
A Study on the Testing of Android Security Patches
Christopher D. Brant
University of Florida

cdbrant@ufl.edu

Tuba Yavuz
University of Florida

tuba@ece.ufl.edu

Abstract—Android controls the majority of the global OS
market. Android Open Source Project (AOSP) is a very complex
system with many layers including the apps, the Application
Framework, the middle-ware, the customized Linux kernel, and
the trusted components. Although security is implemented in every
layer, the Application Framework forms an important of the
attack surface due to managing the user interface and permissions.
Android security has evolved over the years. The security flaws
that have been found in the Application Framework led to a
redesign of Android permissions. Part of this evolution includes
fixes to the vulnerabilities that are publicly released in the monthly
Android security bulletins. In this study, we analyze the CVEs
listed in the Android security bulletin within the last 6 years.
We focus on the Android application framework and investigate
several research questions relating to 1) the security relevant
components, 2) the type and amount of testing information for
the security patches, and 3) the adequacy of the tests designed
to test these patches. Our findings indicate that Android security
testing practices can be further improved by designing security
bulletin update specific tests, and by improving code coverage of
patched files.

I. INTRODUCTION

Android security and how it has been enforced have evolved
over the years. A formal report [1] defines the security model
as consisting of multi-party consent, open ecosystem access,
treating compatibility as a security requirement, secure factory
resets, and treating applications as the security principals. An-
droid platform’s defense-in-depth aims to prevent adversaries
from bypassing the security model through four main strategies
[1]: isolation and containment, exploit mitigation, integrity, and
patching/updates.

Timely patching of vulnerabilities is critical for a popular
platform such as Android. Therefore, Google has established
the monthly security bulletins starting in 2015. However,
reflecting the patches to various versions/customizations of
Android has proved to be challenging [2], [3]. Several solutions
have been utilized to improve the security patching process.
These include 90-day patching requirement for Original Equip-
ment Manufacturers (OEMs), revising the software architecture
and reducing the attack surface by restricting the access to the
hardware through the Hardware Abstraction Layer (HAL), and
allowing some system core components to be updated through
Google Play Store.

An important aspect of Android security is the secure im-
plementation of methods within the framework layer. A vital
component for securing the Android framework layer is the
permission mechanism and its implementation, which is critical
in realizing the multi-party consent aspect of the security

model. So, an important line of research has investigated
Android permission modeling and the related flaws in its design
and implementation [4], [5], [6], [7], [8], [9].

A recent work [9] on automated analysis of custom per-
missions shows that previous fixes to prevent the privilege
escalation attacks reported in [8] did not completely eliminate
other attack scenarios that exercise alternative execution paths
that bypass the fix.

In this paper, we investigate the Android testing practices for
the security patches with a focus on the Android application
framework. Our goal is to identify some of the characteristics
of security relevant components in the Android application
framework and evaluate the adequacy of tests developed for
the security patches involving such components. We have
analyzed Android monthly security bulletins to compile a set
of 188 CVEs that involve the Android Framework from the
last 6 years. We have analyzed the patches to identify changed
components, the changed tests (if any), and how to execute
the relevant tests. Java classes and packages and whether
the thrown or caught security exceptions are indicative of
security relevance of a Java class in the Android framework.
We intend to investigate classes and packages that contain
functions relating to security exceptions due to their obvious
relevance to security. Additionally, we intend to observe how
often these classes are updated and how thoroughly these
updated classes are tested, as there is potentially a lot of room
for improvement and automation across the Android testing
suite. We have formulated seven research questions (RQs) as
shown in Table I. The first four questions RQ1-RQ4 are about
understanding the security relevant Java classes and packages.
Research questions RQ5-RQ6 investigate the amount and kinds
of testing information available in the security patches. Finally,
research question RQ7 quantifies the adequacy of the tests on
a selected sample of tests using Androids automated testing
framework.

Our findings indicate that:

1) The Android framework Java classes that contain security
exception functions should be given higher priority for
extensive testing.

2) The majority of the listed tests are included for regression
testing and not to verify the new and correct functionality
of the security bulletin updates.

3) The basic block coverage is higher for cases when the
security bulletin updates include updated test files specific
to the patch. However, across the board, basic block

TABLE I
THE RESEARCH QUESTIONS INVESTIGATED IN THIS STUDY.

RQ1: What percentage of Java classes in the Android framework throw and/or catch security exceptions?
RQ2: What are the most frequently updated Java classes and packages in the Android framework related to the security bulletin updates?
RQ3: What percentage of Java classes updated in relation to security bulletins throw and/or catch security exceptions?
RQ4: What percentage of Java classes that throw and/or catch security exceptions are updated in relation to security bulletins?
RQ5: Which security bulletin updates list testing information?
RQ6: What kind of tests are listed in security bulletin updates to verify patch functionality?
RQ7: When listed, how much of a patch is covered by the given tests?

coverage needs to be improved.
This paper is organized as follows. We discuss related work

in Section II. We explain our methodology in Section III. We
present the results in Section IV. We discuss our findings in
Section V. Finally, we conclude in Section VI with directions
for future work.

II. RELATED WORK

a) Android Security Patches: Previous work on Android
vulnerability patches focused either on the patch propagation
process [10], [11], [2], [3] or patch code size and patterns [12].
While in [10], [11], [2] the focus is on the whole ecosystem,
in [3] the focus is on the Android kernel updates only. While
these works investigate the delays in patching vulnerabilities
using different methods, our approach focuses on the testing
aspect of the patches for the Android Application Framework.

The empirical study in [13] reports that the developers update
vulnerable native code in their apps at a 10 times slower rate
compared to patching other security vulnerabilities in their
apps.

b) Android Automated Testing: While majority of au-
tomated testing research in the context of Android focuses
on app testing, e.g., [14], [15], [16], [17], [18], there are
few approaches [15], [9] that involve the Android Application
Framework.

In [15] Android Framework SDK is instrumented to capture
the registration and de-registration of callbacks for system
events for random testing in combination with UI event and
input selection for the Android apps. Our instrumentation of
the Android Framework is guided by the security patches and
we use the instrumentation to evaluate the code coverage of
the existing or security relevant tests. A black-box fuzz testing
approach is presented in [9] with the goal of detecting privilege
escalation attacks. Our work evaluates the adequacy of tests
developed for the Android framework and shows some of their
shortcomings within the context of security patches, which can
inform approaches like [9].

III. METHODOLOGY

Our overall methodology for data aggregation began with
searching through the Android source files from Google
Git [19]. To decide where to begin in the repository to inves-
tigate, we utilized the Android Security Bulletin postings [20]
over the last 6 years for which files have been modified in
security framework updates. Specifically, the range over which
we collected data included every month of every year from

2017 through 2021, and each month of 2022 up to and including
the month of March. For each public Android Security Bulletin
framework update posted over the chosen time period, we
collected the following pieces of data:

• CVE Number
• Reference Number and URLs
• Update Type and Severity
• Packages and Classes Updated
• Month and Year of Update
• Any Bug IDs mentioned in the description
From this base data set we created a list of the Java classes

and packages that were updated the most frequently, as well as
which unique pairs of classes were updated together.

A. Running Tests

Within Android there are a handful of different methods of
running tests on the framework. Our research led us to need to
run tests in a subset of these possibilities, which are Atest and
manually testing using Android Debug Bridge (ADB). For our
purposes we instrument every java class file that was patched
in each Android security bulletin update over the last 6 years
with log instructions, such that it could be observed whether or
not the patched updates were being thoroughly tested for the
correct functionality. Log statements were specifically added
at the entry and exit of each basic block of code listed as
changed within the diff file of each Android security bulletin
update covered in our work.

Once instrumented, we rebuilt the AOSP source code with
the make command so that the instrumented framework classes
would all be updated in the image run by the android emulator.
With the emulator running our custom instrumented image, we
collected the coverage data for the basic block entry and exit
statements.

1) Testing with Atest: Atest is a command line tool provided
by Google that is designed to allow users to build, install,
and run Android tests locally, for the purpose of speeding
up tests without requiring knowledge of the Trade Federation
test harness [21]. Most of our tests were run utilizing Atest,
as the majority of tests listed in the security bulletin updates
associated with the most frequently updated files were Atest
tests. To test with Atest, all that is required is the name of the
class, package, or module.

2) Testing with ADB: ADB is a tool that can be used
to run instrumented tests on an Android virtual device from
the command line. For our purposes, ADB was necessary for
running a small group of tests that Atest was unable to find so

that we could complete our testing of Atest modules manually.
To run a test using ADB, first the module or package must be
compiled into its corresponding APK file, and then installed
before running the given test.

A package containing files for replication will be released at
https://github.com/sysrel/AndroidSecurityPatchTestingStudy.

IV. RESULTS

Prior to experimenting with instrumented tests on AOSP, we
collected and aggregated a large amount of data about Android
security bulletin updates and the changes made in each update.
From data collected via the scrapers described above in Section
III, we were able to visualize or quantify answers to many of
our research questions.

In an effort to understand the security relevant classes in
the Android framework, we leveraged the updates in the An-
droid security bulletins as well as security relevant exceptions.
The Java SDK provides a SecurityException class to
represent security related exceptions. The Android framework
uses the SecurityException class in various parts of the
code base. So, when we refer to a security exception we refer
the SecurityException class1. Through RQ1-RQ4, we
investigate the classes that use the security exceptions, the
classes that are most frequently updated as part of the Android
security bulletin patches, and the relationship between classes
that use security exceptions and those that are updated most
frequently as part of security patches. Sections IV-A-IV-D
present the results of RQ1-RQ4.

Sections IV-E-IV-F present the results on whether any test-
ing, old or new, is performed for each CVE to answer RQ5-
RQ6.

Finally, Section IV-G presents the results for RQ7 on the
adequacy of tests measured in terms of code coverage for the
patches that involved the most frequently updated classes.

A. RQ1: What percentage of Java classes throw and/or catch
security exceptions?

In Figures 1, 2, and 3, we categorize the Java classes in
the Android framework based on two dimensions: 1) with
respect to security exceptions (SE) (just catches (C) a security
exception, just throws (T) a security exception, or both catches
and throws (T & C) a security exception) and 2) with respect
to being updated as part of a security patch (updated or not
updated). Figures 1, 2, and 3, show us that across Android
versions 9, 10, and 11, of all the Java classes containing security
exception functions, an average of 65.0% contain functions
that throw security exceptions, 45.3% contain functions that
catch security exceptions, and 10.3% contain functions that
both throw and catch security exceptions. This suggests that a
large amount of Java classes throughout the Android framework
are high priority classes from a security perspective.

1Although other types of exceptions may also be related to security, we
think that the SecurityException class has been explicitly designed for security
related cases and, therefore, we assume that its usage must be intended to be
security relevant.

Fig. 1. Distribution of AOSP Files with Security Exception Handling in
Android 9

Fig. 2. Distribution of AOSP Files with Security Exception Handling in
Android 10

Fig. 3. Distribution of AOSP Files with Security Exception Handling in
Android 11

B. RQ2: What are the most frequently updated Java classes
and packages related to the security bulletin updates?

Any Java class or package that is frequently mentioned
in security bulletin updates is likely to be intriguing. Our
python data scraping scripts allowed us to visualize the most
frequently updated Java classes and packages in Tables II and
III, respectively. From these tables, we observe that package
management, activity management, window management, and
permission management related services and packages are by
far the most commonly updated Java classes and packages. This

https://github.com/sysrel/AndroidSecurityPatchTestingStudy

suggests that the above listed packages and classes are also of
high priority from a security perspective.

TABLE II
FREQUENCY OF UPDATES TO JAVA CLASSES LISTED IN SECURITY

BULLETINS

Java Class Name Instances T/C SE
PackageManagerService.java 8 Yes
ActivityManagerService.java 7 Yes
WindowManagerService.java 5 Yes
PermissionManagerService.java 4 Yes
ActivityStarter.java 3 No
Notification.java 3 No
SQLiteSecurityTest.java 3 No
PackageInstallerService.java 3 Yes
BasePermission.java 3 Yes
DevicePolicyManagerService.java 3 Yes
LockTaskController.java 2 Yes
RootWindowContainer.java 2 No
SliceProvider.java 2 Yes
LockTaskControllerTest.java 2 No
InstallStart.java 2 No
TextClassification.java 2 No
PermissionManagerServiceInternal.java 2 No
ActivityManagerShellCommand.java 2 No
GrantPermissionActivity.java 2 No
GrantCredentialsPermissionActivity.java 2 No
AppOpsService.java 2 Yes
Layout.java 2 No
PhoneWindowManager.java 2 No
WallpaperManagerService.java 2 Yes
ExternalStorageProvider.java 2 Yes
AccountManagerService.java 2 Yes

TABLE III
FREQUENCY OF UPDATES TO PACKAGES LISTED IN SECURITY BULLETINS

Package Name Instances
/android/server/wm 35
/android/server/am 17
/android/server/pm 16
/android/view/textclassifier 13
/android/server/pm/permission 10
/android/providers/downloads 8
/android/view 8
/android/os 8
/android/app 6
/android/accounts 6
/android/settings/slices 5
/android/server/devicepolicy 4
/android/packageinstaller 4
/android/database/sqlite/cts 3
/android/server/wallpaper 3
/android/text 3
/android/provider 3
/android/widget 3
/android/server/usage 3
/android/server/autofill 3

C. RQ3: What percentage of Java classes updated in relation
to security bulletins throw and/or catch security exceptions?

In our data set of security bulletin updates posted over the
last 6 years, there are exactly 200 total Java classes updated,
amongst those only 35 contain functions that throw and/or catch
security exceptions for AOSP version 9. For AOSP version 10,

there are 37 Java classes that contain such functions, and 40 in
AOSP version 11. Thus there are only 17.5% of updated Java
classes that also contain security exception related functions
for AOSP version 9, 18.5% for AOSP version 10, and 20% for
AOSP version 11. In addition, of those Java classes contained
in our list of frequently updated files shown in Table II, 50%
of those contain functions that throw and/or catch security
exceptions. Table II also includes a column illustrating which
of the most frequently updated Java classes contain security
exception functions. All of the top four frequently updated
Java classes contain security exception functions. This supports
our earlier suggestions that the most frequently updated classes
within security bulletin updates are very high priority from a
security perspective as they both contain security exceptions
and are the most frequently updated classes.

D. RQ4: What percentage of Java classes that throw and/or
catch security exceptions are updated in relation to security
bulletins?

As seen across Figures 1, 2, and 3, only a relatively small
subset of Java classes containing security exception functions
are updated to patch an Android Framework related CVE
over the last 6 years. For files containing security exception
functions, across each of the three AOSP versions, version
9, version 10, and version 11, we see an average of 12.3%
of updated files that contain functions that throw security
exceptions, 7.3% of updated files that contain functions that
catch security exceptions, and 3% of updated files that contain
both functions that throw and catch security exceptions. Addi-
tionally, across each of the three AOSP versions, an average
of only 16.6% of the total number of Java classes containing
security exception related functions are updated over the last
6 years. This illustrates that of the total Android framework
classes that contain security exception related functions, a very
small contingency of that group is updated across the last 6
years of security bulletin updates. This suggests that there is a
relatively small subset of classes containing security exception
related functions that are being targeted or contain the majority
of recognized problems.

E. RQ5: Which security bulletin updates list testing informa-
tion?

Over the last 6 years, a total of 188 security bulletin updates
regarding the Android Framework have been posted, and 171
of those contain testing information in their patch descriptions.
Table IV illustrates the categorical breakdown of the those 171
security bulletin updates with included testing information.

When categorizing all of the testing information, we found
a grouping of 6 different distinct categories. Those categories
being Atest testing, Manual testing, PoC testing, Build/Make
testing, Tradefed testing, GTS (Google Mobile Services Testing
Suite) [22] testing, and Generic/Nondescript testing. For Atest
testing, any testing information that contained the ”atest” or
”Atest” keywords or contained an Atest module was des-
ignated in the Atest category. Any testing information that
was listed as manual testing was designated into the Manual

TABLE IV
TEST CATEGORY SUMMARY

Test Information Category # of Unique CVEs
Atest 73
Manual 49
PoC 9
Build/Make 12
Tradefed 13
GTS 1
Generic/Nondescript 14
Total 171

category. Any testing information that contained instructions
on using a PoC application or creating a custom PoC script
was designated to the PoC category. Any testing information
where the functionality test was to simply build or make
the code was designated to the Build/Make category. Any
testing information that contained commands or instructions
for testing with any Trade Federation testing harness, such as
cts-tradefed or sts-tradefed, were designated to the Tradefed
category. The singular set of tests specifically from the GTS
testing suite were categorized separately as GTS. The remaining
testing information was simply too vague or generic and was
categorized separately as Generic/Nondescript, with ”Existing
CTS (Compatibility Test Suite) [22] Tests” being a key example
of testing information we considered generic or nondescript.

From the totals listed in Table IV we see the vast majority
of testing information instructs the usage of Atest or manual
testing, with a handful of instances each of testing using PoC
applications, building or remaking the code, tradefed testing,
and a singular instance of GTS tests. As a result of this data,
we chose to test using Atest as much as possible, because of
its ability to be easily reproducible with very few steps.

For our purposes, we cross referenced the list of security
bulletin updates containing testing information with our list of
security bulletin updates containing the most frequently updated
Java classes to create a list of the most frequently updated Java
classes with testing information included. From that list, we
extracted the subset of security bulletin updates that specifically
use Atest testing for our testing purposes, as the vast majority
of the rest of the testing information is simply instructing the
reader that the code must be tested manually. Table V contains
a summary of this set of 22 security bulletin updates and their
respective AOSP versions covered. For clarification, in Table V
CFs stands for the number of common files from the list
of frequently updated files in that CVE. The security bulletin
updates in Table V with an asterisk are those specifically
containing updates to test files, and are broken down further in
Table VI. The importance of categorizing these is that, for our
analysis, it is necessary to determine which tests are feasible to
be executed for quantitative analysis, as well as to determine
which designated tests are not applicable to our study.

TABLE V
SUMMARY OF SECURITY BULLETIN UPDATES CONTAINING ATEST

INFORMATION

AV(s) Severity CVE Reference # CFs
10, 11 High CVE-2021-0486 3

9, 10, 11 High CVE-2020-0439 1
9, 10 High CVE-2020-0115 1

11 High CVE-2021-0321 1
9, 10 High CVE-2020-0098* 2

9 High CVE-2018-9492 1
9, 10 High CVE-2020-0099 1

9, 10, 11 High CVE-2021-0595* 1
10 High CVE-2019-2200 1

9, 10, 11 High CVE-2021-0317 1
11, 12 High CVE-2021-39619* 1

9, 10, 11 High CVE-2021-0472* 2
9 High CVE-2019-2122* 2

11 High CVE-2021-0645 1
9, 10, 11 High CVE-2021-0337 1

10 High CVE-2020-0017 1
9 High CVE-2019-2003* 1

12 High CVE-2021-39693 1
10 High CVE-2020-0121 1

9, 10, 11 Critical CVE-2021-0687 1
9, 10, 11 High CVE-2021-0708 1
9, 10, 11 High CVE-2021-0683 1

9 High CVE-2018-9582 1

F. RQ6: What kind of tests are listed in security bulletin
updates to verify patch functionality?

As seen in Table V, there is a wide variety of modules to run
with Atest, however a trend we see of the majority of these is
that they are either Android CTS tests or frameworks specific
test. The only tests listed in Table V that are neither Android
CTS tests or frameworks tests are the tests for CVE-2021-0486,
CVE-2021-39693, CVE-2018-9582, and CVE-2019-2091. In
the case of both CVE-2021-0486 and CVE-2021-39693, their
listed tests are Kotlin based tests and not regular Java tests, and
therefore were unable to be run via Atest. Similarly, for both
CVE-2018-9582 and CVE-2019-2091, they list tests that are
part of GTS, or the GMS Testing Suite, and are also unable to
run via Atest with the default setup that we use.

Aside from the aforementioned tests that are not Android
CTS tests or frameworks tests, we believe we have identified
that very few of the tests listed are designed to stress the
correctness of their associated patch. The distinguishing factor
that allows us to identify this is that the majority of listed
tests are unchanged by their associated patch, thus they do
not include any new unit tests specifically designed to verify
the particular patch update. While 25 out of our 188 security
bulletin updates contain test patches, only those 6 seen in
Table VI fall within our criteria to test. It would then seem that
the majority of the testing listed in security bulletin updates
is not included for verifying the functionality of the patch
itself, but rather for verifying the functionality of the system
for regression testing purposes only.

TABLE VI
PER VERSION STATISTICS FOR SECURITY BULLETIN UPDATES WITH

ATEST TESTING INFORMATION AND PATCHES TO TEST FILES

CVE Reference TFP AV CBE% CBX%

CVE-2020-0098

Activity
StackTests.java,
Activity
TestsBase.java

9 0% 0%

10 60% 60%

CVE-2021-0595 RootWindow
ContainerTests.java 11 100% 100%

CVE-2021-39619
UserUsage
StatsService
Test.java

12 63.6% 54.5%

CVE-2021-0472 LockTask
ControllerTest.java 9 100% 75%

10 100% 75%
11 100% 75%

CVE-2019-2122 LockTask
ControllerTest.java 9 100% 66.6%

CVE-2019-2003

TextClassification
ManagerTest.java,
TextView
ActivityTest.java

9 0% 0%

G. RQ7: When listed, how much of a patch is covered by the
given tests?

Tables VII, VIII, IX, X, XI, XII, and XIII contain the
breakdowns of coverage statistics per file across all their tested
Android versions for each relevant CVE. Tables XIV, XV, XVI,
and XVII contain the summaries of test coverage information
across all security bulletin updates for each version tested.
In the tables presented in this section, PF, AV, CBE (TBE),
CBX (TBX), and %BE (%BX) denote the number of patched
files, AOSP version, the covered (total) basic block entry log
statements, the covered (total) basic block exit log statements,
the percentage of covered basic block entry (exit) log state-
ments, respectively. For our purposes, we tested the latest AOSP
version associated with each security bulletin update, and for
security bulletin updates pertaining to AOSP versions 9, 10,
11, all three versions were tested for the applicable security
bulletin updates.

1) Observations from CVE-2020-0098: For the security
bulletin updates referenced in Table VI, we found for CVE-
2020-0098 that the test files ActivityStackTests.java and Activ-
ityTestsBase.java are edited to include new tests specifically
aimed at verifying the functionality of the changes to Ac-
tivityStack.java and ActivityStarter.java. We see in Table VII
that even with these updates to the test files, not all of the
changes in the patch are covered by the tests. CVE-2020-
0098 is tested in AOSP versions 9 and 10, but in version
9 the patch only applied to a singular file, and as seen in
Table VII, that singularly patched file is not covered by the
associated tests. For CVE-2020-0098 in AOSP version 10, the
same file, ActivityManagerService.java, is still not covered by
the associated tests. Yet there are two more files that are patched
in the security bulletin, and those two files, ActivityStack.java
and ActivityStarter.java, garner 66.6% and 100% coverage by
the associated tests for their individual file coverage, as seen

TABLE VII
TEST COVERAGE STATISTICS FOR CVE-2020-0098

AV File Name TBE TBX CBE CBX %BE %BX

9
Activity
Manager
Service.java

1 1 0 0 0% 0%

10 Activity
Stack.java 3 3 2 2 66.6% 66.6%

Activity
Starter.java 1 1 1 1 100% 100%

Activity
Manager
Service.java

1 1 0 0 0% 0%

TABLE VIII
TEST COVERAGE STATISTICS FOR CVE-2021-0595

AV File Name TBE TBX CBE CBX %BE %BX

11

Root
Window
Container
.java

2 2 2 2 100% 100%

in Table VII.
2) Observations from CVE-2021-0595: In the instance of

CVE-2021-0595, while it lists AOSP versions 9, 10, and 11,
only AOSP version 11 contains the actual updates to all of
the listed files in the patch, including the updated test file.
From Table VIII, we see that with the updated additions to
RootWindowContainerTests.java, all of the patch updates in
RootWindowContainer.java are covered giving a 100% entrance
coverage rate and a 100% exit coverage rate.

3) Observations from CVE-2021-39619: CVE-2021-39619
lists both AOSP versions 11 and 12, and while UserUsageS-
tatsServiceTest.java is updated in both versions, there are
obviously some additional changes to either the UsageStat-
sTests module or to UserUsageStatsServiceTests.java between
versions 11 and 12 based on the difference in coverage results
in Table IX. Those two tables illustrate that while the patches to
UserUsageStatsServiceTest.java in the security bulletin update
do cause a majority of the file patches to be covered, for AOSP
version 11 only 62.5% of patch entrances and exits are covered
for UsageStatsService.java, but AOSP version 12 has 87.5% of
patch entrances and exits covered for UsageStatsService.java.
However, there are no other differences between the results for
AOSP versions 11 and 12 for CVE-2021-39619.

4) Observations from CVE-2021-0472 and CVE-2019-2122:
In both cases for CVE-2021-0472 and CVE-2019-2122, Lock-
TaskControllerTest.java was updated to verify functionality of
patches made to LockTaskController.java. For CVE-2021-0472,
Table X shows consistency across all three AOSP versions
this security bulletin update was tested on. Specifically, we see
for each version, LockTaskController.java has 100% entrance
coverage percentage and 75% exit coverage percentage. For
CVE-2019-2122, as the updates to LockTaskController.java
are different, as there are fewer patched blocks, similar to
CVE-2021-0472 we still observe all patched entrances are
covered and one patched exit is missing. The difference is
seen in Table XI where there is still a 100% entrance coverage

TABLE IX
TEST COVERAGE STATISTICS FOR CVE-2021-39619

AV File Name TBE TBX CBE CBX %BE %BX

11

Device
Policy
Manager
Service
.java

1 1 1 0 100% 0%

Usage
Stats
Service
.java

8 8 5 5 62.5% 62.5%

UserUsage
Stats
Service
.java

2 2 1 1 50% 50%

12

Device
Policy
Manager
Service
.java

1 1 1 0 100% 0%

Usage
Stats
Service
.java

8 8 7 7 87.5% 87.5%

UserUsage
Stats
Service
.java

2 2 1 1 50% 50%

TABLE X
TEST COVERAGE STATISTICS FOR CVE-2021-0472

AV File Name TBE TBX CBE CBX %BE %BX

9
LockTask
Controller
.java

3 4 3 3 100% 75%

10
LockTask
Controller
.java

3 4 3 3 100% 75%

11
LockTask
Controller
.java

3 4 3 3 100% 75%

percentage, but only a 66.6% exit coverage percentage.

TABLE XI
TEST COVERAGE STATISTICS FOR CVE-2019-2122

AV File Name TBE TBX CBE CBX %BE %BX

9
LockTask
Controller
.java

2 3 2 2 100% 66.6%

5) Observations from CVE-2019-2003: The results for
CVE-2019-2003 are especially intriguing, as we see in Ta-
ble XII that while TextClassificationManagerTest.java and
TextViewActivityTest.java are both updated to contain changes
seemingly designed specifically to test at least one of the cases,
yet none of the three patched files have any coverage by the
suite of tests designated for this security bulletin update. This
particular security bulletin update is very similar to CVE-2020-
0017, which we see in Table XIII which runs two of the same
tests and sees TextClassification.java have 80% coverage of
both patched entrances and exits, but it is tested on AOSP

TABLE XII
TEST COVERAGE STATISTICS FOR CVE-2019-2003

AV File Name TBE TBX CBE CBX %BE %BX
9 Linkify.java 6 6 0 0 0% 0%

Text
Links
Params
.java

1 1 0 0 0% 0%

Selection
Action
Mode
Helper
.java

2 2 0 0 0% 0%

TABLE XIII
TEST COVERAGE STATISTICS FOR CVE-2020-0017

AV File Name TBE TBX CBE CBX %BE %BX

10

Actions
Model
Params
Supplier
.java

1 1 1 1 100% 100%

Selection
Event.java 8 8 4 4 50% 50%

Text
Classifi
cation.java

5 5 4 4 80% 80%

Text
Classif
ication
Context.java

5 5 1 1 20% 20%

Text
Language
.java

5 5 4 4 80% 80%

Text
Links.java 5 5 4 4 80% 80%

Text
Selection
.java

5 5 4 4 80% 80%

Text
View.java 3 3 3 3 100% 100%

Conver
sation
Actions.java

5 5 0 0 0% 0%

System
Text
Classifier
.java

10 10 0 0 0% 0%

Text
Classifier
Event.java

1 1 0 0 0% 0%

Text
Classifi
cation
Manager
Service
.java

13 13 0 0 0% 0%

version 10.
6) Observations from Additional CVEs: Amongst the re-

maining 16 security bulletin updates that fit our criteria to test,
across each AOSP version we test, we see there is a wide range
of coverage by the given tests. Table XIV illustrates the average
coverage for all security bulletin updates associated with AOSP
version 9. We see that for half of the associated security bulletin
updates the coverage percentage of patched blocks entered and
exited is 0%. However, for the other half of the updates the

percentage of patched blocks entered and exited varies from
50% up to 100%.

In contrast, the data in Tables XV, XVI, and XVII for
AOSP versions 10, 11, and 12, respectively, illustrates that the
majority of security bulletin updates have a higher percentage
of coverage for each version in comparison to AOSP version
9. In AOSP version 10, only 5 security bulletin updates
contain 0% coverage, and the remaining 8 have a coverage
percentage variation of 16.6% to 100%. For AOSP version 11,
only 5 security bulletin updates contain 0% coverage, and the
remaining 6 have a coverage percentage variation of 50% up to
100%. Lastly, for AOSP version 12, all security bulletin updates
contain some coverage, with the coverage percentage varying
from 72.7% to 100% over the two updates.

7) Observations from RQ7 Results: We observed that for
the 6 security bulletin updates tested which contain patches to
test files, they have an average of 69.2% entrance coverage
and 56.2% exit coverage. The remaining 16 security bulletin
updates have an average of 32.2% entrance coverage and 28.3%
exit coverage. Then across all 22 of the security bulletin updates
fitting our criteria that we tested, we observe an average of
42.8% entrance coverage, and 36.6% exit coverage. These
observed averages are computed as averages of the already
computed coverage percentages per security bulletin update,
over each version tested.

For those security bulletin updates that were tested over
multiple different versions of AOSP, the majority had con-
sistent coverage results across all versions. However, a few
security bulletin updates have discrepancies across AOSP ver-
sions. Specifically CVE-2020-0098, CVE-2020-0439, CVE-
2021-0317, and CVE-2021-39619. While CVE-2020-0098 and
CVE-2021-39619 are discussed above, the differences in cov-
erage results for both CVE-2020-0439 and CVE-2021-0317 is
seen to be one more patched block entered and exited between
AOSP versions 10 and 11.

These observations suggest that, on average, less than half
of the entry points and less than half of the exit points in a
given CVE are being stressed or verified by their associated
tests. More specifically, even for the 6 security bulletin updates
that contain patches to test files, less than 70% of entry
points and less than 60% of exit points are being stressed
or verified by their associated tests. This suggests a relatively
significant problem with the currently disclosed testing methods
for Android security framework patches.

V. DISCUSSION

From our results we are able to gather quite a few very
intriguing findings. We are able to identify the most security
relevant components by identifying the most frequently updated
Java classes amongst our data set. Table II illustrates this
as it shows the most frequently updated Java classes, and it
also illustrates which of those frequently updated files contains
functions that handle security exceptions. Among the three
AOSP versions, version 11 contains the maximum number (40)
of updated Java classes with security exception functions. Out
of these 40 updated Java classes that contain security exception

TABLE XIV
TEST COVERAGE STATISTICS FOR ANDROID 9 SUMMARY

CVE Ref PF TBE TBX CBE CBX %BE %BX
2021-0687 1 1 1 0 0 0% 0%
2018-9492 1 3 3 2 2 66.6% 66.6%
2020-0099 2 2 2 1 1 50% 50%
2019-2122 1 2 3 2 2 100% 66.6%
2020-0098 1 1 1 0 0 0% 0%
2020-0439 1 6 6 3 3 50% 50%
2021-0472 1 3 4 3 3 100% 75%
2019-2003 3 9 9 0 0 0% 0%
2021-0317 1 2 2 0 0 0% 0%
2021-0337 2 5 5 0 0 0% 0%

TABLE XV
TEST COVERAGE STATISTICS FOR ANDROID 10 SUMMARY

CVE Ref PF TBE TBX CBE CBX %BE %BX
2021-0683 1 1 1 0 0 0% 0%
2021-0687 1 1 1 0 0 0% 0%
2020-0099 2 2 2 1 1 50% 50%
2020-0098 3 5 5 3 3 60% 60%
2020-0439 1 6 6 3 3 50% 50%
2021-0472 1 3 4 3 3 100% 75%
2020-0017 12 66 66 25 25 37.8% 37.8%
2021-0708 1 1 1 0 0 0% 0%
2020-0115 1 1 1 1 0 100% 0%
2019-2200 1 6 6 1 1 16.6% 16.6%
2020-0121 1 5 5 5 5 100% 100%
2021-0317 1 2 2 0 0 0% 0%
2021-0337 2 5 5 0 0 0% 0%

TABLE XVI
TEST COVERAGE STATISTICS FOR ANDROID 11 SUMMARY

CVE Ref PF TBE TBX CBE CBX %BE %BX
2021-0683 1 1 1 0 0 0% 0%
2021-0687 1 1 1 0 0 0% 0%
2021-39619 3 11 11 7 6 63.6% 54.5%
2021-0321 1 1 1 0 0 0% 0%
2021-0595 1 2 2 2 2 100% 100%
2021-0645 1 1 1 1 1 100% 100%
2020-0439 1 6 6 4 4 66.6% 66.6%
2021-0472 1 3 4 3 3 100% 75%
2021-0708 1 1 1 0 0 0% 0%
2021-0317 1 2 2 1 1 50% 50%
2021-0337 2 5 5 0 0 0% 0%

TABLE XVII
TEST COVERAGE STATISTICS FOR ANDROID 12 SUMMARY

CVE Ref PF TBE TBX CBE CBX %BE %BX
2021-39619 3 11 11 9 8 81.8% 72.7%
2021-39693 1 1 1 1 1 100% 100%

functions, we see in Table II that 13 of those are listed within
our most frequently updated files. Therefore, we think that
Android framework Java classes containing security exception
functions should be given higher priority for extensive testing.

We observed that only 25 out of our 188 total security
bulletin updates contain CVE specific tests. This suggests that
the majority of listed tests are included for regression testing
and not to verify the new and correct functionality of the
security bulletin updates.

We were able to analyze 6 out of these 25 security bulletin
updates by running their associated tests, and although these
contain updates specific to the patch updates we still observe
below 100% entrance and exit coverage for multiple instances.
As discussed in the penultimate paragraph of Section IV-G,
we find that for the 6 security bulletin updates tested which
contain patches to test files have an average of 69.2% entrance
coverage and 56.2% exit coverage. In contrast, the remaining
16 tested security bulletin updates were observed to have a
large drop off comparatively at 32.2% entrance coverage and
28.3% exit coverage. These statistics indicate that the basic
block coverage is higher for cases when the security bulletin
updates include updated test files specific to the patch. Although
this is promising, coverage needs to improved across the board.

VI. CONCLUSIONS

In this study, we analyzed the Android framework security
bulletin updates over the last 6 years. We identified the security
relevant component characteristics, including usage of security
exception functions, the most frequently updated Java classes
and packages, and the intersection of those two sets. Our
investigation reveals that only a 25 of the 188 total security
bulletin updates contain patched test files specifically designed
for the given update. Our investigation of a subset of these
25 security bulletin updates show that even with specifically
designed tests, full coverage is not achieved (69.2% average
basic block entry coverage). Across the board the coverage is
even worse at an average of 42.8% basic block entry coverage.

ACKNOWLEDGEMENTS

We would like to thank Guliz Seray Tuncay and the anony-
mous reviewers for their feedback. This work was funded by
the US National Science Foundation under the CNS-1942235
award, as well as by the US National Science Foundation
Scholarship for Service (NSF-SFS) Fellowship Award.

REFERENCES

[1] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, “The
android platform security model,” 2019. [Online]. Available: https:
//arxiv.org/abs/1904.05572

[2] S. Farhang, M. B. Kirdan, A. Laszka, and J. Grossklags, “Hey google,
what exactly do your security patches tell us? a large-scale empirical
study on android patched vulnerabilities,” 2019. [Online]. Available:
https://arxiv.org/abs/1905.09352

[3] Z. Zhang, H. Zhang, Z. Qian, and B. Lau, “An investigation of the android
kernel patch ecosystem,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021.

[4] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” IEEE Security Privacy, vol. 7, no. 1, pp. 50–57, 2009.

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 627–638.

[6] A. Egners, U. Meyer, and B. Marschollek, “Messing with android’s
permission model,” in 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, 2012, pp. 505–
514.

[7] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shastry,
“Towards taming privilege-escalation attacks on android,” in 19th Annual
Network and Distributed System Security Symposium, NDSS 2012, San
Diego, California, USA, February 5-8, 2012. The Internet Society, 2012.

[8] G. S. Tuncay, S. Demetriou, K. Ganju, and C. A. Gunter, “Resolving the
predicament of android custom permissions,” in 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society, 2018.

[9] R. Li, W. Diao, Z. Li, J. Du, and S. Guo, “Android custom permissions
demystified: From privilege escalation to design shortcomings,” in 2021
IEEE Symposium on Security and Privacy (SP), 2021, pp. 70–86.

[10] K. R. Jones, T. Yen, S. C. Sundaramurthy, and A. G. Bardas, “Deploying
android security updates: an extensive study involving manufacturers,
carriers, and end users,” in CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, USA, November
9-13, 2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM, 2020,
pp. 551–567.

[11] S. Farhang, M. B. Kirdan, A. Laszka, and J. Grossklags, “An empirical
study of android security bulletins in different vendors,” in WWW ’20:
The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Y. Huang,
I. King, T. Liu, and M. van Steen, Eds. ACM / IW3C2, 2020, pp. 3063–
3069.

[12] D. Wu, D. Gao, E. K. T. Cheng, Y. Cao, J. Jiang, and R. H. Deng,
“Towards understanding android system vulnerabilities: Techniques and
insights,” in Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, AsiaCCS 2019, Auckland, New Zealand,
July 09-12, 2019, S. D. Galbraith, G. Russello, W. Susilo, D. Gollmann,
E. Kirda, and Z. Liang, Eds. ACM, 2019, pp. 295–306.

[13] S. Almanee, A. Ünal, M. Payer, and J. Garcia, “Too quiet in the library:
An empirical study of security updates in android apps’ native code,” in
2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1347–1359.

[14] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: Association for Computing
Machinery, 2012.

[15] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013. New York,
NY, USA: Association for Computing Machinery, 2013, p. 224–234.

[16] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evolution-
ary testing of android apps,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: Association for Computing Machinery,
2014, p. 599–609.

[17] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” ser. ISSTA 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 94–105.

[18] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 269–280.

[19] “Git repositories on android.” [Online]. Available: https://android.
googlesource.com/

[20] “Android security bulletins : Android open source project.” [Online].
Available: https://source.android.com/security/bulletin

[21] “Atest : Android open source project.” [Online]. Available: https:
//source.android.com/compatibility/tests/development/atest

[22] “How to obtain google’s gms certification for latest android devices?”

https://arxiv.org/abs/1904.05572
https://arxiv.org/abs/1904.05572
https://arxiv.org/abs/1905.09352
https://android.googlesource.com/
https://android.googlesource.com/
https://source.android.com/security/bulletin
https://source.android.com/compatibility/tests/development/atest
https://source.android.com/compatibility/tests/development/atest

	Introduction
	Related Work
	Methodology
	Running Tests
	Testing with Atest
	Testing with ADB

	Results
	RQ1: What percentage of Java classes throw and/or catch security exceptions?
	RQ2: What are the most frequently updated Java classes and packages related to the security bulletin updates?
	RQ3: What percentage of Java classes updated in relation to security bulletins throw and/or catch security exceptions?
	RQ4: What percentage of Java classes that throw and/or catch security exceptions are updated in relation to security bulletins?
	RQ5: Which security bulletin updates list testing information?
	RQ6: What kind of tests are listed in security bulletin updates to verify patch functionality?
	RQ7: When listed, how much of a patch is covered by the given tests?
	Observations from CVE-2020-0098
	Observations from CVE-2021-0595
	Observations from CVE-2021-39619
	Observations from CVE-2021-0472 and CVE-2019-2122
	Observations from CVE-2019-2003
	Observations from Additional CVEs
	Observations from RQ7 Results

	Discussion
	Conclusions
	References

