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ARTICLE INFO ABSTRACT

Keywords: North American evergreen forests cover large areas and influence the global carbon cycle. Satellite remote
Evergreen sensing has been used to track the phenology of ecosystem photosynthesis of these forests by detecting variation
GPP in vegetation optical properties associated with physiological and structural features, and most of these methods
glh?f:: phyll-carotenoid index (CCD) have been closely tied to vegetation greenness. However, in evergreens, the application of satellite data to

NIRv monitor photosynthetic phenology is often limited by the lack of sensitivity of greenness-based indices. In this
Snow study, we identified 47 evergreen forest flux sites in North America that had MODIS observation overlapping
with the flux tower records. We then calculated four vegetation indices using MODIS MAIAC data (MCD19A1),
including NDVI, CCI, NIRv, and kNDVI, for the 47 flux sites and evaluated relationships between gross primary
productivity (GPP) and vegetation indices across the North American evergreen forests. Our results showed that
snow had substantial effects on the performance of all vegetation indices in tracking GPP phenology, particularly
in the early spring when rapid changes occurred to both GPP and snow cover. Different vegetation indices were
affected differently, indicating contradictory and confounding effects of snow on these indices. After correcting
for the snow effects, both CCI and NIRv performed well in tracking GPP phenology, albeit for different reasons.
CCI is sensitive to seasonal changes in the relative levels of chlorophyll and carotenoid pigments, which are
closely tied to GPP phenology in evergreens. NIRv is sensitive to the absorbed photosynthetically active radiation
and to the contribution of deciduous components to the overall optical properties. We also found that correla-
tions between GPP and vegetation indices varied among ecoregions and climate classes. In general, regions with
pronounced seasonal GPP patterns had stronger correlations between GPP and greenness-based indices than
regions with weaker seasonal GPP patterns. These biome differences were less pronounced for CCI. The snow
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artifacts and complementary vegetation index effects reported here should be considered in any large-scale
studies of GPP using reflectance-based indices from optical satellites.

1. Introduction

Evergreen forest ecosystems occupy approximately 21.6 million km?
area representing ~49.3% of global tree cover (FAO and UNEP, 2020).
In North America, evergreen forests cover large expanses, including the
boreal (taiga) forests in the northern high latitude, coastal forests of the
Pacific Northwest, eastern coastal forests along the Appalachians, forests
of the Rocky Mountains, and other western montane forests. These
evergreen forests provide crucial ecosystem goods and services,
including flood regulation, water purification, timber, and wildlife
habitat (Hassan et al. 2005; Wells et al., 2020), and play important roles
in regulating global climate and global carbon cycle in part due to their
geographic extent (Bonan, 2008). The distribution and growth of ever-
green forests are influenced by climate, particularly temperature and
precipitation, but these effects vary among ecoregions (Bowling et al.,
2018; Ensminger et al., 2004; Sevanto et al., 2006; Turcotte et al., 2009).
In recent years, extensive warming and drying, coupled with insect in-
festations, fires and harvests, have led to evergreen forest decline in
much of North America, from the southwest to the boreal regions of
Canada and Alaska (Kirilenko and Sedjo, 2007; Williams et al., 2013;
McDowell et al., 2016; White et al., 2017; Stralberg et al., 2020; Wells
et al., 2020). These recent trends suggest that a warmer climate might
not necessarily lead to higher productivity of evergreen forests espe-
cially in regions concurrently experiencing a decrease in precipitation
(Ammer, 2019; Zhang et al., 2022). Long-term changes in climate can
also have a lasting effect on ecosystem productivity by causing a shift in
species composition and thereby altering community productivity po-
tential (Dial et al., 2022; Thompson et al., 2013).

Satellite remote sensing can provide repeated, standardized mea-
surements over large areas and can serve as a tool to estimate ecosystem
gross primary productivity (GPP) at different scales. The widely used
Normalized Difference Vegetation Index (NDVI) (Running et al., 2004)
and newly developed products that are based on red and near-infrared
(NIR) bands, including NIRv (Badgley et al., 2017) and kNDVI
(Camps-Valls et al., 2021), have been used to monitor GPP phenology
seasonal pattern of GPP including timing and magnitude of different
ecosystems, often at large spatial and temporal scales (e.g. 1 km pixel
size and monthly timesteps). Studies employing these remotely sensed
indices using empirical functions or the light use efficiency model have
generally revealed site- and biome-based differences in the fidelity of
their relationships with GPP (Heinsch et al., 2003; Running et al., 2004;
Badgley et al., 2017; Ryu et al., 2019). Compared to deciduous forests,
predicting GPP phenology based on NDVI remains challenging for
evergreen forests due to the limited seasonal variation in green canopy
structure (Gamon et al., al.,1995; Running et al., 2004; Hmimina et al.,
2013; Peng et al., 2017). NDVI-based indices track changes in greenness
based on changes in chlorophyll, canopy growth or senescence (Zeng
et al., 2022), but miss the subtle changes in photosynthetic activity
caused by physiological regulation, which often is the preponderant
influence on GPP phenology in evergreens (Gamon et al., 2015&2016,
2015; Springer et al., 2017; Wong et al., 2020). In a previous study that
compared GPP and NDVI-based vegetation indices derived using MODIS
data, the lowest correlations between GPP and VIs were found for
evergreen forests among all vegetated biomes examined (Camps-Valls
et al., 2021). In contrast, indices based on the photoprotective roles of
carotenoid pigments, e.g., the Photochemical Reflectance Index (PRI)
and the Chlorophyll-Carotenoid Index (CCI), have shown good fidelity
to GPP phenology in evergreens (Gamon et al., 2016; Wong et al., 2022).
These results indicate complementary behavior of vegetation indices
(the complementarity hypothesis; Gamon 2015, Gamon et al., 2016),
with some addressing GPP phenology via greenness and others detecting

less visible photoregulatory processes associated with carotenoid pig-
ments and non-photochemical quenching of fluorescence.

CCI was designed to monitor GPP phenology of evergreen forests
because of its sensitivity to seasonal pigment change, particularly the
relative levels of chlorophyll and carotenoid pigments (Gamon et al.,
2016). Sometimes called MODIS PRI (Rahman et al., 2004; Drolet
etal., 2008; Middleton et al., 2016), the CCI formula is slightly different
from the original PRI formula, which was originally designed to monitor
the diurnal activity of the xanthophyll cycle (Gamon et al., 2016). Like
PRI, CCI is sensitive to seasonally changing pigment pools, but unlike
PRI, it is available from the MODIS sensors (Aqua and Terra), making it
readily available for global analyses of GPP phenology. The long-term
variation of the ratio between chlorophyll and carotenoid pigments
detected by CCI indicates changes in vegetation photosynthetic activity
(Wong and Gamon, 2015; Gamon et al., 2016; Bowling et al., 2018;
Cheng et al., 2020; Wong et al., 2020; Walter-McNeill et al., 2021). For
example, increased carotenoids in the winter period reflect more pho-
toprotection for overwintering evergreen species (Demmig-Adams and
Adams, 1996; Verhoeven, 2014; Bowling et al., 2018). Several studies
have shown that CCI can track GPP phenology in both evergreen and
deciduous trees at different spatial scales (Gamon et al., 2016; Springer
et al., 2017; Wong et al., 2020; Pierrat et al., 2022; Yang et al., 2022);
however, like all reflectance-based vegetation indices, CCI is also
affected by snow cover, which can perturb its relationship with GPP.
While these snow-cover effects have been considered before for some
indices (e.g., NDVI; Myers-Smith et al., 2020), they have not been well
studied for others (e.g., CCI). The overall influence of snow on remote
observations of GPP phenology is unclear, as most studies have not
attempted to correct for the effects of snow, leaving open the possibility
of significant artifacts in our interpretation of GPP.

Snow typically has very high visible reflectance and very low
shortwave-infrared reflectance (Dozier et al., 2009) and therefore affects
all reflectance-based vegetation indices to some degree. Snow coverage
can be readily estimated using the MODIS Normalized Difference Snow
Index (NDSI) that utilizes the green (B4) and SWIR (B6) bands (Riggs
et al., 2016). However, NDSI may fail to detect snow pixels due to the
malfunction of a large part of Aqua band 6 detectors (Gladkova et al.,
2012). Snow detection using NDSI is also sensitive to conditions with
low visible reflectance, for example, low illumination when solar zenith
angleis 70 and the landscape shadowed by clouds or terrain (Lv and
Pomeroy, 2019) and forest coverage (Xin et al. 2012; Wang et al., 2018).
As a consequence, correcting for snow cover can be complicated, yet
remains critical because snow-affected satellite-based vegetation indices
can confound the relationship between GPP and vegetation indices,
particularly in northern latitude and high-altitude regions (Jin and
Eklundh, 2014; Jin et al., 2017; Springer et al., 2017). Thus, it is likely
that changes in apparent GPP based on vegetation indices are influenced
by snow cover, causing uncertainty in satellite-derived estimates of
seasonal and interannual GPP patterns and trends (Myers-Smith et al.,
2020).

In this study, we integrated surface flux tower eddy covariance flux
data with MODIS vegetation indices across different types of evergreen
forests in North America, ranging from subtropical to subarctic climates,
to test the feasibility of different MODIS-derived vegetation indices to
track GPP in evergreen forests. Our major hypotheses were: (1) snow
cover has a substantial effect on the performance of vegetation indices in
tracking GPP phenology, and removing snow-based artifacts improves
the relationship between GPP and vegetation indices; (2) CCI performs
better than NDVI-based indices in monitoring GPP of evergreen forests
because of its sensitivity to seasonal pigment change; and (3) the re-
lationships between GPP and VIs vary geographically (e.g., by
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ecoregion) due to contrasting climate controls and forest composition on
the physiological function and optical properties of evergreen forests.

2. Methods
2.1. Flux sites

Using three eddy covariance databases including FLUXNET2015
(Pastorello et al., 2020), AmeriFlux, and the National Ecological Ob-
servatory Network (NEON), we identified evergreen-dominated eddy
covariance flux tower sites in North America that had MODIS observa-
tion overlapping with flux tower observations (n = 99 towers). We
applied a quality check procedure to the flux data and shortened the list
of sites by: (1) omitting sites that had less than one year of data; (2)
omitting sites with failed net ecosystem exchange (NEE) partitioning
algorithms and failed GPP analysis (details below); and (3) omitting sites
located in topographically complex terrain, as described below. We used
the MERIT global digital elevation model (Yamazaki et al., 2017) and
Landsat NDVI to evaluate the landscape within the flux footprints in
both vertical and horizontal dimensions. The spatial resolutions of
MERIT DEM and Landsat NDVI are 3 arc seconds (~90 m at the equator)
and 30 m, respectively. We calculated the standard deviation of eleva-
tion and summer NDVI during the flux sampling time periods within 1
km? areas at each flux site and eliminated sites in mountainous areas
(standard deviation of elevation > 50 m) and heterogenous vegetation
cover types (standard deviation of NDVI > 0.2). This site suitability
analysis was done using Google Earth Engine (Gorelick et al., 2017).
This procedure led to a final selection of 47 evergreen flux tower sites for
our analysis, spanning 6 ecoregions and 6 climate classes (Fig. 1,
Table 1).

2.2, Flux tower data processing

Flux data from these 47 sites were processed using the REddyProc
package in R (Wutzler et al., 2018). We used two methods, including
daytime (Lasslop et al., 2010) and nighttime (Reichstein et al., 2005) to
partition the eddy covariance measured NEE into GPP based on the
calculated ecosystem respiration for each site, with air temperature as
the temperature driver, and a 50% friction velocity threshold. The daily
GPP derived from the daytime partitioning method (Lasslop et al., 2010)
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is presented in the main text, while that from the nighttime partitioning
is presented in the supplemental materials.

2.3. MODIS MAIAC data

MODIS Collection 6 data were corrected to surface reflectance using
the Multi-Angle Implementation of Atmospheric Correction algorithm
(MAIAG; Lyapustin et al., 2018, 2012). The MAIAC product (i.e.,
MCD19A1) offers land surface bidirectional reflectance factor for both
MODIS land and ocean bands (bands 1-12) at 1 km spatial resolution on
a per-observation basis in daily files. The high temporal resolution of the
MAIAC product potentially provides more information on vegetation
phenology than the 16-day composite MODIS data (Hmimina et al.,
2013; Wang et al., 2020). To keep a large dataset for snow detection
(details below), we did not filter data with large view zenith angles
(Middleton et al., 2016) or solar zenith angles. Using a threshold of 45°
view zenith angle can remove more than 40% of the data (Wang et al.,
2020), and winter observations for high latitude regions often have large
solar zenith angles. To generate a daily product for vegetation indices,
we used the observation with minimum view zenith angle when multi-
ple data points were available within a single day.

We explored the relationship between flux GPP and four MODIS
vegetation indices (VIs) including NDVI Running et al., 2004), CCI
(Gamon et al, 2016), NIRv (Badgley et al, 2017), and kNDVI
(Camps-Valls et al., 2021) that have been used to track GPP phenology
across different ecosystems. For each site, we used the pixel that had the
minimum distance between the center of pixel and the flux site. The
MODIS VIs were calculated from MODIS band (*B™*) numbers indicated
by the subscripts in Eqgs. (1)-(3) below. In Eq. (4), “tanh™ stands for the
hyperbolic tangent funetion (Camps-Valls et al., 2021).
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Fig. 1. Locations of evergreen forest flux towers and related ecoregions. Level-1 ecoregion map of North America was obtained from the United States Environmental

Protection Agency (McMahon et al., 2001; Omernik and Griffith, 2014).
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Table 1
Locations, climates and ecoregions of flux sites used in this study. Flux sites are sorted by latitude (from North to South). MAP and MAT indicate mean annual
precipitation and mean annual temperature, respectively.

Site ID Latitude Longitude Elevation MAP MAT( C)  Level-1 Ecoregion Koppen Climate Class Refs.
(@] (@) (m) (mm)
US-Prr 65.12 147.49 210 275 2.00 Taiga Subarctic Iwahana et al. (2019)
US-Uaf 64.87 147.86 155 263 2.90 Taiga Subarctic Ueyama et al. (2023)
US-Bnl 63.92 145.38 518 289 0.29 Northwestern forested Dry continental Randerson (2016)
mountains
US-xDJ 63.88 145.75 529 300 2.00 Northwestern forested Subarctic NEON (2022)
mountains
CA-NS3 55.91 98.38 260 502 2.87 Northern forests Subarctic Goulden (2019)
CA-NS2  55.91 98.52 260 499 2.88 Northern forests Subarctic Goulden (2019)
CA- 55.88 98.48 259 520 3.20 Northern forests Subarctic Amiro (2016)
Man
CA-NS1 55.88 98.48 260 500 2.89 Northern forests Subarctic Goulden (2019)
CA-NS5  55.86 98.49 260 500 2.86 Northern forests Subarctic Goulden (2019)
CA-LP1 55.11 122.84 751 570 2.00 Northwestern forested Mediterranean (Csa) Black (2022)
mountains
CA-SF1 54.49 105.82 536 470 0.40 Northern forests Subarctic Amiro (2020)
CA-SF2 54.25 105.88 520 470 0.40 Northern forests Subarctic Amiro (2019)
CA-Obs 53.99 105.12 629 405 0.79 Northern forests Subarctic Black (2016)
CA-SJ2 53.95 104.65 580 430 0.11 Northern forests Subarctic Barr and Black (2018)
CA-Ojp 53.92 104.69 579 430 0.12 Northern forests Subarctic Black (2019)
CA-SJ1 53.91 104.66 580 430 0.13 Northern forests Subarctic Barr (2018)
CA-SJ3 53.88 104.65 498 433 0.13 Northern forests Subarctic Barr (2018)
CA-Ca2 49.87 125.29 300 1474 9.86 Marine west coast forest Marine west coast Black (2018)
CA-Qfo 49.69 74.34 382 962 0.36 Northern forests Subarctic Margolis (2019)
CA-Ca3 49.53 124.90 162 1676 9.94 Marine west coast forest Marine west coast Black (2023)
CA-Qcu 49.27 74.04 392 949 0.13 Northern forests Subarctic Margolis (2016)
CA-Nal 46.47 67.10 341 1102 7.09 Eastern temperate forests Warm summer Bourque (2018)
continental
US-Wrc 45.82 121.95 371 2452 8.80 Northwestern forested Mediterranean Wharton (2016)
mountains
Us- 45.82 121.95 407 2225 9.20 Northwestern forested Mediterranean NEON (2022)
xWR mountains
US-xAB 45.76 122.33 363 2450 10.00 Marine west coast forest Mediterranean NEON (2022)
US-Ho2 45.21 68.75 91 1064 5.13 Eastern temperate forests Warm summer Hollinger (2021)
continental
US-Hol 45.20 68.74 60 1070 5.27 Eastern temperate forests Warm summer Hollinger (2021)
continental
US-Me2 44.45 121.56 1253 523 6.28 Northwestern forested Mediterranean Law (2022)
mountains
US-Me5  44.44 121.57 1188 590 6.47 Northwestern forested Mediterranean Law (2021)
mountains
US-Me6 44.32 121.61 998 494 7.59 Northwestern forested Mediterranean Law (2021)
mountains
US-Me3 44.32 121.61 1005 719 7.07 Northwestern forested Mediterranean Law (2018)
mountains
US-Blk 44.16 103.65 1718 573 6.23 Northwestern forested Warm summer Meyers (2016)
mountains continental
CA-TP4 42.71 80.36 184 1036 8.00 Eastern temperate forests Warm summer Arain (2018)
continental
US-CPk 41.07 106.12 2750 545 6.10 Northwestern forested Subarctic Ewers et al. (2016)
mountains
Us- 40.03 105.55 3050 800 1.50 Northwestern forested Subarctic Blanken et al. (2022)
NR1 mountains
US-Blo 38.90 120.63 1315 1226 11.09 Northwestern forested Mediterranean Goldstein (2019)
mountains
uUs- 35.89 106.53 3003 646 6.40 Northwestern forested Warm summer Litvak (2022)
Vem mountains continental
US-Vep 35.86 106.60 2500 550 9.80 Northwestern forested Warm summer Litvak (2022)
mountains continental
US-NC2  35.80 76.67 5 1320 16.60 Eastern temperate forests Humid subtropical Noormets et al. (2022)
US-Fmf 35.14 111.73 2160 546 9.50 Temperate sierras Mediterranean Dore and Kolb (2019)
US-Fuf 35.09 111.76 2180 562 8.70 Temperate sierras Mediterranean Dore and Kolb (2019)
US-xTA 32.95 87.39 135 1382 17.20 Eastern temperate forests Humid subtropical NEON (2022)
US-xJE 31.19 84.47 44 1307 19.20 Eastern temperate forests Humid subtropical NEON (2022)
US-SP2 29.76 82.25 50 1314 20.07 Eastern temperate forests Humid subtropical Bracho and Martin,
2016a
US-SP3 29.75 82.16 50 1312 20.25 Eastern temperate forests Humid subtropical Bracho and Martin,
2016b
US-SP1 29.74 82.22 50 1309 20.06 Eastern temperate forests Humid subtropical Bracho and Martin,
2016c¢
US-xSB 29.69 81.99 45 1302 20.90 Eastern temperate forests Humid subtropical NEON (2022)
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2.4. Snow removal algorithm applied to MODIS VIs

To evaluate the snow effects on MODIS vegetation indices, we used
data collected at the CA-Qfo flux site (located in Quebec, Canada, lati-
tude: 49.69°, longitude: —74.34%), which is also registered as site Chi-
bougamau within the PhenoCam network (Seyednasrollah et al., 2019).
The overlapping observations of eddy covariance, MODIS, and Pheno-
Cam imagery in 2009 at this black spruce and jack pine dominated forest
site enabled us to delineate the confounding effects of snow on vegeta-
tion indices. The snow-affected periods, including spring snow melt,
were visually identified from the PhenoCam images, which clearly
revealed periods of snow cover for this particular site due to an area of
bare ground included in the images.

To detect and then minimize the snow effects on the GPP-VI re-
lationships, we developed a method to identify snow pixels by
combining NDSI, CCI and kNDVI, because combining multiple indices
leads to improved snow detection for forested areas over using NDSI
alone (Lv and Pomeroy, 2019; Wang et al., 2018). In this study, we used
CCI and kNDVI in snow detection. Unlike NDVI-based indices, snow
increases CCI values (Figure S1 in the supplemental materials). KNDVI
was designed to be insensitive to NDVI variation when NDVI is low
(Camps-Valls et al., 2021). For evergreen forests, these low NDVI values
are most likely caused by snow cover. Thus, kNDVI values are constantly
low, with limited variations during snow-covered periods (Figure S1 in
the supplemental materials). This combination of CCI and kNDVI is
particularly useful to separate snow-affected data from snow free data in
the kNDVI-CCI space, which has relatively low kNDVI values and high
CCI values (Figure S2 in the supplemental materials). For sites that have
a long snow-affected period (annual total number of snow-affected days
> 30), we identified snow pixels based on NDSI and trained a binary
support vector machine (SVM; Boser et al, 1992) to distinguish
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snow-affected pixels using data collected during the flux and MODIS
data overlap for each site. To automate model selection for each site, we
used Bayesian optimization in Matlab 2021b to optimize hyper-
parameters of each SVM classification model (Gelbart et al., 20714;
Snoek et al., 2012). In each SVM snow detection model, we used NDSI to
label pixels affected by snow and used CCI and kNDVI as inputs of SVM.
We tested the SVM classification accuracy at each site using 10-fold
cross-validation. We then applied the snow detection algorithm to all
the data at this site to identify snow-affected data that might be missed
by using NDSI alone (Figs. 2, S1 and S2 in the supplemental materials).
We removed the data either labeled as snow according to NDSI or
classified as snow by the binary SVM model. For sites whose total
number of annual snow-affected days was less than 30 days, we removed
the snow-affected pixels identified with NDSI, because a small training
sample had the potential to decrease the accuracy of SVM classification.
After removing snow-affected data, we then used asymmetric Gaussian
functions (Jonsson and Eklundh, 2004) to fit the snow-free data and
extend the fitted curve to estimate the theoretical snow-free vegetation
index values in the winter. To quantify the effectiveness of snow removal
algorithm, we calculated the Pearson correlation coefficients between
daily GPP and vegetation indices before and after snow removal for the
47 sites.

2.5. Contributions of snow artifacts vs. biological effects to vegetation
index variations

To evaluate the extent of snow influence for each index, we caleu-
lated a series of “delta” values due to snow, vegetation, and all factors
combined. To do this, we compared the change in yearly VI values (i.e.,
the “total” range across the annual period in VI values; “yearly” delta VI)
to the change due to snow artifacts (i.e., “snow-affected” delta VI values)
and due to actual vegetation change (i.e., “snow-free” delta values, the
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Fig. 2. Seasonal course of GPP (black lines) and vegetation indices (NDVI, CCI, NIRv, and kNDVI) before (blue points) and after (red points) snow removal (“SR”).
Data were collected from the CA-Qfo flux site in 2009. Grey-shaded areas denote snow-affected periods, and the vertical yellow band indicates snow-melt period in
the late spring based on visual inspection of PhenoCam imagery. We also identified an additional snow day on October 13, 2009 using PhenoCam imagery.
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change in VI values due to the residual effect of vegetation, following
correction for snow cover). Yearly deltas were calculated by subtracting
the minimum value from the maximum value within a year. Snow-free
(“vegetation™) deltas were calculated by subtracting the minimum
value from the maximum value from May — October. Snow-affected
deltas were calculated by subtracting the minimum value from the
maximum value in the snow affected months (November to April). This
methodology allowed us to evaluate the annual change in a vegetation
index due to actual biological effects associated with vegetation struc-
tural and physiological changes versus those due to snow artifacts.

2.6. Relationships between VIs and apar and ¢ in the LUE model

To explore the relationships between MODIS vegetation indices and
different terms in the light use efficiency (LUE) model, we combined
APAR using daily maximum PPFD from the flux measurements with
MODIS NDVI to provide an indicator of fAPAR. Considering the over-
estimation of MODIS fAPAR especially for sparse forests in boreal region
(Iwata et al., 2013; Yan et al., 2016), we directly estimated fAPAR by
utilizing a linear relationship between NDVI and fAPAR (Sims et al.,
2006). Then, the efficiency of utilizing light in photosynthesis (¢) was
calculated as

_ GPP GPP B GPP
" APAR ~ PPFD x fAPAR ~ PPFD x f(NDVI)

(5)

£

0.8 . . .

0.7

0.6

Delta Vegetation Index

NDVI

NIRv

CClI kNDVI

Agricultural and Forest Meteorology 340 (2023) 109600
3. Results
3.1. Snow effects on MODIS VIs

The influence of snow cover varied with vegetation index at the CA-
Qfo site (Figs. 2 and 3). All vegetation indices were affected by snow,
which increased CCI values, but decreased NDVI-based indices (NDVI,
NIRv, and kNDVI). Among the NDVI-based indices, kNDVI was least
sensitive to changes in snow cover (exhibiting least variation) due to the
compressed variation when NDVI values were low during snow-covered
periods. The contrasting responses to snow cover of CCI and kNDVI to
the presence of snow enabled snow detection with these two indices
(Figs. 2, S1 and 52 in the supplemental materials).

The magnitude of changes in the vegetation indices due to snow vs.
vegetation phenology became clear by means of “delta” values for each
index, defined as the absolute difference between summer maxima to
winter minima with and without snow correction (Fig. 3). All indices
showed large snow effects, which we refer to as “snow artifacts™ because
they represent the potentially confounding effects of snow on relation-
ships between GPP and vegetation indices. In all cases, the snow removal
algorithm reduced the snow effects on vegetation indices (Figs. 2 and 3).

The performance of vegetation indices in tracking GPP phenology
was clearly confounded by snow coverage. At the CA-Qfo site, snow
cover greatly exaggerated the seasonal variation in NDVI; most of the
seasonal variation in NDVI-based indices occurred during transitions in
snow-cover when daily GPP was less than 1 g Cm™>d ™! (Figs. 3 and 4),
revealing a clear artifact of snow cover on the GPP-NDVI relationship.
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Fig. 3. Seasonal delta vegetation index (NDVI, CCI, NIRv, and kNDVI) values before (a) and after (b) snow removal in 2009. Yearly (blue) deltas were calculated by
subtracting the minimum value from the maximum value within a year. Snow-free (red) deltas were calculated by subtracting the minimum value from the maximum
value from May — October, and represent the delta VI values attributable to vegetation change. Snow-affected (yellow) deltas were calculated by subtracting the
minimum value from the maximum value in the snow affected months (November to April). Data were collected from the CA-Qfo flux site.
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Fig. 4. Relationships between GPP and different vegetation indices for different seasonal periods, illustrating effects of snow-cover (red points) and snow-melt
(orange points) on the correlation between GPP and vegetation indices. Data were collected from the CA-Qfo flux site in 2009 and 2010. Snow-melting periods

were estimated based on Phenocam imagery.

Similar effects were seen for the other greenness indices (NIRv and
kNDVI), with much of the seasonal change attributable to changes in
snow cover rather than changes in vegetation associated with GPP
(Fig. 4). Snow had the opposite effect on CCI; snowmelt reversed the sign
of the relationship between GPP and CCI (from positive to negative)
(Fig. 4), greatly reducing the seasonal variation in CCI and its correlation
with GPP.

Due to the effects of snow on these reflectance-based indices
(Figs. 2-4), removal of snow-affected data clearly changed the rela-
tionship between GPP and vegetation indices in each site, expressed as
the correlations between daily GPP and vegetation indices for the 47
sites (Fig. 5). The high accuracy of snow identification using binary SVM
classification (average classification accuracy = 0.968) and low errors in
fitting vegetation indices seasonal curves indicated high confidence in
the snow removal algorithm (Table S1 in the supplemental materials).
Before snow correction, all of the NDVI-based indices were more
strongly correlated with GPP than CCI, which had a notably weaker
correlation with GPP (Fig. 5). After snow removal, the correlation be-
tween GPP and CCI was enhanced, while the correlation between GPP
and NDVI-based indices (NDVI, NIRv, and kNDVI) decreased slightly
(Fig. 5). After snow correction, we also noticed less among site varia-
tions between GPP-CCI correlation than GPP-NDVI based indices cor-
relations (Fig. 5).

Snow removal clearly improved the ability of CCI to track GPP
change for the subarctic and subtropical sites (Table 1 and Fig. 6).
Overall, CCI and NIRv yielded stronger relationships with GPP than
NDVI and kNDVI (Fig. 6). Strong relationships between GPP and NDVI
based indices were found for subarctic and high elevation sites that

belong to the ecoregion of Northwestern forested mountains, likely
because of a large contribution of the background annual vegetation,
which could enhance the relationship between overall ecosystem GPP
and greenness indices. For most Mediterranean sites, CCI outperformed
NDVI based indices in tracking GPP phenology, expressed as stronger
correlation with daily GPP (Fig. 6).

Strong correlations were found between APAR and vegetation
indices, except for the mid-latitude sites (Fig. 6). For most of the sites,
NIRv showed the strongest correlation with APAR among three tested
vegetation indices, except for Mediterranean and humid subtropical
(Eastern temperate forests) sites (Fig. 6). There were only relatively
weak correlations between LUE and vegetation indices, and these cor-
relations were strongest for the high latitude boreal forests. For most of
the sites, CCI showed a slightly better relationship with LUE than the
NDVI-based indices, largely because fewer sites reported CCI having low
(negative) correlations, unlike the NDVI-based indices.

Correlation between GPP and vegetation indices varied with ecor-
egion (Fig. 7). Overall, vegetation indices performed best at monitoring
GPP at the northern boreal and taiga sites with a subarctic climate and at
the Eastern temperate sites with a humid subtropical climate, but
(except for CCI) worked poorly at Temperate Sierra sites. Unlike the
NDVI-based indices, CCI performed more consistently across sites, and
lacked sites with negative CCI-GPP correlations. Vegetation indices
performed better at the Northern forests and Taiga than Northwestern
forests mountains, Eastern temperate forests, Marine west coast forests,
and Temperate Sierras. Relationships between GPP and CCI and be-
tween GPP and NIRv were stronger than those between GPP and NDVI in
Marine west coast forests. NDVI based indices, including NIRv, were
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Fig. 5. Snow removal affected the correlations (Pearson correlation co-
efficients) between daily GPP and vegetation indices (NDVI, CCI, NIRv, and
kNDVI). Data from all the 47 sites were used and correlation was calculated for
each site separately. The line in the middle of each box indicates the median
value. The lower and upper hinges correspond to the first and third quartiles
(the 25th and 75th percentiles) and data beyond 1.5 times of distance between
the first and third quartiles from the lower and upper hinges are plotted as
individual points. The medians are roughly significantly different at a 95%
confidence level, if the notches do not overlap (McGill et al., 1978).

poorly correlated with GPP in the Temperate sierras. The largest vari-
ations in the GPP — VI relationships occurred in the Northwestern
forested mountains, which covered four different climate classes (Fig. 7
and Table 1).

We further explored how relationships between GPP and snow cor-
rected vegetation indices varied among climate classes within Eastern
temperate forest and Northwestern forested mountains, both of which
cover multiple climate classes (Table 1 and Fig. 8). All vegetation indices
were able to track GPP in warm summer continental (Dfb) and dry
continental (Dsc) sites. Relationship between GPP and CCI was stronger
than those between GPP and NDVI-based indices in Mediterranean sites
with dry and warm summer (Csb). The relationship between GPP and
NDVI based indices was stronger than that between GPP and CCI in
subarctic (Dfc) Northwestern forested mountains. As in the comparison
across ecoregions (Fig. 7), CCI performed more consistently across
climate classes than NDVI-based indices, and it did not exhibit any sites
with negative CCI-GPP correlations (Fig. 8).

4. Discussion

Our study combined flux data and MODIS-derived vegetation indices
over 47 North American evergreen forest sites to evaluate the relation-
ships between GPP and vegetation indices, and the confounding effects
of snow on these relationships. We greatly expanded the number of sites
compared to earlier CCI studies (Rahman et al., 2004; Drolet et al., 2008;
Gamon et al., 2016; Middleton et al., 2016). We also extended the
analysis well beyond boreal forests to many evergreens across ecor-
egions and climate classes to test the application of CCI and other VIs in
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tracking GPP in evergreen forests across a much wider geographic range
than most previous studies. Our results revealed that reflected light from
snow strongly influenced all vegetation indices, and their correlations
with GPP. Prior to snow correction, the NDVI-based indices performed
better than CCI in monitoring GPP of evergreen forests, but this was
partly due to artifacts of snow, which affected VIs unevenly. After snow
correction, the correlation between CCI and GPP was largely enhanced.
Our results also showed that correlations between GPP and CCI vs.
NDVI-based indices are driven by different factors in the light use effi-
ciency model. The strong performance of CCI was presumably due to its
sensitivity to seasonal pigment changes (Gamon et al., 2016; Wongetal.,
2020), while NDVI-based indices were more sensitive to APAR and leaf
development of deciduous components in the evergreen forest. We also
found that the relationship between GPP and vegetation indices varied
among ecoregions and climate classes, presumably due to the varying
constraints on GPP and stand composition across biomes.

4.1. Effects of snow cover and snow melting on MODIS VIs

Different vegetation indices were affected differently by snow cover,
indicating contradictory and confounding effects of snow on these
indices (Figs. 4 and 5). For example, snow tended to exaggerate the
seasonal trends in NDVI, kNDVI and NIRv, but suppress the seasonal
trends in CCI. Although snow increased reflectance across the whole
visible (VIS) - near infrared (NIR) region, it decreased the difference
between VIS and NIR bands and altered reflectance values of VIS
wavelengths, leading to abrupt decreases in NDVI-based indices and an
increase in CCI as has also been reported in a recent experimental study
(Wang et al., 2023). Without accounting for snow cover, NDVI-based
indices could suggest (incorrectly) a rapid loss and relative sudden
emergence of green foliage in the winter for evergreens due to changes
in snow cover alone. Being inversely impacted by snow (relative to
NDVI), CCI increases due to snow in wintertime that are comparable to
growing season maxima (Fig. 2) could erroneously suggest a sudden
“turning on” of photosynthesis that in the middle of winter for ever-
greens. Thus, snow increased the seasonal variation in NDVI-based
indices, exaggerating the correlation between GPP and NDVI. By
contrast, snow decreased the seasonal variation in CCI, greatly reducing
the correlation with GPP.

Eliminating the contamination of vegetation indices due to snow
revealed the true baseline of the vegetation response and enabled
improved evaluation of seasonal patterns associated with biological
changes affecting GPP (Huemmrich et al., 2021). Snow — and hence
snow correction — had a particularly strong influence in the early spring
when rapid changes occurred in both GPP and snow cover (Fig. 2). In
accord with previous studies (Eklundh et al., 2011; Springer et al.,
2017), the largest and fastest NDVI increases happened during snow
melt (Figs. 2 and 4). This effect was an artifact of snow melt, and not a
direct effect of vegetation phenology or physiological change. This
documentation of severe artifacts in the VI-GPP relationships has
important implications for attempts to monitor long-term GPP trends
from satellites, as most studies that use reflectance-based vegetation
indices do not account for snow cover, and a large part of the signal
falsely attributed to GPP trends can be an artifact of changing snow
cover (Gamon et al., 2013; Myers-Smith et al., 2020; Shen et al., 2014).

4.2. Vs provided complementary information about photosynthetic
phenology

The complementarity hypothesis (Gamon 2015; Gamon et al., 2016)
argues that different vegetation indices provide complementary infor-
mation about plant photosynthetic activities. NDVI follows canopy
development (mainly in annual and deciduous plants) while CCI is
sensitive to seasonal pigment changes particularly the relative levels of
chlorophyll and carotenoid pigments (Gamon et al., 2016; Wong et al.,
2020), both of which can have an important influence on GPP (Springer
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Fig. 6. Correlations (Pearson correlation coefficient) between GPP, LUE, and APAR and snow corrected vegetation indices. Size and color of circles indicate the
Pearson correlation coefficient. Sites listed on the left were sorted by latitude (from North to South). Ecoregions and climate class of each site are summarized in
Table 1. Correlations between NDVI and APAR and LUE were not calculated, because NDVI was used to derive APAR and thus LUE.

et al., 2017; Wong et al., 2020). Carotenoid pigments often serve as
photoprotective and photoregulatory pigments. Presumably, because
carotenoid pigments serve a particularly strong photoprotective role in
evergreens, CCI is also more sensitive to LUE than the NDVI-based
indices (Fig. 6). A history of research has shown that seasonal shifts in
photosynthetic and photoregulatory pigments are important in regu-
lating seasonal photosynthetic activity, particularly under extreme
temperatures (Wong and Gamon, 2015; Magney et al.,, 2019; Wal-
ter-McNeill et al., 2021). The balance of these physiological and struc-
tural factors and their influence on GPP changes with vegetation type
(Gamon, 2015; Garbulsky et al., 2011), and this affects the relationships
between GPP and vegetation indices in different ways depending upon
the index and the particular biome.

The weak correlation between GPP and NDVI for most of the ever-
green forests tested is undoubtedly due to NDVI's sensitivity to green
canopy structure (which has little seasonal change in evergreens) along
with its insensitivity to subtle changes in physiology associated with
pigments and seasonal photosynthetic capacity change in evergreens.
Because CCI is more sensitive to the seasonal dynamies in pigments, a
good indicator of the regulation of photosynthetic light reactions, it
appears to be a more sensitive indicator of LUE and evergreen GPP
phenology than greenness-based indices like NDVI, as has previously
been reported (Gamon et al., 2016; Springer et al., 2017). In contrast,
greenness-based indices like NDVI can provide good estimates of radi-
ation absorbed by green canopy material (APAR) and are sensitive to the
contributions of leaf development and senescence to overall optical
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Fig. 7. Correlations between GPP and snow corrected vegetation indices (NDVI, CCI, NIRv, and kNDVI) by Level-1 ecoregions. The line in the middle of each box
indicates the median value. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles).

signals in annual and deciduous species and understory that could in-
fluence the reflectance in northern sites (Ikawa et al., 2015), and thus of
potential photosynthetic activity (Gamon et al., 1995, 2016; Wong etal.,
2020). CCI also had strong correlations with APAR (Fig. 6). This might
be because CCI was sensitive to both adjustment of pigments in the
spring and fall as well as to canopy structural change such as needle
expansion and shoot elongation (Springer et al., 2017). To track actual
photosynthetic activity (and GPP), additional pigment information
provided by CCI appears to be very useful, and this can help explain the
higher correlation between CCI and LUE relative to the other vegetation
indices (Fig. 6). Combining CCI and NIRv by assuming that these two
indices may represent light use efficiency and APAR in the conventional
LUE model respectively, could lead to stronger relationship with GPP
than using each index alone (Wong et al., 2022). We calculated an index
by multiplying normalized CCI (to the [0, 1] range to eliminate the ef-
fects of negative values) with NIRv, which led to a slight increase in the
correlation with GPP (Figure S7 in the supplemental materials), sug-
gesting that this may be a promising direction for future study. In
addition, correction for sun-view geometry and shadow fraction in the
MODIS data, which were not attempted here, may further improve the
relationship between CCI and GPP (Drolet et al., 2008; Middleton et al.,
2016).

4.3. GPP-VI relationships varied among ecoregions

The distribution and growth of evergreen forests are influenced by
climate (temperature and precipitation), and these effects vary among

ecoregions. Evergreen forests can also vary in the proportion of annual
and deciduous species present, which can vary with disturbance and
succession (Wells et al., 2020). Evergreen and deciduous species also
differ in their optical responses to snow and their GPP phenology (Wang
et al., 2023). These factors undoubtedly contribute to the geographic
variation in the relationships between GPP and VIs (Fig. 7). Forest
growth and distribution are limited by long winters with cold temper-
ature and short daylength for taiga, northern forests and subarctic sites
in the northwest forested mountains (Seyednasrollah et al., 2021). Be-
sides being affected by temperature and light regime, forest distribution
and growth are affected by soil hydrology. Forest growth can be limited
by the water holding capacity of sandy soils, such as those from the
Great Lakes region or eastern North America, which quickly become dry
during periods of drought (Arain et al., 2022; Arain and Restrepo--
Coupe, 2005) and some of the jack pine (Pinus banksiana) forests in the
boreal region (Dietrich et al., 2016; McCollum and Ibanez, 2020). In
regions with pronounced seasonal GPP patterns, including taiga,
northern forests and other subarctic sites, all four vegetation indices
were able to track seasonal GPP change (Figs. 6 and 7). The relatively
low correlation between vegetation indices and GPP for two east coastal
forest sites (US-Ho1 and US-Ho2) was due to limited GPP data (mainly in
the fall) caused by failed daytime partitioning for most of the data.
Strong relationships between VIs and GPP derived from nighttime par-
titioning were achieved for these two sites (Figure S4 in the supple-
mental materials). This indicates that flux partitioning method can also
be a source of error affecting GPP-VI relationships.

The marine west coast forest sites (CA-Ca2 and CA-Ca3) are located
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Cfa: Humid subtropical (mild with no dry season, hot summer); Dfb: Warm summer continental (significant precipitation in all seasons); Csa: Mediterranean (mild
with dry, hot summer); Csb: Mediterranean (mild with dry, warm summer); Dfc: Subarctic (severe winter, no dry season, cool summer); Dsc: Dry continental

(cool summer).

in the wettest climate in North America and are dominated by dense
Douglas-fir, hemlock and cedar. In this case, the contribution of un-
derstory deciduous plants to reflectance can often be negligible, except
following fire, harvesting or in early forest succession when annuals or
deciduous vegetation species dominate (Humphreys et al., 2006). Thus,
CCI was able to track the GPP phenology for these sites due to its
sensitivity to seasonal pigment changes while NDVI and kNDVI exhibi-
ted little sensitivity to seasonal changing GPP (Fig. 6, Gamon et al.,
2016).

For Temperate Sierras (US-Fmf and US-Fuf) and some other Medi-
terranean sites (US-Me2, US-Me3, US-Me5, and US-Me6), where the
climate features dry and warm summer and wet winter, strong corre-
lations were only found between GPP and CCI, with all the NDVI based
indices failing to track GPP phenology (Fig. 7). In some Mediterranean
sites, GPP is restricted by summer drought and associated

11

photosynthetic downregulation in hot summer conditions (Goulden
et al., 2012; Kelly and Goulden, 2016), and vary with forest manage-
ment and disturbance, such as fire treatment (Kolb et al., 2013). In
accordance with previous study at sites US-Fmf and US-Fuf (Kolb et al.,
2013), in a year with late summer drought, NDVI based indices showed
little capability to monitor the overall seasonal GPP change (Fig. 6).
Moderate correlation (r = 0.5) was found between GPP and CCI among
all the years and management treatments, perhaps because of the
additional sensitivity of CCI to pigment signals indicating periods of
photosynthetic (GPP) downregulation (Fig. 6). A large body of literature
suggests that carotenoid-based indices may be responsive to
drought-induced declines in photosynthetic activity (Suarez et al., 2008,
2010; Zarco-Tejada et al., 2012), supporting the good correlation be-
tween CCI and GPP in these systems.
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4.4. Disturbance impacts

Besides climate effects, the overall ecosystem photosynthesis and
carbon uptake of forests are affected by disturbance, such as drought,
fire and pests (Amiro et al., 2010; Kurz et al., 2013; Xu et al., 2020). Such
disturbances are becoming more frequent in many regions, altering the
successional state of forests, and affecting both the distribution of
vegetation types and presumably the links between vegetation indices
and GPP (Zhang et al., 2016; Sarmah et al., 2021). In this study, NIRv
exhibited the strongest correlation with GPP for the site CA-LP1, which
is a lodgepole pine (Pinus contorta) stand that has been severely affected
by mountain pine beetle (MPB, Dendroctonus, ponderosae) since the early
2000s. This is likely due to NIRv s sensitivity to green canopy structure.
While most of the mature pine canopy was killed, residual vegetation,
including younger conifer trees and broadleaf dominated understory,
contributed to the overall ecosystem net photosynthesis (Bowler et al.,
2012; Emmel et al., 2014). However, the yellow to red dead tree foliage
that was caused by beetle attack can, for a few years post-disturbance,
affect the vegetation indices and presumably influence the correlation
between GPP and CCI at this site. A systematic evaluation of impacts of
disturbance on relationships between GPP and vegetation indices is
beyond the scope of this study, but further attention is required when
estimating GPP using vegetation indices for disturbance influenced sites.

4.5. Next generation satellites

The results of this study indicate that combinations of structurally-
based (NDVI-based) with pigment-based (e.g. CCI) indices can provide
improved estimation of GPP, as has been amply demonstrated from a
history of proximal remote sensing. Such combined approaches would
benefit from additional attention to snow correction as demonstrated
here. However, due to the orbital drift of Terra and Aqua satellites, the
global CCI observation capability derived from MODIS data will likely
be limited at some point in the near future. The Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument flying on the Suomi National Polar-
orbiting Partnership satellite, intended to be the continuation of MODIS,
did not retain the 531 nm band needed for calculation of CCI. Current
hyperspectral satellites such as PRISMA (Cogliati et al., 2021; Stefano
et al., 2013) and EnMAP (Guanter et al., 2015) do not have enough
temporal coverage or are not free for public access. One option is the
Second-Generation Global Imager (SGLI) on-board on the Global Change
Observation Mission Climate (GCOM-C), which provides surface
reflectance at 531 nm (Akitsu and Nasahara, 2022). Yet to be tested,
SGLI-based measurements might be able to provide the ability to detect
pigment-based GPP estimations through global PRI and CCI products
until new hyperspectral satellites, such as NASA Surface Biology and
Geology (Cawse-Nicholson et al., 2021) and ESA Fluorescence Explorer
(Drusch et al., 2017) missions, are launched. Thus, it is likely that gaps in
global coverage of critical VIs will occur in the near future, affecting our
ability to assess GPP from reflectance-based methods due to limited
satellite coverage.

5. Conclusions

The satellite-derived vegetation indices commonly used to monitor
terrestrial ecosystem photosynthesis phenology are highly sensitive to
snow cover. Consequently, the performance of these indices in tracking
global GPP phenology is confounded by snow, a topic which has
received only limited attention (e.g., Myers-Smith et al., 2020) despite
the heavy use of vegetation indices in global GPP studies. During the
spring transition, snow melt greatly exaggerated the apparent correla-
tion between GPP and NDVI-based vegetation indices while reversing
the correlation between GPP and CCI. After snow removal, strong re-
lationships were found between GPP and CCI and NIRv, with slightly
higher correlations between GPP and CCI for most of the sites, pre-
sumably due to the sensitivity of CCI to seasonal pigment change
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associated with changing photosynthetic activity and photoprotection.
The relationship between GPP and vegetation indices varied among
geographical regions, ecoregions and climate classes. The GPP-VI rela-
tionship was likely further affected by disturbance history and the exact
composition of functionally distinct vegetation types (e.g. annuals, de-
ciduous and evergreen). For regions with clear seasonal GPP patterns, all
vegetation indices were able to track GPP phenology to some degree.
Among all the ecoregions (climate classes), the strongest relationships
between GPP and vegetation indices were found for the subarctic sites,
while weak relationships between were found for the Mediterranean
sites, where daily GPP exhibited moderate correlation with CCI. The
large snow cover artifacts and complementary vegetation index re-
sponses reported here should be considered in any large-scale studies of
GPP using optical satellites (e.g. MODIS) and illustrate the limitations of
deriving global GPP estimates based on any single vegetation index.
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