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1  |  INTRODUC TION

Rising global temperatures impact ecosystems through a variety of 
processes, including phenological events such as spring green-up, 
flowering, and autumn green-down (Vitasse et al.,  2011). There is 

substantial evidence that spring green-up advances with warmer 
temperatures (Collins et al., 2021; Richardson, Hufkens, et al., 2018) 
while autumn green-down (i.e., senescence) is delayed (Richardson, 
Hufkens, et al., 2018). Together, these changes extend the growing 
season at both ends. Longer growing seasons impact plant processes 
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Abstract
Predicting vegetation phenology in response to changing environmental factors 
is key in understanding feedbacks between the biosphere and the climate system. 
Experimental approaches extending the temperature range beyond historic climate 
variability provide a unique opportunity to identify model structures that are best 
suited to predicting phenological changes under future climate scenarios. Here, we 
model spring and autumn phenological transition dates obtained from digital repeat 
photography in a boreal Picea-Sphagnum bog in response to a gradient of whole eco-
system warming manipulations of up to +9°C, using five years of observational data. 
In spring, seven equally best-performing models for Larix utilized the accumulation 
of growing degree days as a common driver for temperature forcing. For Picea, the 
best two models were sequential models requiring winter chilling before spring forc-
ing temperature is accumulated. In shrub, parallel models with chilling and forcing 
requirements occurring simultaneously were identified as the best models. Autumn 
models were substantially improved when a CO2 parameter was included. Overall, 
the combination of experimental manipulations and multiple years of observations 
combined with variation in weather provided the framework to rule out a large num-
ber of candidate models and to identify best spring and autumn models for each plant 
functional type.
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such as net annual carbon uptake, growth, and the timing of flow-
ering and are considered a clear indication of a species response 
to climate change (e.g., Richardson et al., 2013). Further, numerous 
plant-related feedbacks to the earth system are driven by pheno-
logical events, including seasonal changes in ecosystem photosyn-
thesis, albedo, and partitioning of the surface energy balance (Piao 
et al., 2019; Richardson et al., 2013; Tang et al., 2016).

Increasing temperature, sufficient winter chilling, and increas-
ing photoperiod are environmental factors that are known to influ-
ence bud burst and spring green-up in many plants. Similarly, leaf 
senescence and autumn green-down are triggered by declining 
temperature, photoperiod, and moisture conditions in the months 
prior to leaf coloration and/or leaf shedding (Gill et al., 2015; Lang 
et al., 2019; Liu et al., 2016; Richardson et al., 2013). Which process 
predominantly influences spring green-up and autumn green-down 
varies among species and there is uncertainty in distinguishing be-
tween chilling and photoperiod as cues (Way & Montgomery, 2015). 
Accurately modeling phenological events for different plant func-
tional types is needed since phenological events directly impact eco-
system functioning and feedbacks to the atmosphere and climate 
system, and therefore need to be well represented in Earth System 
Models (Meng et al., 2021).

While numerous process-based models have been developed to 
predict spring phenology, many fewer models have been developed 
for autumn phenology. Most spring models include temperature as 
the main driver, with parameters often including a starting date and 
parameters that control the rate of the response to environmental 
drivers (Basler, 2016). This can be in the form of accumulated grow-
ing degree days that need to reach a certain threshold (Wang, 1960; 
Thermal Time model, e.g., Cannell & Smith, 1983; Hänninen, 1990a) 
or it could be degree and length of chilling temperature that are re-
quired to respond to increasing temperatures in the spring (Parallel 
Model, Landsberg,  1974; Sequential Model, Hänninen,  1990a; 
Unified Model, Chuine, 2000).

Autumn green-down has received less attention than spring 
green-up in experimental and modeling studies. However, accu-
rately simulating autumn green-down is equally important. The main 
factors involved in driving autumn senescence are decreasing tem-
perature in the form of cold-degree day (CDD) accumulation (Jeong 
& Medvigy, 2014) and decreasing daylength (Delpierre et al., 2009). 
Additionally, dry soils and drought events may advance senescence, 
however, these factors have not been included in autumn phenology 
models.

For both spring and autumn, more complex phenology models 
come at the cost of more parameters, and in general these more 
complex models have not proven to perform much better than mod-
els with fewer parameters (Basler,  2016). Therefore, while more 
complexity makes the models more flexible, and thus more likely to 
fit the observational data, it does not mean the models do better at 
representing the underlying processes or generalizing well in time 
and space. Careful interpretation of data model fits is required as 
good data fits are not always related to the underlying biologically 
relevant responses (Hunter & Lechowicz, 1992). However, Akaike's 

Information Criterion (AIC) offers an objective path to model selec-
tion that balances complexity against goodness of fit (Burnham & 
Anderson, 2004), and which has been commonly applied to pheno-
logical models.

Accurate modeling of phenological events is critical to improve 
the coupling between the atmosphere and the biosphere in Earth 
System Models. Outstanding questions remain, however, about how 
existing phenological models perform with interannual climate vari-
ability and with future climate scenarios including extreme climate 
conditions (Piao et al.,  2019). Here, we utilize multiyear interan-
nual variability in weather, and an experimental treatment that far 
exceeds historical variability to test models under a wide range of 
environmental conditions. We use the long-term multifactor global 
warming experiment called “Spruce and Peatland Responses Under 
Changing Environments” (SPRUCE, Hanson et al., 2017), over which 
interannual variation in weather over five years is superimposed, to 
identify spring and autumn models that best describe phenologi-
cal events for the three plant functional types (Larix, Picea, shrubs) 
that characterize the SPRUCE ecosystems. Phenological data from 
SPRUCE provide an ideal framework to challenge model capabilities 
and to isolate drivers influencing spring and autumn plant phenology 
(Hänninen et al.,  2019; Prevéy et al.,  2021). Additionally, because 
the multifactor experiment includes elevated atmospheric CO2 as a 
treatment, this offers the potential to consider how elevated CO2 
influences phenological transitions, and whether CO2 needs to be 
included in phenological models.

Here, we explore the following questions: (1) How well do exist-
ing spring and autumn models predict phenological transition dates 
at the SPRUCE experiment? (2) Can we identify key mechanisms and 
drivers for different species that drive spring green-up and autumn 
green-down? (3) Do the “best” models fitted to the experimental 
data generalize well and make good phenological predictions at 
other sites; and (4) Is there evidence that elevated CO2 plays a role in 
in either spring or autumn phenology?

2  |  MATERIAL S AND METHODS

2.1  |  Experimental site description

For this modeling study, we used vegetation phenology data from 
the “Spruce and Peatland Responses Under Changing Environments” 
(SPRUCE) experiment (Hanson et al., 2017). This whole ecosystem 
warming experiment is a long-term, multifactor experiment located 
in Minnesota, USA, at the S1 bog (47° 30.476′ N; 93° 27.162′ W; 
418 m above mean sea level [Kolka et al., 2011]). Mean annual tem-
perature is 3.4°C (1961–2009) and mean annual precipitation is 
780 mm (Sebestyen et al., 2011). The ombrotrophic peat bog pro-
vides hummock and hollow microtopography, with a perched water 
table of 10–20 cm above the hollows after snowmelt and commonly 
−20 to −30 cm below hollows in midsummer (Iversen et al., 2018). 
The dominant woody vegetation includes Picea mariana, (Mill.) B.S.P. 
(black spruce), Larix laricina (Du Roi) K. Koch (Larix), and a mixture 
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    |  3SCHÄDEL et al.

of ericaceous shrubs such as Rhododendron groenlandicum (Oeder) 
Kron & Judd (Labrador tea), Chamaedaphne calyculata (L.) Moench. 
(leatherleaf), and other species. A detailed description of the experi-
mental setup and sustained temperature and elevated CO2 treat-
ment can be found in Hanson et al. (2017).

Briefly, the experiment consists of 10 large open-top enclosures 
(12.8 m diameter, 7 m tall) of an octagonal shape and transparent 
greenhouse panels. Five levels of ecosystem warming are applied 
(nominally 0°, +2.25°, +4.5°, +6.75°, and + 9°C) year-round and half 
the enclosures receive elevated CO2 during the growing season (~500 
pmm above ambient enclosures [Hanson et al., 2017]). Air warming 
was achieved by heating the air to a height of ~6 m in each enclosure 
using propane-fired heat exchangers and a system of blowers and 
conduits (Hanson et al., 2017). Deep-soil heating consists of arrays 
of 3 m deep vertical low-wattage heating elements that are installed 
in circles around and within each enclosure. Ecosystem warming 
occurs year-round with deep-soil heating starting in June 2014, air 
warming in August 2015 (Hanson et al., 2016), and CO2 fumigation 
beginning in June 2016 (Hanson et al., 2021).

2.2  |  PhenoCam imagery

Digital imagery was used to track seasonal vegetation greenness 
in each enclosure. One digital camera (NetCam model SD130BN, 
StarDot Technologis; Richardson et al., 2007; Richardson, Hufkens, 
et al., 2018) was installed in each enclosure at a height of 6 m above 
the ground on the south facing wall of the enclosure. Images are 
taken in each plot every 30 min from 4:00 to 22:00 throughout the 
entire year and are uploaded in near-real time to the PhenoCam 
server (https://pheno​cam.nau.edu/webca​m/) for archiving and pro-
cessing (Figure 1). For each camera field of view, three separate re-
gions of interest (ROI) were defined which correspond to (1) Larix 
(plant functional type DN, deciduous needleleaf), (2) Picea (plant 
functional type EN, evergreen needleleaf), and (3) a mixed shrub 

layer (plant functional type SH). Transition dates corresponding to 
the start of the “greenness rising” (spring) and end of the “greenness 
falling” (autumn) were used for the period of 2016–2020 and were 
derived from the three-day smoothed Green Chromatic Coordinate 
(Gcc) based on the 25% seasonal amplitude threshold (archived data-
set in (Schädel, Richardson, et al., 2021)). The two tree species, Larix 
and Picea, can be classified as deciduous broadleaf conifer, and ev-
ergreen needleleaf conifer functional types, both common to the 
circumpolar polar region. The shrub layer consists of evergreen and 
deciduous shrubs and while the Phenocam approach cannot distin-
guish the different species within a single mask across the growing 
season, we have species-specific ground observations of green-up 
and green-down that align with the Phenocam results (Richardson, 
Latimer, et al., 2018; Schädel et al., 2019, 2020; Schädel, Pearson, 
et al., 2021).

We visually identified snow on trees and on the ground from 
each camera in mid-day images throughout the entire dataset and 
excluded these days from analysis (details in (Schädel, Richardson, 
et al., 2021)). The blue-white of snow adds noise to the underlying Gcc 
signal which is shifted downward on days with snow (Seyednasrollah 
et al., 2021). A more detailed description of image analysis and data 
processing is documented in Richardson, Hufkens, et al. (2018).

For EN vegetation, seasonal changes in Gcc are driven more 
by changes in leaf-level pigments than they are by the produc-
tion and senescence of foliage and changes in leaf area, but tran-
sition dates derived from the Gcc time series have been shown 
to correlate well (r values >0.9) with the switching “on” and “off” 
of photosynthetic activity (Seyednasrollah et al.,  2021). For DN 
vegetation, the spring transition dates align with budburst and 
the production of new foliage, while autumn transition dates are 
driven by the timing of senescence and leaf shedding. For SH veg-
etation, while there is some green-up of residual overwintered 
foliage, the spring transition dates align well with bud break in 
the dominant shrub species Rhododendron groenlandicum and 
Chamaedaphne calyculata.

F I G U R E  1  Camera view in a 0°C enclosure (a) and a + 9°C enclosure (b) on October 20, 2021. Polygons show regions of interest for larch 
(red), spruce (yellow), and shrub (blue). Note the yellow larch needles in (a) while (b) still has green larch needles.
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4  |    SCHÄDEL et al.

2.3  |  Environmental data

On a plot level, environmental monitoring includes half-hourly air- 
and soil-temperature measurements, water table depth, relative hu-
midity, photosynthetically active radiation, soil water content, and 
wind speed. Air temperature used in this modeling analysis was av-
eraged across two measured points in each enclosure at a height of 
2 m in 30-minute intervals (data available at http://spruc​edata.ornl.
gov). Daily mean values were calculated for each enclosure. Soil tem-
perature from two locations within the main board walk area in each 
enclosure was measured in 30-minute intervals at nine depths (0, 5, 
10, 20, 30, 40, 50, 100, and 200 cm) and daily averages were calcu-
lated for all depths. Water table depth was measured daily within a 
well in each enclosure. Depth to the water table is referenced to the 
estimated mean hollow height in each enclosure (Norby et al., 2019).

2.4  |  Modeling framework

We applied 19 spring and 10 autumn models using the R package 
phenor, a modeling framework developed and described by Hufkens 
et al. (2018). The package was specifically developed to use vegeta-
tion phenology data from the PhenoCam network (among other 
phenology datasets), combined with location-specific climate data 
obtained from the Daymet dataset (Thornton et al., 2020) using the 
R package daymetr. Together, these R packages provide functions 
to compare multiple models and additionally provide the environ-
ment to easily add new models (we note that we expanded the range 
of standard autumn models by four which have been incorporated 
into the phenor codebase). Using predefined parameter ranges with 
a uniform distribution (i.e., noninformative Bayesian priors), we used 
simulated annealing for parameter optimization, similar to previ-
ous studies (Chuine et al., 1998; Melaas et al., 2013; Richardson & 
O'Keefe, 2009).

Spring and autumn models are listed in Table 1 along with their 
drivers and number of parameters. The models represent different 
assumptions about the underlying drivers and mechanisms con-
trolling phenological transitions. The mathematical representation 
of these processes provides a wide range of model structures (for 
details see appendices in Basler, 2016; Hufkens et al., 2018) (see to 
be tested against the data). As described above, the extreme combi-
nation of temperature and CO2 treatments at SPRUCE, as well as the 
underlying interannual variability, provides a unique opportunity to 
test phenological models.

The spring models range from a simple regression (Linear model) 
using two parameters to more complex nonlinear models includ-
ing chilling requirements, forcing temperatures, and photoperiod 
(Parallel model) with 10 parameters. All spring models include some 
form of temperature influence upon spring green-up (e.g., chilling or 
forcing temperature) and some models include photoperiod (Table 1, 
Basler et al. 2016).

Few autumn models exist, and we added four autumn models 
to the phenor framework that included processes that might drive 

senescence. Based on previous studies, we hypothesized that: (1) 
warmer temperatures delay senescence, (2) photoperiod acts as a 
trigger or driver, (3) drier soils advance senescence, and (4) higher 
atmospheric CO2 concentrations accelerate senescence. Each of 
the autumn models contained one or more of these processes. In 
the original chilling degree day (CDD) model, leaf senescence occurs 
when the amount of CDD is larger than a certain species-specific 
threshold (Jeong & Medvigy,  2014). The CDDP model is adapted 
from the PTT model (spring thermal time model with photoperiod) 
and includes a photoperiod variable (daylength in hours per day 
based on location) in the chilling requirement. We added two au-
tumn models that incorporated water table depth to the fall green-
down criterion (CDDM, PPM). The CDDM model included water 
table depth in the chilling requirement while the PPM model only 
used water table depth for the senescence criterion and no tempera-
ture forcing at all. A second version of each autumn model included 
a CO2 parameter.

We used the function pr_fm_phenocam to format the PhenoCam 
data into a flattened nested list suitable for model comparison. We 
extracted the 90th percentile of the Gcc over a three-day window 
and estimated transition dates at the 25% threshold of the seasonal 
amplitude of greenness. Traditionally, phenor uses climate data from 
Daymet and we replaced Daymet temperatures with enclosure-
specific air and soil temperature datasets to account for the experi-
mental temperature treatment. Water table depth was added as an 
additional environmental variable. All models were fitted using the 
function pr_fit and parameter optimization was run using general-
ized simulated annealing (GenSA). The same upper and lower limits 
for parameter ranges for all plant functional types (Table S1) were 
provided by Hufkens et al.  (2018). We ran the code in 25 parallel 
chains for each 40,000 iterations and all model fits were performed 
on the high-performance computing cluster “Monsoon” at Northern 
Arizona University.

Model output provides predicted transition dates, parameter 
values, root mean square error (RMSE), and AIC. The AIC is an esti-
mator of model prediction error and is used for model selection. AIC 
is calculated as AIC = 2 k + n(log(sum(measured − predicted)^2)/n), 
where n is length of measured data, and k represents the number of 
model parameters. This AIC calculation is a custom function that ac-
cepts loess regression. To identify the “best” model in each season, 
we selected the model with the lowest AIC across 25 parallel model 
chains and 19 models in spring and 10 models in autumn. We con-
sidered models with ∆AIC <2 to be essentially equivalent in terms 
of performance, whereas models with ∆AIC ≥2 had little support 
and models with ∆AIC ≥10 no support (Burnham & Anderson, 2004).

2.5  |  Statistical analyses

We performed linear mixed effects models to assess the relation-
ship of temperature and CO2 and their interaction with spring and 
fall transition dates using the R package nlme (Pinheiro et al., 2012). 
Mean annual differential plot air temperature and CO2 were fixed 
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    |  5SCHÄDEL et al.

effects and year was treated as a random effect. We used the mean 
annual measured temperature differential between enclosures and 
the two unheated control enclosures for each plot. Statistical analy-
ses were performed using R Version 4.0.5.

2.6  |  Model validation using other sites

We performed model validation to ensure that models can be used 
to extrapolate in space and time and are not simply overfit to the 
data from the SPRUCE experiment. We selected Phenocam sites 
with similar vegetation to the SPRUCE experiment. For Larix and 

Picea, we selected the BOREAS Southern Old Black Spruce study 
area in Prince Albert National Park, Saskatchewan, Canada (Suppl. 
Figure S1). For both plant functional types, there were nine years 
of data available (2012–2020) from the “canadOBS” PhenoCam. For 
the shrub layer, we selected the Mer Bleue Conservation Area in 
Ottawa, Canada, which has a similar composition of plant species as 
the shrub layer in the SPRUCE experiment (Suppl. Figure S1). There 
were eight years of data available for the shrub layer (2013–2020)  
from the “merbleue” PhenoCam. We used the optimal param-
eter values determined for SPRUCE in the validation analysis. For 
model evaluation, we excluded autumn models for “canadaOBS” or  
“merbleue” with water table depth due to the lack of available data.

TA B L E  1  Details of spring and autumn models adapted from Basler et al. (2016) and Hufkens et al. (2018).

Model name Abbreviation Drivers # parameters Reference/comments

Spring

Linear LIN F 2 Linear regression and temperature

Thermal Time TT F 3 (Cannell & Smith, 1983; Hänninen, 1990b;  
Hunter & Lechowicz, 1992)Thermal Time sigmoid TTs F 4

Photo-thermal time PTT PF 3 (Črepinšek et al., 2006; Masle et al., 1989)

Photo-thermal time sigmoid PTTs PF 4

M1 M1 PF 4 (Blümel & Chmielewski, 2012)

M1 sigmoid M1s PF 5

Alternating AT CF 5 (Cannell & Smith, 1983; Murray et al., 1989)

Sequential SQ CF 8 (Hänninen, 1990b; Kramer, 1994)

Sequential b SQb CF 8

Sequential M1 SM1 CPF 9 Combination of Sequential and M1 model

Sequential M1b SM1b CPF 9

Parallel PA CPF 9 (Hänninen, 1990b; Kramer, 1994; 
Landsberg, 1974)Parallel b (bell-shaped) PAb CPF 9

Parallel M1 PM1 CPF 10 Combination of Parallel and M1 model

Parallel M1b (bell-shaped) PM1b CPF 10

Unified M1 UM1 CPF 9 (Chuine, 2000)

Growing season index SGSI FPV 9 (Xin et al., 2015)

Growing season index AGSI FPV 9 (Xin et al., 2015)

Autumn

Chilling degree day CDD C 3 (Jeong & Medvigy, 2014)

Chilling degree day and CO2 CDDCO2 C 4 (Jeong & Medvigy, 2014)

Chilling degree day sigmoid CDDs C 4 (Jeong & Medvigy, 2014)

Chilling degree day sigmoid and CO2 CDDsCO2 C 5 (Jeong & Medvigy, 2014)

Chilling degree day photoperiod CDDP CP 3 (Jeong & Medvigy, 2014)

Chilling degree day photoperiod and CO2 CDDPCO2 CP 4 (Jeong & Medvigy, 2014)

Chilling degree day water table CDDM CM 4 (Jeong & Medvigy, 2014)

Chilling degree day water table and CO2 CDDMCO2 CM 5 (Jeong & Medvigy, 2014)

Photoperiod water table PPM PM 3 (Jeong & Medvigy, 2014)

Photoperiod water table and CO2 PPMCO2 PM 4 (Jeong & Medvigy, 2014)

Note: Models are grouped by drivers: forcing temperature (F), chilling temperature (C), vapor pressure deficit (V), and moisture (M). Shading groups 
models with the same base structure together.

 25756265, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pei3.10118 by N

orthern A
rizona U

niversity, W
iley O

nline Library on [29/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



6  |    SCHÄDEL et al.

3  |  RESULTS

3.1  |  Changes in transition dates with warming

Ecosystem warming significantly advanced spring green-up. 
Temperature sensitivity, a metric to quantify the change in phenol-
ogy per degree change in temperature, averaged (mean ± 1 SD) 
−1.1 ± 0.6 days per degree Celsius across all plant functional types 
and years (Figures 2 and 3, Table 2, calculated here as the mean an-
nual 2 m air temperature differential relative to unheated controls). 
Consequently, spring green-up occurred about 10 days earlier in the 
+9°C warming enclosures, relative to the unheated control enclo-
sures. Autumn green-down was delayed by 2.1 ± 2.4 days per degree 
warming across plant functional types and years and thus green-
down occurred almost three weeks later in the +9°C warming en-
closures, relative to the unheated control enclosures. Together, the 
effects of advanced spring green-up and delayed autumn senescence 
resulted in the overall period of vegetation activity being extended by 
3.2 ± 2.4 days per degree, or almost 30 days in the warmest enclosures.

The temperature sensitivity of spring green-up was similar 
across species. However, in autumn, the response to warming was 
stronger (3.4 days delay per 1°C warming) for the shrub layer than 
for Larix (two days delay per 1°C warming) or Picea (1.6 days delay 
per 1°C warming).

The effects of elevated CO2 on vegetation phenology differed 
across seasons and to a lesser degree among plant functional types. 

There was no measurable effect of elevated CO2 treatments on 
spring green-up of any of the three plant functional types (Table 2). 
By comparison, elevated CO2 significantly advanced autumn senes-
cence compared to ambient conditions by an average (across all tem-
perature treatments) of −16.9 ± 3.0 days in Larix and − 4.2 ± 1.6 days 
in Picea (Table 2). Additionally, there was a positive interaction with 
temperature and CO2 in Larix in autumn, meaning that temperature 
sensitivity was stronger with elevated CO2 than under ambient CO2 
conditions (Figure 3b, Table 2). Shrub layer autumn senescence was 
advanced by −3.0 ± 4.2 days, but this effect was not statistically  
significant (p value = .49).

3.2  |  Spring models

Spring green-up transition dates in all plant functional types and 
across all levels of warming were very well fitted by at least a couple 
of the 19 spring models provided in the phenor R package (Figure S1, 
Table S2). Model residuals were symmetrical for the selected models 
and did not show any clear patterns among years or in relation to 
temperature treatments (Figure 4d–f). Using AIC for model selection 
allowed us to account for the complexity of models to identify the 
best model for each plant functional type. By comparison, RMSE is 
not ideal for model selection as it does not account for greater flex-
ibility (more degrees of freedom, and hence likely better fit) or more 
complex or more highly parameterized models.

F I G U R E  2  Transition dates obtained from digital camera imagery in response to whole-ecosystem warming for spring green-up (a–c) and 
autumn green-down (d–f) for five years. Plot temperature is the mean annual measured 2 m air temperature differential between enclosures 
and the two unheated control enclosures for each plot.
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For Larix, we identified seven models (M1, SM1, SM1b, TT, TTs, 
PTT, PTTs) that fit the data equally well with a ∆AIC <2 from the 
lowest AIC (Figure 4a, Table S2). These models are all quite similar in 
structure. The M1, TT, TTs, PTT, and PTTs model all include accumu-
lation of growing degree days for temperature forcing while the PTT 

and PTTs models additionally include a photoperiod factor (TTs and 
PTTs use a sigmoidal temperature response rather than linear). The 
M1 model expands the TT model by adding an exponential constant 
to account for photoperiod. The SM1 and SM1b (using bell-shaped 
chilling function) models are M1 models with the sequential compo-
nent that chilling requirements must be fulfilled before forcing tem-
perature is accumulated (Table 1). Even though the SM1 and SM1b 
models are complex models with eight to nine parameters, they per-
form well and have a low RMSE of 3.3–3.6 days.

For Picea, both sequential models with a photoperiod term (SM1 
and SM1b) are distinctly better than the other models (Table  S2, 
RMSEs of 7.5) and most other models have a ∆AIC > 10 and there-
fore no support. Interestingly, SQ and SQb, which are both sequen-
tial models but without the photoperiod term, performed poorly. 
Thus, in contrast to our results for Larix, for Picea we were able to 
substantially narrow the pool of candidate models to just two mod-
els that are well-supported by the observational data.

The shrub layer showed both parallel models (PA and PAb, the 
latter with a bell-shaped chilling function) to be distinctly better than 
any other model (Figure 4c, Table S2). In the parallel models, chilling 
and forcing requirements are occurring simultaneously rather than 
in sequence. Given that all other models had a ∆AIC > 10, they are 
either too complex or missing key processes. Thus, similar to Picea, 
we were able to narrow down the set of candidate models to just 
two models in shrub.

3.3  |  Autumn models

For all three plant functional types, including a CO2 parame-
ter (Table  S4) markedly improved model fits in autumn models 

F I G U R E  3  Temperature sensitivity expressed in days per degree 
Celsius for each functional plant type for green-up (a) and green-
down (b).

TA B L E  2  Linear mixed effects model results by plant functional type to explain variation in spring green-up and autumn green-down.

Season Species Fixed effects Estimate SE Df t value p value

Spring Larix laricina Intercept 118.09 2.87 39 41.11 <.001

Temperature −1.59 0.19 39 −8.30 <.001

Picea mariana Intercept 92.69 4.83 40 19.2 <.001

Temperature −1.94 0.29 40 −6.69 <.001

Shrub layer Intercept 139.39 2.77 43 50.26 <.001

Temperature −1.0 0.16 43 −6.34 <.001

Autumn Larix laricina Intercept 286.56 1.82 37 157.76 <.001

CO2 −16.94 3.02 37 −5.61 <.001

Temperature 1.86 0.29 37 6.46 <.001

CO2 x Temperature 1.38 0.50 37 2.75 .01

Picea mariana Intercept 307.85 3.37 43 91.44 <.001

CO2
Temperature

−4.22 1.63 43 −2.58 .01

1.77 0.26 43 6.82 <.001

Shrub layer Intercept 288.38 4.47 43 64.5 <.001

Temperature 3.06 0.38 43 8.12 <.001

Note: Only final models are shown after model selection. CO2 got dropped in the final spring models and in the shrub autumn model. SE is Standard 
error and DF degrees of freedom.
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8  |    SCHÄDEL et al.

(Figure S2, Table S3). Model residuals were symmetrical for the 
selected models and did not show any clear patterns (Figure 5d–
f). The best model for green-down based on lowest AIC was the 
CDD model with sigmoidal temperature response (CDDs_CO2) 

for Larix, and the default CDD model (CDD_CO2) for Picea and 
shrub (Figure 5, Table S3), showing the key role of cool temper-
atures in driving the progression of senescence. Adding water 
table depth to the autumn models resulted in much higher AICs 

F I G U R E  4  Measured versus predicted day of year (DOY) for spring green-up showing results from the best spring model of the 25 
parallel chains based on lowest Akaike Information Criterion (AIC) for (a) larch—SM1b model, (b) spruce—SM1 model, and (c) shrub—PAb 
model. Residuals and predicted DOY for larch (d), spruce (e), and the shrub layer (f). In (a)–(c) different colors represent targeted differential 
plot temperatures and in (d)–(f) different colors represent different calendar years. Air temperature was used for all models. Variation in 
(a)–(c) shows upper and lower 90% confidence interval on the measured DOY transition dates and standard deviation for predicted DOY 
transition dates.

F I G U R E  5  Predicted versus measured day of year (DOY) for autumn green-down showing results from the best autumn model of the 25 
parallel chains based on lowest AIC for (a) larch – CDDs_CO2 model, (b) spruce and shrub (c) – CDD_CO2 model. In (a)–(c) different colors 
represent targeted differential plot temperatures and in (d)–(f) different colors represent different calendar years. Air temperature was used 
for larch and soil temperature at 5 cm depth was used for spruce and at 0 cm depth for shrub. Variation in (a)–(c) shows upper and lower 90% 
confidence interval for the measured DOY transition dates and standard deviation for predicted DOY transition dates.
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providing no support for those models. The best autumn model 
for shrub has a CO2 parameter indicating that even though the 
linear mixed-effects model did not show a significant CO2 effect, 
accounting for elevated CO2 improved model fit and provided 
the lowest AIC. Overall, the modeling results agree with our sta-
tistical analyses in that higher atmospheric CO2 concentrations 
accelerate senescence in each of the studied plant functional 
types.

3.4  |  Temperature depth profiles for modeling

In the interest of identifying important drivers and mechanisms 
for spring and autumn transition dates, we examined whether 
air or soil temperature (measured along a depth profile from 0 to 
−200 cm) is the better driver explaining spring green-up and au-
tumn green-down. Thawing ice and increasing rooting zone tem-
peratures in spring could provide an important signal for moisture 
and nutrient availability to plants and the richness of environmen-
tal data provided at SPRUCE allows this unique approach of com-
paring different temperature datasets. Yet for all plant functional 
types, using air temperature resulted in the smallest mean AIC in 
the best spring models (Figure  S4). For autumn models, air tem-
perature was the best dataset for Larix and surface temperatures 
of 0 and 5 cm provided best results in Picea and shrub (Figure S5). 
Generally, AICs and RMSEs increased with the depth at which soil 
temperature was measured; this was most pronounced in Picea and 
shrubs. Therefore, spring green-up and autumn green-down are 
most responsive to changes in air and surface soil temperatures 
and the high frequency variation typical of the spring and autumn 
transition periods.

3.5  |  Validation sites

Using the fitted parameter values derived from the best spring and 
autumn models from the SPRUCE experiment, we obtained decent 
agreement of predicted and measured transition dates when applied 
to PhenoCam sites with similar vegetation (Figure S3). Root mean 
squared errors were 9 days for Larix (SM1b model), 11.2 days for 
Picea (SM1 model), and 18.4 days for the shrub layer (Pab model). 
Surprisingly, some other models, which did not have much support 
in the SPRUCE data based on AIC, actually performed better in the 
independent validation resulting in lower RMSEs (4.2 days for Larix 
and LIN model; 7 days for Picea and UM1 model; 5.8 days for shrub 
and SGSI model), perhaps due to differences in their canopy struc-
ture or degree of exposure.

Autumn transition dates were also well predicted using the 
CDDP model for Larix and the CDD model for Picea and shrub (RMSE 
of 3 days in Larix, RMSE of 6.1 days in Picea, and RMSE of 3.3 days 
in shrub). This exercise showed that a small set of closely related 
models worked well in independent validation across all three plant 
function types.

4  |  DISCUSSION

The PhenoCam dataset from the SPRUCE experiment provides 
a unique opportunity to test how well spring and autumn models 
and their underlying drivers and processes predict spring green-up 
and autumn green-down when warming treatments and interannual 
variation in weather are combined. Daylength at the SPRUCE ex-
periment is identical for all enclosures but mean daily temperature 
was experimentally manipulated spanning an air temperature dif-
ferential of 0°C to +9°C compared to control plots. Over the five 
years considered here, spring green-up occurred −1.1 days earlier 
per degree Celsius warming and autumn green-down was delayed by 
2.1 days per degree Celsius across all species (Richardson, Hufkens, 
et al.,  2018; Schädel, Richardson, et al.,  2021). Combining earlier 
spring green-up and delayed autumn green-down, the active grow-
ing season is extended by about a month in the warmest enclosures 
compared to ambient temperature. A larger effect of climate warm-
ing was found in autumn than spring represented by a twice as large 
temperature sensitivity in autumn compared to spring. This trend 
has previously been reported by Fu et al. (2018), who found a tem-
perature sensitivity of 6.4 days per degree Celsius in leaf senescence 
of two-year old Fagus sylvatica L. saplings compared to 4.5 day per 
degree Celsius in spring. In contrast, Menzel et al. (2006) found in a 
meta-analysis a spring temperature sensitivity of 4.6 days per degree 
Celsius warming and an autumn temperature sensitivity of 2.4 days 
across a wide range of species.

In autumn, elevated CO2 advanced senescence in Larix and to 
a smaller extent in Picea but not in the shrub layer. This trend was 
not yet observed in Richardson, Hufkens, et al.  (2018), most likely 
because there was no CO2 treatment in the first year of the exper-
iment and data only span two years, we now added multiple years 
to the dataset. Direct ground observations of needle senescence in 
Larix species confirm camera-based results although without the 
temperature interaction (Table  S5). For other species, the ground 
observations did not provide evidence of a CO2 effect. Responses of 
elevated CO2 on autumn senescence in deciduous trees from free-air 
CO2 enrichment experiments have been mixed (Norby, 2021). Some 
studies show delayed senescence (Asshoff et al.,  2006; Godbold 
et al., 2014; Taylor et al., 2008), some show no response to elevated 
CO2 (Herrick & Thomas,  2003; Norby, Hartz-Rubin, et al.,  2003; 
Norby, Sholtis, et al., 2003), and a few studies show advanced se-
nescence (Asshoff et al., 2006), especially under drought conditions 
that were hypothesized to reduce net carbon balance compared 
to ambient CO2 due to stomatal closure (Warren et al.,  2011). A 
related hypothesis for advanced elevated CO2-induced autumn 
green-down is the carbon-sink capacity hypothesis as described in 
Zani et al. (2020). The argument is that increased carbon uptake in 
spring and summer under elevated atmospheric CO2 drives earlier 
senescence due to late-season growth sink limitations for assim-
ilated carbon. Generally, it is difficult to evaluate carbon sink lim-
itation results and multiple studies have challenged the carbon-sink 
capacity hypothesis suggested by Zani et al. (Norby, 2021; e.g., Lu & 
Keenan, 2022).
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10  |    SCHÄDEL et al.

4.1  |  Model performance

Accurately predicting spring green-up and autumn green-down in 
different species with a changing climate is important as there are 
large implications for the water cycle (transpiration begins when 
leaves emerge), the carbon cycle (plants take up carbon through 
photosynthesis), and land–atmosphere interactions that drive the 
surface water and energy balance. Plant productivity might be more 
influenced by an earlier spring green-up than delayed autumn green-
down as photosynthetic capacity declines over the growing season, 
in some species at least (Medvigy et al., 2013). Early spring green-up 
can also expose sensitive tissues to abrupt spring freeze events that 
could lead to net carbon losses through leave damage and delays 
to reach full seasonal photosynthetic activity and productivity (Gu 
et al., 2008; Richardson, Hufkens, et al., 2018).

4.2  |  Spring models

Based on AIC model selection, some models performed much bet-
ter than others at predicting spring green-up in response to warmer 
temperatures. Common to all spring models is the accumulation of 
thermal forcing. Adding factors such as chilling accumulation or day-
length did not necessarily improve prediction of transition dates in-
dicating that the accumulation of thermal forcing may be the single 
most important driver for spring green-up. Additionally, in Larix the 
thermal degree day models (TT(s), PTT(s)) all performed well which 
indicates that although temperature is important there needs to be 
an “on switch” for plants to be sensitive to temperature. This “on 
switch” is represented by the starting date parameter “t0” in those 
models, which can also be interpreted as a photoperiod trigger.

Our study shows that even though each plant functional type 
had a different set of best models, there were some commonalities. 
Generally, sequential and parallel models performed the best and 
except for Larix, simple thermal time-based models did not do well at 
all. One commonality among the sequential and parallel models are 
chilling requirements. Warmer winters under climate change may 
provide less chilling and yet the results show that chilling require-
ments remain a main driver under a warming climate.

4.3  |  Autumn models

Using 10 autumn models and the drivers temperature, photoperiod, 
and water table depth, we demonstrate that autumn green-down in 
the observed species is mainly driven by declining temperature. The 
CDD model, which was the base model for four of the five models, 
progresses leaf senescence when a chilling temperature threshold 
is reached. Similar to the thermal time models in spring, the basic 
CDD model includes a fixed starting date which implies a photo-
period threshold (Basler,  2016). Previous literature has discussed 
the importance of accumulating CDDs (Jeong & Medvigy,  2014; 
Liu et al.,  2015; Ren et al.,  2019) and photoperiod to influence 

senescence (Fracheboud et al.,  2009; Keskitalo et al.,  2005). A 
meta-analysis of northern hemisphere deciduous trees found that 
October temperatures were the strongest predictors of senescence 
followed by CDDs (Gill et al.,  2015). Additionally, at higher lati-
tudes (50° to 70° N), photoperiod exerted a strong constraint over 
temperature-induced changes for autumn senescence. The authors 
concluded that photoperiod may play a bigger role at higher lati-
tudes than at lower latitudes (25° to 49° N) which was confirmed by 
Lang et al. (2019). According to Lang et al., the SPRUCE site with a 
latitude of 47° N falls in the lower latitude category and photoperiod 
matters less than temperature.

We tested the effect of water table depth on autumn green-down 
by including water table to the base CDD model. At the SPRUCE site, 
the warming treatment dries out surface moisture leading to a rapid 
decline in Sphagnum cover, as shown by Norby et al.  (2019), likely 
partially due to Sphagnum's dependence on continual capillary wick-
ing of water all the way to the surface. Woody species with roots 
anchored deeper, such as those in our study, may be less affected by 
some upper soil drying. Even so, in a bog setting such as SPRUCE the 
plants are generally shallow rooted as limited by saturated anoxic 
soil much of the time. As such, woody plant autumn senescence may 
be accelerated under strong drought conditions, which did not occur 
during this study. As such, the models that included water table 
depth did not provide a better fit in any of the plant functional types 
indicating that water table depth was not a driving factor of autumn 
senescence during this period for the species of this study.

Adding a CO2 parameter to each autumn model improved model 
fit in most cases and was particularly strong in Larix. By adding a 
CO2 parameter, we added an offset in the temperature forcing which 
allowed senescence to occur with less forcing in autumn. This pro-
vides evidence that delayed autumn senescence with warmer tem-
peratures is counteracted by rising atmospheric CO2 concentrations 
which shortens the lengthening of the period of vegetation activity 
with future climate change.

4.4  |  Experimental treatment and 
interannual variation

The SPRUCE experiment is unique in that it provides interannual 
variation in weather and a very strong temperature treatment. The 
latter stayed constant across years while location-specific temper-
ature dynamics varied year by year, which together extended the 
range of temperature treatments by multiple degrees Celsius be-
yond the range of historical variability.

While none of the five experimental years included in this anal-
ysis can be categorized as extreme weather years, the warming 
treatment itself provides an insight to the phenological response 
to extreme climate. Extreme cold temperatures (as low as −15°C) 
naturally occur at the SPRUCE site and extreme hot temperatures 
are exacerbated in the warm enclosures and can exceed 45°C at 
2 m above ground on some days. Extreme warm temperatures can 
cause drought stress on species in autumn which might counteract 
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the extension of the growing season (Chen et al., 2020). Hot summer 
temperatures may not influence spring phenology but could strongly 
impact fall senescence, especially when coupled with dry conditions. 
The wide range of environmental conditions at the SPRUCE site al-
lowed us to prove that some existing phenological models perform 
well with interannual climate variability.

5  |  CONCLUSION

In this study, the expectation was that using the two axes of experi-
mental temperature treatment and interannual variability in weather, 
we would be able to rule out several models and identify the most 
important drivers and processes for spring green-up and autumn 
green-down. We find that for each plant functional type multiple 
models have similar RMSEs but using AIC allowed us to identify the 
best models. For Picea and shrub, the list of best spring models is 
short (SM1 and SMb1 for Picea, PAb and PA for shrub) while for Larix, 
seven models were within ∆AIC <2 (SM1b, SM1, PTT, PTTs, TT, TTs, 
M1). Among the best models were sequential and parallel models 
with chilling requirements as a common driver.

In autumn, only one model per plant functional type was identi-
fied as the best model. The accumulation of CDDs was identified as 
the most important driver for autumn green-down. In addition, the 
best autumn models all included a CO2 parameter. This indicates that 
autumn green-down at the SPRUCE site advances with increased at-
mospheric CO2 and that models including a CO2 parameter do best.

One goal of this modeling approach was to challenge boundar-
ies of existing spring and autumn models by including interannual 
variability in weather and an experimental temperature range. We 
were able to identify spring and autumn models for each plant func-
tional type that performed well with the environmental envelope of 
a warming treatment and interannual variability in weather.
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