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ABSTRACT

Internet of Things (IoT) frameworks are designed to facilitate pro-
visioning and secure operation of IoT devices. A typical IoT frame-
work consists of various software layers and components including
third-party libraries, communication protocol stacks, the Hardware
Abstraction Layer (HAL), the kernel, and the apps. IoT frameworks
have implicit data flows in addition to explicit data flows due to
their event-driven nature. In this paper, we present a static taint
tracking framework, IFLOW, that facilitates the security analysis of
system code by enabling specification of data-flow queries that can
refer to a variety of software entities. We have formulated various
security relevant data-flow queries and solved them using IFLOW
to analyze the security of several popular IoT frameworks: Amazon
FreeRTOS SDK, SmartThings SDK, and Google IoT SDK. Our results
show that IFLOW can both detect real bugs and localize security
analysis to the relevant components of IoT frameworks.
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1 INTRODUCTION

Internet of Things (IoT) frameworks are designed to facilitate provi-
sioning of IoT devices, which includes the management of access to
data and resources by these devices and their secure configuration.
Software vulnerabilities in IoT frameworks form an important part
of the IoT attack surface. Attackers can exploit such vulnerabilities
to infect IoT devices with DDos botnets [5], leak sensitive data [2],
or destroy IoT devices [8].
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An IoT framework typically consists of third-party code such
as cryptographic libraries, e.g., mbedTLS , messaging protocol li-
braries, e.g. MQTT , data interchange libraries, e.g., JSON , etc. In
addition to the vulnerabilities within the third-party libraries, an
IoT framework may host vulnerabilities due to misuse of third-
party API or internal APIs, memory vulnerabilities, and leakage of
sensitive data.

In this paper, we present a static taint analysis approach that
improves existing static taint analysis approaches [9, 11, 19, 22]
by supporting a richer set of software entities in the formulation
of data-flow queries and by supporting two types of sanitization
mechanisms.

Unlike previous works that perform data-flow analyses on IoT
apps [10, 11, 26], we focus on the IoT framework Software Devel-
opement Kits (SDKs). Although firmware rehosting and firmware
fuzzing [12, 14, 27] can help find vulnerabilities, these approaches
analyze the attack surface mainly with respect to peripheral inter-
action. However, an important part of the attack surface is due to
the use of APIs and the flow of sensitive data within the framework.

We have implemented our static taint tracking approach in a tool
called, IFLOW, using the SVF tool [22]. Our taint tracking supports
fine granular source/sink entities in the form of specific data fields
and specific function arguments. IFLOW allows specification of
sanitization in the form of functions with specific return values or
in the form of branching instructions. IFLOW can formulate both
API misuse vulnerabilities and sensitive data flows.

We have applied IFLOW to three popular IoT Frameworks: Ama-
zon FreeRTOS SDK [3], SmartThings SDK [7], and Google IoT [6].
We have formulated over 150 API Misuse queries and over 100 sen-
sitive leak queries. Our analysis found an API misuse vulnerability
in mbedTLS and potential leakage of various credentials such as
WiFi passwords. IFLOW can both detect privacy issues and help
better understand the API.

We have equipped IFLOW with several optimizations to scale
our analysis to our case studies. IFLOW computes function sum-
maries based on the Sparse Value Flow Graph generated by SVF
and performs Contex-Free Language reachability while leverag-
ing these summaries. IFLOW also supports other configurations to
optimize the query solving through bounded search and reduced
search.

This paper makes the following contributions:

e Various data-flow query types with sanitization options that
are expressive for formulating API misuse vulnerabilities
and leakage of sensitive data types.

e An open-source! static data-flow query engine, IFLOW, for
C programs developed on top of the SVF tool.

FLOW is available at https://github.com/sysrel/IFLOW.


https://doi.org/10.1145/3508398.3511511
https://doi.org/10.1145/3508398.3511511
https://github.com/sysrel/IFLOW

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

1 // Establish the connection

2 if (xStatus == pdPASS)

3 if (SOCKETS_Connect(pxConnection->xSocket, ...))

4 = SOCKETS_ERROR_NONE)

5 xStatus = pdFAIL;

6 if (xStatus == pdPASS) { ... }

7 else prvGracefulSocketClose(pxConnection);

8 [1777777771777177777177717171777111717177

9 // Called from SOCKETS_Connect

10 while (0 !'= (xResult = mbedtls_ssl_handshake(...))) {

1 if ( (MBEDTLS_ERR_SSL_WANT_READ != xResult) &&
12 (MBEDTLS_ERR_SSL_WANT_WRITE != xResult))
13 break;

}
16 11177711771777171117111711777111117117
17 // Called from prvGracefulSocketClose
18 while (xRead < xReadLength) {
19 xResult = mbedtls_ssl_read(...)
20 }

Figure 1: The vulnerable (CVE-2018-16528) code in Amazon
FreeRTOS that misuses mbedTLS APIL

e Security analysis of three IoT framework SDKs and a large
set of API misuse and sensitive leakage queries that can be
used for new IoT applications that will be deployed on these
frameworks or for the evolution of these frameworks.

This paper is organized as follows. We present a motivating API
misuse vulnerability in Section 2. We present the technical details
of our approach in Section 3 by presenting the supported query
types and the algorithms that solve these queries. In Section 4, we
present our findings on applying IFLOW over 300 queries across the
three IoT frameworks. We discuss the limitations of our approach
in Section 5. In Section 6, we position our work in the context of
related work. In Section 7, we conclude with directions for future
work.

2 MOTIVATION

In this Section, we present an API misuse vulnerability [1] that led
to a double-free (CVE-2018-16528) within two modules of Amazon
FreeRTOS: MQTT Agent and Green Grass Discovery. The misuse
involves two mbedTLS functions: mbedtls_ssl_handshake and
mbedtls_ssl_read. Figure 1 shows the code snippet that misuses
the API. The problem arises when SOCKETS_Connect (line 3) re-
turns an error value due to a failed mbedtls_ssl_handshake (lines
10-13). The error case is handled by the prvGracefulSocketClose
function, which calls the mbedtls_ssl_read function on a cor-
rupted SSL context. However, according to the documentation pro-
vided in mbedTLS and partially shown in Figure 2, when mbedtls_-
ss1_handshake returns anything other than 0 or the four specific
cases shown on lines 4-7 in Figure 2, then SSL context should not
be used, e.g., mbedtls_ssl_read and mbedtls_ssl_write should
not be called on the same context unless mbedtls_ssl_session_-
reset has been called on it.

IFLOW can detect this type of API misuse in a precise way
by reasoning about the return value related conditions and by
reporting only those that violate the API rules.

3 APPROACH

In this section, we present the technical details of our taint tracking
approach. We introduce some background about static data-flow

Tuba Yavuz and Christopher Brant

* warning

* If this function returns something other than

* Q,

* MBEDTLS_ERR_SSL_WANT_READ,

* MBEDTLS_ERR_SSL_WANT_WRITE,

* MBEDTLS_ERR_SSL_ASYNC_IN_PROGRESS or

* MBEDTLS_ERR_SSL_CRYPTO_IN_PROGRESS,

* you must stop using the SSL context for reading or writing,
* and either free it or call mbedtls_ssl_session_reset()

* on it before re-using it for a new connection; the current
* connection must be closed.

Figure 2: Documentation about mbedtls_ssl_handshake in
mbedTLS.

analysis as implemented in SVF [23] in Section 3.1. In Section 3.2,
we introduce the type of queries IFLOW supports and in Section
3.3, we explain how IFLOW implements these queries using SVF. In
Section 3.4, we explain some optimizations we provided in [IFLOW
to improve its scalability.

3.1 Static Data-flow Analysis

Static data-flow analysis typically uses a graph based representation
of a program to statically determine the values that may flow into a
variable at a certain program location. One such program represen-
tation is the System Dependence Graph (SDG) [17], where vertices
represent program statements and the edges represent control-flow
or data-flow dependence between program statements.

In this work, we use SVF to generate a Sparse Value Flow Graph
(SVFG), which is an SDG without the control-flow edges?. SVF
uses the LLVM IR and the results of its points-to analysis to build
the SVFG. Specifically, it builds a Static Single Assignment (SSA)
form, called Memory SSA, for address-taken variables that represent
abstract memory objects. Memory SSA form reveals the def-use
dependencies for address taken variables and complements the
SSA representation for LLVM registers, whose def-use chains are
already computed within the LLVM IR.

An SVFG has two types of edges: direct and indirect. The former
refers to def-use dependencies that are available in the LLVM IR
and the latter refers to def-use dependencies computed based on the
Memory SSA. SVF provides additional information about the nodes
such as the type of program statement and about the edges such
as whether the dependency is intra-procedural or inter-procedural
(through a parameter or a return value at a callsite).

1 char *receive(char *buf) {
2 buffo] = 'A';

3 return buf;

4}

5 int main(int argc, char =*xargv) {
6 char xbufl = (char*)malloc(10);
7 char xbuf2 (charx)malloc(10);
8 char xbuf3 (charx)malloc(10);
9 char *b = receive(buf1);

10 int length = bufi1[0];

1 memcpy (buf2, b, bufl - buf2);
12 memcpy (buf3, b, length);

Figure 3: Sample code with data-flows through pointers.

2SVF provides the inter-procedural control-flow graph (ICFG) and the control-flow
graph (CFG) for each function can be constructed through the LLVM interface.
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line 6 o line 7
def of buf1 } def of buf2
e line 9
load of buf1
v line 9 e
line 10 1st actual par
load of buf1
e line 2
load of buf1
line 10 ¢ (4]
deref of buf1 @ m
line 2
9 deref of buf1
line 10 i (5]
load of buf1[0]
e line 2
¢ D def of buf1[0]
line 10
def of length
; Y \4
line 12 line 11 line 11
load of length load of buf1 load of buf2
line 12 line 11
3rd actual par 3rd actual par

Figure 4: Part of the sparse value flow graph for the example
in Figure 3.

Figure 3 shows a sample code that has data-flow through a
pointer, buf1, as well as through a function call, receive. Figure 4
shows part of the sparse value flow graph and in simplified form.
SVF recognizes memory allocation sites such as lines 6 and 7 as
the definition of abstract memory objects and keeps track of data
flows of these memory objects. It does so both intraprocedurally
and interprocedurally. For instance, since the receive function sets
the first element of its formal parameter, buf, and buf1 is passed as
an actual parameter to receive at line 9, the dependency between
line 2 and line 10 will be captured through the path 1-2-3-4-5-6-10-
11-12 in Figure 4. SVF represents dereferencing operations, i.e., a
sequence of load instruction followed by a GetElementPtr instruc-
tion or another load instruction in LLVM, explicitly in the SVFG.
So, the existence of a path from a source node to a destination node
may denote direct flows as well as indirect flows through one or
more levels of indirection through the dereferencing operations. For
instance, the path 6-10 in Figure 4 represents the direct data-flow
between line 2 and line 10 in Figure 3 where as the path 7-8-9-10 in
Figure 4 represents the indirect data-flow between line 6 and line
10 in Figure 3.

3.2 Query Types

Since our goal is to support security analysis of frameworks, we
present several data-flow query types that can be used to model
various vulnerability types. Our goal is to minimize the number of
false positives as well as false negatives. The former requires precise
formulation of the dependencies. The latter requires considering
the possibility of the arbitrary data-flows due to the interaction of
arbitrary data-structures. In what follows, we explain the query
types we consider in this work through diagrams that depict a
combination of data-flow and control-flow dependencies. We use
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Figure 5: Query Type 1: Source a) directly (solid arrow) or b)
indirectly (dotted arrow) taints the sink. Dashed arrow de-
notes control-flow.

Figure 6: Query Type 2: Source a) directly (solid arrow) or
b) indirectly (dotted arrow) taints the sink while subject to
sanitization rule. argl (arg2) is an actual argument of call-
site cs1(cs2). S denotes the sanitization value. Dashed arrow
denotes control-flow.

dashed arrows to denote control-flow dependence, solid arrows to
denote direct data-flow dependence, i.e., no dereferencing operation
between the source and the sink, and a dotted arrow to denote a
possibly indirect data-flow.

Figure 5 depicts the first type of query IFLOW supports. The
source and the sink can be any argument of a function at some
callsite or a specific argument specified via the position. IFLOW
also enables specifying the type of the argument as one of the
following types: primitive, data pointer, function pointer, or struct
type. The source may also be specified as a specific field of a data
type. This type of query has two subtypes: Type 1.a and Type 1.b
denote direct and indirect data flows, respectively.

Figure 6 depicts the second type of query, which extends Type 1
query with a sanitization rule. When the source is an argument of a
function and the data-flow query rules out cases when the function
returns a specific value, which we call the sanitization value and
denote with S, Type 2 queries should be used. As shown by the cross
symbol in Figure 6, paths on which the function called at callsite
cs1 returns S are not returned included in the query solution set.

As an example, in Figure 7 there is a direct data flow from the first
argument of foo1 callsite at line 9 (ctx1), and the first argument
of bar1 callsites at lines 10 and 12, (d1->sc) due to the assignment
at line 2. So, a Type 1.a query would yield the paths 9-10 and 9-12.
However, if we specify a Type 2.a query, where we use 0 as the
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int fool(struct context *ctx, struct data *res) {

1
2 res->sc = ctx;

3 if (condl)

4 return 0;

5 else return 1;

6 1}

7 void barl(struct context *ctx,...) {...}
8 int main(...) {

9 if (fool(ctx1, d1))

10 bar1(di->sc, v1);

1 else

12 bar1(d1->sc, v2);

13 }

Figure 7: Sample code with data flows between the source
and the sink.

Figure 8: Query Type 3: Source and sink are a) directly (solid
arrow) or b) indirectly (dotted arrow) tainted by some com-
mon value. argl (arg2) is an actual argument of callsite cs1
(cs2). The dashed arrow denotes control-flow.

sanitization value then the solution includes only the path 9-10 as
the path 9-12 would be eliminated due to the sanitization rule.

Figure 8 shows the third type of query, where the data is not
required to flow between the entities of interest, e.g., argl and
arg?2, and, instead, the data flows from a common value into these
entities. As an example, in Figure 9, conf— >sc flows both into the
first argument of foo2 callsite at line 10 and to the first arguments
of bar2 callsites at lines 11 and 13. However, there is no data flow
from the first argument of foo2 callsite at line 10 to the first argu-
ments of bar2 callsites at lines 11 and 13. Therefore, a Type 1 query
that specifies foo2’s first argument as the source and bar2’s first
argument as the sink would have an empty solution. However, if
we intend to locate paths like 10-11 or 10-13, where foo2 and bar2
receive the same value, which corresponds to conf->sc in Figure 9
and is denoted by sva or svb in Figure 8, then we should formulate
a Type 3 query.

int foo2(struct context *ctx) {
if (ctx->a)
return 0;
else return 1;

void bar2(struct context *ctx) {...}
int main(...) {
struct data xconf = ...;

9 ctx1 = conf->sc;

10 if (foo2(ctx1))

11 bar2(conf->sc);
12 else

13 bar2(conf->sc);
14 }

Figure 9: Sample code with data flows where the source and
the sink are tainted by a common value.
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4
cst
return value
=8

Figure 10: Query Type 4: Source and sink are a) directly (solid
arrow) or b) indirectly (dotted arrow) tainted by some com-
mon value while subject to sanitization rule. argl (arg2) is
an actual argument of callsite cs1 (cs2). S denotes the saniti-
zation value. The dashed arrow denotes control-flow.

Figure 10 depicts the fourth type of query, which extends Type 3
queries with a sanitization rule. So, for the code in Figure 9, a Type
4 query where arg1 and arg?2 are specified as the first arguments
of f002 and bar?2 callsites, respectively, and the sanitization rule of
1 is specified then the path 10-13 would be returned in the solution
and not the path 10-11.

3.3 Query Engine

We have implemented a query engine to solve the four types of
data-flow queries presented in Section 3.2. We configured SVF to
use context-insensitive points-to analysis to scale it to large code
bases. We used the Sparse Value Flow Graph (SVFG) and the Inter-
Procedural Control-Flow Graph (ICFG) generated by SVF to solve
the queries. We use Context-Free Language (CFL) Reachability
algorithm [20] for checking reachability both in the SVFG and
in the ICFG to consider only valid paths, i.e., updates the calling
context at function entry nodes and follows only the paths that
match the calling context at function exit node.

Algorithm 1 shows how the query types 1 and 2 are solved.
Given a query Q = (Argi, Arga, San, S), where Arg; (Args) is the
set of argy (args) nodes as shown in Figures 5 and 6, for each pair
(arg1,args) it checks if there is a direct or indirect data-flow between
them. If so, it checks for the existence of the control-flow. Note that
if there is a data-flow there must be a control-flow path between the
two entities. However, when sanitization is involved, control-flow
check ensures that there is still a valid path after eliminating paths
due to sanitization and whether the pair should be included in the
solution set.

Algorithm 2 solves the query types 3 and 4. Given a query
Q = (Arg1, Argy, San, S), where Arg; (Argp) is the set of argy (arg)
nodes as shown in Figures 8 and 10, for each pair (arg;,args) it
checks if there is some value in the SVFG from which data-flows
into both arg; and argy. Once such common value is found, exis-
tence of a control-flow path between arg; and args is check subject
to sanitization rules.

In both Algorithm 1 and 2, Algorithm 3 is used to compute the
set of basic blocks, Sanbb, that is used to disqualify the valid yet
uninteresting control-flow paths between arg; and args. For query
types 2 and 4, San denotes the set of callsites that are used as
sanitizers when the return value is equal to S. For each callsite cs
in San, we check whether it is a control-flow relevant instruction,
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Algorithm 1: Solving Query Types 1 and 2.

Algorithm 3: FindSan: Finding sanitization nodes.

Input: Q: Query, Gi: SVFG, Gg; ICFG, Type: {Direct,
Indirect}
Output: Sol: Set of Satisfying Node Pairs
1 Sol « 0;
2 Let Q = (Argy, Arg2p,San,S) > San =0 and S = undeffor
Type 1
3 Sanbb < FindSan(San, S, ICFG)
4 for each arg; € Arg; do

5 for each argy € Argy do
6 if exists a path p from arg; to argy in G; then
7 if Type is Direct and there exists a dereferencing
node on p then
8 ‘ continue
9 end
10 end
11 if there exists a path from BB(argy) to BB(argy) in
Gy without going through any of the nodes in Sanbb
then
12 ‘ Sol « Sol U {(argi,arg2)}
13 end
1 end
15 end

Algorithm 2: Solving Query Types 3 and 4.

Input: Q: Query, Gi: SVFG, Gg; ICFG, Type: {Direct,
Indirect}
Output: Sol: Set of Satisfying Node Pairs
1 Let Q = (Arg1,Arg2;,San, S) > San = 0 and undef for Type
3
2 Sanbb < FindSan(San, S)

3 for each arg; € Arg; do

4 for each argy € Arg, do
5 if Type is Direct then
6 Let P; (P2) denote the set of nodes from which
there is a path to arg; (argz) in G; without
visiting a dereferencing node
7 end
8 else
9 Let P; (P2) denote the set of nodes from which
there is a path to arg; (argz) in Gy
10 end
11 if P; N Py # () then
12 if there exists a path from BB(arg1) to BB(args)
in Gy without going through any of the nodes in
Sanbb then
13 ‘ Sol « Sol U {(argi1,argz)}
14 end
15 end
16 end
17 end

Input: San: Sanitization CallSites, S: Sanitization Value
Output: Sanbb: Sanitization Basic Blocks

1 Sanbb «—
2 for each cs € San do
3 if cs do not return a value or is not control-flow relevant
then
4 ‘ continue
5 end
6 if return value of cs, r, flows into a conditional branch
inst. br then
7 Let bb denote the basic block terminated by br
8 if r = S condition flows into br then
9 ‘ Sanbb « Sanbb U {TrueTarget(bb)}
10 end
1 else if r # S condition flows into br then
12 ‘ Sanbb « Sanbb U {FalseTarget(bb)}
13 end
14 else
15 | skip > Could not be decided
16 end
17 end
18 else
19 > Return value of c¢s flows into a return inst. ret
20 Let cs” denote the callsite that ret returns to
21 return Sanbb < Sanbb U FindSan({cs’}, S, G1, G2)
22 end
23 end

i.e, returns a value and the value flows into some branch condition.
We leverage the use-def chains to find out where the return value
of cs, if any, flows. We check the LLVM comparison instruction
ICmpInst and the operators ICMP_EQ and ICMP_NE for equality
and inequality checking predicates. We precisely compute the result
of the comparison when the value is compared against a constant
value. If the return value of cs is equal to S then we include the target
basic block of the true branch, and that of the false branch otherwise.
In case the comparison is more complicated then we conservatively
do not record any sanitization basic blocks, which may lead to false
positives in the query solutions. Although Algorithm 3 works for
a single sanitization value, IFLOW supports specifying multiple
sanitization values, which would be needed, for instance, for the
mbedTLS API misuse presented in Section 2. In such a case, for
each sanitization value the set of basic blocks are computed and a
union of these basic blocks are used while filtering out the valid
source-sink patterns.

3.4 Query Optimizations

Solving data-flow queries for large frameworks is challenging as
scalability becomes an issue. We have implemented several opti-
mization strategies to reduce query solving time.
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Function Summaries. Before solving the query, we traverse the
SVFG and detect data-flows from the formal parameters to the out-
side contexts. We keep a map from the formal parameter nodes to
the boundary nodes, FormalOut and FormalRet type nodes, that
establish data flows to outside the function. By keeping maps from
Formalln type of nodes to a set of FormalOut or FormalRet type
nodes, we skip traversing intermediate nodes when checking for
data-flow reachability. However, we make sure to traverse the in-
ternal nodes for a function when the function includes arg; (the
source) or args (the sink) to avoid missing a path due to summa-
rization. One of the maps stores reachability information for direct
data flows and another stores the same for indirect data flows.

Bounded Search. We set a bound for data-flow reachability as
well as control-flow reachability. So, the search terminates when
the bound is reached leading to under approximation.

4 EVALUATION

We have chosen three open-source IoT framework SDKs: Amazon
FreeRTOS SDK, SmartThings SDK, and Google IoT SDK. These
SDKs are written to facilitate development of IoT device applica-
tions. Our goal is to analyze the attack surface of these SDKs using
data-flow analysis.

Table 1 shows various characteristics of our benchmarks. We
compiled these projects with the clang compiler, used the default
configurations?, and generated the LLVM bitcode as SVF, on which
IFLOW is built on, works at the LLVM IR level. We have com-
puted the source lines (SLOC) using David Wheeler’s sloc tool. For
Amazon FreeRTOS, we have included the libraries directory and
excluded the projects directory as the latter mainly includes vendor
specific code. However, we did compile Amazon FreeRTOS for the
STM 321475 board and, therefore, included STM 321475 specific code
as well. We compiled SmartThings SDK and Google IoT SDK with-
out choosing a particular target due to challenges of compiling the
platform specific code for the available ports. We present the size
of the LLVM bitcode since only a part of the source gets compiled
due to the configuration settings. We list the number of source files
that get transformed into LLVM bit code under the LLVM Modules
column. We measured the sizes of the Call Graph and the Sparse
Value Flow Graph in terms of the number of nodes and edges.

We have run our experiments on an Ubuntu machine with 32
GB RAM with Intel i7 Core. We set the reachability bound to 50 as
the default value.

We evaluated IFLOW in terms of its effectiveness in answering
security queries and its performance.

4.1 Security Queries

4.1.1 Leakage of Sensitive Data. We want to understand what type
of security sensitive information gets stored, generated, and pro-
cessed by these frameworks and whether these sensitive informa-
tion would be leaked. We analyzed the header files for the data
types and identified sensitive fields. Table 2 lists the struct data
types and the sensitive fields along with the type of information
stored in these fields. We have encountered private/secret keys,
WiFi passwords, Pin codes, and MQTT client passwords.

3With the exception of SmartThings SDK for which we were able to enable the DEBUG
options.
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We have formulated a data-flow query using Query Type 1in a
way that the sensitive field accesses were designated as the source
nodes and and the arguments of memcpy and functions that include
one of the keywords Write, Print, Dump, Log, Publish, and Send
(along with their all lowercase and all uppercase versions) as the
sinks. Although we did not expect any explicit leakage of sensitive
data within the framework code, we wanted to find out how sen-
sitive data moved around, e.g., via memcpy, and in which contexts
they get accessed. We present our findings below.

4.1.2  Google loT SDK. Google IoT implements an event-based
architecture for I/O. It copies the sensitive fields within the MQTT
layer using memcpy and places the generated connection data to
some buffer, which gets added to an I/O event queue to be processed
later. This is probably why we did not find direct data flows to
other sinks. In the contexts that data copying was performed, e.g.,
do_mgtt_connect, we found out that the buffers with sensitive
data (connection password, a field of the iotc_connection_data_-
s type ) were freed without clearing the contents. Although as a
security precaution the IOTC_SAFE_FREE macro sets the pointer to
NULL after freeing the memory, the free operation is implemented in
terms of the platform specific free function. In none of the platform
specific implementations the memory gets cleared.

4.1.3  SmartThings SDK. Inside the iot_nv_get_wifi_prov_data
function, the password is read from NVRAM and then some other
elements of the provisioning info such as MAC string and BSSID are
read. If there are any conversion errors encountered with these, the
password is not erased from the data structure that was previously
initialized with the password read from the NVRAM. What makes
this complicated is that such conversion errors are not propagated
to the calling contexts of this function as IOT_ERROR_NONE is
returned.

Inside the _iot_security_be_software_pk_sign_ed25519
function, the secret key is copied to a local array, which does not
get cleared upon function return.

When CONFIG_STDK_IOT_CORE_LOG_LEVEL_DEBUG is en-
abled, then sensitive information such as the Wifi password would
get written to the standard output. While some project examples for
the SmartThings SDK provide two separate configurations: a debug
configuration and a non-debug one. In the debug configurations
this option is enabled, However, in the rtl8721c project example, a
single configuration with the CONFIG_STDK_IOT_CORE_LOG_-
LEVEL_DEBUG option being enabled is provided. Although Realtek
provides a disclaimer about their project in their website [4], we
think that it is safer to separate the debug configurations from
non-debug ones to prevent accidental enabling of such options
during deployment. Also, SmartThings SDK leaks the address of
some sensitive data in DEBUG mode.

4.1.4 Amazon FreeRTOS. Inside the STM 321475 specific implemen-
tation of the WIFI_ConnectAP function, Wi-Fi password is copied
to a local array to be used as a parameter for the ES_WIFI_IsCon-
nected function. However, this local array that stores the password
is not cleared upon function return. IFLOW also reports a data-flow
within the STM 321475 specific implementation of the WIFI_Con-
figureAP function, which has the same problem. Since we were
only able to compile Amazon FreeRTOS for the STM 321475 port,
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Framework SLOC | LLVM Bitcode | LLVM Modules Call Graph SVFG
#Nodes ‘ #Edges | #Nodes ‘ #Edges
Amazon FreeRTOS SDK | 452K 2075KB 266 3220 12748 363108 | 540581
SmartThings SDK 193K 4066KB 241 2613 12994 287124 | 433924
Google IoT SDK 199K 783KB 51 429 2396 44709 58825

Table 1: Benchmark characteristics.

Framework Data Type Field Type of Sensitive Data
Amazon FreeRTOS IotNetworkCredentials pPrivateKey Private Key
P11KeyConfig_t uxDevicePrivateKey Private Key
TotHttpsConnectionInfo pPrivateKey Private Key
IotHttpsAsyncInfo pPrivData Private Data
BTPinCode_t ucPin Bluetooth PinKey Code
WIFINetworkParams_t xPassword Wi-Fi WEP Key
WPA/WPA2 Pass Phrase
WIFINetworkProfile_t cPassword Wi-Fi Access
Point Password
WIFIWEPKey_t cKey Wi-Fi WEP Keys
WIFIWPAPassphrase_t cPassphras Wi-Fi WPA

Pass Phrase

SmartThings SDK iot_wifi_prov_data password Wi-Fi Password
iot_wifi_conf pass Wi-Fi Password
iot_security_pk_params seckey Private Key
iot_security_cipher_params key Shared Key
iot_security_ecdh_params t_seckey Things Secret Key
iot_net_connection key Private Key
iot_security_buffer P Generic Sensitive Data
Google IoT SDK iotc_connection_data_s password MOQTT Client Password
iotc_crypto_key_data_t crypto_key_union Public/Private Key
connect password MQTT Password

Table 2: Sensitive data structure fields defined within the IoT frameworks.

we were not able to execute our queries for other ports of the frame-
work. However, we decided to analyze other implementations of
WIFI_ConnectAP and WIFI_ConfigureAP API functions and see
whether they had similar copying behavior. Table 3 represents our
findings by manually checking the code in the publicly available
ports of Amazon FreeRTOS. It is interesting to see that for the
WIFI_ConnectAP API function out of 12 ports only two of them did
not have the problem of leaking sensitive data to memory, which
can later be exfiltrated by attackers via exploiting a memory over-
flow read as in the case of the HeartBleed vulnerability. Although
leakage of sensitive data within the WIFI_ConfigureAP function is
not as common as in the case of WIFI_ConnectAP, this is, however,
mostly due to the implementations of this function being merely
dummy functions that return without actually performing the con-
figuration. We think that sensitive data must always be erased from
a buffer once the buffer is no longer used and developers should
apply this secure programming practice to minimize the attack
surface.

4.1.5 API Misuse. We have analyzed the IoT frameworks both for
conformance to the the mbedTLS API rule regarding not using
the corrupted SSL context when the handshake fails as well as
for the SDK API rules we have devised based on the available
documentation, e.g., code comments and test cases. Table 5 shows

the number of queries for each component of the IoT frameworks.
As the table shows, most of the API belong to component classes
common across the IoT frameworks such as MQTT, HTTP, WIFI,
TLS, and Sockets.

mbedTLS API Rule Checking. We have formulated one query to
check if mbedtls_ssl_read gets called when mbedtls_ssl_hand-
shake fails and another to check the same for mbedtls_ssl_write
using Query Type 4. We have found violations of these rules. How-
ever, it turns out that the violation is within the mbedTLS library
rather than any of the IoT framework clients. The violation oc-
curs inside the mbedtls_ssl_read function, which may continue
performing the handshake process if it was incomplete. The code
snippet that violates the API rule is shown in Figure 11. According
to the condition at lines 3-4, the function terminates with an error
if handshake is not successful and the failure is not due to renegoti-
ation. So, the function continues executing if either the handshake
is successful or it fails due to renegotiation. As shown in Figure 2
that shows the official documentation from mbedTLS, using the SSL
context, e.g., by mbedt1ls_ss1_read_record?, should be an error

4IFLOW supports both exact matching and substring matching when searching for
function names. We have used substring mode to deal with function name transforma-
tions that typically happen in LLVM bitcode. This is why we were able to detect the
mbedtls_ssl_read_record as a sink callsite.



CODASPY 22, April 24-27, 2022, Baltimore, MD, USA Tuba Yavuz and Christopher Brant

Board Vendor WIFI_ConnectAP WIFI_ConfigureAP
Copies to Clears Copies to Clears

local buffer? | sensitive data? | local buffer? | sensitive data?
stm321475_discovery ST Yes No Yes No
CYW943907AEVAL1F Cypress No NA No NA
CY8CKIT_064S0S2_4343W Cypress Yes No No NA
CYW95490Q7AEVALTF Cypress No NA No NA
mw300_rd Marwell Yes No No NA
cc3220_launchpad TI Yes No Yes No
xmc4800_plus_optiga_trust_x | Infineon Yes No No NA
xmc4800_iotkit Infineon Yes No No NA
esp32 Espressif Yes No No NA
mt7697hx-dev-kit MediaTek Yes No Yes No
numaker_iot_m487_wifi Nuvoton Yes No No NA
1pc54018iotmodule NXP Yes No No NA

Table 3: Amazon FreeRTOS port specific WIFI_ConnectAP and WIFI_ConfigureAP behavior with respect to copying Wi-Fi pass-
word to a local buffer and clearing it.

Framework Source Sink Solution Time (s)
Min | Max | Avg | Min | Max Avg | Min | Max | Avg | Min | Max Avg
Amazon Free RTOS 0 11 2.11 6 | 82507 | 29538.57 0 310.10 9 19 12.26
SmartThings SDK 0| 176 | 36.04 | 271 | 13728 | 4284.38 0 37 | 1.19 | 532 | 924 | 565.83
Google IoT SDK 3 15 | 11.00 0 196 54.86 0 11]0.10 17 31 27.19

Table 4: Leakage of sensitive data.

as the renegotiation case is not mentioned. However, it is also possi-
ble that this may be due to an incomplete specification. Either way,
this shows that IFLOW is effective in checking API conformance
of real-world code. We have disclosed our finding to the mbedTLS
developers and they are investigating the issue. IFLOW could also
detect this API misuse using Query Type 2, which checks for a
direct data-flow from the source to the sink. However, in general
Query Type 4, for which we reported the results in Table 6, is more
general than Query Type 2 as it can detect the pattern even if there
are no data-flows from the source to the sink.

if( ssl->state != MBEDTLS_SSL_HANDSHAKE_OVER ) {

1

2 ret = mbedtls_ssl_handshake( ssl );

3 if( ret != MBEDTLS_ERR_SSL_WAITING_SERVER_HELLO_RENEGO &&

4 ret 1=0) {

5 MBEDTLS_SSL_DEBUG_RET( 1, "mbedtls_ssl_handshake", ret );
6 return( ret );

7 3

8}

9 //ret == MBEDTLS_ERR_SSL_WAITING_SERVER_HELLO_RENEGO || ret == @

10 //keeps using SSL context
11 if( ( ret = mbedtls_ssl_read_record( ssl, 1) ) !=0)

Figure 11: Code within mbedTLS that violates the docu-
mented mbedtls_ssl_handshake rule.

IoT Framework API Rule Checking. Table 7 shows the results
of checking the API rules we devised for the IoT frameworks. In
addition to the source, sink, and solution sizes, we also present the
total number of queries, T, the number of valid queries, V, with
non-zero source and non-zero sink pairs, the number of queries
that pass, P, i.e., conform to the API rule, and the number of queries
that fail, F. As shown in the table, not all queries were valid either

due to the code not compiled into the LLVM bitcode because of the
configuration setting or having zero instances for the sink or the
source. The latter happens when the API function does not have
any callsites. This is due to not having any example code exercising
the API function in the compiled code, which is possibly due to not
being able to compile most of the port specific implementations.
All valid queries pass for SmartThings SDK and Google IoT.

ret = _wifiConnectAccessPoint();

1

2 -

3 if( WIFI_IsConnected( NULL ) == pdTRUE ) {

4 if( WIFI_Disconnect() != eWiFiSuccess ) ...

Figure 12: Sample API with implicit sanitizers.

For Amazon FreeRTOS, we have all valid but four queries pass.
The four failed queries turn out to be false positives due to using
other forms of sanitizers in the form of checking some program vari-
able that does not directly have a data-flow from the return value
of the sanitizing function.An example is given in Figure 12, where
the return value of the _wifiConnectAccessPoint (sanitizer and
the callsite for the source argument) function is not directly used
for deciding whether the sink function WIFI_Disconnect should
be executed. Instead, the connection status is checked using the
WIFI_IsConnected function. We think that taint analysis, in gen-
eral, is not suitable for detecting such cases, which can be handled
more effectively using abstract interpretation or symbolic execution
approaches.



Security Analysis of loT Frameworks using Static Taint Analysis

Framework
Amazon FreeRTOS SDK

Component #Queries
FreeRTOS 22
MQTT
Sockets
TLS
HTTP
GGD
JSON
WIFI
BLE-MQTT
Task
Total
MQTT
Security
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File Sys.
JSON Web Tokens
Total 59
MQTT 16
TLS
Generic Net.
File Sys.
Sockets
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Control Topic
JSON Web Tokens
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Table 5: Various API Misuse queries.

4.2 Optimizations

Table 8 shows query solving results for different reachability bounds
of 5 (B5), 10 (B10), 50 (B50), and the case of unbounded. For the sen-
sitive leak queries, the unbounded case shows similar performance
to those of the bounded cases. However, for mbedTLS API misuse
query for mbedtls_ssl_read, unbounded did not terminate in 6
hours. Although bounded analysis may miss some cases, it enables
scaling the analysis to real-world code in general.

Figure 9 shows the impact of summarization on solving the
mbedTLS API misuse queries, which may have either mbedtls_-
ssl_read or mbedtls_ssl_write as the sink. In these specific
queries that we analyzed we saw up to a 29% reduction in solving
the actual Type 4 query. The reduction in the total time, which
includes structural queries that identifies the source and the sink
entities, is more modest as the function summaries are not relevant
to such structural queries.

5 DISCUSSION & LIMITATIONS

In some cases, we found out that the API rule we constructed
was wrong. As an example, in Amazon FreeRTOS, one of the API
rules we define states that SecureSocketsTransport_Disconnect
should be called only if SecureSocketsTransport_Connect was

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

successful. IFLOW has detected a violation of this rule within the
discoverGreengrassCore function. Although the comment in the
code acknowledges the fact that the SecureSocketsTransport_-
Disconnect call is performed deliberately in the case of a failure, it
turns out that the establishConnect function, which gets called
from the SecureSocketsTransport_Connect function, closes the
socket when there is a failure. So, in the case of a connection
failure, the socket gets closed using the SOCKETS_Close function
the second time from the SecureSocketsTransport_Disconnect
function. The SOCKETS_Close function first checks if the socket
is valid and not in use before it performs some free operations,
e.g., the server’s certificate. So, we think that it is probably safe to
call the SecureSocketsTransport_Disconnect function even if
the SecureSocketsTransport_Connect fails. However, when we
checked the tests in Amazon FreeRTOS, we realized that there were
no integration tests that analyzed this case as the existing tests
assumed that the connection could be established successfully. We
think that API rule coverage can be a useful metric for assessing
quality of integration tests.

IFLOW is effective in formulating API misuses and data-flow
involving specific data types. However, IFLOW is not suitable for
detecting vulnerabilities such as memory overflows or any query
that requires precise semantic analysis. We think that IFLOW can be
combined with more precise analysis approaches such as software
model checking and symbolic execution in a way that IFLOW can
predict suspicious code locations, which can get analyzed further
by these more precise analyses for the realizability of the memory
vulnerabilities.

We were only able to compile Amazon FreeRTOS with clang for
the STM 321475 board. Even for this case we had to deal with some
assembly code. Although some vendors have already incorporated
the clang compiler into their tool chains, in the IoT world this
adoption is still taking place slowly. Although binary analysis is
an alternative way to deal with the problem, when source code is
available, analysis at the IR level has advantages including the ability
to leverage existing source-level mature program analysis tools such
as SVF. We urge more vendors to support the clang compiler so that
tools like IFLOW can be incorporated to the development workflow
and assist developers in finding security issues early on.

6 RELATED WORK

Static Taint Tracking. In [13], reachability analysis on source-
sink pairs are followed by data-flow analysis to detect leakage of
sensitive data in IOS app binaries.

FlowDroid [9] implements static data-flow analysis based on the
Interprocedural Finite Subset (IFDS) framework [20] for Android
Apps. It computes method summaries to scale the analysis. How-
ever, it does not support sanitization. Phasar [22] is an LLVM-based
static analysis framework that also supports the IFDS framework,
which can be used to implement taint analysis. However, Phasar
uses LLVM’s points-to information, which is less precise than SVF’s
inter-procedural points-to analysis [22]. DR.CHECKER [18] is a
static analyzer designed for analyzing Linux device drivers and
includes limited forms of taint tracking, where the sources are the
arguments of the entry functions or those of special kernel func-
tions. IFLOW computes function summaries based on the Sparse
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Framework Source Sink Solution #P | #F Time (s)
Min | Max | Avg | Min | Max | Avg | Min | Max | Avg Min | Max Avg
Amazon Free RTOS | 1094 | 1094 | 1094 934 | 1162 | 1071 0 96 48 1 1 55 88 71.50
SmartThings SDK 787 787 787 | 1129 | 1129 | 1129 19 52 | 35.50 1 1| 926 967 | 946.50
Google IoT SDK 122 122 122 115 128 122 0 68 34 1 1 63 64 | 63.50
Table 6: mbedTLS API misuse.
Framework Source Sink Solution #T | #V | #P | #F Time (s)
Min | Max Avg | Min | Max Avg | Min | Max | Avg Min | Max Avg
Amazon Free RTOS 0 | 1358 | 339.01 0 | 1413 | 274.54 0 241 | 580 | 57 | 24| 20 4 3| 2874 91.22
SmartThings SDK 0 515 98.75 0 | 1002 95.89 0 0 0| 59| 32| 32 0| 862 | 7986 | 1362.12
Google IoT SDK 0 9 1.79 0 16 2.83 0 0 0| 54| 20| 20 0 30 39 32.71
Table 7: IoT framework SDK API misuse.
Framework Query B5 B10 B50 Unbounded
Type | #Sol | Time (s) | #Sol | Time (s) | #Sol | Time (s) | #Sol | Time (s)
Amazon FreeRTOS SDK | Type 1 3 7 3 9 3 9 3 9
SmartThings SDK Type 1 20 454 31 463 37 463 37 469
Google IoT SDK Type 1 0 17 1 17 1 17 1 17
Amazon FreeRTOS SDK | Type 4 62 91 62 90 96 88 - -
SmartThings SDK Type4 | 52 928 | 52 926 | 52 935 - -
Google IoT SDK Type 4 46 60 46 60 68 65 - -

Table 8: The impact of the bound on the query solution size and solving time for Query Type 1 (sensitive data field leak) and

Query Type 2 (APi misuse with sanitization). — means timeout after running for 6 hours.

Framework Sink Type 4 Time (s) Total Time (s)
-Summary | +Summary | -Summary | +Summary
Amazon FreeRTOS | read 115 82 119 86
write 68 49 73 53
SmartThings SDK | read 418 377 1072 995
write 446 439 1162 1133
Google IoT SDK read 38 34 66 60
write 38 34 64 60

Table 9: Impact of summarization on query solving time for the mbedTLS API misuse query.

Value Flow Graph and it implements a variety of query types in-
cluding return value based and conditional sanitization.

Weighted Push Down Systems (WPDS) allows formulating regu-
lar expression queries for specifying paths of interest [21]. IFLOW
allows formulation of several data-flow queries in the form of
source-sink relationship and sanitization constraints.

Static Taint Analysis is customized in [25] to scale it for the
analysis of production code through lazy call graph construction,
inter-procedural def-use analysis, and parallelization based on the
sources. [IFLOW implements bounded search and data-flow sum-
maries to improve scalability.

AndroidLeaks uses static taint analysis to detect sensitive leaks
such as WIFI state information in Android apps [16]. TAJ [24]
combines flow-insensitive data-flow propagation over the heap
with flow and context sensitive data-flow propagation over the
local variables to perform taint analysis for web applications.

IoT Security Analysis. Previous work on data-flow analysis in
the context of IoT focused on the sensitive data leaks from the
IoT apps [10, 11, 15, 26]. FlowFence [15] performs dynamic taint
tracking to enable an information-flow enforcement framework
for IoT apps, which are executed in a sandbox to monitor sensitive
data-flows. ProvThings [26] generates provenance data to facilitate
attack analysis. It uses static data-flow analysis to optimize code
instrumentation. IoTWATCH [10] uses NLP and static data-flow
analysis to instrument code that process sensitive data and detect
run-time privacy violations. IFLOW can support dynamic analysis
approaches like ProvThings, FlowFence, and IoTWATCH during
code instrumentation and dynamic taint propagation and help ex-
tend their analyses to information-flow tracking on the IoT devices
and hubs.

Sensitive leaks are detected in commodity IoT apps in [11] using
static analysis. Taint tracking is performed between five types of
sources (device state, device information, location, user inputs, and
persistent state variables) and two types of sinks (internet and



Security Analysis of loT Frameworks using Static Taint Analysis

messaging services). This work is complementary to our work as
our approach targets sensitive data-flows and API misuse in IoT
frameworks.

Firmware rehosting and fuzzing approaches [12, 14, 27] can
detect vulnerabilities in IoT frameworks. IFLOW can support these
approaches by guiding fuzzing to the parts of the code that hosts
specific data-flows.

In [19], static taint analysis has been used to detect insecure code
patterns in Industrial Robot Programs that are implemented using a
Domain Specific Language. However, the approach in [19] supports
a simple form of sanitization: existence of a function call whereas
IFLOW uses a return value constraint.

7 CONCLUSIONS

We have presented the first static taint analysis tool, IFLOW, that
can apply sanitization rules based on the API return values. IFLOW
can also use accesses to specific data fields of data structure types
as sources and sinks. IFLOW fills an important gap for the analysis
of system code implemented in C. We have shown effectiveness of
IFLOW by applying it to three popular open-source IoT Framework
SDKs. IFLOW is effective in formulating API misuse queries and
sensitive data-flow leakages. Our results show that IFLOW is effec-
tive in finding API misuses in real-world code and in identifying
vulnerable code locations such as those that copy sensitive data to
local buffers. We think that tools like IFLOW can support secure
evolution of IoT frameworks. In future work, we are planning to
integrate IFLOW with more precise yet less scalable analyses such
as symbolic execution to check for memory vulnerabilities within
components that depict certain suspicious code patterns.
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