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Abstract

Predicting vegetation phenology in response to changing environmental factors
is key in understanding feedbacks between the biosphere and the climate system.
Experimental approaches extending the temperature range beyond historic climate
variability provide a unique opportunity to identify model structures that are best
suited to predicting phenological changes under future climate scenarios. Here, we
model spring and autumn phenological transition dates obtained from digital repeat
photography in a boreal Picea-Sphagnum bog in response to a gradient of whole eco-
system warming manipulations of up to +9°C, using five years of observational data.
In spring, seven equally best-performing models for Larix utilized the accumulation
of growing degree days as a common driver for temperature forcing. For Picea, the
best two models were sequential models requiring winter chilling before spring forc-
ing temperature is accumulated. In shrub, parallel models with chilling and forcing
requirements occurring simultaneously were identified as the best models. Autumn
models were substantially improved when a CO, parameter was included. Overall,
the combination of experimental manipulations and multiple years of observations
combined with variation in weather provided the framework to rule out a large num-
ber of candidate models and to identify best spring and autumn models for each plant

functional type.

KEYWORDS
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substantial evidence that spring green-up advances with warmer

temperatures (Collins et al., 2021; Richardson, Hufkens, et al., 2018)

Rising global temperatures impact ecosystems through a variety of while autumn green-down (i.e., senescence) is delayed (Richardson,

processes, including phenological events such as spring green-up, Hufkens, et al., 2018). Together, these changes extend the growing

flowering, and autumn green-down (Vitasse et al., 2011). There is season at both ends. Longer growing seasons impact plant processes

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2023 The Authors. Plant-Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd.

Plant-Environment Interactions. 2023;00:1-13. wileyonlinelibrary.com/journal/pei3 1


www.wileyonlinelibrary.com/journal/pei3
mailto:
https://orcid.org/0000-0003-2145-6210
https://orcid.org/0000-0002-5195-2074
https://orcid.org/0000-0001-7293-3561
https://orcid.org/0000-0002-5070-8109
https://orcid.org/0000-0002-5981-6835
https://orcid.org/0000-0002-0680-4697
https://orcid.org/0000-0002-0148-6714
http://creativecommons.org/licenses/by/4.0/
mailto:cschaedel@woodwellclimate.org

I PLANT-ENVIRONMENT x

SCHADEL T AL.

INTERACTIONS —_ P€

such as net annual carbon uptake, growth, and the timing of flow-
ering and are considered a clear indication of a species response
to climate change (e.g., Richardson et al., 2013). Further, numerous
plant-related feedbacks to the earth system are driven by pheno-
logical events, including seasonal changes in ecosystem photosyn-
thesis, albedo, and partitioning of the surface energy balance (Piao
et al., 2019; Richardson et al., 2013; Tang et al., 2016).

Increasing temperature, sufficient winter chilling, and increas-
ing photoperiod are environmental factors that are known to influ-
ence bud burst and spring green-up in many plants. Similarly, leaf
senescence and autumn green-down are triggered by declining
temperature, photoperiod, and moisture conditions in the months
prior to leaf coloration and/or leaf shedding (Gill et al., 2015; Lang
et al., 2019; Liu et al., 2016; Richardson et al., 2013). Which process
predominantly influences spring green-up and autumn green-down
varies among species and there is uncertainty in distinguishing be-
tween chilling and photoperiod as cues (Way & Montgomery, 2015).
Accurately modeling phenological events for different plant func-
tional types is needed since phenological events directly impact eco-
system functioning and feedbacks to the atmosphere and climate
system, and therefore need to be well represented in Earth System
Models (Meng et al., 2021).

While numerous process-based models have been developed to
predict spring phenology, many fewer models have been developed
for autumn phenology. Most spring models include temperature as
the main driver, with parameters often including a starting date and
parameters that control the rate of the response to environmental
drivers (Basler, 2016). This can be in the form of accumulated grow-
ing degree days that need to reach a certain threshold (Wang, 1960;
Thermal Time model, e.g., Cannell & Smith, 1983; Hanninen, 1990a)
or it could be degree and length of chilling temperature that are re-
quired to respond to increasing temperatures in the spring (Parallel
Model, Landsberg, 1974; Sequential Model, Hanninen, 1990a;
Unified Model, Chuine, 2000).

Autumn green-down has received less attention than spring
green-up in experimental and modeling studies. However, accu-
rately simulating autumn green-down is equally important. The main
factors involved in driving autumn senescence are decreasing tem-
perature in the form of cold-degree day (CDD) accumulation (Jeong
& Medvigy, 2014) and decreasing daylength (Delpierre et al., 2009).
Additionally, dry soils and drought events may advance senescence,
however, these factors have not been included in autumn phenology
models.

For both spring and autumn, more complex phenology models
come at the cost of more parameters, and in general these more
complex models have not proven to perform much better than mod-
els with fewer parameters (Basler, 2016). Therefore, while more
complexity makes the models more flexible, and thus more likely to
fit the observational data, it does not mean the models do better at
representing the underlying processes or generalizing well in time
and space. Careful interpretation of data model fits is required as
good data fits are not always related to the underlying biologically
relevant responses (Hunter & Lechowicz, 1992). However, Akaike's

Information Criterion (AIC) offers an objective path to model selec-
tion that balances complexity against goodness of fit (Burnham &
Anderson, 2004), and which has been commonly applied to pheno-
logical models.

Accurate modeling of phenological events is critical to improve
the coupling between the atmosphere and the biosphere in Earth
System Models. Outstanding questions remain, however, about how
existing phenological models perform with interannual climate vari-
ability and with future climate scenarios including extreme climate
conditions (Piao et al., 2019). Here, we utilize multiyear interan-
nual variability in weather, and an experimental treatment that far
exceeds historical variability to test models under a wide range of
environmental conditions. We use the long-term multifactor global
warming experiment called “Spruce and Peatland Responses Under
Changing Environments” (SPRUCE, Hanson et al., 2017), over which
interannual variation in weather over five years is superimposed, to
identify spring and autumn models that best describe phenologi-
cal events for the three plant functional types (Larix, Picea, shrubs)
that characterize the SPRUCE ecosystems. Phenological data from
SPRUCE provide an ideal framework to challenge model capabilities
and to isolate drivers influencing spring and autumn plant phenology
(Hanninen et al., 2019; Prevéy et al., 2021). Additionally, because
the multifactor experiment includes elevated atmospheric CO, as a
treatment, this offers the potential to consider how elevated CO,
influences phenological transitions, and whether CO, needs to be
included in phenological models.

Here, we explore the following questions: (1) How well do exist-
ing spring and autumn models predict phenological transition dates
at the SPRUCE experiment? (2) Can we identify key mechanisms and
drivers for different species that drive spring green-up and autumn
green-down? (3) Do the “best” models fitted to the experimental
data generalize well and make good phenological predictions at
other sites; and (4) Is there evidence that elevated CO, plays a role in

in either spring or autumn phenology?

2 | MATERIALS AND METHODS
2.1 | Experimental site description

For this modeling study, we used vegetation phenology data from
the “Spruce and Peatland Responses Under Changing Environments”
(SPRUCE) experiment (Hanson et al., 2017). This whole ecosystem
warming experiment is a long-term, multifactor experiment located
in Minnesota, USA, at the S1 bog (47° 30.476'N; 93° 27.162'W;
418 m above mean sea level [Kolka et al., 2011]). Mean annual tem-
perature is 3.4°C (1961-2009) and mean annual precipitation is
780mm (Sebestyen et al., 2011). The ombrotrophic peat bog pro-
vides hummock and hollow microtopography, with a perched water
table of 10-20cm above the hollows after snowmelt and commonly
-20 to -30cm below hollows in midsummer (lversen et al., 2018).
The dominant woody vegetation includes Picea mariana, (Mill.) B.S.P.
(black spruce), Larix laricina (Du Roi) K. Koch (Larix), and a mixture
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of ericaceous shrubs such as Rhododendron groenlandicum (Oeder)
Kron & Judd (Labrador tea), Chamaedaphne calyculata (L.) Moench.
(leatherleaf), and other species. A detailed description of the experi-
mental setup and sustained temperature and elevated CO, treat-
ment can be found in Hanson et al. (2017).

Briefly, the experiment consists of 10 large open-top enclosures
(12.8m diameter, 7m tall) of an octagonal shape and transparent
greenhouse panels. Five levels of ecosystem warming are applied
(nominally 0°, +2.25°, +4.5°, +6.75°, and +9°C) year-round and half
the enclosures receive elevated CO, during the growing season (~500
pmm above ambient enclosures [Hanson et al., 2017]). Air warming
was achieved by heating the air to a height of ~6 m in each enclosure
using propane-fired heat exchangers and a system of blowers and
conduits (Hanson et al., 2017). Deep-soil heating consists of arrays
of 3m deep vertical low-wattage heating elements that are installed
in circles around and within each enclosure. Ecosystem warming
occurs year-round with deep-soil heating starting in June 2014, air
warming in August 2015 (Hanson et al., 2016), and CO, fumigation
beginning in June 2016 (Hanson et al., 2021).

2.2 | PhenoCam imagery

Digital imagery was used to track seasonal vegetation greenness
in each enclosure. One digital camera (NetCam model SD130BN,
StarDot Technologis; Richardson et al., 2007; Richardson, Hufkens,
et al., 2018) was installed in each enclosure at a height of 6m above
the ground on the south facing wall of the enclosure. Images are
taken in each plot every 30min from 4:00 to 22:00 throughout the
entire year and are uploaded in near-real time to the PhenoCam
server (https://phenocam.nau.edu/webcam/) for archiving and pro-
cessing (Figure 1). For each camera field of view, three separate re-
gions of interest (ROI) were defined which correspond to (1) Larix
(plant functional type DN, deciduous needleleaf), (2) Picea (plant
functional type EN, evergreen needleleaf), and (3) a mixed shrub
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layer (plant functional type SH). Transition dates corresponding to
the start of the “greenness rising” (spring) and end of the “greenness
falling” (autumn) were used for the period of 2016-2020 and were
derived from the three-day smoothed Green Chromatic Coordinate
(G..) based on the 25% seasonal amplitude threshold (archived data-
set in (Schadel, Richardson, et al., 2021)). The two tree species, Larix
and Picea, can be classified as deciduous broadleaf conifer, and ev-
ergreen needleleaf conifer functional types, both common to the
circumpolar polar region. The shrub layer consists of evergreen and
deciduous shrubs and while the Phenocam approach cannot distin-
guish the different species within a single mask across the growing
season, we have species-specific ground observations of green-up
and green-down that align with the Phenocam results (Richardson,
Latimer, et al., 2018; Schidel et al., 2019, 2020; Schidel, Pearson,
et al, 2021).

We visually identified snow on trees and on the ground from
each camera in mid-day images throughout the entire dataset and
excluded these days from analysis (details in (Schadel, Richardson,
etal., 2021)). The blue-white of snow adds noise to the underlying G,
signal which is shifted downward on days with snow (Seyednasrollah
et al., 2021). A more detailed description of image analysis and data
processing is documented in Richardson, Hufkens, et al. (2018).

For EN vegetation, seasonal changes in G__ are driven more
by changes in leaf-level pigments than they are by the produc-
tion and senescence of foliage and changes in leaf area, but tran-
sition dates derived from the G__ time series have been shown
to correlate well (r values >0.9) with the switching “on” and “off”
of photosynthetic activity (Seyednasrollah et al., 2021). For DN
vegetation, the spring transition dates align with budburst and
the production of new foliage, while autumn transition dates are
driven by the timing of senescence and leaf shedding. For SH veg-
etation, while there is some green-up of residual overwintered
foliage, the spring transition dates align well with bud break in
the dominant shrub species Rhododendron groenlandicum and
Chamaedaphne calyculata.

S SRR

FIGURE 1 Cameraview ina 0°C enclosure (a) and a+ 9°C enclosure (b) on October 20, 2021. Polygons show regions of interest for larch
(red), spruce (yellow), and shrub (blue). Note the yellow larch needles in (a) while (b) still has green larch needles.
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2.3 | Environmental data

On a plot level, environmental monitoring includes half-hourly air-
and soil-temperature measurements, water table depth, relative hu-
midity, photosynthetically active radiation, soil water content, and
wind speed. Air temperature used in this modeling analysis was av-
eraged across two measured points in each enclosure at a height of
2m in 30-minute intervals (data available at http://sprucedata.ornl.
gov). Daily mean values were calculated for each enclosure. Soil tem-
perature from two locations within the main board walk area in each
enclosure was measured in 30-minute intervals at nine depths (0, 5,
10, 20, 30, 40, 50, 100, and 200cm) and daily averages were calcu-
lated for all depths. Water table depth was measured daily within a
well in each enclosure. Depth to the water table is referenced to the

estimated mean hollow height in each enclosure (Norby et al., 2019).

2.4 | Modeling framework

We applied 19 spring and 10 autumn models using the R package
phenor, a modeling framework developed and described by Hufkens
et al. (2018). The package was specifically developed to use vegeta-
tion phenology data from the PhenoCam network (among other
phenology datasets), combined with location-specific climate data
obtained from the Daymet dataset (Thornton et al., 2020) using the
R package daymetr. Together, these R packages provide functions
to compare multiple models and additionally provide the environ-
ment to easily add new models (we note that we expanded the range
of standard autumn models by four which have been incorporated
into the phenor codebase). Using predefined parameter ranges with
a uniform distribution (i.e., noninformative Bayesian priors), we used
simulated annealing for parameter optimization, similar to previ-
ous studies (Chuine et al., 1998; Melaas et al., 2013; Richardson &
O'Keefe, 2009).

Spring and autumn models are listed in Table 1 along with their
drivers and number of parameters. The models represent different
assumptions about the underlying drivers and mechanisms con-
trolling phenological transitions. The mathematical representation
of these processes provides a wide range of model structures (for
details see appendices in Basler, 2016; Hufkens et al., 2018) (see to
be tested against the data). As described above, the extreme combi-
nation of temperature and CO, treatments at SPRUCE, as well as the
underlying interannual variability, provides a unique opportunity to
test phenological models.

The spring models range from a simple regression (Linear model)
using two parameters to more complex nonlinear models includ-
ing chilling requirements, forcing temperatures, and photoperiod
(Parallel model) with 10 parameters. All spring models include some
form of temperature influence upon spring green-up (e.g., chilling or
forcing temperature) and some models include photoperiod (Table 1,
Basler et al. 2016).

Few autumn models exist, and we added four autumn models
to the phenor framework that included processes that might drive

senescence. Based on previous studies, we hypothesized that: (1)
warmer temperatures delay senescence, (2) photoperiod acts as a
trigger or driver, (3) drier soils advance senescence, and (4) higher
atmospheric CO, concentrations accelerate senescence. Each of
the autumn models contained one or more of these processes. In
the original chilling degree day (CDD) model, leaf senescence occurs
when the amount of CDD is larger than a certain species-specific
threshold (Jeong & Medvigy, 2014). The CDDP model is adapted
from the PTT model (spring thermal time model with photoperiod)
and includes a photoperiod variable (daylength in hours per day
based on location) in the chilling requirement. We added two au-
tumn models that incorporated water table depth to the fall green-
down criterion (CDDM, PPM). The CDDM model included water
table depth in the chilling requirement while the PPM model only
used water table depth for the senescence criterion and no tempera-
ture forcing at all. A second version of each autumn model included
a CO, parameter.

We used the function pr_fm_phenocam to format the PhenoCam
data into a flattened nested list suitable for model comparison. We
extracted the 90th percentile of the G__ over a three-day window
and estimated transition dates at the 25% threshold of the seasonal
amplitude of greenness. Traditionally, phenor uses climate data from
Daymet and we replaced Daymet temperatures with enclosure-
specific air and soil temperature datasets to account for the experi-
mental temperature treatment. Water table depth was added as an
additional environmental variable. All models were fitted using the
function pr_fit and parameter optimization was run using general-
ized simulated annealing (GenSA). The same upper and lower limits
for parameter ranges for all plant functional types (Table S1) were
provided by Hufkens et al. (2018). We ran the code in 25 parallel
chains for each 40,000 iterations and all model fits were performed
on the high-performance computing cluster “Monsoon” at Northern
Arizona University.

Model output provides predicted transition dates, parameter
values, root mean square error (RMSE), and AIC. The AIC is an esti-
mator of model prediction error and is used for model selection. AIC
is calculated as AIC=2k+n(log(sum(measured - predicted)"2)/n),
where n is length of measured data, and k represents the number of
model parameters. This AIC calculation is a custom function that ac-
cepts loess regression. To identify the “best” model in each season,
we selected the model with the lowest AIC across 25 parallel model
chains and 19 models in spring and 10 models in autumn. We con-
sidered models with AAIC <2 to be essentially equivalent in terms
of performance, whereas models with AAIC 22 had little support
and models with AAIC 210 no support (Burnham & Anderson, 2004).

2.5 | Statistical analyses

We performed linear mixed effects models to assess the relation-
ship of temperature and CO, and their interaction with spring and
fall transition dates using the R package nime (Pinheiro et al., 2012).
Mean annual differential plot air temperature and CO, were fixed
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TABLE 1 Details of spring and autumn models adapted from Basler et al. (2016) and Hufkens et al. (2018).

Model name Abbreviation  Drivers

Spring
Linear LIN F
Thermal Time TT F
Thermal Time sigmoid TTs F
Photo-thermal time PTT PF
Photo-thermal time sigmoid PTTs PF
M1 M1 PF
M1 sigmoid M1s PF
Alternating AT CF
Sequential SQ CF
Sequential b SQb CF
Sequential M1 SM1 CPF
Sequential M1b SM1b CPF
Parallel PA CPF
Parallel b (bell-shaped) PAb CPF
Parallel M1 PM1 CPF
Parallel M1b (bell-shaped) PM1b CPF
Unified M1 uM1 CPF
Growing season index SGSI FPV
Growing season index AGSI FPV

Autumn
Chilling degree day CDD C
Chilling degree day and CO, CDDCO, C
Chilling degree day sigmoid CDDs C
Chilling degree day sigmoid and CO, CDDsCO, C
Chilling degree day photoperiod CDDP CP
Chilling degree day photoperiod and CO, ~ CDDPCO, CP
Chilling degree day water table CDDM CM

Chilling degree day water table and CO, CDDMCO, CM
Photoperiod water table PPM PM

Photoperiod water table and CO, PPMCO, PM

# parameters Reference/comments

Linear regression and temperature

(Cannell & Smith, 1983; Hanninen, 1990b;
Hunter & Lechowicz, 1992)
(Crepiniek et al., 2006; Masle et al., 1989)

(Blimel & Chmielewski, 2012)

(Cannell & Smith, 1983; Murray et al., 1989)
(Hanninen, 1990b; Kramer, 1994)

Combination of Sequential and M1 model

(Hanninen, 1990b; Kramer, 1994;
Landsberg, 1974)

N0 0 0 0 00 o Ut A WD WON

=
o

Combination of Parallel and M1 model

=
o O

(Chuine, 2000)
(Xin et al., 2015)
(Xin et al., 2015)

N0 O

Jeong & Medvigy, 2014
Jeong & Medvigy, 2014
Jeong & Medvigy, 2014
Jeong & Medvigy, 2014
Jeong & Medvigy, 2014
Jeong & Medvigy, 2014
Jeong & Medvigy, 2014
Jeong & Medvigy, 2014
Jeong & Medvigy, 2014

(
(
(
(
(
(
(
(
(
(Jeong & Medvigy, 2014

)
)
)
)
)
)
)
)
)
)

A W 0 A A W U DM D W

Note: Models are grouped by drivers: forcing temperature (F), chilling temperature (C), vapor pressure deficit (V), and moisture (M). Shading groups

models with the same base structure together.

effects and year was treated as a random effect. We used the mean
annual measured temperature differential between enclosures and
the two unheated control enclosures for each plot. Statistical analy-

ses were performed using R Version 4.0.5.

2.6 | Model validation using other sites

We performed model validation to ensure that models can be used
to extrapolate in space and time and are not simply overfit to the
data from the SPRUCE experiment. We selected Phenocam sites

with similar vegetation to the SPRUCE experiment. For Larix and

Picea, we selected the BOREAS Southern Old Black Spruce study
area in Prince Albert National Park, Saskatchewan, Canada (Suppl.
Figure S1). For both plant functional types, there were nine years
of data available (2012-2020) from the “canadOBS” PhenoCam. For
the shrub layer, we selected the Mer Bleue Conservation Area in
Ottawa, Canada, which has a similar composition of plant species as
the shrub layer in the SPRUCE experiment (Suppl. Figure S1). There
were eight years of data available for the shrub layer (2013-2020)
from the “merbleue” PhenoCam. We used the optimal param-
eter values determined for SPRUCE in the validation analysis. For
model evaluation, we excluded autumn models for “canadaOBS” or

“merbleue” with water table depth due to the lack of available data.
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3 | RESULTS

3.1 | Changes in transition dates with warming

Ecosystem warming significantly advanced spring green-up.
Temperature sensitivity, a metric to quantify the change in phenol-
ogy per degree change in temperature, averaged (mean+1 SD)
-1.1+0.6days per degree Celsius across all plant functional types
and years (Figures 2 and 3, Table 2, calculated here as the mean an-
nual 2m air temperature differential relative to unheated controls).
Consequently, spring green-up occurred about 10days earlier in the
+9°C warming enclosures, relative to the unheated control enclo-
sures. Autumn green-down was delayed by 2.1 +2.4days per degree
warming across plant functional types and years and thus green-
down occurred almost threeweeks later in the +9°C warming en-
closures, relative to the unheated control enclosures. Together, the
effects of advanced spring green-up and delayed autumn senescence
resulted in the overall period of vegetation activity being extended by
3.2+ 2.4days per degree, or almost 30days in the warmest enclosures.

The temperature sensitivity of spring green-up was similar
across species. However, in autumn, the response to warming was
stronger (3.4days delay per 1°C warming) for the shrub layer than
for Larix (twodays delay per 1°C warming) or Picea (1.6days delay
per 1°C warming).

The effects of elevated CO, on vegetation phenology differed

across seasons and to a lesser degree among plant functional types.

There was no measurable effect of elevated CO, treatments on
spring green-up of any of the three plant functional types (Table 2).
By comparison, elevated CO, significantly advanced autumn senes-
cence compared to ambient conditions by an average (across all tem-
perature treatments) of -16.9 +3.0days in Larix and-4.2 + 1.6 days
in Picea (Table 2). Additionally, there was a positive interaction with
temperature and CO, in Larix in autumn, meaning that temperature
sensitivity was stronger with elevated CO, than under ambient CO,
conditions (Figure 3b, Table 2). Shrub layer autumn senescence was
advanced by -3.0+4.2days, but this effect was not statistically
significant (p value=.49).

3.2 | Spring models

Spring green-up transition dates in all plant functional types and
across all levels of warming were very well fitted by at least a couple
of the 19 spring models provided in the phenor R package (Figure S1,
Table S2). Model residuals were symmetrical for the selected models
and did not show any clear patterns among years or in relation to
temperature treatments (Figure 4d-f). Using AIC for model selection
allowed us to account for the complexity of models to identify the
best model for each plant functional type. By comparison, RMSE is
not ideal for model selection as it does not account for greater flex-
ibility (more degrees of freedom, and hence likely better fit) or more

complex or more highly parameterized models.

Larix laricina Picea mariana Shrub layer
y=118-159x R?=0.34 y=919-158x R?*=017 y=139-1.02x R?=0.21
150
= Year
O 125- 2016
g L’\L‘ o . & - 2017
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75+
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For Larix, we identified seven models (M1, SM1, SM1b, TT, TTs,
PTT, PTTs) that fit the data equally well with a AAIC<2 from the
lowest AIC (Figure 4a, Table S2). These models are all quite similar in
structure. The M1, TT, TTs, PTT, and PTTs model all include accumu-
lation of growing degree days for temperature forcing while the PTT

Green-up
>
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."(%‘
o
» o~ 1] CcoO
99 1 2
35 ambient
® 5 B elevated
oo
g2
°s @
Green-down

2
2 47 O
2
© 3
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23T 27 4
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§ O 1
2¢

©
23S 0-

Larch  Spruce  Shrub

FIGURE 3 Temperature sensitivity expressed in days per degree
Celsius for each functional plant type for green-up (a) and green-
down (b).
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and PTTs models additionally include a photoperiod factor (TTs and
PTTs use a sigmoidal temperature response rather than linear). The
M1 model expands the TT model by adding an exponential constant
to account for photoperiod. The SM1 and SM1b (using bell-shaped
chilling function) models are M1 models with the sequential compo-
nent that chilling requirements must be fulfilled before forcing tem-
perature is accumulated (Table 1). Even though the SM1 and SM1b
models are complex models with eight to nine parameters, they per-
form well and have a low RMSE of 3.3-3.6days.

For Picea, both sequential models with a photoperiod term (SM1
and SM1b) are distinctly better than the other models (Table S2,
RMSEs of 7.5) and most other models have a AAIC> 10 and there-
fore no support. Interestingly, SQ and SQb, which are both sequen-
tial models but without the photoperiod term, performed poorly.
Thus, in contrast to our results for Larix, for Picea we were able to
substantially narrow the pool of candidate models to just two mod-
els that are well-supported by the observational data.

The shrub layer showed both parallel models (PA and PADb, the
latter with a bell-shaped chilling function) to be distinctly better than
any other model (Figure 4c, Table S2). In the parallel models, chilling
and forcing requirements are occurring simultaneously rather than
in sequence. Given that all other models had a AAIC> 10, they are
either too complex or missing key processes. Thus, similar to Picea,
we were able to narrow down the set of candidate models to just

two models in shrub.

3.3 | Autumn models

For all three plant functional types, including a CO, parame-

ter (Table S4) markedly improved model fits in autumn models

TABLE 2 Linear mixed effects model results by plant functional type to explain variation in spring green-up and autumn green-down.

Season Species Fixed effects
Spring Larix laricina Intercept
Temperature
Picea mariana Intercept
Temperature
Shrub layer Intercept
Temperature
Autumn Larix laricina Intercept
Co,
Temperature

CO, x Temperature

Picea mariana Intercept
co,
Temperature

Shrub layer Intercept
Temperature

Estimate SE Df t value p value
118.09 2.87 39 41.11 <.001
-1.59 0.19 39 -8.30 <.001
92.69 4.83 40 19.2 <.001
-1.94 0.29 40 -6.69 <.001
139.39 2.77 43 50.26 <.001
-1.0 0.16 43 -6.34 <.001
286.56 1.82 37 157.76 <.001
-16.94 3.02 37 -5.61 <.001
1.86 0.29 37 6.46 <.001
1.38 0.50 37 2.75 .01
307.85 3.37 43 91.44 <.001
-4.22 1.63 43 -2.58 .01
1.77 0.26 43 6.82 <.001
288.38 4.47 43 64.5 <.001
3.06 0.38 43 8.12 <.001

Note: Only final models are shown after model selection. CO, got dropped in the final spring models and in the shrub autumn model. SE is Standard

error and DF degrees of freedom.
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FIGURE 4 Measured versus predicted day of year (DOY) for spring green-up showing results from the best spring model of the 25
parallel chains based on lowest Akaike Information Criterion (AIC) for (a) larch—SM1b model, (b) spruce—SM1 model, and (c) shrub—PAb
model. Residuals and predicted DOY for larch (d), spruce (e), and the shrub layer (f). In (a)-(c) different colors represent targeted differential
plot temperatures and in (d)-(f) different colors represent different calendar years. Air temperature was used for all models. Variation in
(a)-(c) shows upper and lower 90% confidence interval on the measured DOY transition dates and standard deviation for predicted DOY

transition dates.
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FIGURE 5 Predicted versus measured day of year (DOY) for autumn green-down showing results from the best autumn model of the 25
parallel chains based on lowest AIC for (a) larch - CDDs_CO, model, (b) spruce and shrub (c) - CDD_CO, model. In (a)-(c) different colors
represent targeted differential plot temperatures and in (d)-(f) different colors represent different calendar years. Air temperature was used
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confidence interval for the measured DOY transition dates and standard deviation for predicted DOY transition dates.

(Figure S2, Table S3). Model residuals were symmetrical for the
selected models and did not show any clear patterns (Figure 5d-
f). The best model for green-down based on lowest AIC was the
CDD model with sigmoidal temperature response (CDDs_CO,)

for Larix, and the default CDD model (CDD_CO,) for Picea and
shrub (Figure 5, Table S3), showing the key role of cool temper-
atures in driving the progression of senescence. Adding water
table depth to the autumn models resulted in much higher AICs
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providing no support for those models. The best autumn model
for shrub has a CO, parameter indicating that even though the
linear mixed-effects model did not show a significant CO, effect,
accounting for elevated CO, improved model fit and provided
the lowest AIC. Overall, the modeling results agree with our sta-
tistical analyses in that higher atmospheric CO, concentrations

accelerate senescence in each of the studied plant functional

types.

3.4 | Temperature depth profiles for modeling

In the interest of identifying important drivers and mechanisms
for spring and autumn transition dates, we examined whether
air or soil temperature (measured along a depth profile from 0 to
-200cm) is the better driver explaining spring green-up and au-
tumn green-down. Thawing ice and increasing rooting zone tem-
peratures in spring could provide an important signal for moisture
and nutrient availability to plants and the richness of environmen-
tal data provided at SPRUCE allows this unique approach of com-
paring different temperature datasets. Yet for all plant functional
types, using air temperature resulted in the smallest mean AIC in
the best spring models (Figure S4). For autumn models, air tem-
perature was the best dataset for Larix and surface temperatures
of 0 and 5cm provided best results in Picea and shrub (Figure S5).
Generally, AICs and RMSEs increased with the depth at which soil
temperature was measured; this was most pronounced in Picea and
shrubs. Therefore, spring green-up and autumn green-down are
most responsive to changes in air and surface soil temperatures
and the high frequency variation typical of the spring and autumn

transition periods.

3.5 | Validation sites

Using the fitted parameter values derived from the best spring and
autumn models from the SPRUCE experiment, we obtained decent
agreement of predicted and measured transition dates when applied
to PhenoCam sites with similar vegetation (Figure S3). Root mean
squared errors were 9days for Larix (SM1b model), 11.2days for
Picea (SM1 model), and 18.4days for the shrub layer (Pab model).
Surprisingly, some other models, which did not have much support
in the SPRUCE data based on AIC, actually performed better in the
independent validation resulting in lower RMSEs (4.2 days for Larix
and LIN model; 7days for Picea and UM1 model; 5.8 days for shrub
and SGSI model), perhaps due to differences in their canopy struc-
ture or degree of exposure.

Autumn transition dates were also well predicted using the
CDDP model for Larix and the CDD model for Picea and shrub (RMSE
of 3days in Larix, RMSE of 6.1days in Picea, and RMSE of 3.3days
in shrub). This exercise showed that a small set of closely related
models worked well in independent validation across all three plant
function types.

INTERACTIONS €l

4 | DISCUSSION

The PhenoCam dataset from the SPRUCE experiment provides
a unique opportunity to test how well spring and autumn models
and their underlying drivers and processes predict spring green-up
and autumn green-down when warming treatments and interannual
variation in weather are combined. Daylength at the SPRUCE ex-
periment is identical for all enclosures but mean daily temperature
was experimentally manipulated spanning an air temperature dif-
ferential of 0°C to +9°C compared to control plots. Over the five
years considered here, spring green-up occurred -1.1days earlier
per degree Celsius warming and autumn green-down was delayed by
2.1days per degree Celsius across all species (Richardson, Hufkens,
et al., 2018; Schiadel, Richardson, et al., 2021). Combining earlier
spring green-up and delayed autumn green-down, the active grow-
ing season is extended by about a month in the warmest enclosures
compared to ambient temperature. A larger effect of climate warm-
ing was found in autumn than spring represented by a twice as large
temperature sensitivity in autumn compared to spring. This trend
has previously been reported by Fu et al. (2018), who found a tem-
perature sensitivity of 6.4 days per degree Celsius in leaf senescence
of two-year old Fagus sylvatica L. saplings compared to 4.5day per
degree Celsius in spring. In contrast, Menzel et al. (2006) found in a
meta-analysis a spring temperature sensitivity of 4.6 days per degree
Celsius warming and an autumn temperature sensitivity of 2.4 days
across a wide range of species.

In autumn, elevated CO, advanced senescence in Larix and to
a smaller extent in Picea but not in the shrub layer. This trend was
not yet observed in Richardson, Hufkens, et al. (2018), most likely
because there was no CO, treatment in the first year of the exper-
iment and data only span two years, we now added multiple years
to the dataset. Direct ground observations of needle senescence in
Larix species confirm camera-based results although without the
temperature interaction (Table S5). For other species, the ground
observations did not provide evidence of a CO, effect. Responses of
elevated CO, on autumn senescence in deciduous trees from free-air
CO, enrichment experiments have been mixed (Norby, 2021). Some
studies show delayed senescence (Asshoff et al., 2006; Godbold
et al., 2014; Taylor et al., 2008), some show no response to elevated
CO, (Herrick & Thomas, 2003; Norby, Hartz-Rubin, et al., 2003;
Norby, Sholtis, et al., 2003), and a few studies show advanced se-
nescence (Asshoff et al., 2006), especially under drought conditions
that were hypothesized to reduce net carbon balance compared
to ambient CO, due to stomatal closure (Warren et al., 2011). A
related hypothesis for advanced elevated CO,-induced autumn
green-down is the carbon-sink capacity hypothesis as described in
Zani et al. (2020). The argument is that increased carbon uptake in
spring and summer under elevated atmospheric CO, drives earlier
senescence due to late-season growth sink limitations for assim-
ilated carbon. Generally, it is difficult to evaluate carbon sink lim-
itation results and multiple studies have challenged the carbon-sink
capacity hypothesis suggested by Zani et al. (Norby, 2021; e.g., Lu &
Keenan, 2022).
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4.1 | Model performance

Accurately predicting spring green-up and autumn green-down in
different species with a changing climate is important as there are
large implications for the water cycle (transpiration begins when
leaves emerge), the carbon cycle (plants take up carbon through
photosynthesis), and land-atmosphere interactions that drive the
surface water and energy balance. Plant productivity might be more
influenced by an earlier spring green-up than delayed autumn green-
down as photosynthetic capacity declines over the growing season,
in some species at least (Medvigy et al., 2013). Early spring green-up
can also expose sensitive tissues to abrupt spring freeze events that
could lead to net carbon losses through leave damage and delays
to reach full seasonal photosynthetic activity and productivity (Gu
et al., 2008; Richardson, Hufkens, et al., 2018).

4.2 | Spring models

Based on AIC model selection, some models performed much bet-
ter than others at predicting spring green-up in response to warmer
temperatures. Common to all spring models is the accumulation of
thermal forcing. Adding factors such as chilling accumulation or day-
length did not necessarily improve prediction of transition dates in-
dicating that the accumulation of thermal forcing may be the single
most important driver for spring green-up. Additionally, in Larix the
thermal degree day models (TT(s), PTT(s)) all performed well which
indicates that although temperature is important there needs to be
an “on switch” for plants to be sensitive to temperature. This “on
switch” is represented by the starting date parameter “t0” in those
models, which can also be interpreted as a photoperiod trigger.

Our study shows that even though each plant functional type
had a different set of best models, there were some commonalities.
Generally, sequential and parallel models performed the best and
except for Larix, simple thermal time-based models did not do well at
all. One commonality among the sequential and parallel models are
chilling requirements. Warmer winters under climate change may
provide less chilling and yet the results show that chilling require-

ments remain a main driver under a warming climate.

4.3 | Autumn models

Using 10 autumn models and the drivers temperature, photoperiod,
and water table depth, we demonstrate that autumn green-down in
the observed species is mainly driven by declining temperature. The
CDD model, which was the base model for four of the five models,
progresses leaf senescence when a chilling temperature threshold
is reached. Similar to the thermal time models in spring, the basic
CDD model includes a fixed starting date which implies a photo-
period threshold (Basler, 2016). Previous literature has discussed
the importance of accumulating CDDs (Jeong & Medvigy, 2014,
Liu et al., 2015; Ren et al., 2019) and photoperiod to influence

senescence (Fracheboud et al., 2009; Keskitalo et al., 2005). A
meta-analysis of northern hemisphere deciduous trees found that
October temperatures were the strongest predictors of senescence
followed by CDDs (Gill et al., 2015). Additionally, at higher lati-
tudes (50° to 70°N), photoperiod exerted a strong constraint over
temperature-induced changes for autumn senescence. The authors
concluded that photoperiod may play a bigger role at higher lati-
tudes than at lower latitudes (25° to 49°N) which was confirmed by
Lang et al. (2019). According to Lang et al., the SPRUCE site with a
latitude of 47°N falls in the lower latitude category and photoperiod
matters less than temperature.

We tested the effect of water table depth on autumn green-down
by including water table to the base CDD model. At the SPRUCE site,
the warming treatment dries out surface moisture leading to a rapid
decline in Sphagnum cover, as shown by Norby et al. (2019), likely
partially due to Sphagnum's dependence on continual capillary wick-
ing of water all the way to the surface. Woody species with roots
anchored deeper, such as those in our study, may be less affected by
some upper soil drying. Even so, in a bog setting such as SPRUCE the
plants are generally shallow rooted as limited by saturated anoxic
soil much of the time. As such, woody plant autumn senescence may
be accelerated under strong drought conditions, which did not occur
during this study. As such, the models that included water table
depth did not provide a better fit in any of the plant functional types
indicating that water table depth was not a driving factor of autumn
senescence during this period for the species of this study.

Adding a CO, parameter to each autumn model improved model
fit in most cases and was particularly strong in Larix. By adding a
CO, parameter, we added an offset in the temperature forcing which
allowed senescence to occur with less forcing in autumn. This pro-
vides evidence that delayed autumn senescence with warmer tem-
peratures is counteracted by rising atmospheric CO, concentrations
which shortens the lengthening of the period of vegetation activity

with future climate change.

4.4 | Experimental treatment and
interannual variation

The SPRUCE experiment is unique in that it provides interannual
variation in weather and a very strong temperature treatment. The
latter stayed constant across years while location-specific temper-
ature dynamics varied year by year, which together extended the
range of temperature treatments by multiple degrees Celsius be-
yond the range of historical variability.

While none of the five experimental years included in this anal-
ysis can be categorized as extreme weather years, the warming
treatment itself provides an insight to the phenological response
to extreme climate. Extreme cold temperatures (as low as -15°C)
naturally occur at the SPRUCE site and extreme hot temperatures
are exacerbated in the warm enclosures and can exceed 45°C at
2m above ground on some days. Extreme warm temperatures can

cause drought stress on species in autumn which might counteract
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the extension of the growing season (Chen et al., 2020). Hot summer
temperatures may not influence spring phenology but could strongly
impact fall senescence, especially when coupled with dry conditions.
The wide range of environmental conditions at the SPRUCE site al-
lowed us to prove that some existing phenological models perform
well with interannual climate variability.

5 | CONCLUSION

In this study, the expectation was that using the two axes of experi-
mental temperature treatment and interannual variability in weather,
we would be able to rule out several models and identify the most
important drivers and processes for spring green-up and autumn
green-down. We find that for each plant functional type multiple
models have similar RMSEs but using AIC allowed us to identify the
best models. For Picea and shrub, the list of best spring models is
short (SM1 and SMb1 for Picea, PAb and PA for shrub) while for Larix,
seven models were within AAIC <2 (SM1b, SM1, PTT, PTTs, TT, TTs,
M1). Among the best models were sequential and parallel models
with chilling requirements as a common driver.

In autumn, only one model per plant functional type was identi-
fied as the best model. The accumulation of CDDs was identified as
the most important driver for autumn green-down. In addition, the
best autumn models all included a CO, parameter. This indicates that
autumn green-down at the SPRUCE site advances with increased at-
mospheric CO, and that models including a CO, parameter do best.

One goal of this modeling approach was to challenge boundar-
ies of existing spring and autumn models by including interannual
variability in weather and an experimental temperature range. We
were able to identify spring and autumn models for each plant func-
tional type that performed well with the environmental envelope of

a warming treatment and interannual variability in weather.
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