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ABSTRACT

In this paper, we discuss the convergence of an Algebraic MultiGrid (AMG) method for general symmetric
positive-definite matrices. The method relies on an aggregation algorithm, named coarsening based on compatible
weighted matching, which exploits the interplay between the principle of compatible relaxation and the maximum
product matching in undirected weighted graphs. The results are based on a general convergence analysis theory
applied to the class of AMG methods employing unsmoothed aggregation and identifying a quality measure
for the coarsening; similar quality measures were originally introduced and applied to other methods as tools
to obtain good quality aggregates leading to optimal convergence for M-matrices. The analysis, as well as the
coarsening procedure, is purely algebraic and, in our case, allows an a posteriori evaluation of the quality of
the aggregation procedure which we apply to analyze the impact of approximate algorithms for matching
computation and the definition of graph edge weights. We also explore the connection between the choice
of the aggregates and the compatible relaxation convergence, confirming the consistency between theories for
designing coarsening procedures in purely algebraic multigrid methods and the effectiveness of the coarsening
based on compatible weighted matching. We discuss various completely automatic algorithmic approaches to
obtain aggregates for which good convergence properties are achieved on various test cases.

1. Introduction

We assess here the convergence of a MultiGrid method (MG) for the

solution of linear systems of the form

Au=f,

where B : V' - V is a linear operator which can be interpreted as an
approximate inverse of A. An AMG method, or indeed any MG, is based
on the recursive use of a two-grid scheme combining the action of a
smoother, i.e., a convergent iterative method, and a coarse-grid correc-
tion, which corresponds to the solution of the residual equations on a
1) coarser grid. In completely general terms, the guiding design principle

of an AMG is the optimization of the choice of coarse space for a given

on the finite-dimensional linear vector space V equipped with an inner
product (-,-), where A : V — V' is symmetric positive definite (SPD),
f eV’ and V' is the dual of V; by the Riesz representation theorem
V' can be identified with V. More specifically, we focus on a recently
proposed method belonging to the class of Algebraic MultiGrid Methods
(AMG) with unsmoothed aggregation (UA-AMG) or plain aggregation [1,
2]. These can be seen as particular instances of a general stationary
linear iterative method for solving (1)

u" =u""! + B(f - Au"),

m=12,..; givenu’eV, @)
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smoother. The most commonly used smoothers are the splitting-based
methods, such as the Gauss-Seidel method and the (modified or scaled)
Jacobi method.

As usual in the MG context, the final objective of any analysis is
to achieve uniform convergence with respect to the problem size (op-
timal convergence). Unfortunately, this is a property that can normally
be established only for the two-level AMG (TL-AMG); it is very rarely
extended to the multilevel case when no “geometric” information on
the matrix A is available. Our task is then to ensure the selection of
an appropriate set of aggregates, i.e., the disjoint sets of fine grid un-
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knowns to which the coarse grid unknowns are associated, to guarantee
a fast convergence at a reasonable cost per iteration. Of the many
possible ways of achieving such a result, we narrow down our inves-
tigation to the case of UA-AMG; see [3,4] for the first works in this
direction. Within this framework, we are going to exploit the unifying
theory outlined in the review [2] to assess convergence and to inves-
tigate and characterize the quality of the coarse spaces generated by
means of the aggregation procedure introduced in [5,6]. The latter is a
technique based on the use of matching algorithms for edge-weighted
graphs [7-9] that aims to achieve a purely algebraic and automatic ap-
proach for the solution of (1), with no further assumption on the SPD
system matrix, and independently of any user defined parameter. In-
deed, this approach fits within a trend of similar algebraic techniques,
e.g., those based on path-covering algorithms [10], or on the use of
matching to generate multilevel hierarchies for graph Laplacians rela-
tive to coarse subspaces in finite elements applications [11], striving for
purely algebraic aggregation procedures that are adaptive in nature and
allow for an a posteriori analysis of the quality of the generated coarse
spaces.

We observe that, as reported in [2, Section 8.5, Section 9.5], the
general convergence theory we specialized in this paper for the aggre-
gation based on matching in weighted graphs, was originally designed
for the AGMG method in [1,12] and extended in [13,14], to obtain AMG
methods based on unsmoothed aggregation with a user-defined bound
on the convergence rate. In [13] the authors show that, for the class
of nonsingular symmetric M-matrices with nonnegative row sum, if the
aggregates can be built in such a way that a meaningful local bound
is fulfilled, the resulting multilevel methods employing an appropriate
AMLI cycle [15] shows an optimal convergence with a guaranteed con-
vergence rate. The theory is extended to nonsymmetric M-matrices for
a TL-AMG in [14]. In [2] the theory is again extended to more general
SPD matrices and formalized as an abstract framework for the setup of
coarsening methods.

We finally note that the need to define local measures to assess
the quality of a coarse space also led to the introduction of the notion
of compatible relaxation. Compatible relaxation, first defined by Brandt
in [16], as a modified relaxation scheme that keeps the coarse-level vari-
ables invariant, was originally based on the idea to use a smoother to
detect slowly converging components. This principle has been widely
applied to define a general procedure for coarsening, both for selecting
coarse variables and to adapt the prolongators in adaptive AMG (see,
e.g., [17-20]). It was a basic guideline for the formulation of our coars-
ening and of its application in a bootstrap AMG based on composition
of multiple AMG hierarchies [5,6]. In our coarsening method, since we
explicitly define the complementary space to the coarse space, we can
apply a smoother to the only-fine variables and infer the quality of the
coarse space by an estimate of the corresponding convergence rate. Our
experiments show the coherency between the aggregation quality mea-
sure based on the general theory in [2], which has the advantage to be
independent of the smoother and only depends on the way we build ag-
gregates, and the quality measure based on the compatible relaxation.

The main contributions of this paper can be summarized as follows.

» We prove that the automatic aggregation-based coarsening, relying
on maximum weight matching in graphs equipped with a suitable
choice of edge weights, fulfills all the conditions to have a bounded
convergence rate of the corresponding TL-AMG for any SPD matrix.
We show how the resulting quality measure for the aggregation
can be used to drive the choice of different (approximate) match-
ing algorithms and of the edge weights in the adjacency graph of
the system matrix, without resorting to heuristics and a priori in-
formation on the near kernel of the matrix.

We emphasize the connection between the choice of the aggregates
and the compatible relaxation principle for the new coarsening,
confirming the consistency between the currently available theo-
ries for general coarsening in AMG.
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The remainder of this paper is organized as follows: to begin with,
in Section 2 we introduce a quality measure for a general UA-AMG in
terms of the unifying theory from [2]. Then, in Section 3 we reintro-
duce the UA-AMG from [5,6] and specialize the convergence theory
and the quality measure for the aggregates from the previous section
to this case. Section 4 is entirely devoted to the application of the the-
ory to some standard benchmarks; specifically, we investigate how the
various matching algorithms applied for obtaining the aggregates influ-
ence their quality. Section 5 shows the coherency between the quality
of aggregates and the convergence ratio of a convergent smoother ap-
plied to the effective smoother space, i.e., to the complementary space
to the coarse space. Section 6 summarizes conclusions.

2. Convergence theory for TL-AMG algorithms and quality
measure for aggregates

The measure of the quality of the aggregates, and thus of the coarse
space, for a given TL-AMG algorithm we are interested in depends both
on the convergence ratio achieved by the resulting method and on the
cost needed for defining and applying the multigrid hierarchy. To set
the notation, and the context in which we are performing our analysis,
let us briefly recall the components of a TL-AMG method, i.e.:

« a convergent smoother, R : V' -V,

* a coarse space V,; this is either a subspace of V' or more generally
a space with a smaller dimension than V. It is always linked to V'
via a prolongation operator P : V, > V;

* a coarse space solver, B, : V! = V,;

and how these components are related to its convergence properties.
We follow the approach discussed in [2] that permits to analyze the
convergence properties of a multigrid algorithm in a general way. To
this end, we need to introduce the inner product

—1 p— [EE— —
V)1 =(T wv),=(R uv),T=RA and R= R+ R- R AR,

together with the accompanying norm || - ”E’l , where R’ is the adjoint

operator of R and R is called the symmetrized operator of R. We assume,
moreover, that R is SPD, which implies that the smoother R is always
convergent and such that

VI3 < V12

—1
R

The restriction of (1) to the coarse space is then expressed as

ACuC = fL‘

where

A,=P'AP, £ = P't, with P’ adjoint operator of P.

For the sake of the analysis, the coarse space solver B, is often
chosen to be the exact solver, namely B, = A;l , however, we should dis-
tinguish between an exact TL-AMG and an inexact TL-AMG when B, is
only an approximation of AC‘I. Given g € V', a TL-AMG operator B, de-
fined by the above components is described in Algorithm 1. The corre-
sponding error propagation operator E =1 —-BAis E=(I — RA)I -1I1,),
where I, = PAZ! P' A is the orthogonal projection on V.

Algorithm 1: Two-level post-smoothed MG.

Data A: matrix, R: convergent smoother, P: prolongator, B,: coarse solver, g:
arbitrary vector in V'

Result Bg: preconditioned vector

Coarse grid correction: w := PB_P'g

Post-smoothing: Bg :=w + R(g — AwW)

We can now explore the connection between the TL-AMG conver-
gence rate and the selection of the coarse spaces. Let us consider the
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prolongation operator P, used in representing the operator II.; in our
case, P will be a piecewise constant prolongation, a very common
choice. This means that the coarse grid correction computed on the
residual equation will be transferred back to the fine grid by assigning
the same value to all fine grid variables associated with a given coarse
variable.

A common alternative to this choice is to smooth out the prolongator
P by means of a number of smoothing iterations applied to a piecewise
constant tentative prolongator; this choice gives rise to the popular class
of AMG algorithms with smoothed aggregation [21,15,2], but they are
out of the scope of the present analysis.

We assume now that there exists a sequence of spaces V,V,,...,V,,
which are not necessarily subspaces of the vector space V, and that each
of them is related to the original space V by a linear operator

3

We are moreover assuming that V' can be written as a sum of subspaces
as

Hj:I/j—>V.

14 II;

J

V.

e

1

J

Let W =V, XV, X ... x V;, with the inner product

J
(wy)= Z(uj,vj),

j=1
withu=(u,,...,u;)" and v=(v,,...,v,). Let also I1;;, : W — V be the
operator:
J
HWgzz:Hjuj, Vuew. (€3]
=

We can then write

Iy, = (1, ...,I0;) and I}, = 11),...,1)".

We assume that for each j there is an operator 4; : V; — Vj’ which
is symmetric positive semi-definite, and we define 4, : W — W' as
follows:

Ay =diag(A), Asy.... A)).

We also assume that for each j there is a SPD operator D; : V; — Vj’ ,
and define D : W — W/’ as follows:

D =diag(Dy, Dy, ..., Dy).

We associate a coarse space with each V;: Vj” CV;, and consider the cor-
responding orthogonal projection Q; : V; — Ve with respect to (-,-) ;-
We define O : W — W’ by O =diag(Q,, ..., Q).

Let us assume the following hold:

* Forallwe W:

2 2
Iy Wiy, < Cpallwily

)

for some positive constant C,, independent of w;
+ For each w e V, there exists w e W such that w=1IIy,w and

©)

2 2
IWlls,, < Coallwlly.

for some positive constant C,; independent of w;
« For all j

N(A)CVf, @

where N(4)) is the kernel of A;.

The above assumptions imply that if w e N(A), then we N(4)) X ... X
N(Aj). We define the global coarse space V, by
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J
— c
Vo= 2 IV ®
j=1
Furthermore, for each coarse space Vj", we define:
v, —vell3,

Lo in ——— ©

. S)=max mmn ————.
#i viEeviveere v, |2

A illy;

In the context of linear algebraic problems arising from finite elements
methods, these are usually named the local Poincaré constants (see, e.g.,
[22, Section 1.5]); finally we define

He = min (10)

c
1218y Hj (VJ )
which is finite thanks to assumption (7).
By TL-AMG convergence theory, if D; provides a convergent
smoother, then (1 — /4}.“(1/].”)) is an upper bound of the convergence
rate for TL-AMG for V; with coarse space vy and the following theorem
holds:

Theorem 1. If all the previous assumptions hold, then for each veV we
have the error estimate:

: 2 -1 2
min v =Vl < Gy Coan IV

Then the TL-AMG with coarse space defined in (8) converges with a
rate:

He

IEN <1 - ———% an
C,1C,ocP

with ¢ depending on the convergent smoother, i.e.,

epllvlly < IVIE, <cPlIvilg,. (12)

R

From the above result it is clear why the constant x. in (10) repre-
sents the convergence quality measure for the aggregates that we were
looking for. We will use it in Section 3, to infer the convergence of the
TL-AMG based on coarsening relying on weighted matching described
in [5,6], as well as to evaluate the quality of the aggregates. Let us
also underline that many of the convergence results for TL-AMG meth-
ods can be described by means of this set of tools; see, e.g., [2, sections
12.4 and 13.1] for the application to the classical AMG and aggregation-
based AMG.

3. Generating aggregates from matching in weighted graphs

We now adopt the theory discussed in the previous section to an-
alyze the construction of the coarse space by means of the coarsening
based on compatible weighted matching as in [5,6]. We note that, as de-
scribed in the original papers, our aggregation approach is driven by
the idea to generate aggregates automatically, with no use of heuristics
nor a priori information on the near kernel of the linear system; how-
ever, after generating non-overlapped aggregates by applying maximum
weight matching, the setup of the prolongator operator is based on a
projection of an arbitrary vector (hopefully a sample of slow-convergent
error components, see Section 3.1 for discussion) on the aggregates, in a
way similar to the well-known approaches of AMG based on smoothed
aggregation [21].

We look at the graph G = (¥, £) associated with the sparse matrix!
A, also known as the adjacency graph of A. This is the graph G whose
set of nodes V corresponds to the row/column indices 7 = {1,...,n} of
A, and whose set of edges e, ,; = (i,j) € £ is induced by the sparsity

1 For the sake of simplicity, we are using the same notation for representing
linear operators and their corresponding matrices with the only change being
the substitution of the adjoint operator with the transpose.
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pattern of A. To this graph we associate an edge weight matrix A with
the following entries:

N R 2a; jw;w;

(A)[,j:a,;’j:l— 5>

2
a; Wy + aj,jwj

where q; ; are the entries of A and w = (w,)/_, is a given vector. For such
a graph, a matching M is a set of pairwise non-adjacent edges, contain-
ing no loops, i.e., no two edges share a common vertex. We call M a
maximum product matching if it maximizes the product of the weights of
the edges ¢, ,; belonging to it, i.e., if it maximizes the product of the
entries of A associated to the matched indices. We stress that for sub-
optimal matching algorithms, as discussed in Section 3.2, there may be
nodes which are not endpoints of any of the matched edges: we call such
nodes unmatched. By the above procedure we are choosing as V;, ..., V;
the spaces defined by the aggregates { Aj}j!=1 for the row/column in-
dices T denoting the matrix entries; equivalently, we are decomposing
the index set as

J
1=UA,,A,.nA,=ﬂifi¢j.

i=1

a3

More generally, to further reduce the dimension of the coarse space,
we can perform subsequent pairwise matching steps, i.e., we can iter-
ate 7 times the matching procedure, acting each time on the graph G’
obtained by collapsing together the matched nodes from the previous
step.

Let us consider the case in which a single step of pairwise aggrega-
tion is performed. We can identify two types of aggregates A;: those
corresponding to pairs of matched nodes, for which ¥; = R?, and those
corresponding to the unmatched nodes, for which V; = R.

The next step in the construction is the definition of the global
prolongation matrix P by means of the operators I1; : V, — V, for
j=1,...,J, in (3). Let us denote by n, = |M]| the cardinality of the
graph matching M, i.e., the number of matched nodes, and by »n, the

number of unmatched nodes. We identify for each edge ¢;,,.;, € M the
vectors
— wll
1 wj, 1 - 1 i
L) 2 2 lw Citmi 2 2 i/
ws + w: J2 w; w a.
J1 2 i — 11
a2 . Hz
J2e2 J1ad1
14

To build the local prolongator II; we introduce the family of maps
{;11-}j!=1 for

n;: {jlsjnj}—> {L,2,...,n}

(15)

nUp=i <= A;={jj,}, and i=j,

where we assume that in the case of an unmatched node, i.e., when #;

1, then A; = {j;}. Thus we have defined the correspondence relation
between the indices in the local numbering on the aggregates and the
numbering in the global space, that is

{jhjnj}:{nj(jl)’nj(jnj)}' (16)

Let now {§; };’: and {e;, i };l; - be the basis of V' and V; respectively

1

V =span{é;}"

n
iz Vj=spanfe;

J

p=1"

We introduce the operator ﬁj and its dual with respect to the
Euclidean/#? inner product f[;., respectively, as

j j
then fIJ-s: Zspﬁ
p=1

VsEVj, s= spej’jp,
p=1

n;Up)?

and
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n

J
o o
VweV, MweV,,  Ww=Y w,; e
p=1

that has been obtained by direct computation of its #2 inner product.
Finally, we define the I1; associated with the aggregates as

0, =111, j=1,...J, T;=I, I, =0, whenever j#k.  (17)

Then Ay, =diag(A,. A,..... A;) = diag(Il| AII|, I, ATL,, ... IT, AIl,) is the
block-diagonal operator corresponding to the restriction of A to the un-
knowns belonging to the j-th aggregate, and the corresponding columns
of the projection matrix are given by

f’:[pl,...,p,,p] for p; =IL;w

Cirsj "

Remark 1. The vectors in (14) are by construction D—orthogonal with
respect to the local matrix

wt =0.

it j

D

Cirs j

. . T
=diag([a;;.a; ;1) i.e., we,-H,' i
To complete the construction of the prolongation matrix, we also
need to fix an ordering for the unmatched n, =n, —n,=J — n, nodes,
where n. = J finally denotes the dimension of the coarse space. The lo-
cal projector I1; is again the one in (17), but we apply it to the scalars
wi/lwl, k=1,...,n,, thus obtaining the remaining columns of the pro-
longation matrix
Wi

,py] for p, =TI, A
k

W= [pnp+1 seen ,pnp+n:] = [pnp+l’
In an expanded form, the resulting prolongation matrix can then be

expressed as

w, 0 0
0 . 0 2np 0 <
0 0 w, *
np 8
p= ]
O wiflw| 0 0 as)
0 . 0 ng
0 0
L l s ‘ A1
ne=ny+ng=J
=[13 W]=[P1,~~-,PJ],

which also allows to express the global coarse space as the space gen-
erated by the columns of P, i.e., V, =span{p,,...,p,}. The matrix P we
have just built represents a piecewise constant interpolation operator.

3.1. Selecting the weight vector

We can now use again the general theory for the convergence of a
multigrid algorithm to discuss what is the optimal choice for the weight
vector w, and therefore identify the optimal prolongator operator P. To
this aim we recall the following well known result [23,2,24].

Theorem 2. Let {AI-,(I>I-};,‘=1 be the eigenpairs of T = RA with 0 < 4, <
Ay < - < 4, Let us also assume that ®; are orthogonal w.r.t. (., ')i—l. The
convergence rate | E(P)|| 4 is minimal for P such that

range(P) = range(P°""), where P = [tbl, ,tI>n[] .
In this case,
IEIG =1 = Ay 41

Therefore, a sensible choice would be to include in the range of
P at least the first eigenvector ®,; this would be sufficient to enforce
convergence, albeit possibly with a poor convergence ratio.
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Proposition 3. Using the same notation of Theorem 2, if the weight vector
w used to define the prolongator matrix P in (18) is the ®, eigenvector of
T = RA then the A-norm of the error propagation matrix ||E||2 is less or
equal than

IEIG <1- 4.

Proof. The range of the prolongation matrix P in (18) includes the
original vector of the weights w, i.e., there exists h € R": such that Ph =
w. The conclusion follows immediately by a straightforward application
of Theorem 2. []

Unfortunately, this is not an optimal choice from a computational
point of view; if we did possess some a priori information on the eigen-
vector, then using this information could improve the quality of the
aggregates, and thus the convergence of the method.

In the case where we do not possess information on the eigenvec-
tor(s), selecting the appropriate vector w may not be an easy task. To
obtain a good candidate in a completely black—-box manner we could ex-
ploit the smoother R to select as a weight vector an e—smooth algebraic
vector in the sense of the following [2]:

Definition 1. Let R : V — V be a smoothing operator such that its sym-
metrization R is positive definite. Given € € (0, 1), we say that the vector
v is algebraically e-smooth with respect to A if

2
lIvll <€||VI|,,1

Such a vector can be obtained by performing a few iterations of the
smoother on either a random choice or on the initial theoretical guess.

The last possible adaptive refinement that we are going to consider
is the application of a bootstrap iteration exploiting the multigrid hier-
archy itself as in [6]. A whole hierarchy B, associated with an initial
guess w,, again either a random or user-defined guess, is built in the first
step of the bootstrap procedure. Then the hierarchy is used to refine the
choice of vectors w by means of the iteration (2) for the homogeneous
linear system, i.e.,

wO=w_,, r=1,...,k—1,
r—1
Given w, compute{ w¥) = H(I - B;'A)w(f‘”, j=1,....m, (19)
p=0
Wit :w(m)_

To build the multigrid hierarchies B, for the bootstrap iteration (19)
we exploit now the vectors w, available at each rth step.

We stress that, from an operational point of view, this means that
if one knows at least one e-smooth vector w to be used as w,, then
it is possible to use it to launch the bootstrap iteration (19) and ob-
tain hierarchies By, B, ..., B,_;, each satisfying the convergence result
in Theorem 1, and generating, when accumulated all-together, an al-
gorithm with improved convergence rate. Moreover, if the bootstrap
iteration is launched with a random vector then the TL-AMG algorithm
with the bootstrap procedure can still obtain an acceptable convergence
rate (see [6,25]).

3.2. Selecting the matching algorithm

One of the main costs in the construction of the multigrid hierarchy
is represented by the computation of the maximum product match-
ing needed to identify the aggregates. It is useful to distinguish here
between two different approaches. The first approach is to compute
an exact matching, i.e., a matching that achieves exactly the optimum
value for the product. The second approach computes a matching whose
product value is not optimal, but is guaranteed to be greater or equal
to 1/2 of the maximum; this is called a %-approximate maximum product
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matching. Relaxing the requirement to obtain the exact optimum allows
the achievement of both a reduction of the construction time, as well as
the possibility to perform the building phase in a parallel context with a
limited amount of data exchange. For the details regarding these com-
putational complexity aspects, we refer to the discussion in [6]; here we
focus on the quality of the aggregates obtained by using the different
matching algorithms.

For the class of exact algorithms, we employ the algorithm in [9]
that is implemented in the HSL_MC64 routine [26], while for the ap-
proximate class we refer to the %—approximation algorithm by Preis [8],
a parallel distributed-memory version of which is employed in [27], the
auction type algorithm from [28], and the suitor algorithm in [7], which
is what we applied in a parallel Graphics Processing Unit (GPU) setting
(see [29]).

3.3. Computing the u, constant

First we focus on the task of computing exactly the p, constant in
Theorem 1. Thus we first need to prove that the Assumptions in (5), (6)
and (7) hold for the construction discussed in Section 3.

Lemma 1. Let the two—grid hierarchy be constructed with the prolongator P
in (18). Then assumptions (5), and (6) hold true with Coi=1, and Cpr=1
Moreover, if A is SPD, assumption (7) holds since N(A;) = {0} for every j.

Proof. To prove (5) we observe that by (4) and (17) we have that for

alvew
Z I, [Ef']
—=J2

To prove (5) we use the “local-to-global” maps in (16) to have the index
correspondence between the aggregates and the global matrix. Then
noting that sz. =11, I I; =0 for k # j, and that I, = IT’, for j = 1.

by a direct computatlon we find that

J J
Wi, =(Ayw. W) = <ZH;A“jws anw>
j=1 k=1

J
(T T AT W, W) 2 = " (T AT w, W) 2
1 Jj=1

2
Ty vII% = = Z

j=1

2
=vlp.= Cpo=1.

D;

72

M~
™M~

k:

J

™M~

(AIL,w

2
W LW, ) 2 = (W

J

The kernel of the projected matrices 4; is reduced to the zero vector
since the projector has orthogonal columns, and thus the projected ma-
trices on W are SPD. [

The above assumptions practically depend on the fact that indepen-
dently from the number of aggregation sweeps we collect together, we
are decomposing the index set 7 as a direct sum of non-overlapping
indices as in (13).

This means that we can compute the global constant . in (10) a
posteriori by solving the generalized eigenvalue problem

DI - Q)x =y ' Ax,

where Q has been built from the D;-orthogonal projectors Q; : V; —
4 which in our case have the following representation matrices:

oo

and in aggregate form as the D-orthogonal projector represented by:

(20)

j=1...n,
j=n,+1,....n,+n.=J

T
wj(wj D;
L,

—1T
wj) wj Dj,

0=PPTDP)"'PT D =diag(Q,,...,0)). (21)
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3.4. Estimating the pu, constant

The general theory for an aggregation-based multigrid, as formal-
ized in [2] and specialized in the previous Section 3.3 for our method,
was originally applied in [1,12] for the case of disjoint aggregates with
piecewise constant prolongators having unit coefficients; refer also to
the bibliographical notes in [2, Section 8.5]. An additional tool provided
by the discussion in [12] is the possibility of carrying out a purely lo-
cal analysis by looking only at the restriction on the aggregates of the
operators Ay, and D under stricter hypothesis on the matrix A of the
system and on possible aggregates.

Specifically, to adopt the general strategy introduced in [12], we
identify these operators as the restriction of the operator A to the ag-
gregates obtained through the matching algorithm, i.e.,

Ay =(Ay.....A))., A=Al,. D=(D,....D))

Dy =Dly,. (22)

We can then write the complete matrix A as the sum of the block diag-
onal matrix A, and a remainder Ay containing all the parts we have
discarded. Under the stricter hypothesis on A discussed in [12] it is
possible to find symmetric and non-negative definite A, and Ag. This
allows us to apply [12, Theorem 3.4] and obtain the ‘local’ bound to
the global y, constant in Theorem 1. We simply restate the result here
in the notation from [2] and the construction from Section 3.

Theorem 4 (Restatement of [12, Theorem 3.4]). Let Ay =(A, .. A)p)
and D=(D,, ..., D,) satisfy the splitting condition A= A, + Ag, with A,
and Ap both symmetric and non-negative definite, that is, every {4; }j{z LI
non-zero symmetric non-negative definite and D is symmetric positive defi-
nite. Let p be one of the columns of P in (18), i.e., p= Ve, for the indices
(i, j) relative to the given aggregate.

Then u, is defined as in (10), and the /4/.“(1/].‘) are such that

~1, -1 1oy « =11

Ay (DA S py (V) < 47 (DSAp).

Moreover, if either (w,, j,/ll(D/."A ), or (wh ,,AZ(DJ.‘IA ;) are eigencou-
i, i)

ples of the matrix D' A;, then

-1 ey _ -1 -1
W V=251 A,

We stress that while in general it is always possible to compute the
quantity . in (10) by solving the eigenvalue problem in (20), and thus
estimate the overall quality of the matching procedure, application of
Theorem 4 to obtain the bound by using only local information requires
the stricter hypotheses on the splitting of A.

4. Numerical experiments

To highlight the results of Theorem 4 we consider the case study of
the 2D Laplace equation with variable coefficients on the unit square
Q=10,1]?, discretized with 5—point finite differences, i.e. the equation

(x,y) €Q,
(x,y) €0Q,

{—v - (a(x, y)Vulx, y) = £(x,3), 23
u(x,y) =0,
and discretized by Lagrangian P1 elements on an unstructured triangu-
lar grid. We focus on a 2D example so that we can graphically represent
the different aggregates. We concentrate first on the computation of
the bounds discussed in Theorem 4 and on the analysis of the different
bounds obtained for the different choices of the matching algorithm in
Section 3.2 while keeping fixed the choice of the weight vector w. Then,
in the second part of the numerical examples, we devote our attention
to the analysis of the quality of the aggregates for different choices of
the weight vectors w, while considering also the different refinement
strategies discussed in Section 3.1.

The version of the BootCMatch algorithm [6] we use here for the
tests is available on the repository https://github.com/bootcmatch/
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BootCMatch. All the plots and the eigenvalues/eigenvectors computa-
tions are then performed in Matlab v. 9.6.0.1072779 (R2019a) on the
matrices exported in Matrix Market format.

4.1. Computing the u, constants

To confirm the applicability of the theory developed in Section 3
we compute both the “true” u, constants by solving the generalized
eigenvalue problem with the D-orthogonal projector Q in (21), and the
estimate obtained by means of Theorem 4, when the splitting for the
matrices A, is available, for three different prototypical problems ob-
tained from different choices of the diffusion coefficient in (23). For
each of these cases we consider the various matching algorithms dis-
cussed in Section 3.2 and the application of # = 1,2 steps of pairwise
matching, i.e., we consider aggregates made by at most two or four fine
variables. In all cases, we consider the weight vector w=(1,1,...,1)7,
which is suggested by the structure of the matrix. We stress that all
the results obtained in the following subsections can be read alongside
the numerical experiments in [6] since they complement and further
explains the convergence behavior of the method discussed there. To
present a wider array of tests, we have given other examples in the Sup-
plementary materials A.1.

4.1.1. The constant coefficient diffusion
The first case is the Laplacian with homogeneous coefficients, i.e.,
a(x,y) =1, on a uniform n x n grid. This gives rise to the matrix

Ap=1,QT,+T,®1, T,=tridiag(—1,2,~1),

scaled in such a way that its coefficients are independent from the di-
mension »* of the problem. We first visualize the different aggregates
generated by the various matching algorithms in Fig. 1. In this case the
aggregation based on the maximum product matching HSL_MC64 pro-
duces the same aggregates that can be obtained by using the standard
C\F-splitting. Moreover, by (18) it is straightforward to observe that P
is a scalar multiple of the one obtained by choosing w,, equal to the
vector of all ones; hence, the methods produce exactly the same Q of
the classical aggregation, and therefore the same bounds obtained for it
in [12, Theorem 3.4]. The aggregates also match the quality of the ag-
gregates in [30], in which the matching strategy for the identification of
the aggregates is applied directly to A and coupled with the prolongator
P whose nonzero entries are all 1; see the results in Table 1.

Concerning the usage of alternative matching methods, we see that
the HSL_MCé64 and the SUITOR algorithms do produce the same p,
constants and bounds, even if SUITOR is only guaranteed to reach a
value of the objective function one half away from the optimal one.
In general, we can observe that in the cases # =1 the same constants
are reached for different aggregates. This suggests that reaching the
maximum weight is not mandatory and that different configurations
can yield the same results in terms of the overall quality of the ag-
gregates. To achieve the upper bound from Theorem 4, we use the
auxiliary splitting obtained by decreasing the diagonal blocks on the
various aggregates by a correction of the form +4;1 where each ; is
computed heuristically to enforce the hypotheses. In these cases, for
all the matching algorithms when we employ a single sweep, we use
6; =1/3min(A;1), that is 1/3 of the minimum row sum of the projection
of A on the aggregate. When two sweeps are employed, we use instead
6; = min(4;1) for all the matching but the Auction case in which we
employ &, = 1/2min(A4;1). We stress that it is difficult to prescribe a for-
mula to achieve the splitting and the local bound without looking into
the matrices obtained from the matching procedure, since in general,
this may not exist; see, e.g., the next example in which we encounter
such a case for one of the matching algorithms.

4.1.2. Diffusion with axial anisotropies
As the second test case we consider having a simple spatial
anisotropy oriented with the y-grid lines, i.e.,
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(a) HSL.MC64 — £ =1

(e) AUCTION — /=1 (f) AUCTION - /=2 (g) SUITOR - /=1

(h) SUITOR — £ =2

Fig. 1. Constant coefficient diffusion problem. Aggregates obtained with the weight vector w = (1,1,..., 1), and the different matching algorithms for # = 1,2

pairwise matching steps.

Table 1

Constant coefficient diffusion problem. Comparison of the bound in Theorem 4 with true value
of u, in (10). Aggregates obtained with the weight vector w=(1,1,...,1)", and the different
matching algorithms for # = 1,2 pairwise matching steps.

n =1 =2 n =1 =2

bound u! bound u! bound u! bound u!
12 2.000 1.940 2.000 1.959 12 2.000 1.923 2.062 2.046
24 2.000 1.984 2.000 1.989 24 2.000 1.982 2.062 2.052
48 2.000 1.996 2.000 1.997 48 2.000 1.996 2.062 2.052
96 2.000 1.999 2.000 1.999 96 2.000 1.999 2.062 2.052
(a) HSL_MC64 — exact matching (b) PREIS - %—approximate matching
n f=1 £=2 n /=1 =2

bound  u7! bound 4! bound  u! bound  u7!
12 2.000 1.908 2.667 2.544 12 2.000 1.923 2.000 1.954
24 2.000 1.980 2.894 2.964 24 2.000 1.982 2.000 1.988
48 2.000 1.995 2.667 2.166 48 2.000 1.996 2.000 1.997
96 2.000 1.999 2.667 2.173 96 2.000 1.999 2.000 1.999

1 . .
(c) AUCTION — 5 —approximate matching

Ap=e(I,®T)+T,®1, T,=tridiag(-1,2,—-1), &=100,

in which we are again using a scaling that makes the matrix coefficients
independent of the problem size. Intuitively, in this case, we would ex-
pect the aggregates to be oriented with the anisotropy, i.e., along the
y-axis. If we look at the aggregates we obtain in Fig. 2 we observe that
the matching algorithms produce aggregates corresponding to our intu-
ition, with the exception of the PREIS algorithm that for £ =2 produces
some aggregates that do not seem feasible.

Indeed, if we look also at the constants y,, and their estimates re-
ported in Table 2 we observe that, excluding the case of the PREIS
algorithm, the y, constant behaves consistently. The failure in obtain-
ing a bound in the case of the PREIS algorithm is due to the inability of
finding a suitable splitting for the aggregates generated by this match-
ing. Indeed, the existence of such splitting is a stricter hypothesis, and
cannot be guaranteed in general. We refer back to the discussion in [12]
where the original strategy for obtaining the local bound was devised.
It is interesting to compare the value of the constant for # =1 step of
matching for this case with the one obtained for the case with constant
coefficients in Table 1: observe in particular that the strong directional-
ity of the diffusion makes the pairwise aggregates much more effective.
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(d) SUITOR — %—approximate matching

On the other hand, we observe also that switching to larger aggregates
leads to a worse quality of the aggregates than in the case of an isotropic
problem.

4.1.3. Diffusion on an unstructured mesh

As a final test case, we consider again the Poisson problem with a
constant diffusion coefficient but on an unstructured triangular mesh
obtained via a Delaunay-based algorithm for which we report the sub-
sequent refinements in Fig. 3.

The aggregates obtained for this test problem are depicted in Fig. 4,
whereas the constants and bounds for # = 1 step of matching are shown
in Table 3. Again for this case we could not find an appropriate splitting
to produce the local bound of Theorem 4 when ¢ =2 steps of pairwise
matching were used. If we compare the results in Table 3 with the ones
in Table 1, then we observe that the quality of the aggregates, in this
case, is analogous to the structured homogeneous case. We also observe
that, again, the AUCTION algorithm manages to obtain aggregates with
better quality than the ones obtained by all other algorithms, including
the ones obtained by the exact matching algorithm. This is in agreement
with the computational results discussed in [6].
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Fig. 2. Diffusion problem with y-axis oriented anisotropy & = 100. Aggregates obtained with the weight vector w= (1,1, ...,1)”, and the different matching algorithms
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(b) HSLMC64 — (=2

(d) PREIS — /=2

(e) AUCTION - /=1 (f) AUCTION - /=2 (g) SUITOR /=1

for # = 1,2 pairwise matching steps.

Table 2

(h) SUITOR — £ =2

Diffusion problem with y-axis oriented anisotropy ¢ = 100. Comparison of the bound in The-
orem 4 with true value of y,. in (10) for # = 1,2 pairwise aggregation steps, while using the
various matching algorithm with weight vector w=(1,1,...,1)”. The f represents a case in
which we could not find the splitting needed to apply Theorem 4.

n =1 =2 n =1 =2

bound 7! bound  u7! bound 4! bound  u7!
12 1.980 1.010 5.025 3.443 12 1.765 1.741 + 8.580
24 1.980 1.010 5.025 3.447 24 1.765 1.745 + 8.725
48 1.980 1.010 5.025 3.448 48 1.765 1.745 + 8.730
96 1.980 1.010 5.025 3.448 96 1.765 1.745 T 8.730
(a) HSL_MC64 — exact matching (b) PREIS - %—approximate matching
n =1 =2 n =1 =2

bound u! bound ! bound I bound u!
12 1.980 1.010 5.025 3.443 12 1.111 1.010 3.448 3.442
24 1.980 1.010 5.025 3.447 24 1.111 1.010 3.448 3.447
48 1.980 1.010 5.025 3.448 48 1.111 1.010 3.448 3.448
96 1.980 1.010 5.025 3.448 96 1.111 1.010 3.448 3.448

(¢) AUCTION — %—approximate matching

Fig. 3. Unstructured meshes for the Poisson problem, four levels of refinement using a Delaunay-based algorithm.
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(d) SUITOR - %—approximate matching
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(a) HSL.MC64 — £/ =1 (b) PREIS - /=1

(c) AUCTION - £ =1

(d) SUITOR — ¢ =1

Fig. 4. Diffusion problem with constant coefficients on an unstructured grid. Aggregates obtained with the weight vector w= (1, 1,...,1)”, and the different matching

algorithms for # = 1 pairwise matching steps.

Table 3

Diffusion problem with constant coefficients on an unstructured
grid. Comparison of the bound in Theorem 4 with true value
of u. in (10). Aggregates obtained with the weight vector w =
(1,1,...,1)T, and the different matching algorithms for # = 1 pair-

wise matching steps.

—1

dofs bound

He
185 3.000 1.613
697 3.000 1.562
2705 3.000 1.639
10657 3.000 1.897
(a) HSL_MC64 — exact
matching
dofs bound 4!
185 3.000 1.583
697 3.000 1.596
2705 2.103 1.794
10657 2.106 1.759

(¢) AUCTION - %— approximate
matching

4.2. Selecting the weight vector

We consider here the same test problems of the previous section,
in which all the aggregates were computed by using the weight vector
w=(1,1,...,1)7, and compare them with the possible different choices
for the weight vector discussed in Section 3.1. In every case we compare
the aggregates obtained by using as weight vector w either:

1. arandom initial guess, refined by some smoother iterations,
2. the vector w=(1,1,..., )T, refined by some smoother iterations,
3. the eigenvector associated with the smallest eigenvalue.

Information on using the bootstrap procedure is contained in the Ap-
pendix Section Supplementary materials A.2.1.

4.2.1. Random weight

We start considering the choice of an initial random weight vector w
for all the test problems in Section 3.1, and consider using as smoother
for its refinement the ¢#,—Jacobi method [31]; each refinement step,
in this case, has a cost that is dominated by a diagonal scaling. We
test the procedure for all the matching algorithms discussed in Sec-
tion 3.2, but we visualize the attained aggregates only for SUITOR.
From what we have seen in the previous section, the SUITOR match-
ing algorithm consistently gives good results for all the problems, and
is, from a computational point of view, the best candidate when look-
ing for the parallel applicability of the AMG algorithms [6]. In Fig. 5 we
report the results obtained; as we can observe, a random initial guess
without any refinement is a very poor choice, and we need several re-
finement steps to obtain constants . that are comparable with the ones
we have seen in Section 4.1. However, we can still go below the results
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dofs bound s
185 2.396 1.830
697 2.306 1.667
2705 2.258 2.157
10657 2.249 2.001
(b) PREIS - %—approximate
matching

dofs bound ;!
185 2.695 1.686
697 2.484 1.645
2705 2.258 1.690
10657 2.249 1.893

(d) SUITOR - %—appmximate
matching

obtained with the theoretical guess given by the constant weight vector
w=(1,1,..., )T, at the cost of performing many refinement iterations.
Note also that the aggregates for which these results are obtained would
have been difficult to guess.

We consider for this case also a Poisson problem with an axially
rotated anisotropy of angle # and modulus € on the same unstructured
grid from Fig. 3, that is, we consider the discretization of

=V-(AVu) = f,
u=0,

(x,y) €Q,
(x,y) €0,

A eR¥2, 24
Results for this test case are given in Fig. 6.

If we compare these results with the one in Fig. 5c, we observe
that there is a moderate increase in the convergence constant for all
combinations of rotation angle and modulus. Moreover, we can observe
that over-refinement of the weight vector does not improve the overall
quality of the aggregation procedure.

4.2.2. Refined uniform weight

As we have seen from the previous set of examples, a sufficient num-
ber of refinement steps on a random weight vector w already improves
the quality of the aggregates obtained through the matching algorithms.
Therefore, we expect to obtain a similar result when we start from a
more reasonable guess for the weight vector. We consider the same ex-
perimental setting and only change the initial guess from a random w
to the uniform vector w= (1, 1,...,1)”. For this case, we plot in Fig. 7
the aggregates obtained with the AUCTION algorithm, which attains the
best constants. What is interesting to notice in this case is that very few
iterations of the smoother coupled with the AUCTION algorithm gener-
ate aggregates that are better than the ones obtained by the complete
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(c) Constant coefficient diffusion problem on an unstructured grid

Fig. 5. Refinement of the weight vector starting from a random guess, and using the #,-Jacobi smoother. We report a graph containing the 4! constant up to 80
refinement steps for a single sweep of pairwise aggregation. The depicted aggregates are the ones obtained with the SUITOR algorithm.
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Fig. 6. Poisson problem on an unstructured grid with rotated anisotropy of angle 8, and modulus . Refinement of the weight vector starting from a random guess,
and using the #,-Jacobi smoother. We report a graph containing the »_' constant up to 80 refinement steps for a single sweep of pairwise aggregation. The depicted

aggregates are the ones obtained with the SUITOR algorithm.
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Fig. 6. (continued)

Table 4
Constants u_' obtained by using as weight vector w the eigenvector rel-
ative to the smallest eigenvalue as suggested by Proposition 3.

n Homogeneous y-axis Homogeneous unstructured
‘=1 =2 =1 =2 dofs ‘=1 =2
12 1.476 2.336 0.973 2.699 185 1.5076 2.1977
24 1.737 3.826 1.001 3.249 697 1.5184 2.7255
48 1.809 4.274 1.008 3.401 2705 1.6349 3.1663
96 1.808 4.854 1.009 3.437 10657 1.7281 4.0177

matching algorithm HSL. MC64. The cases in which directionality in the
coefficient is present end up in reproducing the expected aggregates
with very few iterations.

As for the previous case, we consider again the Poisson problem on
an unstructured mesh with rotated anisotropy from (24). Again, if we
compare the results for this case in Fig. 8 with the ones in Fig. 7c we
observe that there is a decrease in the performance of the aggregation
procedure. Nevertheless, a small number of refinement iterations brings
the quality of the aggregates near to the one of the homogeneous case.

4.2.3. The eigenvector weight

To complete our analysis we consider the aggregates generated by
using as weight vector w the eigenvector associated with the smallest
eigenvalue as in Proposition 3. Since this is a theoretical test, we con-
sider only the application of the full matching algorithm HSL MCé4.
We report the constants p,. obtained by this choice in Table 4. If we
compare them with the results in Tables 1, 2, and A.6 we observe two
different behaviors. In the case of the simpler homogeneous problem se-
lecting the eigenvector makes for worse y, constants when ¢ =2 steps
of pairwise aggregations are used with respect to the case in which the
vector w=(1,1,...,1)T is used in Table 1. If we look at the aggregates
obtained by this choice in Fig. 9a and compare them with the one in
Fig. 1, we see that the new aggregates are very far from the box aggre-
gates obtained in that case, this causes that for certain aggregates we
get an M-matrix A,

4 -1 4
4 -1 -1 4

A= C g o De= 4 |
-1 4 4

whose scaled version D;lAk is not a matrix with constant row sum.
Therefore the associated w,, isnotan eigenvector, i.e., we get a y; con-
stant that is intermediate between A, and 4,, as discussed in Theorem 4.
On the other hand, the constant vector choice always provides an irre-
ducible and diagonally dominant M-matrix D;lAk, hence the vector

W, = (1,1,1, D7 is the unique eigenvector associated with the smallest
eigenvalue, thus we obtain a better constant. Focusing now on the other
cases in Table 4, whose aggregates are also depicted in Fig. 9, we ob-
tain nearly the same results with the exception of the piecewise regular
coefficients in which we are able to improve the attained constants —
observe also that they are near the one obtained with the SUITOR al-
gorithm and the w = (1,...,1)T vector, even if the aggregates are very
different.

What we can conclude from testing the usage of the eigenvector
associated with the smallest eigenvalue is that, although guarantee-
ing the convergence due to Proposition 3, it can generate sub-optimal
aggregates. On the other hand, either selecting a vector knowing the
structure of the matrices {A,},, as in the constant coefficient case with
the w=(1,1,...,1)T vector or refining a choice by means of the smooth-
ing procedure, can yield better results as we have seen.

5. Quality of the aggregates and the compatible relaxation
principle

As already mentioned in Section 1, the need to measure the quality
of a coarse space and to set up a general procedure for coarsening of
the widest range of linear systems led to the nice principle of compati-
ble relaxation. After its introduction in [16], it has been widely analyzed
and related to the general theories for AMG convergence in many pa-
pers, starting from [18]. This principle has been applied as a guideline
to define the coarsening method described in this paper, as emphasized
in the original papers [5,6]. In the following, we show that the results
obtained by the quality measure discussed in this paper are in good
agreement with a quality measure based on the convergence rate of a
compatible relaxation, showing the coherence of the convergence theo-
ries. Main advantage in using the constant . in (11) is that it does not
depend on a selected smoother and often gives more accurate informa-
tion on the quality of the coarse space, as also shown in some of our
experiments. Furthermore, we observe that the setup of a compatible
relaxation scheme requires to build in an explicit way the complemen-
tary space to the coarse space, as explained in the following.

To introduce the measure based on compatible relaxation, we need
to define the following 2 x 2-block factorization

Pr A Ag,
[PfT:|A[Pf P]=[Aff AfL]’

for PTDP; =0,
cf cc

(25)
where range(P,) is the space in which the smoother should be effective;
this can be used to obtain a decomposition of the whole R” since for all
e € R" we have e = P e, + Pe,. Exploiting the observation in Remark 1,
we can express the matrix P, through the block factorization (25) in a
straightforward way as
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Fig. 7. Refinement of the weight vector starting from the all one guess, and using the #,-Jacobi smoother. We report a graph containing the x~' constant up to 80
refinement steps for a single sweep of pairwise aggregation. The depicted aggregates are the ones obtained with the AUCTION algorithm.
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Fig. 9. Aggregates obtained by using as weight vector w the eigenvector associated with the smallest eigenvalue as suggested by Proposition 3.

P = [I())f] €R"™", where P, = [p{,...,pf ] forp =11, wew
By this construction, each relaxation scheme that is well defined for the
block A, is then a compatible relaxation, i.e., a scheme that keeps the
values of the coarse variables intact, and therefore makes the smoothing
and coarse correction operators work each on the appropriate sub-
spaces.

To validate numerically this claim we then look at the convergence
radius p(-) of the iterative method induced by the restriction of the
¢1-Jacobi global smoother on the matrix A, in (25), i.e., we look at
My =P[MP;, Ay =P[AP;,
where M is the iteration matrix of the #;-Jacobi global smoother for
A. In Table 5 we report the value of p, for each combination of test
problem and matching algorithm, while setting the weight vector w =
(1,1,...,1)T, and the number of matching steps to # = 1.

If we compare the constants obtained here with the ones in the
columns for # =1 in the Tables 1, 2 and 3, we observe that the value of
the p, constants behaves consistently with quality measure y, within
the same experiment, while it is harder to use it to compare among the
aggregates for different test cases. This is specifically true for the case
of the unstructured mesh, where, even if the quality of the aggregates
seem to be degraded with respect to the corresponding finite difference
case, the convergence ratio of the compatible relaxation is only mildly
affected.

pr=p—M;jA; <1, (26)

6. Conclusions

This paper has presented some theoretical results which complement
the available computational evidence on the convergence properties of
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the coarsening based on compatible weighted matching. This is a purely al-
gebraic and automatic procedure, exploiting unsmoothed aggregation
for coarsening of general SPD matrices in AMG, introduced in [5,6].
We have shown that the necessary conditions for convergence of AMG,
as stated in [2], are satisfied. Furthermore, we used the theory to have
a quality measure of aggregates which we used as a posteriori guideline
to analyze the effectiveness of different edge weights and maximum
weight matching algorithms exploited in the coarsening procedure. We
have applied the theory to different test cases arising from scalar ellip-
tic PDEs, and we have shown that the good quality of the coarsening
procedure is preserved in the case of using sub-optimal algorithms for
computing maximum weight matching and that it appears also insensi-
tive to anisotropy and discontinuities in the coefficients of the consid-
ered test cases. A possible generalization of our results to the case of
smoothed aggregation, i.e., when prolongator operators are defined by
P =(I - oD™! A)P for some suitable w, can be obtained by using results
in [2, Lemma 9.3]. Likely, our final TL-AMG algorithm will have better
convergence rate, as also demonstrated by experimental results in [27].

Funding

The research leading to these results received funding from Horizon
2020 Project “Energy oriented Centre of Excellence: toward exascale
for energy” (EoCoE-II), Project ID: 824158. The first three authors are
members of the INAAM-GNCS research group.

Data availability
The datasets generated during and/or analyzed during the cur-

rent study are available in the GitHub repository, https://github.com/
bootcmatch/BootCMatch.


https://github.com/bootcmatch/BootCMatch
https://github.com/bootcmatch/BootCMatch

P. D’Ambra, F. Durastante, S. Filippone et al.

Table 5

Convergence ratio p, of the compatible relaxation
scheme (26) for all the test problems. The coarse space is
built from a single step of all the matching algorithms from
Section 3.2 with weight vector choice w=(1,1,..., )", and
no refinement iterations.

n HSL_MC64 PREIS AUCTION SUITOR
12 0.766 0.794 0.755 0.794
24 0.816 0.824 0.805 0.824
48 0.826 0.831 0.829 0.832
96 0.832 0.833 0.832 0.833
(a) Constant coefficient diffusion problem

n HSL_MC64 PREIS AUCTION SUITOR
12 0.969 0.963 0.978 0.963
24 0.986 0.986 0.989 0.986
48 0.993 0.777 0.994 0.871
96 0.996 0.994 0.996 0.994
(b) Diffusion problem with y-axis oriented anisotropy

=100

dofs HSL_MC64 PREIS AUCTION SUITOR
185 0.803 0.802 0.796 0.799
697 0.831 0.846 0.811 0.843
2705 0.851 0.863 0.862 0.854
10657 0.882 0.917 0.873 0.869
(c) Rotated anisotropy 6 = z/6 and £ = 100 on an

unstructured grid

dofs HSL_MC64 PREIS AUCTION SUITOR
185 0.723 0.756 0.729 0.725
697 0.735 0.750 0.754 0.743
2705 0.746 0.788 0.770 0.768
10657 0.785 0.794 0.775 0.800

(d) Constant coefficient problem on an unstructured grid
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