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Abstract

This work proposes a new stabilized P x Py finite element method for solving the incompressible Navier—Stokes equations.
The numerical scheme is based on a reduced Bernardi—Raugel element with statically condensed face bubbles and is pressure-
robust in the small viscosity regime. For the Stokes problem, an error estimate uniform with respect to the kinematic viscosity
is shown. For the Navier-Stokes equation, the nonlinear convection term is discretized using an edge-averaged finite element
method. In comparison with classical schemes, the proposed method does not require tuning of parameters and is validated
for competitiveness on several benchmark problems in 2 and 3 dimensional space.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Let £2 C R? be a bounded Lipschitz domain with d € {2,3}. Let u : £2 — R? be the velocity field of a fluid
occupying {2 and p : {2 — R denote its kinematic pressure. The dynamics of the incompressible fluid within (2
subject to the loads f € L*(0, T; [L*()]Y), g € L*(0, T; [H%(E)Q)]d) before a time T > 0 is governed by the
incompressible Navier—Stokes equation

u,—vAu+u-Vu+Vp=f in 2 x(0,T], (1.1a)
V.-u=0 in 2 x(0,T], (1.1b)

u=g onaf2x(0,T], (1.1¢)

u(0) =wuy in 12, (1.1d)

where v > 0 is the kinematic viscosity constant, and ug € [L3(£2)]¢ is the initial velocity.

Numerical discretization of the velocity—pressure formulation (1.1) is challenging in several aspects. To achieve
the linear numerical stability, it is essential to choose compatible approaches to discretizing the velocity x pressure
pair, see, e.g., [1-8] for the construction of stable Stokes element pairs and [9-13] for Stokes discontinuous Galerkin
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methods. Second, when the incompressibility constraint V -u = 0 is violated on the discrete level, the performance
of Stokes finite elements deteriorates as v becomes small. In particular, the H' velocity error is dominated by
the L2 pressure error v~ 'Ip — pull. Those finite element discretizations, even though stable, are known as Stokes
elements without pressure-robustness. Many classical works are devoted to alleviate or remove the drawback of
popular non-divergence-free Stokes elements, see, e.g., the grad—div stabilization technique [14—16], postprocessed
test functions [17-19], and pointwise divergence-free Stokes elements [5,7,8,20].

Another difficulty in the numerical solution of the Navier—Stokes equation is the presence of the nonlinear
convective term u-Vu. When v < 1, (1.1) becomes a convection-dominated nonlinear problem. For such problems,
it is well known that standard discretization methods inevitably produce numerical solutions with non-physical
oscillations. In computational fluid dynamics community, the streamline diffusion [21] is a popular technique for
handling convection-dominated flows. However, it is also known that the streamline diffusion schemes rely on an
optimal choice of a parameter which is problem-dependent and ad-hoc application of this numerical technique may
lead to over-diffused solutions. For elliptic convection—diffusion problems of the form —V - («Vu + Bu) = f, the
edge-averaged finite element (EAFE) [22] is an alternative approach to discretizing convection-dominated equations
without spurious oscillations in the numerical solutions and is a generalization of the traditional Scharfetter—Gummel
scheme [23,24] in multi-dimensional space. When compared with the streamline diffusion approach, the EAFE
method is a provably monotone scheme satisfying a discrete maximum principle on a wide class of meshes. Recently
EAFE has been generalized to higher order nodal elements and edge and face finite elements, see [25-27].

A well-known fact is that the conforming P; x Py finite element approximation, where P; stands for piecewise
polynomials of degree at most k, to velocity x pressure pair is not Stokes stable. In this paper, we generalize the
stabilized P; x Py element method in [28] for the linear Stokes problem to the Navier—Stokes equation (1.1). The
work [28] solves a modified discrete Stokes system based on the classical Bernardi—Raugel (BR) element [3]. In
the solution phase, degrees of freedom (dofs) associated with face bubbles in the BR element are removed in a way
similar to static condensation. Because of the nonlinear convection u#-Vu, it is not clear whether the reduction of face
bubbles in [28] is applicable to the Navier—Stokes problem (1.1). Moreover, the error analysis of the P; x Py scheme
in [28] has not been present in the literature to date. For that stabilized P; x Py method with slight modification,
we shall prove a priori error estimates uniform with respect to v < 1.

In contrast to popular upwind techniques such as the streamline diffusion and upwind finite difference/disconti-
nuous Galerkin discretization schemes, EAFE has not been applied to convection-dominated incompressible flows
in the literature. A classical work relevant to this paper is [29], where a priori error estimates of EAFE schemes
for nonlinear hyperbolic conservation laws are presented. The EAFE bilinear form in [22] is determined by nodal
values of trial and test functions. As a result, a naive EAFE discretization for —vAu +u - Vu ignores all stabilizing
face bubbles in the BR element and would lead to an unstable discretization for incompressible flows. On the other
hand, face bubbles used in trial and test functions for u - Vu may yield a matrix prohibiting application of the bubble
reduction technique proposed in [28]. In this work, however, we successfully combine the aforementioned reduced
BR element and EAFE discretization for the convective term and obtain a new stabilized finite element method for
(1.1) with computational cost dependent on the number of dofs in [P1]¢ x P, discretization (see Sections 3 and 4
for details). In comparison with classical schemes, it turns out that the method proposed here ensures convergent
nonlinear iteration and produces non-oscillatory solutions when v < 1. Besides the proposed stabilized scheme, we
refer to [30,31] for other stabilized P, x Py_; numerical methods for Stokes/Navier—Stokes problems.

The rest of the paper is organized as follows. In Section 2, we present a robust stabilized P; x Py finite element
method for the Stokes problem and the error analysis uniform with respect to v. In Section 3, we combine that
scheme with EAFE to derive a robust method for the linear Oseen equation. Section 4 is devoted to the robust
stabilized-(P; x Py)-EAFE scheme for the stationary and evolutionary Navier—Stokes equation. In Section 5, the
proposed methods are tested in several benchmark problems in two and three spatial dimensions. Possible extensions
of this work are discussed in Section 6.

1.1. Notation

Let 7, be a conforming and shape-regular simplicial partition of (2. Let F;, denote the collection of (d — 1)-
dimensional faces in 7}, &, the set of edges in 7, and {xi}fvz | the set of grid vertices in 7j. In R?, the edge set &,
and face set F, coincide. Given T € T, let Pi(T) be the space of polynomials on T of degree at most k, and let
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En(T) (resp. F,(T)) denote the set of edges (resp. faces) in 7. For each F' € F},, we use ny to denote a unit vector
normal to the face F. Let A; be the hat nodal basis function at the vertex x;. The face bubble ¢ is a function
supported on the union of two elements sharing F as a face, that is, ¢y = [[ ner A,

Let |E|, |F|, |T| denote the length of E € &,, area of F € Fy, volume of T € Tn, respectively, and
fods = I_é\ des be the average along E. The mesh size of 7 is & := maxre7; |T|dl. We may use C, Cy, Cs, ...
to denote generic constants that are dependent only on the shape-regularity of 7, and (2. The L?({2) inner product,
L%(£2) norm, and H*(2) semi-norm are denoted by (e, ), || ® | = | ® ||, and | e |, respectively, while by |X]|
we denote the Euclidean norm of a vector X. The notation A >~ B means that there are constants C; and Cs,
independent of mesh size, viscosity and other parameters of interest and such that A < C;B and B < C,A. We
also need the Sobolev space H(div) defined as follows:

H(div, 2) = {v € [LX(D] : V- v € L*(D)}.

2. Stokes problem

In order to study the incompressibility condition in (1.1), we investigate the Stokes problem

—vAu+Vp=f in 2, (2.1a)
V-u=0 1in £, (2.1b)
u=g onafl. (2.1¢)

Consider the following space
L3(0) = {q e L*(2): / gdx = 0} )
2

The variational formulation of (2.1) is to find u € [H ()¢ with ulyo = g € [H%(E)Q)]d and p € L(Z)(.Q) such

that
v(Vu, Vo) — (V- v, p) = (f, v), Yo € [H) ()], 22
(V-u,q)=0, Vg € Li(9). :

The construction of stable finite element subspaces of [H()I(Q)]d X L%(Q) was initiated in 1970s and is still under
intensive investigation (cf. [1]). Let

Vi = {vn € Hy@1 twalr € [P(DI? VT € T,

Vi ={v, e [Hi (D : vhl7r € span{¢pnF}Fefh(T) VT € Ty}
The starting point of our scheme is the Bernardi—Raugel finite element space

Vy=V,evh

Qi = {qn € L§(2D) = qulr € Po(T) VT € T},
which, as shown in [3], satisfies the inf-sup condition

Vv, qn)
sup ————— > Bllgnll, Vqn € O, (2.3)
T

where 8 > 0 is an absolute constant dependent on shape regularity of the mesh 7, and the domain 2. As a
consequence of (2.3) and the BabuSka—Brezzi theory [32,33], the velocity—pressure error of the BR finite element
method is first-order convergent under the norm |- |; x || - ||. However, due to V - V;, # Qj, convergence rate of
the H'! velocity error and the velocity—pressure error may deteriorate severely when v — 0, see [19].

2.1. Stabilized Py x Py method for Stokes problems

The approximation power of the BR element is provided by the linear space V§1 while VZ serves only as a
stabilizing component. A disadvantage of the classical BR element is that the number of dofs in VZ is much larger
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than the nodal element space Vfl. Recently the work [28] is able to statically condense out dofs of face bubbles in
VZ and obtain a stabilized P; x Py method for Stokes problems. Given v, € V, let

v, =v, +o), VeV, eV
be the unique decomposition of v,. We define a bilinear form a? : V% x V2 — R by

ap(up, vy) = Y upve(Vgrnp), V(grnr)), Vuy, v, € V7,
FeFy,

where {ur}rer,, {vr}reF, are coefficients in the unique representations u, = ZFth UFpQFRE, V) = ZFth vp

¢rnp. In practice, a,}; corresponds to the diagonal of the representing matrix for the restricted form a|v§;xvf’- We
then consider the modified bilinear form a;, : V), x V;, — R given by

an(vp, wy) = al (b, why + (Vol, Vwh) + (Vo) , Vw)) + (Vv), Vw'), Vv, w, € V). (2.4)
The modified BR element method in [28] is to find (uy, py) € V;, x Q) such that

va(uy, vy) — (V- vy, pp) = (f, vp), Y, € Vy,
V-up, qn) =0, Van € Op-

Due to the diagonal bilinear form aﬁ , the dofs associated with faces in (2.5) could be eliminated via a traditional
static condensation, see (3.11), (3.12) in Section 3 for more details. Therefore the algebraic solution procedure of
(2.5) is equivalent to solving a conforming [P]? x Py algebraic linear system.

However, both the original [3] and modified (2.5) BR finite element method are not robust with respect to
exceedingly small v « 1. For Stokes elements using discontinuous pressures, the works [18,34] obtain pressure-
robust methods by interpolating certain test functions into an H(div) finite element space, e.g., the Raviart-Thomas
and Brezzi-Douglas—Marini (BDM) spaces (cf. [1,35,36]). Let I, be the canonical interpolation onto the linear
BDM space

ViPM = {v), € H(div, 2) : vylr € [P(D)]* VT € Tp}.

2.5)

Let P, denote the L? projection onto the space of piecewise constant functions. It is well known that
V.Iyv=PV-v, Yvel[H (). (2.6)
Following the idea in [18,34], we modify the right hand side of (2.5) and seek u;, € V, py € Q) satisfying

vap(Wp, vy) — (V- vy, pp) = (f, Do), Yo, € Vi,
(V-up, qn) =0, Yai € Q.
We shall show that (2.7) is uniformly convergent with respect to v < 1.

2.7

Remark 2.1. Since II;, preserves conforming piecewise linear functions, we have II,v;, = vﬁ, + I, vz for v, € V.
Consider the following lowest-order Raviart—-Thomas space

VT = {v, € H(div, 2) : vy|r € Po(T)x + [Po(D)* VT € Tp},

where x = (xy, ..., x4)" is the coordinate vector field. Let ¢ € VT be the canonical face basis function of Vi*
such that f F ¢§T npdS = 38p g forall F, F' € F, with 87 p being the Kronecker delta symbol. Direct calculation
shows that
F
uq&‘}f in R?
6
Iy (¢rnF) = \F| (2.8)
RT . 3
F¢F in R’
To illustrate the effectiveness of the new scheme (2.7), we check the performance of (2.5) and (2.7) applied to
the Stokes problem (2.1) with v = 1073 and the exact solution
u(x) = (= sin(rx;)? sin27x,), sinrx)) sin(rx2)?) ",

p(x) = exp(x; + x2) — (exp(1) — 1)
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(a) Plot of uy, from (2.5) (b) Plot of up, from (2.7)

Fig. 1. Numerical velocity fields for (2.1) with v =103 on a 16 x 16 uniform triangulation of £2 = [0, 1]°.
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We set 2 = [0, 1] x [0, 1] to be the unit square and consider the homogeneous Dirichlet boundary condition g = 0.
The domain 2 is partitioned into a 16 x 16 uniform grid of right triangles. The numerical solutions of (2.5) and
(2.7) are visualized using the MATLAB function quiver in Fig. 1. On such a coarse mesh, the velocity by (2.7)
is observed to be a good approximation to the sinusoidal solution u while the qualitative behavior of the velocity

by (2.5) is completely misleading for the small viscosity v.

2.2. Convergence analysis

As we have pointed out earlier, the a priori error analysis of the stabilized P; x Py method (2.5) has not been
established in the literature. In this subsection, we go one step further and present a new error estimate for the
modified scheme (2.7) that is robust with respect to v, when v < 1. Our approach is to compare the error in the
numerical approximation given by (2.7) with the error in the following scheme: Find (&, p;) € Vj, x Qy such that

v(Vay, Vo) — (V- vy, pp) = (f, yvp), Yv, € Vy,
(V-up,qn) =0, Vg € Q.

Following the analysis in [18], it is straightforward to show that
lu —uyly < Chlul,,
lp = pull < Ch(vluly + Ipl;)
is true for u € [H*(2)]9, p e H'(2). For v, = ZFE]_-h VpQrnp € VZ, a homogeneity argument implies
> vilIV@rrolF = IVC Y vegrnp)li. VT € Th.
FeFu(T) FeFp(T)
Then a combination of the above equivalence and the definition of a,’; yields

app. vp) = Y vplVgrnp)l> = D> > vplIVgrne)l;

FeFy, TeT, FeFu(T)

~ Y UIVC Y vrgrnp)lF = (Vo Vo), Yo, € V),
TeT;, FeF(T)

(2.9)

(2.10a)
(2.10b)

ie., (Ve, V')|v2xv’; is spectrally equivalent to afl . As a result, the modified bilinear form a; (e, ®) is coercive

2 . i 12
[V}, == an(p, vp) = vply, Vo, € V.

@2.11)
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Let V), Q), be the dual spac}eP of ‘;h, Q). respectively. Given arbitrary functionals F € V), g € Q}, we consider
the following problem: Find (v, %, g, %) € V), x Q), satisfying
F, F,
va, (v, %, wy) — (V- wy, g,°%) = F(wy), Yw, € V,

(Vv ) = g(m), Vr, € On.

Let V,, be equipped with the norm v%| e |, and Q) use the norm v3 || e |I. Using the inf-sup condition (2.3), the
coercivity of aj;, and the classical BabuSka—Brezzi theory (cf. [33,37]), we obtain the following stability estimate

1 _1 _
2ol El v g <K (B ( sup F(wi)+  sup g(ra)), (2.12)
1 1
v2 jwp| =1 v 2y ll=1
where KC is a fixed increasing function. Now we are in a position to present a robust error estimate of (2.7).
Theorem 2.1.  For (uy, py) given in (2.7) and (u, p) € [H*(2)]* x H'({2), there exist absolute constants C,, C,,
independent of v and h, and such that

lu —uply < Cuhlul,, (2.13a)
Ip — pull < Cph(viuly + Ipl,). (2.13b)

Proof. Consider the space of weakly divergence-free functions
Wi ={vy €V : (V-4 q1) =0 Vg, € On}.

By the definitions of (u,, p;) in (2.7) and (&, pp) in (2.9), we have

ah(u/’l’ vh) = (Vﬁha Vvh) = Oa Vvh E W//l’ (2143)
vap(Up, vi) — (V- vy, pp) = vV, Vop) = (V- vy, pp), Yo, €V, (2.14b)
(Voup,gn) = (V-up,q,) =0, Vg, € Q. (2.14¢)

It then follows from (2.14a) and a,(II,u, v,) = (VII,u, Vv;) that
ah(uh - Hhu, vh) = (V(ﬂh — Hhu), V‘Uh), Vvh € Wh. (215)

Combining (2.6) and V - u = 0, we conclude that V - II,u = 0 and thus II,u € W,. Therefore taking
v, =uy — Ilu € W, in (2.15) and using (2.11) and the Cauchy—Schwarz inequality lead to

2 ~
lwy, — Hyul|y = ap(vy, vy) < |y — Hyul;|vgl;.
As a consequence, it holds that

lup — Iyuly < Clay, — Hyul,

B - (2.16)
<Clu—uy|; + Clu — Iul|,.
Using (2.16) and a triangle inequality, we have
u—uyl, <|lu—Iu|, + |lu, — Ilu
| nli =1 ntely + luy h~|1 2.17)
< Clu — Ilyul, + Clu — up,.
Combining (2.17) with (2.10a) and the interpolation error estimate of 11
lu — Iul|; < Chlul,
finishes the proof of (2.13a).
Next, we pick arbitrary w; € Vﬁ, and r;, € Q) and use (2.14b), (2.14c) to obtain that
vap(uy — wy, vy) — (V- v, py —ra) = v(V@@y — wy), Vo) — (V- v, pp — 1), Yo € Vi, (2.18a)
(V- (up —wp), qn) = (V- (@, —wp),qn) =0, Vg, € Q. (2.18b)

6



Y. Li and L.T. Zikatanov Computer Methods in Applied Mechanics and Engineering 393 (2022) 114815
A combination of (2.18) and the stability estimate (2.12) then implies that for all w; € V;, and r;, € Qy,
1 _1 R B _Ll.
V2w —wily, + v 2 pp —rall < KBzl — wily g + v 2oy — rall)
1 1. 1
~ KB~ (v2lay — wily + v 2 pp — rall) (2.19)
1 ~ 1 _1 ~ _1
< C(v2lu —aply +v2|u—wily +v7 2 p = pull +v72p = rall).
Using (2.19) and the triangle inequality, we have,

lp— pull = lp —rull + lpp — rall
<C(lp = rull + viw — a@ply + viw — wil, + Ilp — pall).

Finally taking the infimum with respect to (wy, rp) € Vﬁl x Oy in the above inequality and using (2.13a) concludes
the proof of (2.13b). O
3. Stationary Oseen equation

We now move on to the discretization of the stationary Navier—Stokes equation

—vAu+u-Vu+Vp=f in {2, (3.1a)
V.-u=0 in {2, (3.1b)
u=g onall, 3.1¢)

with a potentially very small viscosity v < 1. As a first step, we consider the linear Oseen equation, which naturally
occurs when (3.1) is linearized by a fixed point iteration:

—vAu+b-Vu+Vp=f in 1, (3.2a)
V-u=0 1in {2, (3.2b)
u=g onalfl, (3.2¢0)

Here, b : 2 — RY is a given convective field. For a reason which will become apparent later, we add a viscous
term —e Au with vanishingly small ¢, 0 < ¢ < 1 in (3.2a) and obtain the modified momentum equation

—vAu—cAu+b-Vu+Vp=f. (3.3)

In the following, we shall show that a direct EAFE discretization in (3.9) for (3.3) does not perform well and a
modified EAFE scheme (3.10) will be our main scheme of interest.
Given a vector-valued v = (vy, ..., vg)", we consider the second order flux tensor

Jw)=eVo+v®b. (3.4)
The ith row of J() = (J(v))T, ..., J(vg)")T then is the standard flux
J(U,‘) = SVUI‘ + bv,‘

used in the classical EAFE discretization [22].
For each E € &, let ¢ be a fixed unit vector tangent to the edge E, and let ¥p € C E) satisfy

atEI//E = ‘971b -tg,

where 9, is the directional derivative along ¢z. We remark that ¢ is determined up to a constant. The following
lemma could be found in [22].

Lemma 3.1. Let Ty = |E|tg be a non-unit vector tangent to E € &,. Let §g(x) = x(x;) — x(x;), where x;, x;
are endpoints of E and T points from x; to x;. We have

Sp(eVEv) = ][ e 'eVE J(v) - TRds. (3.5)
E
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For a piecewise constant Jj, vector field and a continuous and piecewise affine wy, with respect to T, we have

Vwn, I ==Y Y apsew)ulr - T, (3.6)

TeT), Ec&,(T)
where ag = a; = fT Vi - VAjdx is an entry of the local Py element stiffness matrix on T.

Forv=(vy,..., vy)! € Vﬁ,, let J, = (J,liT, e J;’T)T be a piecewise constant approximation to J(v) such that
J;, = J(v;). For E € &,(T), it follows from (3.5) with v = v; that

—1
Jilr -tp~e <][ eWEds> Se(eVEv). (3.7)
E

Letag = a;; = ZTeTh,Eesh(T) ag. Using integration by parts, (3.6), and (3.7), for v € [H()l(())]d and a piecewise

; ; mation ! — (i N
linear finite element approximation u), = (uj, |, ..., u; ;) to u, we have

(—eAu+b-Vu,v) = (Vu,eVv+vQ b)
d
= (Va, JO) ~ (Vup, ) ==Y Y Y apdpuy ) Jjlr - te

i=1 TeTy, E€ER(T)
d _

! 3.8
~—Y Y eap (][ e‘/’Eds) Se(uly NS (eVEvy) G:9
i=1 Ec&, E
—1
=— Y eap <][ e‘/fEds> Sp(l) - 8p(eVEv).
Ee&y E

As a consequence, we define the EAFE bilinear form bPATE : V! x V! — R by

—1
PEATE(), whi b) = — > eag (][ e'/’Eds) Se(v)) - Sp(e wy), Vv, wj € V),
E

Ee&

which is a variational form for discretizing —¢Au + b - Vu ~ b - Vu. We remark that the value of bFAFE is not
affected by the generic additive constant in VY.

Remark 3.1. The original EAFE method [22] is designed for the convection—diffusion equation —V -(¢Vu + Bu) =
f in conservative form. On the other hand, the EAFE bilinear form bEAFE works for —V - (@«Vu)+ -Vu = f in
convective form. In fact, bFAFE depends on test functions weighted by edge-wise exponential functions while the
classical EAFE scheme [22] makes use of an exponentially averaged trial function.

Using the modified equation (3.3), and the approximations a(u,v,) ~ ap(up,v,) and (b - Vu,vél) ~
bEAFE(uL, vél; b), we obtain a stabilized P, x Py EAFE scheme for the problem (3.2): Find (u;, py) € V;, x QO
such that

vay(up, vi) + bW, vl B — (Vo vy, pr) = (f, yvy), Yo, €V,
(V-up,qy) =0, Vg, € Op.

Here bEAF E(v,, wy) is also defined for any continuous functions v, and w,. However, it is easy to see that the
value of bEAFE is determined by nodal values of trial and test functions, i.e., bEAFE(vh, wy; b) = bEAFE(vL, wﬁ,; b)
for v, w, € V. Thus, the stabilizing face bubble functions in the BR element do not enter the discretized EAFE
convective term.

Unfortunately, as numerical experiments show, the EAFE discretization given above for b - Vu does not work
well. We now use again ideas from the pressure-robust finite elements with discontinuous pressures [17,18,34].
Those works apply Raviart-Thomas or BDM interpolation to the test functions for the convective term b - Vu.
Similarly, we add a stabilization term with postprocessed bubble test functions to bE*™F and obtain the following
discrete convective form

biy(vy, wy; b) = by(v),, wy; b)
= bEAFE(vL, wz; b)+ (b- Vvlh, thﬁ), Yv,, w, € V.
8
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The resulting scheme for (3.2) is: Find (u;, py) € Q, x Vj such that

vay Wy, vy) + by(uly, vi; b) — (V - v, pp) = (f, vy), Vv, € V),
(V'uhv ‘]h)ZO, VQh € Qh'

In (3.10), let App, Ay, Apr, Agp, App, Ajp be the matrices representing the bilinear forms vay (uz, vZ), vah(ulh, vlh) +
bh(ufl, ”2)’ vah(uil, vZ)+(b-Vuil, Hhvﬁ), vah(uz, vi,), —(V-vz, DPh)s —(V~v2, Pr), respectively. Furthermore, let U,
U, P, Fy, F; be the vector representation for u?, ul, py, (f, I,v%) and (f, v!) (here IT,v!, = v'), respectively.
The algebraic linear system for (3.10) then reads

(3.10)

Ay Ap A\ (Up F,
Ay Ay Alp U =1 F,|. 3.11)
A, A, O P 0

Using the block Gaussian elimination, i.e. the static condensation, we obtain the reduced system

Ay —ApA Ay Ay —ARA AL\ (U (Fr—ApA,, F, (3.12)
AL —ALA Ay —A]ALA, P~ —A} A : '
Let N, denote the number of interior vertices of 7T, and N, the number of elements in 7. Since Ay is a diagonal
matrix, the stiffness matrix in (3.12) is sparse of dimension (dN, + N;) x (dN, + N,), the same as a [P]¢ x P,
element. The vector U, of dofs for the bubble component uZ are then recovered by U;, = Ab_bl(F b—AnU;—Ap, P).

Remark 3.2. We remark that the term (b - VuZ, Hhvz) is not added to (3.10). Otherwise the block A,, is not
diagonal and the above bubble reduction technique does not hold.

Let b, 7 be the restriction of b, on T € T, and E € &, be an edge having endpoints x; and x;. When b is
piecewise constant with respect to 7Ty, the (i, j)-entry b; 7(A;, A;) of the local stiffness matrix for bh,T|V1h <v! with
i # j is simple and written as

ea;;B(e7'b|7 - Tg), Tg points from x; to x;,
burg.a)=1 """ . Y (3.13)
ea;jB(—¢ 'b|r - tg), T points from x; to x;,
where B is the Bernoulli function
s
, s #0,
B(s)={e —1 a (3.14)
1, s =0.
Fori = j, we have b, 7(A;, A;) = _Zj;ei,xjeaTb/uT()‘i» A ;). Therefore computing by, |V§ <Vl is no more complicated

than assembling the stiffness matrix (a;;)1<; j<n of the Py finite element method for Poisson’s equation.
Now we compare the stabilized EAFE scheme (3.10) with the unstabilized one (3.9), where ¢ = 10~%. Consider
the Oseen problem (3.2) with v = 107%, b = (10, 1)T and the exact solution
T
u(x) = (exp(xa), exp(xy)) ,
p(x) = exp(x; + x2) — (exp(1) — 1)°.

We set 2 = [0, 1] x [0, 1] to be the unit square. The domain {2 is partitioned into a 16 x 16 uniform grid of right
triangles. Numerical solutions are visualized in Fig. 2. In this example, the speed profile from (3.10) is similar to
the exponential exact speed |u| = \/exp(2x1) + exp(2x,) while |uy| from (3.9) exhibits an anomalous boundary
layer.

Remark 3.3. For the convection-dominated elliptic problem —V -(«Vu+ Bu) = f, the classical EAFE scheme [22]
makes use of —a Au without adding an artificial viscous term —e Au. Similarly, for nearly inviscid incompressible
flows (3.2) with v « 1, it is tempting to use —vAu instead of adding the vanishing viscosity term —e Au when
deriving EAFE schemes (3.10), (4.1). However, an EAFE discretization for —v Au +b- Vu will not be Stokes stable
because EAFE bilinear form does not take face bubbles into account.

9
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(a) Plot of |up| from (3.10) (b) Plot of |up| from (3.9)

Fig. 2. Numerical speeds for (3.2) with v = 1074, b =(10,1)" on a 16 x 16 uniform triangulation of {2 = [0, 1]2.

4. Navier-Stokes equation

In view of the linear scheme (3.10), our method for the stationary Navier—Stokes Eq. (3.1) seeks (uy, p,) €
Vi x Qp satisfying

vay (wy, vy) + by(ul, v Poul) — (V- vy, pr) = (f, Myvy), Yo, eV,

4.1)
V-up,qn) =0, Y qn € O

We recall that Pjuj, is the element-wise average of the linear component ), given by Puujlr = 7 [ wj,dx. In
practice, we use the fixed-point iteration to solve (4.1) by iterating the third argument in b;. At each iteration
step, the linearized finite element scheme reduces to (3.10). The assembling of stiffness matrices for linearized
by(e, e; Phuﬁl) could be easily done using (3.13).

Remark 4.1. The EAFE schemes (3.10) and (4.1) depend on the artificial diffusion constant ¢ < 1. In practice,
there is no need to tune this parameter once ¢ is sufficiently small. For numerical examples in Section 5, EAFE
schemes using parameters ¢ < 10~8 have very similar performance.

4.1. Time-dependent problems

In this subsection, we discuss the application of the stabilized P; x Py EAFE method to the original evolutionary
Navier—Stokes equation (1.1). Applying the backward Euler method with time step-size T > 0 to discretize u, and
(4.1) to spatial variables, we obtain the fully discrete scheme

@p,ns vp) + Tva U, V) + rbh(ui,n, vy Phuﬁ,,n)
—t(V vy, ppa) = t(f (), Ivy) + @pp—1, v1), 4.2)
— (V- uj, qn) =0,

for all (vy, qn) € Vi x Qp, where t, =nt,n=0,1,2, ..., and uy, =~ u(t,), pr., =~ p(t,). However, the resulting
algebraic system cannot be solved using the bubble reduction technique described in Section 3. The reason is that
the term (uZ’n, vﬁ’l) introduces an extra mass matrix and the block A, in (3.11) is no longer diagonal. To deal with
such an issue, we consider the following quadrature on an element T € Ty,:

T|
fdx ~ —— E f(xp), (4.3)
/T d + 1 FeF,FCoT

10
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where xf is the barycenter of the face F. The formula (4.3) is second-order in R? and first-order in R3. We then
introduce a discrete L? vector inner product

1
@ o= D OITE Y, wwr) - vlxe). (4.4)

TeTy FeF.FCaT

Replacing (u, ,, vi), @p -1, vp) in (4.2) with (upp,, vi)u, (Wpa—1, Vy)n, We arrive at the following modified
time-dependent scheme: Find {u; ,},>1 C Vj and {pp.n}n>1 C On such that

i Cp ol
@hns V)0 + TR0, V) + TORG, s Vs Pruy, )

—t(V vy, ppa) = t(f (), Ivy) + @pn—1, v, Yv, € Vy, 4.5)
— (V- upn, qn) =0, Van € Qp.
For two distinct faces F # F’ € F}, it holds that
(prnp, ppnp), =0. (4.6)

Therefore the matrix representation for (uZ’n, vﬁ)h is a diagonal mass matrix and the linearized algebraic system
for (4.5) in fixed point iterations is of the form (3.11), where A, is still a diagonal matrix corresponding to
(uZ’n, vﬁ)h + rvah(uz’n, vﬁ). As explained in (3.11), (3.12) in Section 3, the computational cost of solving (4.5)
is comparable to a [P1]?¢ x Py element method.

Similarly to the stationary case, to enhance pressure-robustness, the work [17] replaces the terms (uy, ,, v;) and
(Up n—1, vp) in a backward Euler method with (Il uy ,, IIv,) and (Iluy ,—1, Iy vy), respectively. For our purpose,
we can only postprocess the test function v, as the term (Hhuzn, Hth) would contribute a non-diagonal mass
matrix. The resulting time-dependent scheme is as follows: Find {u}},>1 C V), and {p}},>1 C Qp such that

! !
@nns pvp)n + Tvap@p,, vi) + thp(uy, ,, vi; Pouy, )

—t(V vy, pra) = t(f (), Ivy) + @pn—1, yvp), Vv, € Vi, 4.7
— ©(V-up,, qn) =0, Vagn € Q.
It follows from direct calculation and (2.8) that
@rnr, D(grnp))y = c@rnp, $5n =0, YF £ F € F, (4.8)

where ¢ = |F|/6 in R? and ¢ = |F|/15 in R3. Therefore the mass matrix from (uZ,n, 11, vZ)h is diagonal and (4.7)
could be solved in the same way as (4.1) and (4.5).

Remark 4.2. For Navier-Stokes equations with v of moderate size, we could replace the EAFE form bh(uﬁl,n, vy;
Pyu, ) with (@, - Vi, ., Iv;) and obtain a new stabilized Py x P finite element method.

5. Numerical experiments

In this section, we compare our schemes (3.10), (4.1), (4.5) with the standard BR finite element method using
test functions postprocessed by the BDM interpolation II;. Those postprocessing-based BR methods have been
already argued in [17-19] to be superior to the classical ones. All experiments are performed in MATLAB R2020a
and the linear solver is the MATLAB operation \. For nonlinear problems, we use the fixed point iteration with
50 maximum number of iterations. The stopping criterion for nonlinear iterations is that the relative size of the
increment | X1 — X¢|/|Xx] is below 107, where X is the solution for the linear system at the kth iteration step.
The parameter ¢ used in our EAFE-based schemes is set to be 10717,

5.1. Convection-dominated Oseen problem

First, we test the performance of (3.10) and the classical scheme (cf. [17,19])
v(Vuy, Vug) + (b - Vuy, yvy) — (V- o, pp) = (f, Lyvy), Vv, € Vi,

(V-up,qn) =0, Vg, € Qg
1

5.1)
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Fig. 3. The grid and exact velocity field for (3.2) used in Problem 5.1.
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(a) Velocity field by the scheme (3.10) (b) Velocity field by the scheme (5.1)

Fig. 4. Numerical velocity fields of the schemes (3.10) and (5.1) in Problem 5.1.

using the linear Oseen problem (3.2) with v = 1073, f = 10(=x2,x1)", g = (0,0)T, b = (10, 1)" on the unit
square {2 = [0, 1] x [0, 1]. The mesh of {2 is relatively coarse and is shown in Fig. 3(a). We use the numerical

velocity solution of (3.10) on a relatively fine uniform mesh with 51200 triangles as the exact velocity field, see
Fig. 3(b).

Due to the sharp contrast between v < |b| and the homogeneous Dirichlet boundary condition, the exact
velocity u is expected to have a sharp boundary layer. It could be observed from Fig. 4(b) that the classical scheme
(5.1) yields a numerical velocity field with spurious oscillations in the low resolution setting. On the contrary, the

stabilized EAFE scheme (3.10) is able to produce a physically meaningful solution Fig. 4(a) on a coarse mesh,
compared with the reference velocity profile in Fig. 3(b).

5.2. Kovasznay flow
For the stationary Navier—Stokes problem (3.1), we compare our scheme (3.10) with the following classical
scheme (cf. [17,19])
v(Vuy, Vo,) + (wy, - Vuy, ) — (V- v, pp) = (f, o), Yo, € Vi,
(V-up, qn) =0, Van € Qh
on the domain {2 = [-0.5, 1.5] x [0, 2]. The exact solutions of (3.1) are taken to be

1 — ™1 cos(2mx7) U . Lo
”(x)_<§e*“ sinQ2rxy) ) p(x)——ie +§(e —e ), (5.3)

12
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Table 1
Convergence history of the stabilized P; x Py EAFE scheme (4.1) in Problem 5.2.

error\#dof 225 961 3969 16129 65025 v

|l — ufl I 2.142 5.715e—1 1.448e—1 3.712e-2 9.976e—3 1

lp = prll 3.105e+1 1.995e+1 1.070e+1 5.465 2.746 1

|l — uﬁl I 3.557e—1 1.370e—1 4.039e—2 1.015e—2 3.309e—3 1073

lp = pnll 2.151e-2 1.840e—2 1.048e—2 3.613e—3 1.567e—3 1073

llu — u, | 3.560e—1 1.48le—1 4.496e—2 9.396e—3 2.516e—3 5%x 1074
lp — pall 1.317e-2 1.793e—2 1.041e—2 2.676e—3 8.949¢—4 5% 107
llu — u§1 I 3.589%¢—1 1.701e—1 9.665e—2 1.033e—2 2.180e—3 10~*

lp = pull 1.258e—2 1.897e—2 1.905e—2 1.842e—-3 4.462e—4 104
Table 2
Convergence history of the classical scheme (5.2) in Problem 5.2.

error\#dof 401 1697 6977 28289 113921 v

|lu — "2 I 1.922 4.436e—1 1.058e—1 2.584e—2 6.381e—3 1

lp = pall 2.886e+1 1.606e+1 8.293 4.183 2.095 1

|l — ”2 I 1.057e+1 2.006e+1 4.569¢—2 7.543e—3 1.668e—3 1073

lp — pall 4.178 3.125e+1 1.242e—-2 1.868e—3 4.786e—4 1073

llu — ufll\ 1.002e+1 9.190 9.815 9.131e—3 1.824e—3 5x 1074
lp — pall 8.932 8.246e+1 5.006 2.277e—3 4.392e—4 5% 1074
|l — ufl I 5.270 1.126e+1 1.651e+1 1.871e+1 5.078 10~*

lp = pnll 9.940 8.284 1.970e+1 4.239¢e+1 3.174 10~*

ﬁ - ,/ﬁ + 472 and v is varying. In the literature, (5.3) is a benchmark problem known as the

Kovasznay flow (cf. [9,12,38]). We start with a 8 x 8 uniform initial partition of {2 having 128 triangles and then
refine each element in the current mesh by quad-refinement to obtain finer grids. The data shown from 2nd to 6th
columns in Tables 1 and 2 are computed on the same mesh. Since the bubble component of u, has little effect on
the accuracy, we only consider the approximation property of the linear part ufr

Without dofs associated with faces, the size of algebraic systems from (4.1) is significantly smaller than (5.2). In
the case that v = 1, the numerical accuracy of the classical scheme (5.2) is slightly better than the EAFE scheme
(4.1). As v is increasingly small, our EAFE-stabilized P; x Py method is able to yield numerical solutions with
moderate accuracy even on the coarsest mesh. On the other hand, the performance of the classical method is not
satisfactory on coarse meshes. In fact, the nonlinear iteration for (5.2) is not convergent unless the grid resolution
is high enough.

where A =

5.3. Evolutionary potential flow

In the rest of two experiments, we investigate the effectiveness of (4.1) and (4.5) applied to benchmark potential
flows proposed by Linke&Merdon [17]. Exact velocities of those problems are gradient of a harmonic polynomial.
For potential flows, the pressure is relatively complicated and causes large velocity errors for numerical methods
without pressure-robustness. Let x (x, 1) = tz(Sxfxz — 10)c12x23 + x25) be a polynomial that is harmonic in space. We
consider the evolutionary problem (1.1) with exact solutions

Juf?
u:VX, pZ—T—X;—f-C,
where C is a constant such that fg pdx = 0. The corresponding load f = 0. The space domain {2 =

[—0.5,0.5] x [—0.5,0.5] and the time interval is [0, 2]. We compare the EAFE P; x Py, method (4.5) with the
following classical scheme (cf. [17])

pupp, Hyvp) + tv(Vuy,, Vog) + thy(up - Vg, I v,)
— (V- vy, puy) = T(f (), Hyvp) + (ywp poy, Iyvp), v, €Vy, (5.4)

- T(V : uh,ns Qh) = 0’ qn € Qh'
13
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Fig. 5. Numerical and exact speed profiles in Problem 5.3, t =2, v = 10-°.

Table 3
A comparison between the schemes (4.5) and (5.4) in Problem 5.3, v = 1.

t llu(t,) — ui,,,,ll in (4.5 lp(ty) — ppall in (45)  llu(ty) — ulh,,,ll in (5.4)  lp(ta) — puull in (5.4)
0.5 4.640e—4 1.371e-2 3.890e—4 2.220e—2

1.0 1.855e-3 5.453e—2 1.556e—3 8.867¢—2

1.5 4.164e-3 1.323e—1 3.501e—3 2.035e—1

20 7.387e-3 2.838e—1 6.224e—3 3.805e—1

Table 4

A comparison between the schemes (4.5) and (5.4) in Problem 5.3, v = 107°.

t llu() — uﬁ,’,,ll in (4.5)  |p(ta) = paall in (4.5  flu(t) —uf Il in (5.4) | p(ta) = paall in (5.4)
0.5 2.893e—2 1.401e—2 1.962¢—3 3.193e—3

1.0 8.857e—2 4.862¢—2 3.548e—2 1.036e—2

1.5  1.420e—1 1.258e—1 2.014e+1 3.372e+2

2.0 1.946e—1 2.211e—1 1.085e+2 2.852e+3

We set the time step-size to be T = 0.1 and use a uniform criss-cross mesh with 2048 right triangles.

For the potential flow with v = 1, the numerical performance of the classical scheme (5.4) and the EAFE
scheme (4.5) are comparable, see Table 3. When v = 107° is exceedingly small, it is observed from Table 4 that
our stabilized P; x Py EAFE method outperforms the classical one. In particular, (5.4) stops converging after t = 1.5
while our scheme (4.5) maintains moderate accuracy and outputs a relatively good solution at r = 2, see Fig. 5.

5.4. 3D potential flow

The last experiment is devoted to a 3 dimensional stationary Navier—Stokes problem (3.1) on the unit cube
2 =10, 1] x [0, 1] x [0, 1], where the exact solution is a steady-state potential flow

1
u(x) = V(xixxs), p= —§V|u|2 +C, (5.5)

and C is a constant such that | o pdx = 0. The corresponding load f = 0. The mesh of {2 is a uniform tetrahedral
grid with 3072 elements, see Fig. 6(a). Numerical results are presented in Fig. 7 and Table 5.

For viscosity v of moderate size, the performance of (4.1) and (5.2) are similar while (4.1) solves more economic
algebraic linear systems with much less number of dofs. When v < 1074, it is observed from Table 5 that the EAFE
scheme (4.1) produces velocities and pressures of good quality on the fixed mesh while the fixed point iteration of
(5.2) is indeed not convergent. Compared with (4.1), the classical scheme (5.2) produces highly oscillating solutions
in the fixed point iteration when v < 1074, see the visualization of |uy| at the cross sections x; = 0.8, x, = 0.8,
x3 = 0.8 in Fig. 7.

14
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(a) The tetrahedral mesh in Problem 5.4 (b) Exact speed profile in Problem 5.4

Fig. 6. The mesh and exact speed in Problem 5.4.
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Fig. 7. Speed profiles of the schemes (4.1) and (5.2) when v = 10~* in Problem 5.4.

Table 5
A comparison between the schemes (4.1) and (5.2) in Problem 5.4.

v llw — ul|| in (4.1) lp = pall in (4.1) llu —ul|| in (5.2) lp — pull in (5.2)
1 2.205e—3 4.393e—2 2.201e—3 4.037e—-2

1071 2.234e—3 2.925e—2 2.220e—3 2.813e—2

1072 2.605e—3 2.872e—-2 2.192e-3 2.799¢—2

1073 4.639¢—3 2.837e—2 2.192e—3 2.800e—2

10~* 1.156e—2 2.804e—2 1.871 1.074e+1

1073 1.607e—2 2.806e—2 1.064e+1 2.454e+3

6. Concluding remarks

We have developed an EAFE-stabilized P; x Py finite element method for incompressible Navier—Stokes equations
with small viscosity. For the Stokes problem, we have shown the robust a priori error analysis of our scheme
with respect to v. It is straightforward to apply the technique in this paper to other Stokes element of the form
(P, +bubble) x Py, see, e.g., the pointwise divergence-free Stokes elements in [8,20]. Moreover, we shall investigate
stabilized P, x P;_; schemes based on reducing higher order (P + bubble) x P,fi_sf Stokes elements [2,8,18,20] or
other technique [31] and higher order EAFE [25,27] in future research.
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