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Abstract

This work proposes a new stabilized P1× P0 finite element method for solving the incompressible Navier–Stokes equations.
he numerical scheme is based on a reduced Bernardi–Raugel element with statically condensed face bubbles and is pressure-

obust in the small viscosity regime. For the Stokes problem, an error estimate uniform with respect to the kinematic viscosity
s shown. For the Navier–Stokes equation, the nonlinear convection term is discretized using an edge-averaged finite element

ethod. In comparison with classical schemes, the proposed method does not require tuning of parameters and is validated
or competitiveness on several benchmark problems in 2 and 3 dimensional space.

2022 Elsevier B.V. All rights reserved.
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Pressure-robust methods

1. Introduction

Let Ω ⊂ Rd be a bounded Lipschitz domain with d ∈ {2, 3}. Let u : Ω → Rd be the velocity field of a fluid
occupying Ω and p : Ω → R denote its kinematic pressure. The dynamics of the incompressible fluid within Ω

subject to the loads f ∈ L2
(
0, T ; [L2(Ω )]d

)
, g ∈ L2

(
0, T ; [H

1
2 (∂Ω )]d

)
before a time T > 0 is governed by the

incompressible Navier–Stokes equation

ut − ν∆u + u · ∇u +∇ p = f in Ω × (0, T ], (1.1a)

∇ · u = 0 in Ω × (0, T ], (1.1b)

u = g on ∂Ω × (0, T ], (1.1c)

u(0) = u0 in Ω , (1.1d)

where ν > 0 is the kinematic viscosity constant, and u0 ∈ [L2(Ω )]d is the initial velocity.
Numerical discretization of the velocity–pressure formulation (1.1) is challenging in several aspects. To achieve

the linear numerical stability, it is essential to choose compatible approaches to discretizing the velocity × pressure
pair, see, e.g., [1–8] for the construction of stable Stokes element pairs and [9–13] for Stokes discontinuous Galerkin
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methods. Second, when the incompressibility constraint ∇ · u = 0 is violated on the discrete level, the performance
of Stokes finite elements deteriorates as ν becomes small. In particular, the H 1 velocity error is dominated by
the L2 pressure error ν−1

∥p − ph∥. Those finite element discretizations, even though stable, are known as Stokes
elements without pressure-robustness. Many classical works are devoted to alleviate or remove the drawback of
popular non-divergence-free Stokes elements, see, e.g., the grad–div stabilization technique [14–16], postprocessed
test functions [17–19], and pointwise divergence-free Stokes elements [5,7,8,20].

Another difficulty in the numerical solution of the Navier–Stokes equation is the presence of the nonlinear
convective term u ·∇u. When ν ≪ 1, (1.1) becomes a convection-dominated nonlinear problem. For such problems,
it is well known that standard discretization methods inevitably produce numerical solutions with non-physical
oscillations. In computational fluid dynamics community, the streamline diffusion [21] is a popular technique for
handling convection-dominated flows. However, it is also known that the streamline diffusion schemes rely on an
optimal choice of a parameter which is problem-dependent and ad-hoc application of this numerical technique may
lead to over-diffused solutions. For elliptic convection–diffusion problems of the form −∇ · (α∇u + βu) = f , the
edge-averaged finite element (EAFE) [22] is an alternative approach to discretizing convection-dominated equations
without spurious oscillations in the numerical solutions and is a generalization of the traditional Scharfetter–Gummel
scheme [23,24] in multi-dimensional space. When compared with the streamline diffusion approach, the EAFE
method is a provably monotone scheme satisfying a discrete maximum principle on a wide class of meshes. Recently
EAFE has been generalized to higher order nodal elements and edge and face finite elements, see [25–27].

A well-known fact is that the conforming P1 × P0 finite element approximation, where Pk stands for piecewise
polynomials of degree at most k, to velocity × pressure pair is not Stokes stable. In this paper, we generalize the
stabilized P1 × P0 element method in [28] for the linear Stokes problem to the Navier–Stokes equation (1.1). The
work [28] solves a modified discrete Stokes system based on the classical Bernardi–Raugel (BR) element [3]. In
the solution phase, degrees of freedom (dofs) associated with face bubbles in the BR element are removed in a way
similar to static condensation. Because of the nonlinear convection u·∇u, it is not clear whether the reduction of face
bubbles in [28] is applicable to the Navier–Stokes problem (1.1). Moreover, the error analysis of the P1×P0 scheme
in [28] has not been present in the literature to date. For that stabilized P1 × P0 method with slight modification,
we shall prove a priori error estimates uniform with respect to ν ≪ 1.

In contrast to popular upwind techniques such as the streamline diffusion and upwind finite difference/disconti-
uous Galerkin discretization schemes, EAFE has not been applied to convection-dominated incompressible flows
n the literature. A classical work relevant to this paper is [29], where a priori error estimates of EAFE schemes
or nonlinear hyperbolic conservation laws are presented. The EAFE bilinear form in [22] is determined by nodal
alues of trial and test functions. As a result, a naive EAFE discretization for −ν∆u+u ·∇u ignores all stabilizing

face bubbles in the BR element and would lead to an unstable discretization for incompressible flows. On the other
hand, face bubbles used in trial and test functions for u ·∇u may yield a matrix prohibiting application of the bubble
reduction technique proposed in [28]. In this work, however, we successfully combine the aforementioned reduced
BR element and EAFE discretization for the convective term and obtain a new stabilized finite element method for
(1.1) with computational cost dependent on the number of dofs in [P1]d

× P0 discretization (see Sections 3 and 4
for details). In comparison with classical schemes, it turns out that the method proposed here ensures convergent
nonlinear iteration and produces non-oscillatory solutions when ν ≪ 1. Besides the proposed stabilized scheme, we
refer to [30,31] for other stabilized Pk × Pk−1 numerical methods for Stokes/Navier–Stokes problems.

The rest of the paper is organized as follows. In Section 2, we present a robust stabilized P1 × P0 finite element
method for the Stokes problem and the error analysis uniform with respect to ν. In Section 3, we combine that
scheme with EAFE to derive a robust method for the linear Oseen equation. Section 4 is devoted to the robust
stabilized-(P1 × P0)-EAFE scheme for the stationary and evolutionary Navier–Stokes equation. In Section 5, the
proposed methods are tested in several benchmark problems in two and three spatial dimensions. Possible extensions
of this work are discussed in Section 6.

1.1. Notation

Let Th be a conforming and shape-regular simplicial partition of Ω . Let Fh denote the collection of (d − 1)-
dimensional faces in Th , Eh the set of edges in Th , and {xi }

N
i=1 the set of grid vertices in Th . In R2, the edge set Eh

and face set F coincide. Given T ∈ T , let P (T ) be the space of polynomials on T of degree at most k, and let
h h k

2
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Eh(T ) (resp. Fh(T )) denote the set of edges (resp. faces) in T . For each F ∈ Fh , we use nF to denote a unit vector
ormal to the face F . Let λi be the hat nodal basis function at the vertex xi . The face bubble φF is a function
upported on the union of two elements sharing F as a face, that is, φF =

∏
xi∈∂F

is a vertex
λi .

Let |E |, |F |, |T | denote the length of E ∈ Eh , area of F ∈ Fh , volume of T ∈ Th , respectively, and
•ds =

1
|E |

´
•ds be the average along E . The mesh size of Th is h := maxT∈Th |T |

1
d . We may use C,C1,C2, . . .

to denote generic constants that are dependent only on the shape-regularity of Th and Ω . The L2(Ω ) inner product,
L2(Ω ) norm, and H k(Ω ) semi-norm are denoted by (•, •), ∥ • ∥ = ∥ • ∥Ω , and | • |k , respectively, while by |X|

we denote the Euclidean norm of a vector X . The notation A ≃ B means that there are constants C1 and C2,
ndependent of mesh size, viscosity and other parameters of interest and such that A ≤ C1 B and B ≤ C2 A. We

also need the Sobolev space H (div) defined as follows:

H (div,Ω ) :=
{
v ∈ [L2(Ω )]d

: ∇ · v ∈ L2(Ω )
}
.

2. Stokes problem

In order to study the incompressibility condition in (1.1), we investigate the Stokes problem

−ν∆u +∇ p = f in Ω , (2.1a)

∇ · u = 0 in Ω , (2.1b)

u = g on ∂Ω . (2.1c)

onsider the following space

L2
0(Ω ) =

{
q ∈ L2(Ω ) :

ˆ
Ω

qdx = 0
}
.

he variational formulation of (2.1) is to find u ∈ [H 1(Ω )]d with u|∂Ω = g ∈ [H
1
2 (∂Ω )]d and p ∈ L2

0(Ω ) such
that

ν(∇u,∇v) − (∇ · v, p) = ( f , v), ∀v ∈ [H 1
0 (Ω )]d ,

(∇ · u, q) = 0, ∀q ∈ L2
0(Ω ).

(2.2)

The construction of stable finite element subspaces of [H 1
0 (Ω )]d

× L2
0(Ω ) was initiated in 1970s and is still under

intensive investigation (cf. [1]). Let

V l
h =

{
vh ∈ [H 1

0 (Ω )]d
: vh |T ∈ [P1(T )]d

∀T ∈ Th
}
,

V b
h =

{
vh ∈ [H 1

0 (Ω )]d
: vh |T ∈ span

{
φF nF

}
F∈Fh (T ) ∀T ∈ Th

}
.

The starting point of our scheme is the Bernardi–Raugel finite element space

V h := V l
h ⊕ V b

h,

Qh := {qh ∈ L2
0(Ω ) : qh |T ∈ P0(T ) ∀T ∈ Th},

which, as shown in [3], satisfies the inf-sup condition

sup
0̸=vh∈V h

(∇ · vh, qh)
|vh |1

≥ β∥qh∥, ∀qh ∈ Qh, (2.3)

where β > 0 is an absolute constant dependent on shape regularity of the mesh Th and the domain Ω . As a
consequence of (2.3) and the Babuška–Brezzi theory [32,33], the velocity–pressure error of the BR finite element
method is first-order convergent under the norm | · |1 × ∥ · ∥. However, due to ∇ · V h ̸= Qh , convergence rate of
the H 1 velocity error and the velocity–pressure error may deteriorate severely when ν → 0, see [19].

2.1. Stabilized P1 × P0 method for Stokes problems

The approximation power of the BR element is provided by the linear space V l
h while V b

h serves only as a
b
stabilizing component. A disadvantage of the classical BR element is that the number of dofs in V h is much larger

3
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than the nodal element space V l
h . Recently the work [28] is able to statically condense out dofs of face bubbles in

V b
h and obtain a stabilized P1 × P0 method for Stokes problems. Given vh ∈ V h , let

vh = vl
h + vb

h, vl
h ∈ V l

h, vb
h ∈ V b

h

be the unique decomposition of vh . We define a bilinear form ab
h : V b

h × V b
h → R by

ab
h (ub, vb) =

∑
F∈Fh

uFvF
(
∇(φF nF ),∇(φF nF )

)
, ∀ub, vb ∈ V b

h,

here {uF }F∈Fh , {vF }F∈Fh are coefficients in the unique representations ub =
∑

F∈Fh
uFφF nF , vb =

∑
F∈Fh

vF

F nF . In practice, ab
h corresponds to the diagonal of the representing matrix for the restricted form a|V b

h×V b
h
. We

hen consider the modified bilinear form ah : V h × V h → R given by

ah(vh,wh) := ab
h (vb

h,w
b
h) + (∇vb

h,∇wl
h) + (∇vl

h,∇wb
h) + (∇vl

h,∇wl
h), ∀vh,wh ∈ V h . (2.4)

he modified BR element method in [28] is to find (uh, ph) ∈ V h × Qh such that

νah(uh, vh) − (∇ · vh, ph) = ( f , vh), ∀vh ∈ V h,

(∇ · uh, qh) = 0, ∀qh ∈ Qh .
(2.5)

Due to the diagonal bilinear form ab
h , the dofs associated with faces in (2.5) could be eliminated via a traditional

static condensation, see (3.11), (3.12) in Section 3 for more details. Therefore the algebraic solution procedure of
(2.5) is equivalent to solving a conforming [P1]d

× P0 algebraic linear system.
However, both the original [3] and modified (2.5) BR finite element method are not robust with respect to

exceedingly small ν ≪ 1. For Stokes elements using discontinuous pressures, the works [18,34] obtain pressure-
robust methods by interpolating certain test functions into an H (div) finite element space, e.g., the Raviart–Thomas
and Brezzi–Douglas–Marini (BDM) spaces (cf. [1,35,36]). Let Πh be the canonical interpolation onto the linear
BDM space

V BDM
h :=

{
vh ∈ H (div,Ω ) : vh |T ∈ [P1(T )]d

∀T ∈ Th
}
.

Let Ph denote the L2 projection onto the space of piecewise constant functions. It is well known that

∇ ·Πhv = Ph∇ · v, ∀v ∈ [H 1(Ω )]d . (2.6)

Following the idea in [18,34], we modify the right hand side of (2.5) and seek uh ∈ V h , ph ∈ Qh satisfying

νah(uh, vh) − (∇ · vh, ph) = ( f ,Πhvh), ∀vh ∈ V h,

(∇ · uh, qh) = 0, ∀qh ∈ Qh .
(2.7)

We shall show that (2.7) is uniformly convergent with respect to ν ≪ 1.

Remark 2.1. Since Πh preserves conforming piecewise linear functions, we have Πhvh = vl
h +Πhv

b
h for vh ∈ V h .

Consider the following lowest-order Raviart–Thomas space

V RT
h :=

{
vh ∈ H (div,Ω ) : vh |T ∈ P0(T )x + [P0(T )]d

∀T ∈ Th
}
,

where x = (x1, . . . , xd )⊤ is the coordinate vector field. Let φRT
F ∈ V RT

h be the canonical face basis function of V RT
h

such that
´

F φRT
F ·nF ′d S = δF,F ′ for all F, F ′

∈ Fh with δF,F ′ being the Kronecker delta symbol. Direct calculation
hows that

Πh(φF nF ) =

⎧⎪⎨⎪⎩
|F |

6
φRT

F in R2,

|F |

15
φRT

F in R3.

(2.8)

To illustrate the effectiveness of the new scheme (2.7), we check the performance of (2.5) and (2.7) applied to
he Stokes problem (2.1) with ν = 10−3 and the exact solution

u(x) =
(
− sin(πx1)2 sin(2πx2), sin(2πx1) sin(πx2)2)⊤,

2
p(x) = exp(x1 + x2) − (exp(1) − 1) .

4
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Fig. 1. Numerical velocity fields for (2.1) with ν = 10−3 on a 16 × 16 uniform triangulation of Ω = [0, 1]2.

e set Ω = [0, 1]× [0, 1] to be the unit square and consider the homogeneous Dirichlet boundary condition g = 0.
he domain Ω is partitioned into a 16 × 16 uniform grid of right triangles. The numerical solutions of (2.5) and

2.7) are visualized using the MATLAB function quiver in Fig. 1. On such a coarse mesh, the velocity by (2.7)
s observed to be a good approximation to the sinusoidal solution u while the qualitative behavior of the velocity
y (2.5) is completely misleading for the small viscosity ν.

.2. Convergence analysis

As we have pointed out earlier, the a priori error analysis of the stabilized P1 × P0 method (2.5) has not been
stablished in the literature. In this subsection, we go one step further and present a new error estimate for the
odified scheme (2.7) that is robust with respect to ν, when ν ≪ 1. Our approach is to compare the error in the

umerical approximation given by (2.7) with the error in the following scheme: Find (ũh, p̃h) ∈ V h × Qh such that

ν(∇ ũh,∇vh) − (∇ · vh, p̃h) = ( f ,Πhvh), ∀vh ∈ V h,

(∇ · ũh, qh) = 0, ∀qh ∈ Qh .
(2.9)

ollowing the analysis in [18], it is straightforward to show that

|u − ũh |1 ≤ Ch|u|2, (2.10a)

∥p − p̃h∥ ≤ Ch
(
ν|u|2 + |p|1

)
(2.10b)

s true for u ∈ [H 2(Ω )]d , p ∈ H 1(Ω ). For vb =
∑

F∈Fh
vFφF nF ∈ V b

h , a homogeneity argument implies∑
F∈Fh (T )

v2
F∥∇(φF nF )∥2

T ≃ ∥∇(
∑

F∈Fh (T )

vFφF nF )∥2
T , ∀T ∈ Th .

hen a combination of the above equivalence and the definition of ab
h yields

ab
h (vb, vb) =

∑
F∈Fh

v2
F∥∇(φF nF )∥2

≃

∑
T∈Th

∑
F∈Fh (T )

v2
F∥∇(φF nF )∥2

T

≃

∑
T∈Th

∥∇(
∑

F∈Fh (T )

vFφF nF )∥2
T = (∇vb,∇vb), ∀vb ∈ V b

h,

i.e., (∇•,∇•)|V b
h×V b

h
is spectrally equivalent to ab

h . As a result, the modified bilinear form ah(•, •) is coercive

2 2

|v|1,h := ah(vh, vh) ≃ |vh |1, ∀vh ∈ V h . (2.11)

5
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Let V ′

h , Q′

h be the dual space of V h , Qh , respectively. Given arbitrary functionals F ∈ V ′

h , g ∈ Q′

h , we consider
the following problem: Find (vF,g

h , q F,g
h ) ∈ V h × Qh satisfying

νah(vF,g
h ,wh) − (∇ · wh, q F,g

h ) = F(wh), ∀wh ∈ V h,

(∇ · v
F,g
h , rh) = g(rh), ∀rh ∈ Qh .

Let V h be equipped with the norm ν
1
2 | • |1 and Qh use the norm ν−

1
2 ∥ • ∥. Using the inf-sup condition (2.3), the

coercivity of ah , and the classical Babuška–Brezzi theory (cf. [33,37]), we obtain the following stability estimate

ν
1
2 |v

F,g
h |1,h + ν

−
1
2 ∥q F,g

h ∥ ≤ K
(
β−1) ( sup

ν
1
2 |wh |1=1

F(wh) + sup
ν
−

1
2 ∥rh∥=1

g(rh)
)
, (2.12)

here K is a fixed increasing function. Now we are in a position to present a robust error estimate of (2.7).

heorem 2.1. For (uh, ph) given in (2.7) and (u, p) ∈ [H 2(Ω )]d
× H 1(Ω ), there exist absolute constants Cu , C p

ndependent of ν and h, and such that

|u − uh |1 ≤ Cuh|u|2, (2.13a)

∥p − ph∥ ≤ C ph
(
ν|u|2 + |p|1

)
. (2.13b)

roof. Consider the space of weakly divergence-free functions

W h :=
{
vh ∈ V h : (∇ · vh, qh) = 0 ∀qh ∈ Qh

}
.

y the definitions of (uh, ph) in (2.7) and (ũh, p̃h) in (2.9), we have

ah(uh, vh) = (∇ ũh,∇vh) = 0, ∀vh ∈ W h, (2.14a)

νah(uh, vh) − (∇ · vh, ph) = ν(∇ ũh,∇vh) − (∇ · vh, p̃h), ∀vh ∈ V h, (2.14b)

(∇ · uh, qh) = (∇ · ũh, qh) = 0, ∀qh ∈ Qh . (2.14c)

It then follows from (2.14a) and ah(Πh u, vh) = (∇Πh u,∇vh) that

ah(uh −Πh u, vh) =
(
∇(ũh −Πh u),∇vh

)
, ∀vh ∈ W h . (2.15)

Combining (2.6) and ∇ · u = 0, we conclude that ∇ · Πh u = 0 and thus Πh u ∈ W h . Therefore taking
vh = uh −Πh u ∈ W h in (2.15) and using (2.11) and the Cauchy–Schwarz inequality lead to

|uh −Πh u|21 ≃ ah(vh, vh) ≤ |ũh −Πh u|1|vh |1.

As a consequence, it holds that

|uh −Πh u|1 ≤ C |ũh −Πh u|1
≤ C |u − ũh |1 + C |u −Πh u|1.

(2.16)

Using (2.16) and a triangle inequality, we have

|u − uh |1 ≤ |u −Πh u|1 + |uh −Πh u|1
≤ C |u −Πh u|1 + C |u − ũh |1.

(2.17)

Combining (2.17) with (2.10a) and the interpolation error estimate of Πh

|u −Πh u|1 ≤ Ch|u|2

finishes the proof of (2.13a).
Next, we pick arbitrary wl ∈ V l

h and rh ∈ Qh and use (2.14b), (2.14c) to obtain that

νah(uh − wl , vh) − (∇ · vh, ph − rh) = ν
(
∇(ũh − wl),∇vh

)
− (∇ · vh, p̃h − rh), ∀vh ∈ V h, (2.18a)

(∇ · (uh − wl), qh) = (∇ · (ũh − wl), qh) = 0, ∀qh ∈ Qh . (2.18b)
6
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A combination of (2.18) and the stability estimate (2.12) then implies that for all wl ∈ V l , and rh ∈ Qh ,

ν
1
2 |uh − wl |1,h + ν

−
1
2 ∥ph − rh∥ ≤ K(β−1)

(
ν

1
2 |ũh − wl |1,h + ν

−
1
2 ∥ p̃h − rh∥

)
≃ K(β−1)

(
ν

1
2 |ũh − wl |1 + ν

−
1
2 ∥ p̃h − rh∥

)
≤ C

(
ν

1
2 |u − ũh |1 + ν

1
2 |u − wl |1 + ν

−
1
2 ∥p − p̃h∥ + ν

−
1
2 ∥p − rh∥

)
.

(2.19)

Using (2.19) and the triangle inequality, we have,

∥p − ph∥ ≤ ∥p − rh∥ + ∥ph − rh∥

≤ C
(
∥p − rh∥ + ν|u − ũh |1 + ν|u − wl |1 + ∥p − p̃h∥

)
.

Finally taking the infimum with respect to (wl , rh) ∈ V l
h × Qh in the above inequality and using (2.13a) concludes

the proof of (2.13b). □

3. Stationary Oseen equation

We now move on to the discretization of the stationary Navier–Stokes equation

−ν∆u + u · ∇u +∇ p = f in Ω , (3.1a)

∇ · u = 0 in Ω , (3.1b)

u = g on ∂Ω , (3.1c)

with a potentially very small viscosity ν ≪ 1. As a first step, we consider the linear Oseen equation, which naturally
occurs when (3.1) is linearized by a fixed point iteration:

−ν∆u + b · ∇u +∇ p = f in Ω , (3.2a)

∇ · u = 0 in Ω , (3.2b)

u = g on ∂Ω , (3.2c)

Here, b : Ω → Rd is a given convective field. For a reason which will become apparent later, we add a viscous
term −ε∆u with vanishingly small ε, 0 < ε ≪ 1 in (3.2a) and obtain the modified momentum equation

− ν∆u − ε∆u + b · ∇u +∇ p = f . (3.3)

n the following, we shall show that a direct EAFE discretization in (3.9) for (3.3) does not perform well and a
odified EAFE scheme (3.10) will be our main scheme of interest.
Given a vector-valued v = (v1, . . . , vd )⊤, we consider the second order flux tensor

J(v) := ε∇v + v ⊗ b. (3.4)

he i th row of J(v) = ( J(v1)⊤, . . . , J(vd )⊤)⊤ then is the standard flux

J(vi ) := ε∇vi + bvi

sed in the classical EAFE discretization [22].
For each E ∈ Eh , let t E be a fixed unit vector tangent to the edge E , and let ψE ∈ C1(E) satisfy

∂t EψE = ε−1b · t E ,

here ∂t E is the directional derivative along t E . We remark that ψE is determined up to a constant. The following
emma could be found in [22].

emma 3.1. Let τ E = |E |t E be a non-unit vector tangent to E ∈ Eh . Let δE (χ ) = χ (x j ) − χ (xi ), where xi , x j

re endpoints of E and τ E points from xi to x j . We have

δE (eψE v) =
 
ε−1eψE J(v) · τ E ds. (3.5)
E

7
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w

For a piecewise constant Jh vector field and a continuous and piecewise affine wh with respect to Th , we have

(∇wh, Jh) = −

∑
T∈Th

∑
E∈Eh (T )

aT
E δE (wh) Jh |T · τ E , (3.6)

here aT
E = aT

i j :=
´

T ∇λi · ∇λ j dx is an entry of the local P1 element stiffness matrix on T .

For v = (v1, . . . , vd )⊤ ∈ V l
h , let Jh = ( J1⊤

h , . . . , Jd⊤
h )⊤ be a piecewise constant approximation to J(v) such that

J i
h ≈ J(vi ). For E ∈ Eh(T ), it follows from (3.5) with v = vi that

J i
h |T · τ E ≈ ε

( 
E

eψE ds
)−1

δE (eψE vi ). (3.7)

Let aE = ai j =
∑

T∈Th ,E∈Eh (T ) aT
E . Using integration by parts, (3.6), and (3.7), for v ∈ [H 1

0 (Ω )]d and a piecewise
linear finite element approximation ul

h = (ul
h,1, . . . , ul

h,d )⊤ to u, we have

(−ε∆u + b · ∇u, v) = (∇u, ε∇v + v ⊗ b)

= (∇u, J(v)) ≈ (∇ul
h, Jh) = −

d∑
i=1

∑
T∈Th

∑
E∈Eh (T )

aT
E δE (ul

h,i ) J i
h |T · τ E

≈ −

d∑
i=1

∑
E∈Eh

εaE

( 
E

eψE ds
)−1

δE (ul
h,i )δE (eψE vi )

= −

∑
E∈Eh

εaE

( 
E

eψE ds
)−1

δE (ul
h) · δE (eψE v).

(3.8)

As a consequence, we define the EAFE bilinear form bEAFE
h : V l

h × V l
h → R by

bEAFE
h (vl

h,w
l
h; b) := −

∑
E∈Eh

εaE

( 
E

eψE ds
)−1

δE (vl
h) · δE (eψE wl

h), ∀vl
h,w

l
h ∈ V l

h,

which is a variational form for discretizing −ε∆u + b · ∇u ≈ b · ∇u. We remark that the value of bEAFE
h is not

affected by the generic additive constant in ψE .

Remark 3.1. The original EAFE method [22] is designed for the convection–diffusion equation −∇·(α∇u+βu) =
f in conservative form. On the other hand, the EAFE bilinear form bEAFE

h works for −∇ · (α∇u) + β · ∇u = f in
convective form. In fact, bEAFE

h depends on test functions weighted by edge-wise exponential functions while the
classical EAFE scheme [22] makes use of an exponentially averaged trial function.

Using the modified equation (3.3), and the approximations a(u, vh) ≈ ah(uh, vh) and (b · ∇u, vl
h) ≈

bEAFE
h (ul

h, v
l
h; b), we obtain a stabilized P1 × P0 EAFE scheme for the problem (3.2): Find (uh, ph) ∈ V h × Qh

such that
νah(uh, vh) + bEAFE

h (ul
h, v

l
h; b) − (∇ · vh, ph) = ( f ,Πhvh), ∀vh ∈ V h,

(∇ · uh, qh) = 0, ∀qh ∈ Qh .
(3.9)

Here bEAFE
h (vh,wh) is also defined for any continuous functions vh and wh . However, it is easy to see that the

value of bEAFE
h is determined by nodal values of trial and test functions, i.e., bEAFE

h (vh,wh; b) = bEAFE
h (vl

h,w
l
h; b)

for vh,wh ∈ V h . Thus, the stabilizing face bubble functions in the BR element do not enter the discretized EAFE
convective term.

Unfortunately, as numerical experiments show, the EAFE discretization given above for b · ∇u does not work
well. We now use again ideas from the pressure-robust finite elements with discontinuous pressures [17,18,34].
Those works apply Raviart–Thomas or BDM interpolation to the test functions for the convective term b · ∇u.
Similarly, we add a stabilization term with postprocessed bubble test functions to bEAFE

h and obtain the following
discrete convective form

bh(vh,wh; b) = bh(vl
h,wh; b)

EAFE l l l b

:= bh (vh,wh; b) + (b · ∇vh,Πhwh), ∀vh,wh ∈ V h .

8
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The resulting scheme for (3.2) is: Find (uh, ph) ∈ Qh × Vh such that

νah(uh, vh) + bh(ul
h, vh; b) − (∇ · vh, ph) = ( f ,Πhvh), ∀vh ∈ V h,

(∇ · uh, qh) = 0, ∀qh ∈ Qh .
(3.10)

n (3.10), let Abb, All , Abl , Alb, Abp, Alp be the matrices representing the bilinear forms νah(ub
h, v

b
h), νah(ul

h, v
l
h)+

h(ul
h, v

l
h), νah(ul

h, v
b
h)+(b·∇ul

h,Πhv
b
h), νah(ub

h, v
l
h), −(∇·vb

h, ph), −(∇·vl
h, ph), respectively. Furthermore, let Ub,

U l , P , Fb, Fl be the vector representation for ub
h , ul

h , ph , ( f ,Πhv
b
h) and ( f , vl

h) (here Πhv
l
h = vl

h), respectively.
he algebraic linear system for (3.10) then reads⎛⎝Abb Abl Abp

Alb All Alp

A⊤

bp A⊤

lp O

⎞⎠⎛⎝Ub

U l

P

⎞⎠ =

⎛⎝Fb

Fl

0

⎞⎠ . (3.11)

sing the block Gaussian elimination, i.e. the static condensation, we obtain the reduced system(
All − AlbA−1

bb Abl Alp − AlbA−1
bb Abp

A⊤

lp − A⊤

bpA−1
bb Abl −A⊤

bpA−1
bb Abp

)(
U l

P

)
=

(
Fl − AlbA−1

bb Fb

−A⊤

bpA−1
bb

)
. (3.12)

et Nv denote the number of interior vertices of Th , and Nt the number of elements in Th . Since Abb is a diagonal
atrix, the stiffness matrix in (3.12) is sparse of dimension (d Nv + Nt ) × (d Nv + Nt ), the same as a [P1]d

× P0

lement. The vector Ub of dofs for the bubble component ub
h are then recovered by Ub = A−1

bb (Fb−Abl U l −Abp P).

emark 3.2. We remark that the term (b · ∇ub
h,Πhv

b
h) is not added to (3.10). Otherwise the block Abb is not

iagonal and the above bubble reduction technique does not hold.

Let bh,T be the restriction of bh on T ∈ Th and E ∈ Eh be an edge having endpoints xi and x j . When b is
iecewise constant with respect to Th , the (i, j)-entry bh,T (λ j , λi ) of the local stiffness matrix for bh,T |V l

h×V l
h

with
̸= j is simple and written as

bh,T (λ j , λi ) =

{
εai j B(ε−1b|T · τ E ), τ E points from xi to x j ,

εai j B(−ε−1b|T · τ E ), τ E points from x j to xi ,
(3.13)

here B is the Bernoulli function

B(s) =

⎧⎨⎩
s

es − 1
, s ̸= 0,

1, s = 0.
(3.14)

or i = j , we have bh,T (λi , λi ) = −
∑

j ̸=i,x j∈∂T bh,T (λi , λ j ). Therefore computing bh |V l
h×V l

h
is no more complicated

than assembling the stiffness matrix (ai j )1≤i, j≤N of the P1 finite element method for Poisson’s equation.
Now we compare the stabilized EAFE scheme (3.10) with the unstabilized one (3.9), where ε = 10−8. Consider

the Oseen problem (3.2) with ν = 10−4, b = (10, 1)⊤ and the exact solution

u(x) =
(
exp(x2), exp(x1)

)⊤
,

p(x) = exp(x1 + x2) − (exp(1) − 1)2.

We set Ω = [0, 1] × [0, 1] to be the unit square. The domain Ω is partitioned into a 16 × 16 uniform grid of right
riangles. Numerical solutions are visualized in Fig. 2. In this example, the speed profile from (3.10) is similar to
he exponential exact speed |u| =

√
exp(2x1) + exp(2x2) while |uh | from (3.9) exhibits an anomalous boundary

ayer.

emark 3.3. For the convection-dominated elliptic problem −∇·(α∇u+βu) = f , the classical EAFE scheme [22]
akes use of −α∆u without adding an artificial viscous term −ε∆u. Similarly, for nearly inviscid incompressible
ows (3.2) with ν ≪ 1, it is tempting to use −ν∆u instead of adding the vanishing viscosity term −ε∆u when
eriving EAFE schemes (3.10), (4.1). However, an EAFE discretization for −ν∆u+b ·∇u will not be Stokes stable
ecause EAFE bilinear form does not take face bubbles into account.
9
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Fig. 2. Numerical speeds for (3.2) with ν = 10−4, b = (10, 1)⊤ on a 16 × 16 uniform triangulation of Ω = [0, 1]2.

4. Navier–Stokes equation

In view of the linear scheme (3.10), our method for the stationary Navier–Stokes Eq. (3.1) seeks (uh, ph) ∈

V h × Qh satisfying

νah(uh, vh) + bh(ul
h, vh; Ph ul

h) − (∇ · vh, ph) = ( f ,Πhvh), ∀ vh ∈ V h,

(∇ · uh, qh) = 0, ∀ qh ∈ Qh .
(4.1)

We recall that Ph ul
h is the element-wise average of the linear component ul

h given by Ph ul
h |T =

1
|T |

´
T ul

hdx . In
practice, we use the fixed-point iteration to solve (4.1) by iterating the third argument in bh . At each iteration
step, the linearized finite element scheme reduces to (3.10). The assembling of stiffness matrices for linearized
bh(•, •; Ph ul

h) could be easily done using (3.13).

Remark 4.1. The EAFE schemes (3.10) and (4.1) depend on the artificial diffusion constant ε ≪ 1. In practice,
there is no need to tune this parameter once ε is sufficiently small. For numerical examples in Section 5, EAFE
schemes using parameters ε ≤ 10−8 have very similar performance.

4.1. Time-dependent problems

In this subsection, we discuss the application of the stabilized P1× P0 EAFE method to the original evolutionary
Navier–Stokes equation (1.1). Applying the backward Euler method with time step-size τ > 0 to discretize ut and
(4.1) to spatial variables, we obtain the fully discrete scheme

(uh,n, vh) + τνah(uh,n, vh) + τbh(ul
h,n, vh; Ph ul

h,n)

− τ (∇ · vh, ph,n) = τ ( f (tn),Πhvh) + (uh,n−1, vh),
− τ (∇ · un

h, qh) = 0,

(4.2)

for all (vh, qh) ∈ V h × Qh , where tn = nτ , n = 0, 1, 2, . . ., and uh,n ≈ u(tn), ph,n ≈ p(tn). However, the resulting
algebraic system cannot be solved using the bubble reduction technique described in Section 3. The reason is that
the term (ub

h,n, v
b
h) introduces an extra mass matrix and the block Abb in (3.11) is no longer diagonal. To deal with

such an issue, we consider the following quadrature on an element T ∈ Th :ˆ
T

f dx ≈
|T |

d + 1

∑
f (xF ), (4.3)
F∈F ,F⊂∂T

10
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where xF is the barycenter of the face F . The formula (4.3) is second-order in R2 and first-order in R3. We then
introduce a discrete L2 vector inner product

(u, v)h :=
1

d + 1

∑
T∈Th

|T |

∑
F∈F ,F⊂∂T

u(xF ) · v(xF ). (4.4)

Replacing (uh,n, vh), (uh,n−1, vh) in (4.2) with (uh,n, vh)h, (uh,n−1, vh)h , we arrive at the following modified
time-dependent scheme: Find {uh,n}n≥1 ⊂ V h and {ph,n}n≥1 ⊂ Qh such that

(uh,n, vh)h + τνah(uh,n, vh) + τbh(ul
h,n, vh; Ph ul

h,n)

− τ (∇ · vh, ph,n) = τ ( f (tn),Πhvh) + (uh,n−1, vh)h, ∀vh ∈ V h,

− τ (∇ · uh,n, qh) = 0, ∀qh ∈ Qh .

(4.5)

For two distinct faces F ̸= F ′
∈ Fh , it holds that

(φF nF , φF ′nF ′ )h = 0. (4.6)

Therefore the matrix representation for (ub
h,n, v

b
h)h is a diagonal mass matrix and the linearized algebraic system

for (4.5) in fixed point iterations is of the form (3.11), where Abb is still a diagonal matrix corresponding to
(ub

h,n, v
b
h)h + τνah(ub

h,n, v
b
h). As explained in (3.11), (3.12) in Section 3, the computational cost of solving (4.5)

is comparable to a [P1]d
× P0 element method.

Similarly to the stationary case, to enhance pressure-robustness, the work [17] replaces the terms (uh,n, vh) and
(uh,n−1, vh) in a backward Euler method with (Πh uh,n,Πhvh) and (Πh uh,n−1,Πhvh), respectively. For our purpose,
we can only postprocess the test function vh as the term (Πh ub

h,n,Πhv
b
h) would contribute a non-diagonal mass

matrix. The resulting time-dependent scheme is as follows: Find {un
h}n≥1 ⊂ V h and {pn

h}n≥1 ⊂ Qh such that

(uh,n,Πhvh)h + τνah(uh,n, vh) + τbh(ul
h,n, vh; Ph ul

h,n)

− τ (∇ · vh, ph,n) = τ ( f (tn),Πhvh) + (uh,n−1,Πhvh)h, ∀vh ∈ V h,

− τ (∇ · uh,n, qh) = 0, ∀qh ∈ Qh .

(4.7)

It follows from direct calculation and (2.8) that

(φF nF ,Πh(φF ′nF ′ ))h = c(φF nF ,φ
RT
F ′ )h = 0, ∀F ̸= F ′

∈ Fh, (4.8)

where c = |F |/6 in R2 and c = |F |/15 in R3. Therefore the mass matrix from (ub
h,n,Πhv

b
h)h is diagonal and (4.7)

could be solved in the same way as (4.1) and (4.5).

Remark 4.2. For Navier–Stokes equations with ν of moderate size, we could replace the EAFE form bh(ul
h,n, vh;

Ph ul
h,n) with (uh,n · ∇ul

h,n,Πhvh) and obtain a new stabilized P1 × P0 finite element method.

5. Numerical experiments

In this section, we compare our schemes (3.10), (4.1), (4.5) with the standard BR finite element method using
test functions postprocessed by the BDM interpolation Πh . Those postprocessing-based BR methods have been
already argued in [17–19] to be superior to the classical ones. All experiments are performed in MATLAB R2020a
and the linear solver is the MATLAB operation \. For nonlinear problems, we use the fixed point iteration with
50 maximum number of iterations. The stopping criterion for nonlinear iterations is that the relative size of the
increment |Xk+1 − Xk |/|Xk | is below 10−6, where Xk is the solution for the linear system at the kth iteration step.
The parameter ε used in our EAFE-based schemes is set to be 10−10.

5.1. Convection-dominated Oseen problem

First, we test the performance of (3.10) and the classical scheme (cf. [17,19])

ν(∇uh,∇vh) + (b · ∇uh,Πhvh) − (∇ · vh, ph) = ( f ,Πhvh), ∀vh ∈ V h,
(5.1)
(∇ · uh, qh) = 0, ∀qh ∈ Qh

11
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Fig. 3. The grid and exact velocity field for (3.2) used in Problem 5.1.

Fig. 4. Numerical velocity fields of the schemes (3.10) and (5.1) in Problem 5.1.

sing the linear Oseen problem (3.2) with ν = 10−3, f = 10(−x2, x1)⊤, g = (0, 0)⊤, b = (10, 1)⊤ on the unit
quare Ω = [0, 1] × [0, 1]. The mesh of Ω is relatively coarse and is shown in Fig. 3(a). We use the numerical
elocity solution of (3.10) on a relatively fine uniform mesh with 51200 triangles as the exact velocity field, see
ig. 3(b).

Due to the sharp contrast between ν ≪ |b| and the homogeneous Dirichlet boundary condition, the exact
elocity u is expected to have a sharp boundary layer. It could be observed from Fig. 4(b) that the classical scheme
5.1) yields a numerical velocity field with spurious oscillations in the low resolution setting. On the contrary, the
tabilized EAFE scheme (3.10) is able to produce a physically meaningful solution Fig. 4(a) on a coarse mesh,
ompared with the reference velocity profile in Fig. 3(b).

.2. Kovasznay flow

For the stationary Navier–Stokes problem (3.1), we compare our scheme (3.10) with the following classical
cheme (cf. [17,19])

ν(∇uh,∇vh) + (uh · ∇uh,Πhvh) − (∇ · vh, ph) = ( f ,Πhvh), ∀vh ∈ V h,

(∇ · uh, qh) = 0, ∀qh ∈ Qh
(5.2)

n the domain Ω = [−0.5, 1.5] × [0, 2]. The exact solutions of (3.1) are taken to be

u(x) =
(

1 − eλx1 cos(2πx2)
λ λx1

)
, p(x) = −

1
e2λx1 +

1
(e3λ

− e−λ), (5.3)

2π e sin(2πx2) 2 8λ

12



Y. Li and L.T. Zikatanov Computer Methods in Applied Mechanics and Engineering 393 (2022) 114815

w

Table 1
Convergence history of the stabilized P1 × P0 EAFE scheme (4.1) in Problem 5.2.

error\#dof 225 961 3969 16129 65025 ν

∥u − ul
h∥ 2.142 5.715e−1 1.448e−1 3.712e−2 9.976e−3 1

∥p − ph∥ 3.105e+1 1.995e+1 1.070e+1 5.465 2.746 1
∥u − ul

h∥ 3.557e−1 1.370e−1 4.039e−2 1.015e−2 3.309e−3 10−3

∥p − ph∥ 2.151e−2 1.840e−2 1.048e−2 3.613e−3 1.567e−3 10−3

∥u − ul
h∥ 3.560e−1 1.481e−1 4.496e−2 9.396e−3 2.516e−3 5 × 10−4

∥p − ph∥ 1.317e−2 1.793e−2 1.041e−2 2.676e−3 8.949e−4 5 × 10−4

∥u − ul
h∥ 3.589e−1 1.701e−1 9.665e−2 1.033e−2 2.180e−3 10−4

∥p − ph∥ 1.258e−2 1.897e−2 1.905e−2 1.842e−3 4.462e−4 10−4

Table 2
Convergence history of the classical scheme (5.2) in Problem 5.2.

error\#dof 401 1697 6977 28289 113921 ν

∥u − ul
h∥ 1.922 4.436e−1 1.058e−1 2.584e−2 6.381e−3 1

∥p − ph∥ 2.886e+1 1.606e+1 8.293 4.183 2.095 1
∥u − ul

h∥ 1.057e+1 2.006e+1 4.569e−2 7.543e−3 1.668e−3 10−3

∥p − ph∥ 4.178 3.125e+1 1.242e−2 1.868e−3 4.786e−4 10−3

∥u − ul
h∥ 1.002e+1 9.190 9.815 9.131e−3 1.824e−3 5 × 10−4

∥p − ph∥ 8.932 8.246e+1 5.006 2.277e−3 4.392e−4 5 × 10−4

∥u − ul
h∥ 5.270 1.126e+1 1.651e+1 1.871e+1 5.078 10−4

∥p − ph∥ 9.940 8.284 1.970e+1 4.239e+1 3.174 10−4

where λ =
1

2ν −

√
1

4ν2 + 4π2 and ν is varying. In the literature, (5.3) is a benchmark problem known as the
Kovasznay flow (cf. [9,12,38]). We start with a 8 × 8 uniform initial partition of Ω having 128 triangles and then
refine each element in the current mesh by quad-refinement to obtain finer grids. The data shown from 2nd to 6th
columns in Tables 1 and 2 are computed on the same mesh. Since the bubble component of uh has little effect on
the accuracy, we only consider the approximation property of the linear part ul

h .
Without dofs associated with faces, the size of algebraic systems from (4.1) is significantly smaller than (5.2). In

the case that ν = 1, the numerical accuracy of the classical scheme (5.2) is slightly better than the EAFE scheme
(4.1). As ν is increasingly small, our EAFE-stabilized P1 × P0 method is able to yield numerical solutions with
moderate accuracy even on the coarsest mesh. On the other hand, the performance of the classical method is not
satisfactory on coarse meshes. In fact, the nonlinear iteration for (5.2) is not convergent unless the grid resolution
is high enough.

5.3. Evolutionary potential flow

In the rest of two experiments, we investigate the effectiveness of (4.1) and (4.5) applied to benchmark potential
flows proposed by Linke&Merdon [17]. Exact velocities of those problems are gradient of a harmonic polynomial.
For potential flows, the pressure is relatively complicated and causes large velocity errors for numerical methods
without pressure-robustness. Let χ (x, t) = t2(5x4

1 x2 − 10x2
1 x3

2 + x5
2 ) be a polynomial that is harmonic in space. We

consider the evolutionary problem (1.1) with exact solutions

u = ∇χ, p = −
|u|2

2
− χt + C,

here C is a constant such that
´
Ω pdx = 0. The corresponding load f = 0. The space domain Ω =

[−0.5, 0.5] × [−0.5, 0.5] and the time interval is [0, 2]. We compare the EAFE P1 × P0 method (4.5) with the
following classical scheme (cf. [17])

(Πh uh,n,Πhvh) + τν(∇uh,n,∇vh) + τbh(uh,n · ∇uh,n,Πhvh)
− τ (∇ · vh, ph,n) = τ ( f (tn),Πhvh) + (Πh uh,n−1,Πhvh), vh ∈ V h, (5.4)
− τ (∇ · uh,n, qh) = 0, qh ∈ Qh .

13
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Fig. 5. Numerical and exact speed profiles in Problem 5.3, t = 2, ν = 10−6.

Table 3
A comparison between the schemes (4.5) and (5.4) in Problem 5.3, ν = 1.

t ∥u(tn) − ul
h,n∥ in (4.5) ∥p(tn) − ph,n∥ in (4.5) ∥u(tn) − ul

h,n∥ in (5.4) ∥p(tn) − ph,n∥ in (5.4)

0.5 4.640e−4 1.371e−2 3.890e−4 2.220e−2
1.0 1.855e−3 5.453e−2 1.556e−3 8.867e−2
1.5 4.164e−3 1.323e−1 3.501e−3 2.035e−1
2.0 7.387e−3 2.838e−1 6.224e−3 3.805e−1

Table 4
A comparison between the schemes (4.5) and (5.4) in Problem 5.3, ν = 10−6.

t ∥u(tn) − ul
h,n∥ in (4.5) ∥p(tn) − ph,n∥ in (4.5) ∥u(tn) − ul

h,n∥ in (5.4) ∥p(tn) − ph,n∥ in (5.4)

0.5 2.893e−2 1.401e−2 1.962e−3 3.193e−3
1.0 8.857e−2 4.862e−2 3.548e−2 1.036e−2
1.5 1.420e−1 1.258e−1 2.014e+1 3.372e+2
2.0 1.946e−1 2.211e−1 1.085e+2 2.852e+3

We set the time step-size to be τ = 0.1 and use a uniform criss-cross mesh with 2048 right triangles.
For the potential flow with ν = 1, the numerical performance of the classical scheme (5.4) and the EAFE

scheme (4.5) are comparable, see Table 3. When ν = 10−6 is exceedingly small, it is observed from Table 4 that
our stabilized P1×P0 EAFE method outperforms the classical one. In particular, (5.4) stops converging after t = 1.5
while our scheme (4.5) maintains moderate accuracy and outputs a relatively good solution at t = 2, see Fig. 5.

5.4. 3D potential flow

The last experiment is devoted to a 3 dimensional stationary Navier–Stokes problem (3.1) on the unit cube
Ω = [0, 1] × [0, 1] × [0, 1], where the exact solution is a steady-state potential flow

u(x) = ∇(x1x2x3), p = −
1
2
∇|u|2 + C, (5.5)

and C is a constant such that
´
Ω pdx = 0. The corresponding load f = 0. The mesh of Ω is a uniform tetrahedral

grid with 3072 elements, see Fig. 6(a). Numerical results are presented in Fig. 7 and Table 5.
For viscosity ν of moderate size, the performance of (4.1) and (5.2) are similar while (4.1) solves more economic

lgebraic linear systems with much less number of dofs. When ν ≤ 10−4, it is observed from Table 5 that the EAFE
cheme (4.1) produces velocities and pressures of good quality on the fixed mesh while the fixed point iteration of
5.2) is indeed not convergent. Compared with (4.1), the classical scheme (5.2) produces highly oscillating solutions
n the fixed point iteration when ν ≤ 10−4, see the visualization of |uh | at the cross sections x1 = 0.8, x2 = 0.8,

x = 0.8 in Fig. 7.
3
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Fig. 6. The mesh and exact speed in Problem 5.4.

Fig. 7. Speed profiles of the schemes (4.1) and (5.2) when ν = 10−4 in Problem 5.4.

Table 5
A comparison between the schemes (4.1) and (5.2) in Problem 5.4.

ν ∥u − ul
h∥ in (4.1) ∥p − ph∥ in (4.1) ∥u − ul

h∥ in (5.2) ∥p − ph∥ in (5.2)

1 2.205e−3 4.393e−2 2.201e−3 4.037e−2
10−1 2.234e−3 2.925e−2 2.220e−3 2.813e−2
10−2 2.605e−3 2.872e−2 2.192e−3 2.799e−2
10−3 4.639e−3 2.837e−2 2.192e−3 2.800e−2
10−4 1.156e−2 2.804e−2 1.871 1.074e+1
10−5 1.607e−2 2.806e−2 1.064e+1 2.454e+3

6. Concluding remarks

We have developed an EAFE-stabilized P1×P0 finite element method for incompressible Navier–Stokes equations
with small viscosity. For the Stokes problem, we have shown the robust a priori error analysis of our scheme
with respect to ν. It is straightforward to apply the technique in this paper to other Stokes element of the form
(P1+bubble)×P0, see, e.g., the pointwise divergence-free Stokes elements in [8,20]. Moreover, we shall investigate
stabilized Pk × Pk−1 schemes based on reducing higher order (Pk + bubble) × Pdisc

k−1 Stokes elements [2,8,18,20] or

other technique [31] and higher order EAFE [25,27] in future research.
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