
ont = |x|

T (o (, 8)(t = [a])) = (Too (2, ) (¢ = |2]) + 0y Tt = [z]) = ba(,8)( + 0 - V)(t — |2]) =
Hence, noting that £ = [0+ M and that O(]x|™') = 0 for = # 0, on ¢ = |z| we have
(Tv)(x,t) = (Tbo)(x,t) = L{a(x,t) — |2|7") + M(Jz| ") = La)(x, 1), x #0.

7. PROOF OF PROPOSITION 1.8

It is sufficient to prove the proposition when £ = [ since the lower order terms can be
absorbed in the LHS of the inequality. This argument also shows that the constant in the
inequality depends only on T', ||, |7| and ||[a, 0] HCI(QE’T), HCHCO(Q&T).
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We prove the proposition when £ = 0,7 = 0. The general &, 7 case follows by translation.
For the £ = 0,7 = 0 case, we denote Q¢ ,, He ; and C¢; by Q, H,C.

Our proof uses Theorem A.7 of [6] and we keep the notation used there. We first observe
that Theorem A.7 in [6] is valid for the weight ¢(z,t) = t. Even though it does not satisfy
the strong pseudo-convexity criterion needed in Theorem A.7 of [6], it does satisfy (A.25) in
[6] which is what is needed to obtain the Carleman estimate in Theorem A.7 of [6].

For our problem, p(z,t,&,7) = —72 4+ &% and ¢(z,t) = t. Hence
A=p(r,t,6,7) = *p(a. 8,V ¢) = 7" + [ + 07,

implying {A, B} = 0. So (A.25) holds if we consider g to be any positive constant and then
choose d > 0 accordingly. Consequently we have

a/ g2t (!VmwF + 0'211)2) + o/
Q

v E< c/ €271 Tl 2 (7.1)
aQ Q

where v = (v, 11, 2, v3) is the outward unit normal and the zero index corresponds to t.
Now 0Q = C'U H and we compute the expressions appearing in the integral over C' and H.

Using the calculation of the boundary terms for the wave operator from subsection A.2 in
6], we write

1 ” - o o :
5B = 2" w)a, (7w), — g(a, 1) (€ w)ayew, j € {1,2,3),
=% (2awwm]. + 2w, wy — gwwxj)

and,
1
§Eo = —|V$7t(e"tw)|2 — o?(e”w)? + getw(e” w),

_ eZUt (_(wt + O'U))z _ |v'w|2 _ 02w2 + gw(wt + O'w))

=" (=|Vw]’ = 20°w* — 20ww; + gw(w, + ow)) .

On C, we have v2v(z,t) = (—1,6), hence
v-E = 20e* [(IVaw]® + 2w, 0 - Vw) + 20w(w; + 6 - V,w) + 20°w” — ogw®

—gw (w; + 6 - Vw)]. (7.2)
Now
0,:v)?
IV w|? + 2w, 0 - Vow = w; + (- Vw)? + Z ( |;;) + 2w, 0 - Vw
i<j
Q,w)?
= Z( |;|“;) + (w; + 0 - Vw)? (7.3)
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where Q;; = 2'0; — 270;, 1,7 = 1,2, 3 are the angular derivatives. If we define

then using (7.3) in ) we obtain

v E =20t ||~ 2 ijw)Q + P? 4+ 20 Pw + 20°w?* — oguw?* — ng)

( @
1<j
> /20e2! (\x! 2 Qijw)Q + P? — 20| P||w| + 20%w?* — aHgHoow2 — HgHOOPw>
1<J
( ©
1<J

2
> V206! | 2| 2 Gw)? 4+ P2 (1 — e —§) + w? (QJQ—U——UHgHOO——HgHQ)>.
€
Taking € = % = g and o > 0 large, we have
v-E = oe* <|x| -2 Z(Qijw)Q + (we+6 - Vw)2> + o*w?, on C. (7.4)
i<j

Next, on H, noting that v = (1, 0,0, 0), using the A.M-G.M inequality as done in obtaining
(7.4), we obtain

v-FE = Ey = 2¢e*! ( V., w|? — 202w — 20ww, + gw (w, + Uw))
= — 7 (V] + 02w2)
hence

v E|xe* (|Vw]® + o?w?) on H. (7.5)

So using (7.4) and (7.5) in (7.1), we obtain
a/ e (|Vpw]? + ow?) + a/ e ([Vow)? + o*w?)
Q C

4/ 620t|Dw|2—|—a/ 62“(|Vx7tw|2+02w2).
Q H

where the constant is independent of w, ¢ and depends only on 7,7. This completes the
proof of the proposition.

8. CONSTRUCTION OF A DIVERSE SET OF LOCATIONS

Let D be a non-empty bounded open subset of R, We give two ways to construct a
diverse set of locations with respect D. If &, -+ , & is a collection of vectors in R? then the
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the affine hull of &, -+ , & is

k k
A&, -, &) = {Z&ifi ro; € R, Z&i = 1}
=1 i=1

and the convex hull of &;,--- & is
k k
C(&1, &) = {Zaiéi sy > 0, Zai = 1},
=1 i=1

The following proposition gives two ways to generate a diverse collection of sources.

Proposition 8.1. Suppose d is a positive integer and D is a non-empty bounded open subset
of R,

(a) Suppose &1, -+ , &4 are linearly independent vectors in R and 401 € C(&y, -+, &y) but
different from &, --- ,&q. If A(E1, -+ &4) does not intersect D then &y, -+ ,€qpy i5 a
diverse set of locations with respect to D.

(b) If &1, ,€qp1 is a set of locations in R\ D such that D is in the interior of
C(&r, -+ &qr) then &1, -+ €441 18 a diverse set of locations with respect to D.

Remark. If p > 0 and N > pv/d then Ney, - - - ,Neg, N(eg + -+ -+ ¢e4)/d is a diverse set of
locations collection with respect to pB. This is so because of (a) and that A(Ney, -+, Ney)
does not intersect pB.

Proof. Suppose & € R4\ D, i=1,--- ,d+ 1. For any « € D, define

=& .
0;(x) = , 1=1,---,d+1,
and the (d+ 1) x (d + 1) matrix
1 1 ... 1 _
M(x) = eD.
D= 0@ o) o ba]
Then &1, -+ ;€441 is a diverse set of locations with respect to D iff
la, b] ||| M (x)]a, b]]], Vo e D,a € R,beR?,

with the constant independent of z,a,b. This condition is equivalent to the invertibility of
M (zx) for all z € D because the invertibility of M (z) implies the operator norm || M (z)|| is
positive so the continuous map

has a positive lower bound since D is compact.
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Proof of (a). By hypothesis,
d
a1 = ) i
i=1
d

for some «; > 0 with >  a; = 1 and at least two of the «; are non-zero. Hence, for any
i=1

r € B,

d
T — Egpr = Zai(x—fi). (8.1)

Regarding vectors as columns, using elementary column operations, we have the determinant
relations

d+1
e |le=&l e e =&l o= Gl
(detM(:L'))EkL' Gl=|, Ll e
e =&l ez =&l 5‘
r—& - x—=& 0

d
where 8 = [z — &a1| — X0 aulz — &

i=1
_ d
For x € D, the vectors z—¢;, - -+ , x—&y are linearly independent because, if > \;(z—¢;) =
i=1
0, then
d d
()= 2.
i=1 i=1
d d
If =\ =0 then >° \;& = 0 which forces A; = 0 from the linear independence of &!,- - &4,
i=1 i=1
d
If > A # 0 then
i=1
d
T = Z 0
i=1
d _
with Y 0; = 1 where o; = —*—. This violates the hypothesis that D does not intersect
i=1 Z:l Ai
A&y, -+, &,). Hence, for x € D, the determinant |x —-& - x— fd} is non-zero.

Next, for # € D, from (8.1) and the triangle inequality, we have
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because o; > 0, the z—¢&;, i = 1,--- , d are not parallel (because they are linearly independent
as shown above) and at least two of the «;(z — §;) are non-zero. Hence 3 # 0.

So combining the conclusions of the previous two paragraphs, we have det M (x) # 0 for
all x € D, which completes the proof of (a).

Proof of (b).

d+1
We start with the claim that every x € R? has a unique representation as r = > ;& for
i=1
d+1

some «; € R with > a; = 1. We postpone the proof of this claim to the end of this section

i=1
and continue with the proof of (b).

For € D, the invertibility of M (x) is equivalent to the linear independence of the vectors

|z —&lz =&l [l = &anls 2 — Eag]
in R4, If there are A\j,--- , Agy1 € R such that
d+1

Y Alle—&lz—&]=0
=1

then
d+1 d+1
=1 i=1
d+1

If > X\ #0, define
i=1

Ai
MZZd-‘rl ) ’L:1, 7d+1
2 A
i=1
d+1
Then > u; =1 and (8.2) implies
i=1
d+1 d+1

v=) m& Y mlr—&=0. (83)
i=1 i=1

Now the pu; are uniquely determined because of the claim in the second paragraph of the
n

proof of (b). Further, since x € C(&y,---,&411), we have p; > 0, so the relation Y pu; =1
i=0

implies least one of the y; is positive. Hence the second equation in (8.3) implies that = = &;

for at least one of the ¢, which contradicts our assumption that any x € D is in the interior

Ofc<fh T v€d+1)-



LIPSCHITZ STABILITY FOR A HYPERBOLIC INVERSE PROBLEM 37

d+1 d+1
So we must have Y \; = 0; then (8.2) implies Y \;& = 0. From our claim, every z € R?
i=1 i=1
has a unique representation
d+1

€r = E a;&;
i=1
d+1

for some «; with > a; = 1. However, we also have
i=1

d+1
z = Z(Oéi + A\i)&i
i=1
d+1
with > (a;+ ;) = 1. So the unique representation property implies \; = 0,7 =1,--- ,d+ 1,
i=0

proving (b).

It remains to prove the unique representation claim stated at the beginning of the proof
d+1
of (b). We observe that if a; € R with )~ a; = 1 then

=1

d+1 d d+1
> ai& = Z i (& — La1) + (Z ai) €a+1
i=1 ' j
=&at1 + Z i(& — Ear)- (8.4)
Hence
A&+ €av1) = Sagr +span(&r — Eapr, -+ &a — Ear)-

Now D is an open subset of R? contained in C (&, - - -, &, 1) which is a subset of A(&y, -+, &01).
Hence & —&q41, -+, &g — Eq41 must be a basis for RY. So span(&; —&qy1, -+ ,€a—Eaq1) = R
and A(&y, -+, &01) = RL Finally, the representation is unique because of (8.4) and the
linear independence of & — &gp1, -+ , &4 — Eqan- 0

9. APPENDIX

In this section we prove the existence of a unique distributional solution of an IVP for
a second order hyperbolic PDE, along with an estimate of the solution in terms of the
coefficients. This is a standard result but a statement and a proof of the result, suitable for

our use, is difficult to find. We give a standard proof based on the well-posedness result for
an IBVP for second order hyperbolic PDEs in [3].

We use the notation for time dependent Sobolev spaces in section 5.9.2 of [3]. Suppose
T > 0, D is a bounded region in R™ with a smooth boundary, a(z,t), ¢(z,t) are compactly
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supported smooth functions on R™ x R and b(z,t) is a compactly supported smooth n-
dimensional vector field on R™ x R. Define

L:=0~-A—ad,+b-V+q, Dr =D x (0,T),

the L? inner product
mwyiém@w@mﬁ v,w e I2(D),
and the bilinear forms
Alp, wif] = —/Da(x,t)v(x) w(z) da,
B@Jmﬂ::éV%@fV%@ﬂ+M%ﬂ-VM@w@ﬁ+ﬁ%ﬂv@MM@dL

for v,w € HY(D), 0 <t < T. For functions u(z,t) on D x (0,T), the expression u(t) will
denote the function u(t) : D — R with u(t)(x) = u(z, t).

For a function F' € L*(Dr), consider the IBVP

Lu=F, on D x (0,7), (9.1)
u(-,t=0) = 0, u(+,t=0) = 0, on D, (9.2)
u=20 on 0D x [0,T]. (9.3)

A function u € L?(0,T; H} (D)) with u; € L*(0,T; L*(D)) and uy € L*(0,T; H'(D)) is said
to be a weak solution of the IBVP (9.1) - (9.3) if the following holds:

(1) (ug(t),v) + Alug(t), v;t] + Blu(t),v;t] = (F(t),v), Yv € Hy(D), ae. 0<t<T, (9.4)
(i7) u(-,0) =0, w(-,0) = 0. (9.5)
Note that by Sobolev space theory, u € C([0,T], L*(D)) and u; € C([0,T], H*(D)), so (ii)

T

0
makes sense. We also observe that if the weak solution w is in H*(D x (0,T)) then a standard
argument shows that u satisfies (9.1) and (9.3) as functions.

Theorems 3,4,5 in Section 7.2 in [3] give a well-posedness result for this IBVP. Further,
Theorem 6 in Section 7.2 in [3] gives higher order regularity if F' has higher order regularity
and satisfies a matching condition on 9D x [0, T]. We need only a special case of the general
results in [3].

Proposition 9.1. If F' € L?(Dy) then the IBVP (9.1) - (9.3) has a unique weak solution
w. Further w € L=(0,T; HX(D)) and u; € L>(0,T; L*(U)) with

esssup ([[u(t) lmy(oy + le(®)ll220) ) < CUFllz2or) (9.6)

0<t<T

and C determined by T' and ||[a, b, q]||L=(py). Further, if m is a positive integer and

OFF € L*(0,T; H"*(D))  fork=0,---,m,

OFF)(-,0)lop =0 fork=0,---,m—2, (9.8)
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then OFu € L>°(0,T; H™1=*(D)) for k =0,1,--- ;m + 1 and we have the estimate

m+1

ess sup Z 105w (-, )| g1 (py < C > NOFF | p2o st () (9.9)
k=0

0<t<T

with C determined by T' and ||[a, b, q]||cm(py)-

The theorems in [3] are for a general second order hyperbolic operator similar to our £
except with A replaced by a general second order elliptic operator, and without the a0; term.
However, with minor modifications (particularly to the proof of Theorem 4 in section 7.2 of
[3]), the same proof works for our £. In our proposition, we have also added the dependence
of C' on the coefficients, which follows easily if, in the proof, we track the dependence of the
constants on the coefficients.

From Proposition 9.1 we derive the following existence result for an IVP, needed below.

Proposition 9.2. Suppose m is a positive integer, OFF € L*(0,T; H™ *R")) for k =
0,---,m and F is compactly supported. Then the IVP

Lu=F, on R™ x (0,7T), (9.10)
u(-,t=0) =0, w(-,t=0) on R" (9.11)

has a solution u with OFu € L>(0,T; H™1=*F(R")) for k =0,1,--- ,m + 1. Further

m—+1

ess sup Z 10Fu(-, )| b ny < CZHakF||L2 0T Hm—k (&) (9.12)

0<t<T 5—0

with C determined by T' and ||[a, b, q]||cm@nx[o,1) -

Proof. Suppose F' is supported in Bg x [0,T] where Bp is the origin centered ball of radius
R. Let D be the origin centered ball of radius 2R + T'. Then F' satisfies the conditions of
Proposition 9.1 so the IBVP (9.1) - (9.3) has a solution u with dFu € L>(0,T; H™1=*(D))
for k=0,1,--- ,m+1 and

m—+1

€8s sup Z ”ak HHm+1 k ) S CZ HafF“IQ(O,T;Hm—k(D)), (913)

0<t<T =0

with C' determined by T" and ||[a, b, ]|l cm (D).

Since m > 1, we have u € H*(Dr), so u? + |[Vu|* and w;Vu are in W' (Dyz). Since
the divergence theorem is valid, on regions with Lipschitz boundary, for vector fields with
components in WH(Dy), using a standard energy estimate argument on a truncated cone
and that F' = 0 outside Bg x [0, T, one can show that u(z,t) =0 for R+ 7T < |z| <2R+T,
0 <t <T. Hence if we define u =0 for |z| > 2R+ T,0 <t < T, then we have a solution of
the IVP (9.10), (9.11) with the properties claimed in Proposition 9.2. O
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Suppose F' is a distribution on R™ x (—o0,T’) with F' = 0 for ¢ < 0. Consider the IVP

Lu=F, on R" x (—o0,T), (9.14)
u=0  onR"x (—00,0). (9.15)

We say a distribution u on R™ x (—o00,T) is a solution of this IVP if u = 0 for ¢ < 0 and
(u, L7¢) = (F,¢), Vo€ CZ(R" x (=00,T));

here £* is the formal adjoint of £. We have the following well-posedness result for the IVP
(9.14), (9.15).

Proposition 9.3. Suppose m is a positive integer, OFF € L*(—oco,T; H™ *(R")) for k =
0,---,m, F' compactly supported and F' = 0 fort < 0. Then the IVP (9.14), (9.15) has a
unique distributional solution w. Further, if m > (n—1)/2 then for any non-negative integer
p<m—(n—1)/2 we have u € CP(R™ x (—o0,T]) and

ullor@ns (o) < C > NOFF | p2qorsrm—» (g,
k=0

with C determined by T' and ||[a, b, q] | cm@nx o) -

Proof. 1f we apply Proposition 9.2 with the initial condition u(-, —€) = 0, u;(-, —¢) = 0 for
some € > 0, then we are guaranteed a solution u € H™(R" x (—¢, T')) with

||U||Hm+1(R"x(—e,T)) < CZ ||afF||L2(—e,T;Hm—k(]R”))a
k=0

with C' determined by T and ||[a, b, q]||cm®nx[—e 7). Since m > 1, we have u € H?, so by
an energy estimate u will be zero for —e <t < 0. We extend u as the zero function for the
region t < —¢; then u is a distributional solution of (9.14), (9.15).

Suppose m > (n—1)/2. Noting that u is compactly supported with the support determined
by T and the support of F, from the Sobolev embedding theorem, for any non-negative
integer p<m+1—(n+1)/2=m— (n—1)/2, we have u € CP(R" x (—o0,T]) and

||U||CP(1R"X(—oo,T]) < CZ HafFHL?(O,T;Hm*k(Rn))a
k=0

with C' determined by T" and ||[a, b, ¢]||cm@nx[o,m)- It remains to prove the uniqueness of the
distributional solution.

Note that for F regular enough, there is a C? solution of (9.14), (9.15). Further, a standard
energy estimate shows that there is at most one C? solution. This will be important for us
in our proof next of the claim that if /' = 0 then any distributional solution w of (9.14),
(9.15) must be zero.
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Suppose ¢ is a compactly supported smooth function on R” x R with support 0 <t < T.
Consider the backward IVP

Lv=2¢ R"™ x (—=3,00)
v=20 ont>1T.

Then, reversing time ¢ and using the existence part (for arbitrary large m) and the uniqueness
of C? solutions (proved already), we know there is a smooth solution v on R™ x (—3,00) of
this backward IVP. Further, the restriction of v to t > t; is compactly supported for any
t1 > —3.

Let p(t) be a smooth function on R with

1, t>-—1

t) =
p(t) 0 t< 2’

and define w(z,t) = p(t)v(z,t). Then w is a compactly supported smooth function on R" xR
and, on the region ¢t > —1 we have L*(w) = L*v = ¢. Noting that u = 0 for ¢ < 0 and using
the definition of a distributional solution, we have

(u,¢) = (u,L'w) =0, V¢ € CF(R" x (—00,T)).
Hence u =0 on R" x (—o0,T). O
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