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A B S T R A C T   

The equiatomic CoCrFeMnNi Cantor alloy, a face-centered-cubic (FCC) single-phase high-entropy 
alloy (HEA), has attracted considerable attention owing to its high strength and good ductility 
over a wide temperature range. The mechanical performance of this alloy was improved by 
reducing the stacking fault energy (SFE) through composition modification, and thus, a series of 
near- or non-equiatomic HEAs that are stronger and more ductile than their predecessor have 
been developed. However, the plastic-deformation behavior and strengthening mechanisms have 
not yet been fully discovered. In this study, we investigated the yielding and hardening behaviors 
of the Cantor alloy and FCC-phase Co-rich HEAs with different SFEs by in situ neutron diffraction 
combined with the first-principles method and electron-microscopy characterizations. The Co- 
rich HEAs exhibited a higher intrinsic yield strength than the Cantor alloy, mainly because of 
the larger shear modulus or modulus misfit, and grain refinement being more effective in 
improving the yield strength of low-SFE HEAs. Furthermore, higher flow stresses and better 
ductility of the Co-rich HEAs are attributed to the greater dislocation density and a larger number 
of stacking faults, which enhanced the strain-hardening rate during tensile deformation. The low 
SFE promoted mechanical twinning, and martensitic transformation contributed to higher strain- 
hardening rates. The present study provides deep insight into the yielding and hardening of FCC- 
phase HEAs, the understanding of which is a prerequisite for developing high-performance 
materials.   

1. Introduction 

Metals and alloys are irreplaceable structural materials used in a wide variety of applications. Conventional alloys are designed 
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based on one principal element with minor additions of alloying elements to enhance the mechanical properties by solid solution 
strengthening, grain boundary strengthening, and precipitation strengthening (Beer, Johnston Jr. Dewolf, 2006; Reza Abbaschian, 
Lara Abbaschian and Reed-Hill, 2009). For instance, steels are Fe-based alloys with minor additions of Mn, Ni, Cr, C, etc. In the year 
2004, a different concept was proposed, in which the alloy design is based on five or more principal elements with equimolar or 
near-equimolar proportions (Cantor et al., 2004; Yeh et al., 2004). These alloys are known as multi-principal alloys or high-entropy 
alloys (HEAs) (Cantor et al., 2004; Miracle and Senkov, 2017; Tsai and Yeh, 2014; Yeh et al., 2004; Zhang et al., 2014). Subse-
quently, face-centered-cubic (FCC) phase HEAs such as CoCrFeMnNi Cantor alloy, hexagonal closed-packed (HCP) phase HEAs such as 
GdHoLaTbY alloy, and body-centered-cubic single-phase HEAs such as TiZrHfNbTa Senkov alloy, have been successfully developed 
(Cantor et al., 2004; Gao et al., 2015; Miracle and Senkov, 2017; Senkov et al., 2010; Tsai and Yeh, 2014; Zhang et al., 2014). Soon 
afterwards, medium entropy alloys (MEAs) composed of three or four multi-principal elements also emerged. The FCC-phase CoCr-
FeMnNi, CoCrFeNi, and CoCrNi alloys are the most widely investigated HEAs/MEAs; which possess a good combination of strength 
and ductility, particularly at low temperatures, making it a promising candidate for cryogenic applications (Cantor et al., 2004; Gali 
and George, 2013; Gludovatz et al., 2014; Laplanche et al., 2016; Li et al., 2022, 2022; Otto et al., 2013; Schneider et al., 2020). The 
three HEAs/MEAs have a medium stacking fault energy (SFE) of 18 to 27 mJ/m2 at ambient temperature (Liu et al., 2018), but the SFE 
decreases with a decrease in temperature (Huang et al., 2015). Mechanical twinning occurs during deformation and is preferred at 
lower SFE. Mechanical twinning contributes to the strengthening and ductilization of the alloys (Kaushik et al., 2021; Li et al., 2022, 
2022), which is known as the twinning-induced plasticity (TWIP) effect (De Cooman et al., 2018). 

In FCC-phase metals and alloys, the SFE is the major factor determining the plasticity mechanism and mechanical properties. 
During plastic deformation, the gliding of perfect dislocations with a Burgers vector of a/2 <110> and the formation of dislocation-cell 
structures have been widely observed in metals with a high SFE (higher than 45 mJ/m2), such as pure Ni and Al (Carter and Holmes, 
1977; Hammert et al., 1992; Richard W. Hertzberg, Richard P. Vinci, 2013). However, the dissociation of perfect dislocations into 
Shockley partial dislocations with a Burgers vector of a/6 <211> is often activated by the externally-applied shear stress in alloys with 
a medium SFE (usually 15 − 45 mJ/m2), such as TWIP steels (De Cooman et al., 2018; Grässel and Frommeyer, 1998). In addition, 
mechanical twinning is often activated by the shear stress-aided overlapping of stacking faults (SFs) on constitutive {111} planes (De 
Cooman et al., 2018). These alloys often exhibit a high strain-hardening rate, which postpones the initiation of necking and thus, 
results in high strength and good ductility owing to the TWIP effect (He et al., 2022; Huang et al., 2019; Y. Z. Li et al., 2022; Zhang 
et al., 2020). Furthermore, in alloys with extremely low SFE (usually lower than 15 mJ/m2), such as Co–Cr–Mo alloys (Pineau and 
Matdriaux, 1976; Wei et al., 2019a), the dissociation of perfect dislocations into Shockley partials becomes more preferred, and the 
strain-induced FCC → HCP martensitic transformation often occurs, in which the HCP phase is formed by overlapping SFs on every 
second {111} plane of the FCC matrix (Olson and Cohen, 1976). It also contributes to the increases in strength and ductility (Bah-
ramyan et al., 2020; Connolly et al., 2022; Fang et al., 2019; Homayounfard and Ganjiani, 2022; Kim et al., 2022; Lai et al., 2022), 
known as the transformation-induced plasticity (TRIP) effect (Connolly et al., 2022; Fischer et al., 2000). 

To date, numerous strategies have been utilized for further improving the strength of the HEAs/MEAs, such as grain refinement 
(Agius et al., 2022), precipitation strengthening (F. He et al., 2021; Liu et al., 2022; Ye et al., 2022), dislocation cell strengthening (He 
et al., 2022; Y.Z. Li et al., 2022), gradient nanostructure strengthening (Sun et al., 2022), interstitial strengthening (Z. He et al., 2021; 
Zhang et al., 2022), chemical fluctuation strengthening (Z. He et al., 2021; Wei et al., 2022c; Zhang et al., 2021), and TWIP/TRIP 
strengthening (Bahramyan et al., 2020; Lai et al., 2022; Wei et al., 2022a, 2022b; Zhang et al., 2020). Hereinto, significant efforts have 
been devoted to developing strong and ductile FCC-phase HEAs by further reducing the SFE of the CoCrFeMnNi HEA achieved by 
modifying the composition, and many types of non-equiatomic single-phase TWIP/TRIP HEAs have been designed (Deng et al., 2015; 
Li et al., 2016; Wei et al., 2019b, 2019c, 2019d). For instance, Co-rich HEAs exhibit higher strength and better ductility than equimolar 
CoCrFeMnNi alloys (Wei et al., 2019b, 2019c, 2019d). However, the reason for the high yield strength of Co-rich HEAs is unclear. The 
mechanisms of plasticity and dynamic strengthening, as well as microstructural evolution under plastic deformation, have not been 
investigated. At the same time, grain refinement is an effective strategy to improve the yield strength by grain-boundary strengthening 
(Hall–Petch relationship) (Hall, 1951; Petch, 1953), where the grain size affects not only the yield but also the strain-hardening 
behavior. The Hall–Petch relationship is determined by the intrinsic properties of alloys. It has been reported that the intrinsic fric-
tion stresses and the Hall–Petch coefficients of equiatomic CoCrNi and CoCrFeMnNi alloys are higher than those of pure metals 
(Yoshida et al., 2019, 2017). Thus, grain refinement facilitates the effective strength improvement in these alloys. However, the effect 
of the grain size on the yielding and the strengthening mechanisms of the Co-rich HEAs has not been clarified, where a good un-
derstanding of them is a prerequisite for optimizing the microstructures and mechanical properties. 

In this study, we aimed to demonstrate the yielding and strengthening behaviors of three representative HEAs: equiatomic 
Co20Cr20Fe20Mn20Ni20 (atomic percent, at.%) Cantor HEA, Co-rich Co35Cr20Mn15Ni15Fe15 TWIP-HEA (Wei et al., 2019c), and Co-rich 
Co35Cr25Mn15Ni15Fe10 TRIP-HEA (Wei et al., 2019c). The effects of intrinsic properties and grain sizes on room-temperature me-
chanical performance were investigated and discussed, based on experiments and first-principles calculations. The dynamic 
plastic-deformation behavior, strain-hardening mechanism, and microstructure evolution during tensile deformation were clarified by 
in situ neutron diffraction (ND) measurements. The results obtained deepen the understanding of strengthening in HEAs, contributing 
to the design and fabrication of high-performance HEAs for load-bearing applications. 
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2. Methodology 

2.1. Sample preparation and experimental investigations 

Ingots of Co20Cr20Mn20Ni20Fe20, Co35Cr20Mn15Ni15Fe15, and Co35Cr25Mn15Ni15Fe10 HEAs were prepared via high-frequency in-
duction melting and vacuum casting. The weight of each ingot is 700 g, which has a thickness of 20 mm and a width of 50 mm. 
Hereafter, the samples are denoted as Fe20, Fe15, and Fe10, respectively. The cast ingots were homogenized at 1473 K for 5 h in a high- 
purity Ar atmosphere and then forged to a 50% reduction in thickness at 1473 K with water quenching to 293 K. After that, the samples 
were cold-rolled to a 40% reduction in thickness at 293 K. Finally, pieces were sliced from the cold-rolled sheet and annealed at 1173, 
1273, 1373, and 1473 K for 2.4 × 102 s, 6.0 × 102 s, 1.8 × 103 s, 3.6 × 103 s, 2.16 × 104 s, 4.32 × 104 s, 8.64 × 104 s, 2.592 × 105 s, and 
4.32 × 105 s. After annealing, recrystallized grain structures with different grain sizes were formed. 

Then, dog-bone-shaped tensile samples with gauge dimensions of 6.4 × 2.5 × 1.5 mm were sliced, and the sample surfaces were 
polished, using abrasive papers up to 2000 grit. Uniaxial tensile tests were conducted at 293 K and a strain rate of 1 × 10−3 s−1, 
employing a Shimadzu AG-50kNX test frame. The strain was calibrated, using a video extensometer. The grains were characterized, 
utilizing scanning electron microscopy (JSM-7100F, JEOL) equipped with electron backscatter diffraction (EBSD). The acquired data 
were analyzed, using the OIM software (version 7.0). A grain tolerance angle of 5◦ was used to identify the grain boundary (Beausir 
et al., 2009; Raju et al., 2008), because the average grain size determined using the OIM for a tolerance angle of 5◦ is in good agreement 
with the grain size measured using the TEM (Raju et al., 2008). The boundary with a misorientation angle of 2 – 5◦ was considered as 
the subgrain boundary. The annealing twin boundaries were included as the identified grain boundaries. The mean grain size was 
calculated by weighting the area of each grain as follows: 

ν =
∑

N
i=1Aiνi

∑

N
i=1Ai

(1)  

where Ai is the area of grain i. 
In situ tensile deformation experiments combined with ND measurements of the HEAs were conducted, using a time-of-flight 

neutron diffractometer at BL19 “TAKUMI” in the Materials and Life Science Facility at the Japan Proton Accelerator Research 
Complex. The details of the diffraction instrument are described in a previous study (Harjo et al., 2011). As illustrated in Fig. 1, the 
loading axis was oriented at +45◦, relative to the incident neutron beam. Axial and radial detectors were used to collect the diffracted 
neutrons, which provided the microstructure characteristics of the bulk samples along the tensile direction and normal direction, 
respectively. To clarify the correlation between the microstructure evolution and flow stress, the ND profiles collected by the axial 
detector were used for the line profile analysis in the present study. The covered d-range was 0.05 – 0.30 nm with an instrumental peak 
resolution (Δd/d) of 0.3%. For the ND line profile analysis, the lattice parameter and {hkl}-dependent d-spacing were analyzed, 
utilizing the Z-Rietveld software (Oishi-Tomiyasu et al., 2012; Oishi et al., 2009). The dislocation density was calculated, employing 
the convolutional multiple whole profile (CMWP) method, where the diffraction profiles (Ihkl) are expressed as (Ribárik et al., 2020, 
2001; Ungár et al., 2010): 

Ihkl = Ihkl
instr ∗ Ihkl

size ∗ Ihkl
disl ∗ Ihkl

planar (2) 

Fig. 1. Illustration of in-situ neutron diffraction measurement for the HEAs.  
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where Ihkl
instr is the measured instrumental profile, Ihkl

size is the size profile, Ihkl
disl is the strain profile of dislocations, and Ihkl

planar is the profile 
function of planar faults. Here, the strain Fourier transform (AD(L)) is (Gubicza, 2014; Ungár et al., 2001; Wilkens, 1970): 

AD(L) = exp

[

− πb2

2

(

g2CρdL2f

(

L

R∗
e

))]

(3)  

C is the average dislocation contrast factor, ρd is the dislocation density, b is the Burgers vector of dislocations, L is the Fourier length, f 
is the Wilkens function, and R∗e is the effective cut-off radius of the dislocations. The value of C is calculated as (Gubicza, 2014; Ungár 
et al., 2001; Wilkens, 1970): 

C = Ch00

(

1− q
h2k2 + k2l2 + l2h2

(

h2 + k2 + l2
)2

)

(4)  

q is a parameter describing the dislocation character, Ch00 is the average contrast factor of the (h00) reflection, which is calculated, 
using the ANIZC software (Borbély et al., 2003). The elastic constants of the HEAs listed in Table 1 were obtained from first-principles 
calculations. The instrumental profile for CMWP analysis was obtained by measuring the National Institute of Standards and Tech-
nology Standard Reference Material 660a LaB6 standard powder (NIST, 2000). The substructures of the deformed HEAs were 
observed, using transmission electron microscopy (TEM, JEM-2000EXII, JEOL) at a voltage of 200 kV. The TEM specimens were 
prepared, using an ion-milling system (PIPS II Model 695, Gatan) with a milling angle of 4◦ and an ion beam energy of 3.0 kV. The 
shear modulus of the bulk polycrystalline samples were measured using a sing-around measurement technique (Ultrasonic Engineering 
UVM-2). 

2.2. First-principles calculations 

To interpret our experimental results based on established mechanisms and concepts for HEA strengthening, material properties 
that cannot be measured experimentally were necessary. Thus, the first-principles electronic structure calculations were employed. 
Atomic models of 180–atom supercell with dimensions of a = 5e1, b = 3e2, and c = 2e3 (e1 = a0[

̅̅̅2√
/2,0,0], e2 = a0[0,

̅̅̅6√
/2,0], and e3 

= a0[0,0,
̅̅̅3√
], where a0 is the lattice constant) and a coordinate system corresponding to x = [110], y = [112], and z = [111] were 

constructed for the considered HEAs. Special quasi-random structures (SQS) were generated using the “mcsqs” function in the Alloy 
Theoretic automated toolkit (ATAT) to model statistically random solid HEA solutions (Van de Walle et al., 2002). We carried out the 
first-principles calculations within the framework of density functional theory (DFT) using the Vienna Ab initio Simulation Package 
(Kresse and Furthmüller, 1996; Kresse and Hafner, 1993), and projector-augmented wave potentials were employed with the Per-
dew–Burke–Ernzerhof generalized gradient approximation exchange-correlation density functional (Kresse and Joubert, 1999; Per-
dew et al., 1996). We selected the Brillouin-zone gamma-centered k-point samplings using the Monkhorst–Pack algorithm (Hu et al., 
2019), in which 3 × 3 × 3 grids were used for the 180–atom models. A cut-off of 400 eV in plane-wave energy was applied using a 
first-order Methfessel–Paxton scheme. The total energy converged within 10−5 eV/atom. The relaxed configurations were obtained 
using the conjugate gradient method, which terminated the search when the force on all the atoms was reduced to 0.01 eV/Å. 

3. Results 

Fig. 2 shows the average grain sizes of the Fe20 (Fig. 2a), Fe15 (Fig. 2b), and Fe10 (Fig. 2c) HEAs after annealing. It can be seen that 
the grain size increases with annealing temperature and annealing time. The grains grew more rapidly at higher temperatures than at 
lower temperatures. Furthermore, the grains of the Fe20 HEA tended to grow more rapidly than those of the Fe15 and Fe10 HEAs at 1473 
K. The finest grain sizes obtained in the present study, 6.2 μm (Fe20), 5.9 μm (Fe15), and 5.7 μm (Fe10), were obtained by annealing at 
1173 K for 2.4 × 102 s, while the corresponding largest grain sizes, 292, 211, and 205 μm, in the three HEAs, were obtained by 
annealing at 1473 K for 4.32 × 105 s. 

The EBSD IPF maps in Fig. 3 show the grain morphologies of the (Fig. 3a,d) Fe20, (Fig. 3b,e) Fe15, and (Fig. 3c,f) Fe10 HEAs after 
annealing at 1173 K for 2.4 × 102 s (Fig. 3a–c) and at 1373 K for 3.6 × 103 s (Fig. 3d–f). A relatively-homogeneous grain structure 
formed in all samples. The average grain sizes are approximately 6 μm (Fig. 3a–c), 77.3 μm (Fig. 3d), 73.8 μm (Fig. 3e), and 70.6 μm 
(Fig. 3f). The difference in the grain morphologies between Fig. 3a–f is that annealing twins are more frequently observed in Fig. 3d–f, 
which is correlated with the low SFE of the HEAs. The samples shown in Fig. 3a-c were utilized for in situ ND measurements and TEM 

Table 1 
Elastic modulus (Ehkl) along the {hkl} crystal orientation, lattice parameter (a0), Burgers vector (b) of perfect dislocations, and the intrinsic stacking 
fault energy (γisf) of the Fe20, Fe15, and Fe10 HEAs, acquired from the in-situ ND line profile analysis.  

Sample E111 (GPa) E200 (GPa) E220 (GPa) E311 (GPa) a0 (nm) b (nm) γisf 

Fe20 252.8 138.1 231.5 183.7 0.3598 0.2537 26.5±4.5 
Fe15 280.9 156.6 272.4 210.4 0.3583 0.2533 11.6±0.4 
Fe10 294.1 166.8 290.7 219.3 0.3585 0.2534 7.8±0.5  
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Fig. 2. Average grain size of the (a) Fe20, (b) Fe15, and (c) Fe10 HEAs after annealing at 1173 K, 1273 K, 1373 K, and 1473 K for a annealing time (t) 
of 2.4 × 102 s, 6.0 × 102 s, 1.8 × 103 s, 3.6 × 103 s, 2.16 × 104 s, 4.32 × 104 s, 8.64 × 104 s, 2.592 × 105 s, 4.32 × 105 s. The grain size was 
measured by EBSD method. 

Fig. 3. EBSD inverse pole figure (IPF) maps show the grain morphologies of (a, d) Fe20, (b, e) Fe15, and (c, f) Fe10 HEAs after annealing at (a-c) 1173 
K for 2.4 × 102 s (fine grain) and (d-f) 1373 K for 3.6 × 103 s (coarse grain). The samples in (a-c) with fine grains (hereinafter denoted by FG) were 
used for the in-situ neutron diffraction measurements. 
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observations, which are denoted as fine-grain (FG) samples. 
To demonstrate the mechanical performance and clarify the effect of grain size, tensile tests of the HEAs were conducted at 293 K. 

Fig. 4 shows the engineering stress-strain curves of the Fe20 (Fig. 4a), Fe15 (Fig. 4b), and Fe10 (Fig. 4c) HEAs. Both the yield strength 
(σy) and ultimate tensile strength (σu) decreased with the increase in grain sizes in all three HEAs. The σy of fine-grain samples (6 μm) 
was 330.6 MPa (Fe20), 366.9 MPa (Fe15), and 432.7 MPa (Fe10), but the σy decreased to 167.9, 188.3, and 222.0 MPa with the grain 
size increasing to 292, 211, and 205 μm. Meanwhile, the corresponding UTS decreased from 650, 804, and 889 MPa to 489, 640, and 
690 MPa, respectively. However, both the σy and σu increased with the increase in Co and/or Cr content at the expense of Fe, Mn, and 
Ni. The tensile elongations of the Fe15 and Fe10 HEAs were larger than that of the Fe20 HEA. The elongation of the Fe20 samples ranged 
from 50.2 to 57.6%, with the grain size having an insignificant effect. However, the elongation changed from 60.5 to 90.1% in the Fe15 
HEA and from 60.2 to 95.6% in the Fe10 HEA with the increase in the grain size, but the difference became negligible at the grain size 
larger than 70 μm. 

The true strain–stress and strain-hardening curves for the three HEAs with grain sizes of ~ 6 μm and ~ 70 μm are presented in 
Fig. 4d–f. In the Fe20 HEA, the strain-hardening rate of the small-grain sample is larger than that of the large-grain sample at a small 
strain (εt < 0.15), but they become subequal at a large strain. For the Fe15 and Fe10 HEAs, the strain-hardening rates of the small-grain 
samples are higher than those of the large-grain samples at a small strain, but they decrease more rapidly than those of the large-grain 
samples. The strain-hardening rates of the large-grain samples decrease slowly, which results in a larger tensile elongation. 

Fig. 5a depicts the relationship between the σy and the inverse square root of the grain size (d−1/2) for the three HEAs, which follow 
a linear Hall–Petch relationship (Hall, 1951; Petch, 1953): 

σy = σ0 + σg = σ0 + kH−Pd−1/2 (5)  

where σ0 is the intrinsic yield strength without grain boundaries, σg is the contribution of grain boundaries to the yield strength, and 
kH−P is the Hall–Petch coefficient. The fitted values of σ0 are 131.8, 148.6, and 179.4 MP, and the kH−P are 493.2, 531.3, and 610.6 
MPa⋅μm1/2 for the Fe20, Fe15, and Fe10 HEAs, respectively. This trend indicates that the friction stress for the dislocation motion in Fe10 
is larger than those in Fe20 and Fe15 HEAs, and that grain refinement contributes more significantly to the increase in yield strength in 
Fe10 than in Fe20 and Fe15 HEAs. Fig. 5b shows the σu vs. d plot: a notable decrease in σu with the increase in d is observed at d smaller 
than 75 μm; at the same time, for coarser grains, σu decreases slowly with an increase in d. 

We conducted in situ ND measurements to determine the plastic-deformation behavior. The in situ tensile stress-strain curves of the 
HEAs are shown in Fig. S1, where the measurement points are shown. During the ND profile collection, stress relaxation probably 
occurred because of the recovery of deformation-induced defects. Fig. 6 shows the ND profiles of the FG Fe20 (Fig. 6a), Fe15 (Fig. 6b), 
and Fe10 (Fig. 6c) HEAs at different strains. The diffraction peaks broadened with the increase in strain in all three HEAs. The Fe20 and 
Fe15 HEAs retained an FCC single-phase after tensile fracture at 293 K, whereas the HCP phase was formed after tensile deformation of 
the Fe10 HEA, as indicated in Fig. 6c. This trend means that the FCC → HCP phase transformation occurred. 

Fig. 7 shows the lattice strain of the FG Fe20 (Fig. 7a), Fe15 (Fig. 7b), and Fe10 (Fig. 7c) HEAs, analyzed from the ND profiles, using 

Fig. 4. (a-c) Room-temperature tensile engineering stress-strain curves of the (a) Fe20, (b) Fe15, and (c) Fe10 HEAs with different grain sizes. (d-f) 
True stress and strain hardening rate of the (d) Fe20, (e) Fe15, and (f) Fe10 HEAs with grain size of 5.8-6.2 μm and 70.6-77.3 μm. 
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εhkl =
dhkl − d0

hkl

d0
hkl

(6)  

where εhkl is the lattice strain of {hkl} planes, dhkl is the lattice spacing of {hkl} planes at a given strain, d0
hkl is the lattice spacing of 

{hkl} planes before the tensile test. It can be seen that the lattice strains of all the {111}, {200}, {220}, {311}, {222}, and {400} planes 
increase with the increase in tensile strains. The lattice strains follow the sequence of ε220 < ε111 < ε222 < ε311 < ε400 < ε200, 
indicating that the <200> and <400> orientations are stiffer than the <220> and <111> orientations. In addition, the εhkl of the Fe10 
HEA is larger than those of the Fe15 and Fe20 HEAs at an equivalent strain. It is worth noting that the difference between the ε111 and 

Fig. 5. (a) Yield strength v.s. square root of grain size and (b) ultimate tensile strength v.s. grain size acquired from the tensile tests of the Fe20, Fe15, 
and Fe10 HEAs. 

Fig. 6. In-situ neutron diffraction (ND) profiles of the FG Fe20 (a), Fe15 (b), and Fe10 (c) HEAs with grain size of ~6 μm before tensile and in-situ 
tensile deformed to various strains. 

Fig. 7. Lattice strain of the FG Fe20 (a), Fe15 (b), and Fe10 (c) HEAs with grain size of ~6 μm at various tensile strains.  
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ε222 of the Fe20 HEA is very small and does not change notably with the increase in the tensile strain. However, the corresponding 
difference is relatively large and increases with the increase in the strain in the Fe15 and Fe10 HEAs. 

Table 1 shows the elastic moduli along the <111>, <200>, <220>, and <220> crystal orientations acquired from the linear fitting 
of the lattice strain and tensile stress in the elastic deformation regime. The elastic moduli exhibited anisotropic behavior. E111 and E220 
are larger than E311 and E200, indicating a higher stiffness along the <111> and <220> orientations. Furthermore, the elastic moduli 
follow the sequence of Fe20 < Fe15 < Fe10. This trend is consistent with our previous reports that a decrease in Fe, Mn, and Ni and an 
increase in Co and Cr contents in HEAs increase Young’s modulus. In addition, the lattice constant slightly decreases. 

Based on the lattice strain, we acquired the stacking fault probability (Psf ), as follows (Frank et al., 2020a; Meric de Bellefon et al., 
2018): 

Psf =
32π

3
̅̅̅

3
√
(

d222 − d0
222

d0
222

− d111 − d0
111

d0
111

)

= 32π

3
̅̅̅

3
√ (ε222 − ε111) (7) 

The results are shown in Fig. 8a (Fe20), 8b (Fe15), and 8c (Fe10). Psf is very small in the Fe20 HEA, which reaches a maximum value of 
4.25 × 10−3 at a strain of 0.398. However, the Psf increases rapidly with the increase in strain in the Fe15 and Fe10 HEAs. The Psf reaches 
21.1 × 10−3 (Fe15) and 31.7 × 10−3 (Fe10), which is much larger than that of the Fe20 HEA, at a strain of ~ 0.4. Then, the Psf increases 
to a maximum value of 32.3 × 10−3 (Fe15) and 32.9 × 10−3 (Fe10) at strains of 0.48 and 0.42, respectively. On the other hand, the twin 
fault (intrinsic SFs) probability acquired from the CMWP process is shown in Fig. 8d-f, where the values are comparable to that of the 
Psf . This trend was also verified in CoCrFeNi HEA after deformation at various temperatures (Naeem et al., 2021). The large Psf is 
correlated with the low intrinsic SFE (γisf ) of the Fe15 and Fe10 HEAs, following a relationship described (Kang et al., 2012): 

γisf =
6.6a0

π
̅̅̅

3
√
(

2C44

C11 − C12

)−0.37
< ξ2

50 >111

Psf

(

C44 + C11 − C12

3

)

(8)  

where the < ξ2
50 >111 is the mean-square microstrain obtained using Voigt approximation (Kang et al., 2012). The elastic constants of 

the single crystals were obtained from first-principles calculations, as shown in Table 2. The relationship between the < ξ2
50 >111 and 

Psf can be seen in Fig. S2. The obtained γisf values are also presented in Table 1. It can be seen that the γisf values are 11.6 and 7.8 mJ/m2 

for the Fe10 and Fe15 HEAs, respectively, which is much smaller than that for the Fe20 HEA (27 ~ 30 mJ/m2) (Liu et al., 2018). 
The square root of the dislocation density (ρ1/2) in the three HEAs at different tensile strains is presented in Fig. 9. ρ1/2 increases 

more rapidly with the increase in the strain in the Fe10 and Fe15 HEAs than in the Fe20 HEA. ρ1/2 reaches a maximum value of 6.73 ×
107 m−1 in the FG Fe20 HEA, but it is 10.3 × 107 and 14 × 107 m−1 in the Fe15 and Fe10 HEAs, respectively, at an equivalent strain. The 
dislocation density is correlated with the flow stress during tensile deformation, which will be discussed in Section 4. 

Fig. 8. (a-c) Stacking fault probability (PSF) acquired from Eq. (7) and (d-f) twin fault probability acquired from the CMWP process of the FG Fe20 
(a, d), Fe15 (b, e), and Fe10 (c, f) HEAs with grain size of ~6 μm at various tensile strains. 
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Fig. 10 shows the evolution of the normalized peak intensity (I/I0) in Fe20 (Fig. 10a), Fe15 (Fig. 10b), and Fe10 (Fig. 10c) HEAs. I/I0 
changes with the increase in strain: I/I0 (220) decreases rapidly, but I/I0 (111) and its second-order reflection, I/I0 (222), increase. I/I0 
(200) and I/I0 (400) slightly increase after tensile deformation, but I/I0 (311) does not change significantly. The change in the peak 
intensity is attributed to the re-orientation of the grains during tensile deformation by either the grain rotation and/or mechanical 
twinning. The preferred slip system of the FCC-phase HEAs is {111} <110>. After yielding, (111) rotates towards the tensile axis, 
while (110) and its second-order reflection (220) rotate towards the direction parallel to the tensile axis, by which the dislocation slip 
becomes easier owing to the increase in the Schmid factor in the other three (111) variants. 

The TEM observations were conducted to confirm the deformation of the substructures. The TEM bright-field images and selected 
area diffraction patterns in Figs. 11 and 12 exhibit the substructures of the Fe15 (Fig. 11) and Fe10 (Fig. 12) HEAs. In the Fe15 HEA, the 
SFs and dissociated dislocations (Fig. 11a) were observed at a relatively-small strain (6%). Nanotwins, SFs, and dislocation tangles 
were observed (Fig. 11b,e) at a strain of 15%. With an increase in the strain up to 30% (Fig. 11c,f), a high density of nano twins and 
their intersections were formed. In the Fe20 HEA, wavy dislocations were frequently observed at small strains, and mechanical 
twinning occurred at a strain of 25%. Meanwhile, the dislocation cell structures often formed at a large strain (Kaushik et al., 2021; 
Laplanche et al., 2016; Li et al., 2022; Otto et al., 2013). We can conclude that the plastic-deformation behavior and the evolution of 
the substructures are quite different, even though phase transformation was not detected in either HEA. At the same time, the Fe10 HEA 
exhibited a substructure similar to that of the Fe15 HEA at a strain of 6% (Fig. 12a,d), where SFs and dissociated dislocations were 
observed. However, the HCP-phase formed at a strain of 15% (Fig. 12b,e), which is different from the case of the Fe15 HEA. The HCP 
phase and FCC matrix follow an orientation relationship of {111}FCC//(0001)HCP, < 110>FCC//[1120]HCP, which is in accordance with 

Table 2 
Lattice parameter (a0) and elastic constants (C11, C12, C44) acquired from first-principle calculations at 0 K, and the shear modulus (G) experimentally 
measured by using a sing-around measurement technique at 298 K of the Fe20, Fe15, and Fe10 HEAs.  

Sample a0 (nm) C11 (GPa) C12 (GPa) C44 (GPa) B (GPa) G 
Fe20 0.3539 241.3 135.6 143.8 170.9 81 ± 0.5 
Fe15 0.3526 253.5 139.3 148.2 177.3 85 ± 0.5 
Fe10 0.3529 263.1 134.0 147.1 177.0 88 ± 0.5  

Fig. 9. Dislocation density of the FG Fe20 (a), Fe15 (b), and Fe10 (c) HEAs with grain size of ~6 μm in-situ tensile deformed to various strains.  

Fig. 10. Normalized peak intensity (I/I0) evolution during in-situ tensile deformation of the FG Fe20 (a), Fe15 (b), and Fe10 (c) HEAs with grain size 
of ~6 μm before tensile and in-situ tensile deformed to various strain. 
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Fig. 11. (a-c) TEM bright-field images and (d-f) selected area diffraction patterns shows the substructures of the FG Fe15-HEA after tensile to a strain 
of (a, d) 6%, (b, e) 15%, and (c, f) 30%. The images were acquired from the [110]FCC direction using a g = (111) vector. 

Fig. 12. (a-c) TEM bright-field images and (d-f) selected area diffraction patterns shows the substructures of FG Fe10-HEA after tensile to a strain of 
(a, d) 6%, (b, e) 15%, and (c, f) 30%. The images were acquired from the [110]FCC direction using a g = (111) vector. 
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that reported for cobalt-based alloys and other FCC-phase TRIP HEAs. A large number of thin HCP-lamellae and their intersections 
were observed at a strain of 30% (Fig. 12c,f); dislocation tangles were also frequently observed at grain boundaries and the in-
tersections of the HCP lamellae. 

4. Discussion 

4.1. Influence of composition and grain size on the yield strength of the HEAs 

As shown in Fig. 5a, the σ0 and kH−P values of the three HEAs follow the order of Fe20 < Fe15 < Fe10. The σ0 is the intrinsic lattice 
friction stress equal to the critical flow stress of a single crystal oriented to multiple slips. The σ0 of all the HEAs was much larger than 
those of pure Ni (14.2 MPa), pure Al (4.0 MPa), and Ni-40Co alloy (51.9 MPa). Local lattice distortion (LLD) and chemical undulation, 
or short-range order, were shown to increase the lattice friction force of HEAs (Labusch, 1970; Li et al., 2019; Okamoto et al., 2016; 
Toda-Caraballo and Rivera-Díaz-Del-Castillo, 2015; Varvenne et al., 2016). A solid-solution strengthening theory for the FCC-phase 
HEAs proposed that a great σ0 is obtained by a large solute misfit parameter of δ and/or large shear modulus (G) (Varvenne et al., 
2016), where δ is acquired by: 

δ =
[

∑

cn

(

ΔV
2

n + σ2
ΔVn

]1/2 (9) 

Another model proved that the shear modulus and elastic mist were the prominent factors (Toda-Caraballo and River-
a-Díaz-Del-Castillo, 2015). Furthermore, it was proposed that the mean-square atomic displacement (MSAD) is a good scaling factor for 
predicting σ0 (Okamoto et al., 2016). 

The G and ̅̅̅̅̅̅̅̅̅̅̅̅̅̅MSAD√
/b (b is the Burgers vector of dislocations) values for the three HEAs were evaluated by first-principles calcu-

lations. Here, ten SQS models were used for the average and standard deviation of ̅̅̅̅̅̅̅̅̅̅̅̅̅̅MSAD√ , and the results are presented in Fig. 13. The 
Co, Cr, Fe, Ni, and Mn atoms were displaced from their ideal positions in the crystal lattice. The magnitude of the displacement varied 
from element to element. The average values of the ̅̅̅̅̅̅̅̅̅̅̅̅̅̅MSAD√

/b are 0.02188, 0.01918, and 0.02086 for the Fe20, Fe15, and Fe10 HEAs, 
respectively, revealing that the two Co-rich HEAs have a slightly-smaller LLD than the Fe20 HEA. However, the volume misfit of the five 
constituents did not exhibit significant differences between the three HEAs. The atomic volume of the fully-relaxed structure was also 
evaluated using Voronoi polyhedral technique. The atomic volume of the element, n (Vn), in the solid solution, is VCo = 11.12 Å3, VCr 
= 12.27 Å3, VFe = 12.09 Å3, VNi = 10.94 Å3, and VMn = 12.6 Å3 (Varvenne et al., 2016). The average atomic volume is Vav. =
∑ cnVn, where cn is the concentration of the element, n. The Vav. are 11.804, 11.691, and 11.699 ̊A3 for the Fe20, Fe15, and Fe10 HEAs, 
respectively. The solute misfit parameter δ is 1.21, 1.19, and 1.22 for the Fe20, Fe15, and Fe10 HEAs, respectively, indicating only 
negligible differences. Thus, the LLD and volume misfit cannot be used to interpret the large σ0 values of the Fe15 and Fe10 HEAs. At the 
same time, the value of G increases from 81 GPa (Fe20) to 85 GPa (Fe15) and then to 88 GPa (Fe10) as seen in Table 2. As σ0 is linearly 
proportional to G, an increase in G contributes to an increase in σ0. In addition, the modification of the chemical composition may tune 
the atomic short-range ordering behavior, meaning that ordering can enhance strength. These differences between the three HEAs 
require further investigation. 

The kH−P is 531.3 MPa⋅μm1/2 and 610.6 MPa⋅μm1/2 for the Fe15 and Fe10 HEAs, respectively, which are higher than 493.2 MPa⋅μm1/ 
2 for the Fe20 HEA (Fig. 5). kH−P is much larger than those of pure Ni (180 MPa⋅μm1/2), pure Al (43 MPa⋅μm1/2), and dilute Ni-40Co 
alloy (181 MPa⋅μm1/2) (Keller and Hug, 2008; Yoshida et al., 2017). It was verified that the value of kH−P is affected by the LLD, SFE, 
and G (Yoshida et al., 2019, 2017): the factors hindering the movement of dislocations increase kH−P. The LLD values of the HEAs are 
larger than those of pure metals and dilute alloys, contributing to the increase in kH−P. Furthermore, kH−P is correlated with G and γisf as 
follows (Shan Le Wang and Murr, 1980): 

Fig. 13. (a) The ̅̅̅̅̅̅̅̅̅̅̅̅̅̅MSAD√
/b of each elements and their average value and (b) the misfit volume (△V) divided by the average volume (Vaverage) of Co, 

Cr, Fe, Mn, Ni atoms in the Fe20, Fe15, and Fe10 HEAs. 
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kH−P = Gb

2π(1 − υ)
(

α− δγisf

) (10)  

where υ is Poisson’s ratio, and α and δ are dimensionally consistent constants. kH−P increases with a decrease in γisf but also with an 
increase in G. Dislocation movement is activated by a shear stress when it reaches a critical value along the slip direction. Thus, a large 
G results in a greater friction resistance for the dislocation motion. Here, the increase in G contributes to the large kH−P for the Fe15 and 
Fe10 HEAs, compared to the Fe20 HEA. At the same time, γisf affects the dislocation-slip behavior and the arrangement of dislocations, 
which is another reason for the differences in kH−P. The polycrystalline structure yields when the stress concentration reaches a critical 
value in one grain, which is large enough to activate a new dislocation in adjacent grains. The stress concentration is generated from 
dislocation pile-ups, assisted by the cross slip of the dislocations (Cordero et al., 2016; Hansen, 2004). The local stress concentrations 
induced by a microscale dislocation pile-up also significantly contribute to the activation of the FCC→ HCP phase transformation 
and/or mechanical twinning in the HEAs (Peng et al., 2022). In the Fe15 and Fe10 HEAs with low SFE (Table 1), perfect dislocations are 
preferentially dissociated into a pair of Shockley partials by a0

2 [101] → a0
6 [211] + a0

6 [112], and one pair of Shockley partials bonds an SF, 
as shown in Figs. 11 and 12. The separation distance of the pair of Shockley partials is determined by SFE, where a smaller γisf results in 
a larger separation. The restriction of partials is a prerequisite for the cross-slip, which is suppressed by reducing SFE. Thus, a larger 
shear stress is required for dislocation pile-ups to reach the critical stress concentration. The decrease in SFE further contributes to the 
increase in kH−P. 

Based on the above analysis, we can conclude that grain-boundary strengthening is more prominent in the Co-rich HEAs, where 
grain refinement is more effective in increasing the yield strength of the HEAs than in pure metals, dilute alloys, and the equiatomic 
CoCrFeMnNi HEA. 

4.2. Plastic-deformation mechanisms of the HEAs 

The plastic-deformation mechanism of the Fe20 HEA was a wavy dislocation slip, forming dislocation tangles and mechanical 
twinning with an increase in the strain (Laplanche et al., 2016; Otto et al., 2013). In the Fe15 HEA, the dislocations were more likely to 
dissociate into Shockley partials-bonding SFs, and mechanical twinning occurred at a strain smaller than that in the Fe20 HEA. In 
contrast, in the Fe10 HEA, the plasticity mechanism was the stacking faulting and the FCC → HCP transformation. Different defor-
mation behaviors are mainly attributed to the differences in SFE values. The formation of SFs by dissociating perfect dislocations is a 
prerequisite for both mechanical twinning and the FCC → HCP transformation (Byun, 2003; Fujita and Ueda, 1972; Idrissi et al., 2010; 
J.W. Brooks, M.H. Loretto, 1979; Narita and Takamura, 1974; Talonen and Hänninen, 2007; Venables, 1962). Overlapping the SFs in 
adjacent {111} planes generates local twins. However, overlapping SFs on every second {111} plane forms a local HCP structure 
(Byun, 2003; Fujita and Ueda, 1972; Idrissi et al., 2010; J.W. Brooks, M.H. Loretto, 1979; Narita and Takamura, 1974; Talonen and 
Hänninen, 2007; Venables, 1962). The twins or HCP plates then grew by successively overlapping the adjacent embryos, which formed 
hierarchical structures composed of abundant thin lamellae. 

The differences between the Fe20 and Fe15 HEAs are discussed below. At γisf larger than the surface energy component (10 – 20 mJ/ 
m2 for steels) (Olson and Cohen, 1976; Talonen and Hänninen, 2007) of an SF, overlapping SFs on successive {111} planes are 
favorable. The separation distance (the width of the SFs) between the pairs of partial dislocations increased with an increase in the 
applied shear stress and diverged at the critical stress of γisf/b (Byun, 2003; Talonen and Hänninen, 2007). Thus, stable SFs are more 
easily formed with a decrease in γisf , and larger SFs can form in samples with lower SFE. The larger Psf in Fig. 8b and the 
frequently-observed SFs in Fig. 11, demonstrate that stable SFs were more easily formed in the Fe15 HEA (γisf : 11.6 mJ/m2) than in the 
Fe20 HEA (γisf : 27 – 30 mJ/m2). At the same time, the onset of twinning requires a high-stress concentration, that is, critical twinning 
stress, through the multiplication of dislocations. The critical twinning stress is a linear or parabolic function of γisf , which decreases 
rapidly with a decrease in γisf (Byun, 2003; Talonen and Hänninen, 2007). In addition, the dynamic recovery of dislocations always 
proceeds with the accumulation of dislocations, which is impeded by the prevention of dislocations from the cross slip with a decrease 
in γisf . Based on the above two reasons, mechanical twinning is more preferentially activated in the Fe15 HEA than in the Fe20 HEA, 
which enhances strength and ductility. 

In the Fe10 HEA, the γisf (7.8 mJ/m2) is possibly smaller than the surface energy component, promoting the overlapping of SFs on 
every second {111} plane, which transforms the FCC crystal structure to the thermodynamically more stable HCP structure. Similar to 
the mechanical twinning, the widening of SFs diverges and forms stable HCP layers with a critical thickness under an applied shear 
stress. The critical shear stress and critical thickness of the HCP layers decreased with a decrease in γisf (Talonen and Hänninen, 2007). 
Thus, a large number of SFs (Figs. 8c and 12), as well as HCP lamellae (Fig. 12), were formed in the Fe10 HEA. 

4.3. Strain-hardening mechanisms in the three HEAs 

The tensile behaviors in Figs. 4 and 5 demonstrate that the flow stress increases with an increase in strain (strain hardening) in the 
HEAs, which is attributed to the multiplication of crystal defects (dislocations, SFs, nanotwins, and/or HCP lamellae). The flow stress 
can be described as: 

σ = σ0 + σg + σd + σx (11) 
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where σd is the contribution of forest dislocations strengthening, and σx represents the other contributions such as SFs, twin, and/or 
HCP. 

Strain hardening caused by forest dislocations can be expressed as follows (Kocks and Mecking, 2003; Lavrentev, 1980): 

σd = αMGb
(

̅̅̅̅̅

ρd

√ − ̅̅̅̅̅

ρ0

√ )

(12)  

where α is a constant, and M is the average Taylor factor, ρ0 and ρd represent the dislocation density before tensile and after tensile to a 
certain strain. The value of α ranges from 0.1 to 1.5 for FCC metals depending on the SFE, dislocation density, dislocation types, and the 
arrangement of dislocations (Lavrentev, 1980). Here, the value of α was acquired by linear fitting of the (σ −σ0 −σg) versus 
MGb( ̅̅̅̅̅

ρd
√ − ̅̅̅̅̅

ρ0
√ ) at a strain smaller than 15% enginnering strain. The calculated α value is 0.175, 0.12, and 0.103 for the Fe20, Fe15, 

and Fe10 HEAs, respectively. The M is affected by the texture of alloys, which has a value of 3.06 for an ideally non-texture polly-
crystaline. The samples exhibit a relatively weak texture as seen in Fig. 3, therefore, the value of 3.06 is utilized for all the three HEAs in 
the present study. 

The strain-hardening rate (θ) is proportional to dσ
dε

, i.e., dρd
dε

. As seen in Fig. 4, θ of the HEAs follows θFe10 > θFe15 > θFe20 . In Fig. 9, 
the slopes of the curves represent dρd

dε
, which is consistent with θ. The dislocations accumulated more rapidly in the Fe10 and Fe15 

samples. During plastic deformation, the multiplication of dislocations and their dynamic recovery occurred simultaneously, where 
recovery is achieved by the cross-slip and annihilation of grouped dislocations with opposite signs (P. M. Anderson, J. P. Hirth, 2017). 
However, the dynamic recovery of dislocations in the Fe10 and Fe15 HEAs was suppressed by their low SFE, which impeded the 
constriction of partials needed for the cross-slip. In addition, the nano twins formed in the Fe20 and Fe15 HEAs as well as the HCP-bands 
formed in the Fe10 HEA contribute to enhancing the flow stress, denoted by σx, by the flowing two mechanisms: (ⅰ) The twin boundary 
and the FCC/HCP phase boundary acted as barriers to the motion of dislocations, thus reducing the mean free path of dislocations 
(Bouaziz and Guelton, 2001; Estrin and Mecking, 1984). This trend led to a more rapid multiplication of the dislocations. (ⅱ) The 
formation of nanotwins or HCP lamellae reduced the average grain size, which increased the critical stress for the activation of 
macro-plastic deformation (Hall–Petch effect). All these factors contributed to the multiplication and storage of dislocations and 
resulted in the maintenance of a large strain-hardening ability to a very large strain and high stress. In addition, the SFs also contribute 
to hardening, as verified in Mg alloys, Cu-Al alloys, and TRIP-HEAs, where the SFs hinder the penetration of dislocations, analogous to 
other boundaries (Frank et al., 2020b; Jian et al., 2013a, 2013b; Pan et al., 2021; Tian et al., 2015). It was also indicated that an 
increase in the Psf can enhance the flow stress. 

The contributions of each item to the tensile flow stress were roughly estimated as shown in Fig. 14. The value of σd increases with 
the increase of strain in all three HEAs. But the σd value of the Fe15 and Fe10 HEAs is larger than that of the Fe20 HEA, attributed to the 
higher dislocation densities generated in the two low-SFE HEAs than that of the Fe20 HEA. Furthermore, the value of σx of the Fe15 and 
Fe10 HEAs is also larger than that of the Fe20 HEA. The possible reasons are as follows: (ⅰ) more SFs were formed in the Fe15 and Fe10 
HEAs (Fig. 8) because of their low SFE, which contributes to increasing the flow stress by the SFs-strengthening; (ⅱ) a large number of 
twin boundaries and/or FCC/HCP interfaces were formed in the Fe15 and Fe10 HEAs, which enhances the flow stress as discussed 
above. Based on all the above results and discussions, the differences in the tensile performance, plastic-deformation behavior, and 
strengthening mechanism among the three FCC-phase HEAs with different SFE were successfully clarified. 

5. Conclusions 

In this study, we investigated the room-temperature mechanical performance, plasticity behavior, and strain-hardening mecha-
nisms of three representative FCC-phase HEAs with nominal compositions of Co20Cr20Mn20Ni20Fe20 (Fe20), Co35Cr20Mn15Ni15Fe15 
(Fe15), and Co35Cr25Mn15Ni15Fe10 (Fe10) in at.%. This study provides deep insight into the mechanical performance, plasticity, and 
strengthening mechanisms of FCC-phase HEAs. Based on the results and discussion, the following conclusions can be drawn from this 
study. 

Fig. 14. Contribution of intrinsic lattice friction stress (σ0), grain boundary strengthening (σg), forest dislocation strengthening (σd), and other 
strengthening mechanisms (σx) on the flow stress of the Fe20, Fe15, and Fe10 HEAs under various strains. 
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1 First, two Co-rich HEAs exhibited relatively slower grain-growth rates than the Fe20 HEA at high temperatures, and the mechanism 
warrants further investigations. The SFE of the Co-rich HEAs was 11.6 mJ/m2 (Fe15) and 7.8 mJ/m2 (Fe10), much smaller than that 
of the equiatomic Fe20 HEA (27-30 mJ/m2). The increase in Co and/or Cr decreased the concentrations of Ni, Mn, and Fe, resulting 
in a decrease in the SFE.  

2 The intrinsic yield strengths were 131.8 MPa (Fe20), 148.6 MPa (Fe15), and 179.4 MPa (Fe10). The enhancement in the intrinsic 
yield strengths of Co-rich HEAs is mainly attributed to the large elastic modulus or elastic misfit, where the contribution from the 
local lattice distortion or solute volume misfit is small. The Hall–Petch coefficients of the HEAs were 493.2 MPa⋅μm1/2 (Fe20), 531.3 
MPa⋅μm1/2 (Fe15), and 610.6 MPa⋅μm1/2 (Fe10), indicating that grain refinement is more effective for improving the yield strengths 
of the Co-rich HEAs.  

3 The mechanism of plastic deformation in the Fe15 HEA was stacking faulting and mechanical twinning, which differed from the 
Fe20 HEA. A larger number of SFs and a higher density of dislocations formed in the Fe15 HEA than in the Fe20 HEA. Consequently, 
mechanical twinning was more easily activated. In contrast, stacking faulting and the FCC → HCP phase transformation occurred in 
the Fe10 HEA owing to its low SFE. 

4 A high density of dislocations, a large number of SFs, and easily-formed nanotwins and/or HCP lamellae contributed to the pro-
motion of the strain-hardening rate over a large strain, thus enhancing the strengths and ductility of the two Co-rich HEAs, 
compared to the Fe20 HEA. The grain size tended to have a more significant effect on the mechanical performance and strain- 
hardening behavior of HEAs with a decrease in SFE. 
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Ribárik, G., Ungár, T., Gubicza, J., 2001. MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. 

Crystallogr. 34, 669–676. https://doi.org/10.1107/S0021889801011451. 
Hertzberg, Richard W., Vinci, Richard P., H, J.L., 2013. Deformation and Fracture Mechanics of Engineering Materials. John Wiley & Sons, Inc, Danvers.  
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