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Model-Based Deep Learning for Joint Activity
Detection and Channel Estimation in Massive

and Sporadic Connectivity
Jeremy Johnston and Xiaodong Wang , Fellow, IEEE

Abstract— We present two model-based neural network archi-
tectures purposed for sporadic user detection and channel esti-
mation in massive machine-type communications. In the scenario
under consideration, a base station assigns the users a set of pilot
sequences that is linearly dependent, but because user activity is
sporadic the detection/estimation problem is amenable to sparse
recovery algorithms. Further, we consider a millimeter-wave
wireless channel, so that the channel vectors are sparse in a
known dictionary. We apply the deep unfolding framework to
design custom neural network layers by unrolling two itera-
tive optimization algorithms: (1) linearized alternating direction
method of multipliers, which we apply to a constrained convex
problem, and (2) vector approximate message passing featuring
a novel denoiser based on the iterative shrinkage thresholding
algorithm. The networks thus inherit domain knowledge as
encapsulated by the signal model, and suitable operations as
informed by the algorithms—in the same spirit as convolutional
networks that exploit structure inherent in images and audio,
except grounded in optimization and statistics. The networks,
trained on synthetic data generated from the block-fading
millimeter-wave multiple access channel model, offer improved
complexity and accuracy relative to their iterative counterparts,
and are potentially a boon to cell-free MIMO systems.

Index Terms— Deep learning, deep unfolding, neural network,
massive machine-type communication, massive connectivity, mul-
tiple measurement vector, joint activity detection and channel
estimation, ADMM, VAMP, ISTA.

I. INTRODUCTION

THE anticipated proliferation of IoT devices and asso-
ciated massive machine-type communications (mMTC),

recognized by the 3GPP as one of the three leading appli-
cations of 5G, has motivated the development of access
protocols that cater to the unique features of mMTC: mas-
sive and sporadic connectivity, low power, and low latency.
Protocols previously developed for high-throughput few-user
applications cannot support the massive number of devices,
sporadic activity patterns, and small data payloads; grant-
based signaling overhead may greatly exceed the data payload,
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meanwhile orthogonal access schemes cause frequent access
request collisions when there are thousands of potentially
active devices. In this paper, we focus on base station process-
ing algorithms for grant-free non-orthogonal massive access.

A. Grant-Free Non-Orthogonal Massive Access

The low signaling overhead required by grant-based proto-
cols allows for low-complexity processing for access schedul-
ing at the BS, but may be highly inefficient, owing to the
relatively small data packets typical of mMTC [1]. Grant-free
protocols, on the other hand, have users transmit along with
their data only a pilot signal, thereby relieving the user of sig-
naling overhead, for which the base station (BS) compensates
through increased-complexity processing for activity detection
and channel estimation [2].

Orthogonal access protocols stipulate that the set of pilot
sequences be orthogonal so that devices can be uniquely iden-
tified, thus requiring the pilot length to scale linearly with the
number of devices. Since the feasible pilot length is bounded
by the channel coherence time, in the massive connectivity
regime wherein the number of devices is large, orthogonality
is not feasible: the set of pilots must be linearly dependent
and hence the device activity and channel estimation problems
are ill-posed. If, however, only a small fraction of devices
are active at any given time, as in mMTC, compressed
sensing methods can enable non-orthogonal massive access
(NOMA) [3]–[7].

B. Joint Sparse Recovery From Multiple Measurement
Vectors

The joint device activity and channel estimation (JADCE)
problem for grant-free NOMA is an instance of sparse signal
recovery from multiple measurement vectors, an extension
of the single measurement vector (SMV) problem. In SMV
sparse recovery, the goal is to find the sparse n-vector x0 that
generated an observed measurement m-vector b of the form
b = Ax0 +e, where A is a known m×n matrix with m < n
and e is noise. Finding the sparsest solution is a combinatorial
optimization problem and thus intractable in general, but under
certain conditions on the sparsity of x0 and the structure of A,
x0 can be uniquely recovered by solving the convex problem

minimize �x�1
subject to Ax = b. (�1-min)

The multiple measurement vector (MMV) sparse recovery
problem considers a collection of N measurements of the form
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bj = Axj +ej , j = 1, . . . , N where the xj = [x1j · · · xnj ]T

are jointly sparse (i.e., the support sets {i | xij �= 0} are
the same for each j) and the goal is recover all the xj

given the bj and A. One approach is to transform the MMV
problem into the form of (�1-min); for example, in a manner
that preserves information regarding the common support
of the xj , drawing from analysis of the case where N is
infinite [8]; or by stacking the collection of measurements into
a single vector and imposing block sparsity [9], possibly after
dimensionality reduction via the singular value decomposition
of B �

[
b1 · · · bN

]
[10]. Another approach is to solve

minimize �X�p,q

subject to AX = B, (�p,q-min)

where X = [x1 · · · xN ] and �X�p,q � (
∑

i(
∑

j xq
ij)

p/q)1/p,
a problem which is convex for p, q ≥ 1 [11]. If p = q = 1, then
(�p,q-min) is equivalent to solving N instances of (�1-min),
one for each bj ; evidently, this does not exploit any structure
among the xj . The case p = 1 and q = 2, where the objective
is the sum of the �2 norms of X’s rows (a special case of the
group LASSO [12]), does account for X’s row structure and
empirically outperforms p = q = 1 when the xj are jointly
sparse and A has i.i.d. normal entries [13]. For i.i.d. normal
A, both cases theoretically obtain uniform recovery: with high
probability such an A satisfies the restricted isometry property
(RIP), gauranteeing that x0 solves (�1-min); with even higher
probability such an A satisfies “block RIP”, guaranteeing
recovery for �1,2-min [9]. While there are degenerate cases
where only one of the two succeeds [13], in the average case
and under certain conditions �1,2-min’s reconstruction error
decays exponentially with N [14]. Regarding recovery of the
row support, it was shown that �1,2-min obtains the correct
row support provided a certain function—of m, N , and s,
where s is the true row support cardinality—exceeds a certain
threshold. For N = 1 the function coincides with the support
recovery guarantee for (�1-min), namely that m/[s log(n−s)]
exceeds a certain threshold [15].

For p = 1 and q = 2, (�p,q-min) is convex and thus off-the-
shelf solvers will work, though their computational complexity
scales poorly with respect to problem size. Hence the advent of
iterative optimization methods featuring computationally inex-
pensive operations. Some examples are: a proximal method
based on the dual formulation of (�p,q-min) [16]; a factored
gradient–based method, M-FOCUSS [17]; and the alternating
direction method of multipliers (ADMM) [18], which we apply
to a modified problem in the sequel.

Another class of MMV recovery method relies on Bayesian
models that seek to exploit the statistical relationships present
due to the measurements’ common generating mechanism.
Hierarchical Bayesian modeling has been paired with empir-
ical Bayes to yield fast algorithms [19]. Approximate mes-
sage passing (AMP) is a versatile Bayesian framework that,
starting from a probabilistic model of the measurements,
applies loopy belief propagation to the associated factor
graph, yielding an iterative procedure that outputs the mar-
ginal posteriors of each model variable. AMP-MMV, one
incarnation, views the set of measurements as a time series
and incorporates a Gauss-Markov model in order to exploit

amplitude correlations within the nonzero rows of X, and
at each iteration employs the expectation-maximization (EM)
algorithm to estimate unknown model parameters such as
sparsity, noise variance, etc. [20] (although instability of
AMP-MMV was demonstrated through a separate empirical
study and a maximum-likelihood approach was shown to be
superior in some cases [21]). Generally speaking, with respect
to accuracy, Bayesian methods outperform optimization but are
more computationally complex.

C. Deep Learning for Sparse Recovery

Neural networks can learn a mapping that recovers a
high-dimensional sparse vector from an input measurement
of lower dimension. Architectures have been proposed with
either generic layer operations, hand picked and empirically
fine-tuned; or model-based operations derived from the a
priori signal model; or a combination of the two. Typical
generic operations such as matrix multiplication, convolution,
and ReLU are particularly useful for applications in which
obtaining an analytical data model is not feasible, or as in the
case of the convolution operation when applied to images, only
intuitively known. For the SMV problem, the DeepInverse [22]
and DeepCodec [23] networks employ convolutional layers;
the former takes inputs from the measurement domain and
increases dimensionality via the adjoint measurement matrix
(i.e., AT from above); while the latter, an autoencoder archi-
tecture, aims to learn both dimensionality-reducing and -
increasing mappings.

In some cases a fairly accurate data model can be written
down, and thus arises the question of how to incorporate such
explicit information into a deep learning architecture. One
such design framework is deep unfolding whereby the network
layers are based on the iterative operations prescribed by a
model-based algorithm and the algorithm’s hyperparameters
are learnable [24]; see Section IV for a detailed account.
These networks have been shown to be competitive with their
counterpart iterative methods in terms of recovery accuracy,
but require only a fraction of the computational cost.

Model-based network architectures have been proposed
for MMV recovery in grant-free NOMA. A deep unfolded
iterative shrinkage thresholding algorithm (ISTA) network was
proposed in [25]. Several unfolded designs based on AMP with
the MMSE denoiser were proposed in [26] (this version of
AMP is the one we consider in the sequel, except we employ
a novel denoiser). The linearized ADMM approach considered
for deep unfolding in [27] is the same as that we employ,
except there the objective is the regularized back-projected
squared error, whereas we consider a doubly-regularized
squared error objective subject to a linear constraint. Along
the lines of DeepCodec, [28] uses an autoencoder architecture
comprising an encoder that learns a measurement matrix and
a decoder containing an iterative algorithm (either ADMM or
AMP) truncated to a fixed number of iterations.

D. Contribution and Organization

The main contributions of this paper are as follows:
• We consider JADCE for grant-free NOMA with a

millimeter-wave channel model, where each user channel
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comprises a relatively small number of dominant prop-
agation paths, and devise algorithms that exploit this
structure.

• We present new vector approximate message pass-
ing (VAMP) and linearized ADMM algorithms for
JADCE. The VAMP algorithm features a novel denoiser
based on ISTA; the linearized ADMM algorithm is
applied to a novel objective that enforces on the user
channels row sparsity and sparse representation in the
array response dictionary.

• The VAMP and linearized ADMM algorithms form the
basis for novel deep unfolded neural network (DUNN)
designs. The networks offer reduced complexity and
improved accuracy compared to their algorithmic coun-
terparts.

• Application of the DUNNs to distributed user activity
detection in cell-free MIMO.

Section II presents a signal model for the sporadic detec-
tion/estimation problem using non-orthogonal pilots, and then
briefly describes its application to cell-free MIMO. Two
iterative algorithms, linearized ADMM and VAMP-ISTA, are
presented in Section III, followed by the unfolded neural
networks in Section IV. Simulation results are reported in
Section V and we conclude with Section VI.

II. SIGNAL MODEL

Following the setup of [4], we first consider the uplink
training phase for a network of N devices communicating with
a particular base station (BS). In subsection B, we extend this
model to accommodate a cell-free system with multiple BSs.

The BS receiver is equipped with an M -element array, and
each device a single antenna. Each of the devices is assigned a
unique L-symbol pilot sequence an = [an1 · · · anL]T ∈ CL,

where each symbol is drawn anl
i.i.d.∼ CN (0, 1

L ) for all l,
all of which are assumed to be known at the BS. We assume
L < N , and so {a1, . . . ,aN} is linearly dependent. The chan-
nel between the device n and the BS, denoted by hn ∈ C

M ,
is assumed constant over the block of pilot symbols, but may
vary from block to block. The BS array measurement yl ∈ CM

of the lth pilot symbol has the form

yl =
N∑

n=1

αnanlhn + nl, l = 1, . . . , L (1)

where αn ∈ {0, 1} indicates whether device n is active, and
nl ∼ CN (0, γI) is ambient noise. We assume that at any
given time K � N users are active, hence most of the αn are
zero. Thus user n’s channel is modeled as xn = αnhn, where
αn

i.i.d.∼ Bernoulli(�) and � is the proportion of active users.
That is, xn has density px = (1 − �)δ0 + �phn , where δ0 is
the point mass measure at zero and phn is the density of hn.

The user channels are modeled as

hn =
Pn∑
p=1

z̃npφ(θ̃np) (2)

where φ(·) ∈ CM is the receiver’s array response, a function
of the angular orientation of the impinging wave; z̃np ∼
CN (0, βnp), where the variance βnp accounts for path loss

and shadow fading, is the amplitude and θ̃np ∈ R2 is the
direction associated with path p; and Pn is the number of
paths for user n. Millimeter-wave channels are known to have
a relatively small number of dominant propagation paths, and
so we assume Pn �M for all n.

A. Problem Formulation

Letting X =
[
x1 · · · xN

]T ∈ CN×M , where xn =
αnhn, and A �

[
a1 · · · aN

] ∈ CL×N , the collection of
snapshots (1) can be expressed as

Y = AX + N (3)

where row l of Y ∈ CL×M contains the array snapshot of
pilot symbol l. The entries of N ∈ CL×M are i.i.d. CN (0, γ).

We assume that all path directions θ̃np belong to a grid
{θ1, . . . , θP } ⊂ R

2 of cardinality P , and we associate with
user n and path p the channel coefficient znp. Thus we obtain
the on-grid parametric channel model

hn =
P∑

p=1

znpφ(θp). (4)

Letting zn = αn[zn1 · · · znP ]T , Z =
[
z1 · · · zN

]T ∈ C
N×P

and Φ �
[
φ(θ1) · · · φ(θP )

] ∈ CM×P , we have

X = ZΦT . (5)

Given measurement Y, device activity detection amounts to
recovering the row support of X, and channel estimation
entails estimating the nonzero rows’ entries. In the massive
connectivity regime (N 	 L) the associated inverse problems
are ill-posed. However, only K � N channels are nonzero
because of sporadic device activity. Plus, millimeter-wave
channels are known to have relatively few dominant paths
(M 	 Pn), hence any nonzero rows of X are a sparse
combination of the columns of Φ. Additionally, that A has
i.i.d. Gaussian entries lends the problem to compressed sensing
techniques. These properties can be exploited to overcome the
linear dependence of the set of pilot sequences.

B. User-Centric Cell-Free Networks

Instead of serving all users with a single BS, cell-free
networks employ a large number of access points (AP) that
collaboratively serve users, such that a set of APs functions
as an enlarged array [29], [30]. All APs are connected to
a central processor (CP) that coordinates AP operation and
provides computational resources. In particular, user-centric
cell-free systems, rather than have all APs serve all users,
employ dynamic cooperation clustering whereby a protocol
determines which APs are best able to serve a given user. Even
though each user may be assigned fewer APs, the user-centric
approach can reduce unnecessary overhead as APs unable
(e.g., for lack of SNR) to substantially contribute to a given
user’s data rate are not assigned to that user. Hereafter we
assume that such clustering has already been done.

Consider N potentially active users each assigned
to a cluster of Na APs. As in (5), the received
signal at AP i is

Yi = AXi + Ni, i = 1 . . . , Na (6)
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where the rows of Xi �
[
x1,i · · · xN,i

]T ∈ CN×M , xn,i �
αnhn,i, correspond to the channels of users assigned to AP
i [31]. The columns of A are the pilot sequences of the
cluster’s users and are known at each AP, and Ni is noise
observed at AP i. Note that the activities αn are constant
with respect to i, while the user n’s channel hn,i in general
depends on i—all APs assigned to the cluster observe the
same set of users, but the user channels may vary from AP to
AP. As before, the problem is to detect the active users and
estimate their channels, i.e., recover the row-support and the
corresponding row entries of Xi, i = 1, . . . , Na.

In a distributed processing architecture, each AP computes
channel estimates and performs user detection, sending only
the detection results to the central processor. This requires less
communication overhead than a centralized approach—where
all computation is offloaded to a central processor—but more
computation is required at each AP [32], [33]. Low-complexity
algorithms are thus essential to reduce AP hardware costs
and power consumption. The unfolded neural networks we
propose offer significantly lower computational cost than their
iterative counterparts, and thus would be well-suited for such
a distributed system.

III. OPTIMIZATION ALGORITHMS

In this section we apply the ADMM and AMP frame-
works to derive algorithms for joint activity detection and
channel estimation problems given models (3) and (5). These
algorithms provide inspiration for the neural network designs
proposed in Section IV.

A. Linearized ADMM

Here we aim to recover Z in the model (5). We consider
the problem

minimize
Z,X

�X�1,2 + σ�Z�1,1 +
1
2μ
�Y −AX�2F

subject to X = ZΦT . (P1)

where �X�1,2 =
∑N

n=1 �xn�2 and �Z�1,1 =
∑N

n=1 �zn�1.
The term �X�1,2 promotes row-sparsity in the reconstructed
channel matrix, motivated by the fact that relatively few users
are active; the term �Z�1,1 promotes row- and column-sparsity
in the matrix of propagation path coefficients, enforcing that
active users’ channel coefficient vectors are sparse combina-
tions of array response vectors; and the trade-off between the
two is parameterized by μ > 0 and σ > 0.

The method of multipliers seeks to maximize, via gradient
ascent, the augmented Lagrange dual function

fρ(U) = min
X,Z

Lρ(X,Z,U), (7)

where U ∈ CN×M is the dual variable and

Lρ(X,Z,U) = �X�1,2 + σ�Z�1,1 +
1
2μ
�Y −AX�2F

+ (ρ/2)�X− ZΦT �2F
+
〈
X− ZΦT , U

〉
(8)

= �X�1,2 + σ�Z�1,1 +
1
2μ
�Y −AX�2F

+ (ρ/2)�X− ZΦT + (1/ρ)U�2F (9)

is the augmented Lagrangian with parameter ρ > 0. In general,
evaluating fρ is intractable due to the joint minimization.
The alternating direction method of multipliers (ADMM)
replaces the joint minimization in (7) with a set of block
coordinate subproblems. In some applications, one or more of
the subproblems may also be intractable. Instead of attempting
to solve them, linearized ADMM (also known as the split
inexact Uzawa method) executes just a single iteration of
the proximal gradient method [34, §4.2] for each of the
subproblems. In effect, the subproblem objective terms causing
intractability are linearized about an iterate’s previous value,
yielding a modified suproblem that can be solved efficiently,
often in closed form [18]. The convergence rate of linearized
ADMM is O(1/k) [35].

The ADMM subproblems are

Xk+1 = argmin
X

Lρ(X,Zk,Uk) (10)

Zk+1 = argmin
Z

Lρ(Xk+1,Z,Uk) (11)

Uk+1 = Uk +∇ULρ(Xk+1,Zk+1,U) (12)

where Uk is the dual variable. In our case, (10) and (11) do not
admit closed form solutions. Linearized ADMM replaces (10)
with

Ck+1 = Xk − τx∇Xk

1
2μ
�Y −AXk�2F (13)

Xk+1 = argmin
X

(
�X�1,2 + (ρ/2τx)�X−Ck+1�2F

+ (ρ/2)�X− ZΦT + (1/ρ)U�2F
)

(14)

where τx > 0; (13) performs a gradient step, yielding Ck+1,
and then (14) finds a row-sparse matrix near Ck+1 (in Frobe-
nius norm), with ρ/2τx controlling the sparsity-proximity
tradeoff. (14) can be computed row-wise via the proximal
operator of the �2 norm: letting Dk � ZkΦT − (1/ρ)Uk,
and xk

i , ck
i and dk

i correspond to row i of Xk, Ck, and Dk,
respectively, we may in parallel solve

xk+1
i = argmin

xi

(
�xi�2 + (ρ/2τx)

∥∥xi − ck
i

∥∥2

2

+ (ρ/2)
∥∥xi − dk

i

∥∥2

2

)
, (15)

which is given by1

xk+1
i = proxλ̃�·�2

((1 + τx)−1ck
i + τx(1 + τx)−1dk

i ) (16)

where λ̃ = (τx/ρ)/(1 + τx) and proxλ�·�2
(v) =

(1− λ/ �v�2)+ v.
The Z subproblem can be similarly modified to obtain the

linearized update

Zk+1 = Sστzρ−1(Zk + τz(Xk+1 − ZkΦT + 1/ρUk)Φ∗)
(17)

where [Sκ(X)]ij = Xij

|Xij | max{|Xij | − κ, 0} is the proximal
operator of � · �1,1 and τz > 0.

The linearized ADMM iteration is summarized by
Algorithm 1.

1If f(x) = g(x) + ρ/2 �x − b�2
2, then proxλf (v) = proxλ̃g(λ̃/λv +

ρλ̃b) where λ̃ = λ/(1 + λρ).
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Algorithm 1 Linearized ADMM
Input: Y
Parameters: A, Φ, μ, τx, τz, ρ, λ̃ = (τx/ρ)/(1 + τx), Δ
Initialization: X0 = 0, U0 = 0, Z0 = 0, k = 0
repeat

Ck+1 = Xk + (τx/2μ)AH(Y − AXk)
Dk+1 = ZkΦT − (1/ρ)Uk

xk+1
i =

�
1 − λ̃/

��(1 + τx)−1ck
i + τx(1 + τx)−1dk

i

��
2

�
+

×((1 + τx)−1ck
i + τx(1 + τx)−1dk

i ), i = 1, . . . , N
Zk+1 = Sστzρ−1(Zk + τz(X

k+1 − ZkΦT + (1/ρ)Uk)Φ∗)
Uk+1 = Uk + ρ(Xk+1 − Zk+1ΦT )
k = k + 1

until �Xk − Xk−1�F /�Xk−1�F ≤ Δ;
Output: Zk

B. Vector Approximate Message Passing

Vector approximate message passing (VAMP) is an exten-
sion of approximate message passing to the multiple mea-
surement vector (MMV) problem of recovering X given Y
modeled by (3). An iteration consists of a batch of single
measurement vector operations, comprising a matched filtering
step and a denoising operation, followed by an update of the
Onsager-corrected residual of the composite MMV estimate.
The VAMP iteration is given by [4]

x̃k+1
n = (Rk)T a∗

n + xk
n, n = 1, . . . , N (18a)

xk+1
n = η(x̃k+1

n ), n = 1, . . . , N (18b)

Rk+1 = Y −AXk+1 +
1
L

Rk
N∑

n=1

η�(x̃k+1
n ) (18c)

where η : CM → CM is a nonlinear operation and η�(x) ∈
CM×M where [η�(x)]ij � ∂ηi

∂xj
(x). Asymptotically in problem

size, x̃k
n behaves like Gaussian noise with mean equal to

the true channel hn, suggesting that η should denoise x̃k
n.

It has been shown [36] that, for the single measurement AMP
algorithm, there is some flexibity regarding the particular form
of η, as long as its derivative can at least be approximated,
so we may choose an η that exploits the structure of xn.
Interestingly, even if η has no closed form expression, single
measurement AMP still converges and in some cases adheres
to the predicted state evolution [36]. Next we present a novel
denoiser that solves an �1-regularized least-squares problem to
fit each xn to the millimeter-wave channel model (5).

1) ISTA Denoiser: Recall that according to the model (4),
hn = Φzn, where zn is sparse. Given that

x̃k
n � hn + nk = Φzn + nk,

where nk is an i.i.d. Gaussian vector, we might choose a
denoiser that finds

z	,k
n = argmin

zn

(�Φzn − x̃k
n�22 + λ�zn�1

)
, λ > 0, (19)

and then returns the reconstructed channel Φz	,k
n as the

denoised version of x̃k
n; i.e., a denoiser that maps x̃k

n

onto a sparse combination of the columns of Φ. To solve
(19), we choose the iterative shrinkage thresholding algo-
rithm (ISTA) for its low computational cost per iteration.
An instance of the proximal gradient method, ISTA comprises

TABLE I

COMPUTATIONAL COMPLEXITY PER ITERATION/STAGE

a descent step in the direction of the negative gradient of
�Φzn − x̃k

n�22, followed by a proximal step which evaluates
the proximal operator of the regularizer λ� · �1. Each iteration
finds a sparse point near (in �2-norm) the point output by the
gradient step, and λ controls the sparsity-proximity tradeoff.

The proposed ISTA denoiser approximates z	,k
n via tmax

ISTA iterations. The tth ISTA iteration within the kth VAMP
iteration is given by

zt+1,k
n = Sλ

(
(I− αΦHΦ)zt,k

n + αΦH x̃k
n

)
, (20)

where 0 < α ≤ 1/�ΦHΦ�2 is a stepsize, and Sλ(z) =
z
|z| max{|z| − λ, 0} operates entrywise. The tmax-iteration
ISTA denoiser is defined as

ηk
ISTA(x̃k

n) = Φztmax,k
n .

Each application of the denoiser yields estimates of the prop-
agation path coefficients zn and thereby the channel xn. The
most recent estimate of zn, namely ztmax,k

n obtained in VAMP
iteration k, may be used as a warm start for the denoising step
in VAMP iteration k + 1. The term η�

ISTA may be obtained in
closed form by recursively applying the formula

d

dv
Sλ(aT u + bT v)

= �(|aT u + bT v| > λ)

× (1− λ(|aT u + bT v|−1 − 1
2
|aT u + bT v|))

× (aT du
dv

+ bT ). (21)

VAMP with ISTA denoiser is summarized by Algorithm 2.

C. Computational Complexity

Table I lists the computational complexities of each method.
The complexity of each method is dominated by matrix
multiplication. Since P 	 M and N 	 L, VAMP-ISTA has
a higher computational burden, owing primarily to the ISTA
subroutine each VAMP iteration invokes.

IV. DEEP UNFOLDED NEURAL NETWORKS

Consider an arbitrary iterative algorithm

zk = fθk(zk−1, x), k = 1, 2, . . .K, (22)

where zk is the iterate, and the operation fθk is specified by
a parameter set θk. The algorithm essentially maps the input
x to the output

g(x, Θ) � fθK (fθK−1(· · · fθ2(fθ1(z0, x), x) . . . , x), x) (23)

given a starting point z0 and the parameters Θ � ∪K
k=1θ

k.
We assume that g(x, Θ) is intended to accomplish a particular
task, such as classification of an object x, choosing an action
given a state x, or estimating the parameters in a statistical
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Algorithm 2 VAMP-ISTA
Input: Y
Parameters: A, Φ, λ > 0, 0 < α ≤ 1/�ΦHΦ�2, Δ
Initialization: ztmax,0

n = 0, x0
n = 0, n = 1, . . . , N

R0 = Y, k = 0
repeat

x̃k+1
n = (Rk)T a∗

n + xk
n, n = 1, . . . , N

z0,k+1
n = ztmax,k

n , n = 1, . . . , N (warm start)
for t = 0, . . . , tmax − 1 do

zt+1,k+1
n = Sλ

(
(I − αΦHΦ)zt,k+1

n + αΦH x̃k+1
n

)
end
xk+1

n = Φztmax,k+1
n , n = 1, . . . , N

Rk+1 = Y −AXk+1 + 1
LRk

∑N
n=1 η�(x̃k+1

n )
k = k + 1

until �Xk −Xk−1�F /�Xk−1�F ≤ Δ;
Output: Channel estimates {xk

n}Nn=1

model given an observation x; separate analyses involving
domain-specific knowledge and modeling, statistics, and/or
optimization determine the form of the fθk . Depending on the
task, Θ may have to be fine-tuned in order for the algorithm
to achieve the best possible accuracy and convergence speed,
which motivates us to view g as a differentiable function that
may be optimized over Θ. In deep unfolding, we aim to learn
Θ from data and thus adapt the algorithm to a particular
application. That is, given input/output pairs (xi, yi) sampled
from the desired mapping we wish the algorithm to emulate
(e.g., the correct label yi for the object xi) and a loss function
d, we seek

Θ∗ = argmin
Θ

(∑
i

d(g(xi, Θ), yi)

)
. (24)

We refer to g as a deep unfolded neural network (DUNN)
with parameters Θ. Since its architecture is based on the
iterative algorithm’s structure, the DUNN inherits the domain
knowledge embedded therein—similar to how a convolutional
neural network exploits known properties of the input.

To convert an algorithm into a DUNN, we design a com-
position of parameterized functions, or layers, inspired by
the algorithm’s iterative operations. The algorithm’s data flow
graph together with its prescribed update rules serve as a
schematic for the layer’s architecture, while the learnable
parameter set is chosen to include the algorithm’s native
hyperparameters (e.g. step sizes, penalty parameters, etc.) plus
other parameters. Perhaps the most interpretable algorithm
parameterization is one that includes only the hyperpara-
meters, such that training amounts to a sort of automatic
hyperparameter cross-validation [37], [38], although doing so
typically yields just a handful of parameters per layer and thus
constrains learning capacity. To increase learning capacity, one
may parameterize the algorithm operations themselves, for
example, by defining learnable matrices, or by introducing
piecewise-linear functions with learnable slopes and knots.
These newly introduced parameters are initialized so that the
network’s forward operation upon initialization is equivalent
to a number of algorithm iterations [39], [40], but since they
are learnable the network may deviate from and improve

TABLE II

CORRESPONDENCE BETWEEN ALGORITHM PARAMETERS AND DEEP
UNFOLDED NETWORK PARAMETERS

upon the prescribed form. DUNNs typically have on the order
of ten or fewer of layers, each of which is computationally
equivalent to a single iteration of the original algorithm, while
the latter may require dozens or hundreds of iterations to
converge. In general, algorithms whose iterations compose
a nonlinearity with matrix operations, as exemplified by the
algorithms considered herein, are suitable for deep unfolding.

Next we formulate deep unfolded neural networks inspired
by the algorithms in Section III. Each network is the com-
position of several identical functions whose parameters are
initialized identically, but the parameters are allowed to vary
independently across layers. Table II summarizes the rela-
tionship between the original algorithm parameters and the
corresponding DUNN learnable parameters. Next we detail the
layer operations and learnable parameters of each network.

A. ADMM-Net

The ADMM-Net layer consists of five stages, each based
on an iterate update rule in Algorithm 1. We define the tth
layer as follows, with reference to the block diagram depicted
in Fig. 1 where the blocks inside layer t correspond to stages.

a) C-Update stage: This stage is based on the linearized
ADMM C-update. First, we rewrite the C-update as

Ct = Xt−1 + (τx/2μ)(AHY −AHAXt−1).

Next, we consolidate the scalar parameters into the learnable
parameter at

1 ∈ R, which plays the role of τx/2μ. Then
we substitute entrywise learnable matrices Mt

1 ∈ CN×L and
Mt

2 ∈ CN×N for AH and AHA, respectively. Thus we define
this stage’s output as

Ct = Xt−1 + at
1

(
Mt

1Y −Mt
2X

t−1
)

(25)

where Y is the network input and Xt−1 is obtained from layer
t−1. Note that if Mt

1 = AH , Mt
2 = AHA, and at

1 = τx/2μ,
then (25) is equivalent to the ADMM C-update.
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b) D-Update stage: This stage is based on the linearized
ADMM D-update. The learnable parameter at

2 ∈ R replaces
ρ and the entrywise learnable matrix Mt

3 ∈ CP×M replaces
ΦT . Thus we define this stage’s output as

Dt = Zt−1Mt
3 − (1/at

2)U
t−1. (26)

c) X-Update stage: This stage is based on the linearized
ADMM X-update. We introduce the learnable parameter at

3 ∈
R in place of λ̃, at

4 ∈ R replaces (1 + τx)−1 and at
5 ∈ R

replaces τx(1 + τx)−1. Thus we define this stage’s output as

xt
i =

(
1− at

3/
∥∥at

4c
t
i + at

5d
t
i

∥∥
2

)
+

(at
4c

t
i + at

5d
t
i),

i = 1, . . . , N (27)

where Ct � [ct
1 · · · ct

N ]T ∈ CN×M , Dt � [dt
1 · · · dt

N ]T ∈
CN×M and Xt � [xt

1 · · · xt
N ]T ∈ CN×M .

d) Z-Update stage: This stage is based on the linearized
ADMM Z-update. The learnable parameter at

6 ∈ R replaces
τz and at

7 ∈ R replaces στzρ
−1. Thus we define this stage’s

output as

Zt = Sat
7

(
Zt−1 + at

6(X
t − Zt−1Mt

3

+ (1/at
2)U

t−1)(Mt
3)

H
)

(28)

e) U-Update stage: This stage is based on the linearized
ADMM U-update. There are no new parameters introduced
in this layer, since the only constants present, Φ and ρ, were
replaced with learnable parameters for the D-update stage.
Thus the output is defined as

Ut = Ut−1 + at
2(X

t − ZtMt
3). (29)

In terms of the general framework of (22), the iterate is
zt = {Ct, Dt, Xt, Zt, Ut}, the input is x = Y, the oper-
ation fθt comprises (25)–(29), and the learnable parameters
are θt = {Mt

1, Mt
2, Mt

3, at
1, at

2, at
3, at

4, at
5, at

6, at
7}. The

ADMM-Net is a composition of multiple layers, as in (23),
and thus the network’s learnable parameter set is Θ = ∪tθ

t.
Network Initialization The matrix parameters are initial-

ized according to

Mt
1 ← AH , Mt

2 ← AHA, Mt
3 ← ΦT (30)

for all t. The scalar parameters are initialized, given values for
σ, τx, ρ, μ, τz , according to

at
1 ← τx, at

2 ← ρ,

at
3 ← (τx/ρ)/(1 + τx), at

4 ← (1 + τx)−1,

at
5 ← τx(1 + τx)−1, at

6 ← τz ,

at
7 ← στzρ

−1.

The parameter initializations may be set according to values
found to be appropriate for Algorithm 1; see Section V. Upon
initialization, each layer is the equivalent of one iteration of
linearized ADMM.

Fig. 1. ADMM-Net block diagram.

B. VAMP-ISTA-Net

The VAMP-ISTA-Net consists of two interactive networks:
1) an outer network inspired by VAMP and 2) an inner network
inspired by ISTA that plays the role of denoiser within the
VAMP-inspired network. Each layer of the primary network
invokes the secondary network. The two networks are to be
trained jointly.

1) VAMP-Net: Each layer of the outer network is based
on the iteration (18a)–(18c). To convert the iteration into a
network layer, we generalize (18a)–(18c) by replacing con-
stant operators/scalars with learnable parameterized opera-
tors/scalars.

a) Matched filtering stage: This stage is based on the
residual matched filtering step given by (18a). The matrix A is
replaced by the learnable matrix At � [at

1 · · · at
N ]T ∈ CL×N

and thus we define the stage output Ξt � [ξt
1 · · · ξt

N ]T ∈
C

N×M such that

ξt
i = (Rt−1)T (at

i)
∗ + xt−1

i , i = 1, . . . , N, (31)

where Rt−1 is output by the previous layer according to (33).
b) Denoising stage: This stage is based on the denoising

step given by (18b). The denoiser η is replaced by learnable
denoiser ηΩ with parameter set Ω, so that the output of this
stage, Xt � [xt

1 · · · xt
N ]T ∈ C

N×M , is given by

xt
i = ηΩ(ξt

i), i = 1, . . . , N. (32)

c) Residual update stage: This stage is based on the
residual update step given by (46). We introduce the learnable
damping parameter εt and define the layer output Rt as

Rt = εt(Y −AtXt) + (1− εt)Rt−1 (33)

where Y is the network input (i.e., the BS receiver measure-
ment), and At is the same learnable matrix used in (31).

In terms of (22), the iterate is zt = {ξt
1, . . . , ξt

N , Xt, Rt},
the input is x = Y, fθt comprises (31)–(33), and the learnable
parameter set is θt = {At, εt, Ω}. The VAMP-Net is defined
as the composition of multiple layers, as in (23), and thus the
network’s learnable parameter set is Θ = ∪tθ

t.
In this architecture, the denoiser ηΩ is called by each layer.

Next we describe a denoiser that is itself a neural network
inspired by the ISTA algorithm.
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2) ISTA-Net Denoiser: The inner network is a deep
unfolded neural network inspired by ISTA as introduced in
Section III-B.1, and serves as the learnable denoiser ηΩ in
(32) utilized by each layer of the outer network. To design
the ISTA-Net layer, we generalize (20) by replacing the
two constant matrices (I − αΦHΦ) and αΦH with the
entrywise-learnable matrices Bk

1 ∈ CP×P and Bk
2 ∈ CP×M ,

respectively. The output of the ISTA-Net’s kth layer, denoted
vk , is defined as

vk � Sλk(Bk
1v

k−1 + Bk
2w) (34)

where w ∈ C
M is the input analogous to the ISTA input,

v0 is an auxiliary input analogous to the ISTA initial point,
and Sλk is the entrywise soft-thresholding operator (defined
in (20)) with learnable threshold λk ∈ R. The kth layer’s
learnable parameter set is {Bk

1 ,B
k
2 , λk}. An ISTA-Net with

K0 > 0 layers and parameter set Ω, denoted ISTAΩ : CP ×
CM → CP , is defined as

ISTAΩ(v0,w) � vK0 , (35)

where vK0 is obtained via the recursion (34). Thus the
ISTA-Net parameter set is Ω = ∪K0

k=1{Bk
1 ,B

k
2 , λk}.

The network ISTAΩ maps an input channel vector in CM

onto a propagation path coefficient vector in C
P , which must

be mapped, in order to complete the denoising operation,
onto a channel vector in CM . Rather than use the constant
Φ as in Algorithm 2, we use the learnable dictionary Bk

2 of
the k = K0 layer; that is, the reconstructed channel vector
is BK0

2 ISTAΩ(v0,w). We choose the starting point v0 to
be the ISTA-Net output from the previous VAMP-Net layer,
analogous to the warm start strategy in Algorithm 2. We thus
define the ISTA-Net denoiser DΩ : C

P × C
M → C

P × C
M

to output an ordered pair,

DΩ(v0,w)�
(
ISTAΩ(v0,w), BK0

2 ISTAΩ(v0,w)
)

, (36)

so that the first element may serve as an initial point in the
subsequent VAMP-Net layer, while the second element is the
denoised channel vector.

To summarize, the tth VAMP-ISTA-Net layer is given by

ξt
i = (Rt−1)T (at

i)
∗ + xt−1

i , i = 1, . . . , N (37a)

(zt
i,x

t
i) = DΩ(zt−1

i , ξt
i), i = 1, . . . , N (37b)

Rt = εt(Y −AtXt) + (1 − εt)Rt−1. (37c)

where we have introduced zt
i ∈ CP , i = 1, . . . , N to denote

the path coefficient vector estimates obtained by layer t. Fig. 2
depicts the VAMP-ISTA-Net block diagram corresponding to
(37a)–(37c) for user i; each layer of the VAMP-Net utilizes
the same ISTA-Net to denoise ξt

i and thereby obtain zt
i and

xt
i , i = 1, . . . , N .

a) Network initialization: The matrix parameters are ini-
tialized according to

At ← A, Bk
1 ← (I− αΦHΦ), Bk

2 ← αΦH , (38)

for all k, where α = 1/�ΦHΦ�2. Therefore upon initialization
the VAMP-ISTA-Net forward pass is equivalent to a number
of iterations of VAMP with denoiser DΩ, which in turn upon
initialization is equivalent to a number of ISTA iterations.

Fig. 2. VAMP-ISTA-Net block diagram. Depicted here is ISTA-Net process-
ing row i of Ξt; all rows of Ξt are processed by the ISTA-Net to obtain zt

i
and xt

i , i = 1, . . . , N , thus forming Xt.

Scalar parameter initializations may be set according to values
found to be appropriate for Algorithm 2; see Section V.

C. Complex-Valued Networks

Autodifferentiation routines utilized by mainstream deep
learning libraries support only real-valued data and parameters.
Therefore we implement complex number operations as real
number operations on the real and imaginary parts of the input
and each complex-valued parameter is implemented as two
real-valued parameters corresponding to the parameter’s real
and imaginary parts. Thus each layer is equivalent to one
iteration of the complex version of the algorithm on which
the network is based. Take for example the operation AtXt

in (37c), where At ∈ CL×N and Xt ∈ CN×M . This operation
is implemented as

�{AtXt} = �{At}�{Xt} − �{At}�{Xt} (39)

�{AtXt} = �{At}�{Xt}+ �{At}�{Xt} (40)

where �{At} and �{At} are defined in software as learnable
real-valued matrices, while �{Xt} and �{Xt} are stored as
real-valued matrices.

D. Distributed Detection and Estimation in Cell-Free MIMO

The DUNNs compute channel estimates for a single BS,
but they are readily applicable to a cell-free scenario where
there are multiple APs. For each AP, a DUNN is trained as if
the AP were the only BS; the DUNNs are then deployed to
the APs and function as local channel estimators. For cell-free
activity detection, however, all of the local decision statistics
must somehow be fused at the CP; one possible approach is
explored in Section V.

V. EXPERIMENTAL RESULTS

The following experiments probe each method’s channel
estimation performance by varying the number of antennas
at the BS (M ), the pilot sequence length (L), the number of
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active users (K), and the signal-to-noise ratio (SNR). We also
report the receiver operating characteristic (ROC) for user
activity detection in single-BS and cell-free scenarios.

A. Simulation Setup

Each BS is equipped with an M -element uniform linear
array with unit normalized element spacing, and thus the array
response dictionary Φ has columns of the form

φ(θ) �
[
1 e−j2πθ · · · e−j2πθ(M−1)

]T
. (41)

We obtain Φ ∈ CM×2M by evaluating φ over the path
direction grid

G = {p/(2M) | p = 0, . . . , 2M − 1}.
All methods are evaluated on test sets of 103 samples. The
entries of the pilot matrix A ∈ CL×M are generated CN (0, 1).
A pilot matrix is generated for each configuration of L, M, K
and remains constant throughout the experiments.

Data samples (Yi,Zi) are generated as follows. Each Zi

has K nonzero rows at row indexes chosen uniformly at
random. Each nonzero row has 2 nonzero entries (one for each
dominant propagation path) drawn i.i.d. CN (0, 1), i.e., each
nonzero row is drawn from a Bernoulli-Gaussian distribution
with density pz = (1 − �)δ0 + �p where p is the density of
CN (0, 1), δ0 is the point mass measure centered at zero, and �
is the average proportion of nonzero entries. The measurement
Yi is generated via Yi = AZiΦT + Ni, where Ni is a
complex Gaussian noise matrix scaled to achieve a given SNR.

B. Benchmark Algorithms

We compare the proposed methods with two benchmark
algorithms. The first is VAMP-MMSE, the VAMP algorithm
(18a)–(18c) with a denoiser η that computes the MMSE
estimate given a Gaussian channel model [4]. The second
is a linearized ADMM algorithm, proposed in [18], for the
problem

minimize
X

�X�1,2 +
1
2μ
�Y −AX�2F (P2)

where μ > 0. Both methods promote row sparsity in X, but
neither exploits the millimeter-wave model of X.

Additionally, we compute the least-squares “oracle” solu-
tion, which assumes that the active users and the channel paths
are known. Given the index set of active users I, we compute
X̄I = argmin

X

(�Y −AIX�2F
)
, where the columns of AI ∈

CL×K are the pilot sequences of the K active users (K < L
in all of our experiments). Then for each user n ∈ I we obtain
ẑn = argmin

z

(�x̄n −Φnz�22
)
, where the columns of Φn are

the columns of Φ corresponding to user n’s channel paths,
and x̄T

n is the row of X̄I corresponding to user n. Finally, the
channel estimates are obtained via x̂n = Φnẑn if n ∈ I and
x̂n = 0 otherwise.

C. Evaluation Criteria

The signal-to-noise ratio is defined as

SNR � 10 log10

�AZΦT �2F
�N�2F

. (42)

TABLE III

ITERATIONS UNTIL CONVERGENCE AND WALL CLOCK RUN TIMES IN
MILLISECONDS FOR PROBLEM SIZE N = 50, M = 8, L = 12

where N is a matrix with entries i.i.d. CN (0, γ), and γ is the
noise level. The channel estimation performance metric is the
normalized mean-squared error, defined as

NMSE({X̂i}, {Zi})

� 10 log10

[
1

Ntest

Ntest∑
i=1

�ZiΦT − X̂i�2F
�ZiΦT �2F

]
dB, (43)

where X̂i is the estimated user channel matrix, ZiΦT is the
true channel matrix, and Ntest is the test set size.

The probabilities of false alarm PFA and missed detection
PMD , given a threshold τ , are defined as

PFA =
1

N −K

N∑
n=1

�(�(�x̂n�2 − τ) − �(�xn�2)) (44)

PMD =
1
K

N∑
n=1

�(�(�xn�2)− �(�x̂n�2 − τ)) (45)

� is the indicator of R+.

D. Implementation Details

1) Iterative Algorithms: The iterative methods have several
parameters that must be tuned for each problem scenario.
We tuned the parameters via grid search. For example, for
the scenario L = 12, M = 8, K = 3, SNR = 10 dB, the
linearized ADMM parameters were set to σ = 1.91, μ =
0.14, ρ = 2.0, τx = 0.02, τz = 0.72 and the VAMP-ISTA
parameters were set to λ = 0.25 and α = 0.5/�ΦHΦ�2.
These values were used to initialize the relevant scalar network
parameters.

The convergence criterion for the iterative algorithms was
Δ = 10−4. In our experience, VAMP with ISTA denoiser
can be unstable. Adding a damping step has been shown to
help curb instability that arises when A deviates from the
i.i.d. Gaussian assumption [41]. The damping step convexly
combines the current and previous residual, so that the residual
update becomes

Rk+1 = ε
(
Y −AXk+1

)
+ (1 − ε)Rk (46)

where 0 < ε < 1. We set ε = 0.6 in all experiments.
2) Network Training: All networks were trained for

30 epochs on Ntrain = 80, 000 training samples using the
Adam optimizer and the mean-squared error loss metric,

MSE({X̂i}, {Zi}) =
1

Ntrain

Ntrain∑
i=1

�ZiΦT − X̂i�22, (47)

where X̂i is the network’s output. The learning rate was sched-
uled to decay from 10−3 to 10−4 and the batch size was 100.
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Fig. 3. Training set NMSE versus training epoch. Each epoch consists of
one full pass over the training set.

Fig. 4. Channel estimation NMSE in dB versus pilot sequence length L.

Deep learning libraries (e.g., Tensorflow, PyTorch) typically
support custom layers where the user defines the layer opera-
tion and learnable parameters. If the custom layer operation is
differentiable with respect to the parameters (in our case they
all are), then a network comprising those layers can be trained
via standard backpropagation. For VAMP-ISTA-Net, the inner
and outer networks are jointly trained; from the software’s
perspective they comprise a single differentiable network, and
hence can be trained via standard backpropagation.

The networks’ learnable matrices are initialized as described
in Section IV and the scalar parameters are initialized accord-
ing to the values found via parameter tuning. In all cases
the ADMM-Net has 5 layers and the VAMP-ISTA-Net has
5 outer and 5 inner layers. Empirically, it was found that
further increasing the depth does not significantly improve
network accuracy. Figure 3 shows the training curves in the
case M = 8, L = 12, K = 3, and SNR = 10.

E. Single-BS Evaluation

For this set of experiments, we consider a single BS (i.e,
Na = 1) assigned N = 50 potentially active users according
to the model (5). A network is trained for each configuration
of K, L, M , and SNR, and we evaluate each network on a
test set sampled from the training distribution.

Figure 4 shows NMSE versus the pilot sequence length,
for fixed M = 8, K = 3, SNR = 10 dB. Figure 5 shows
NMSE versus the number of BS antennas, for fixed L = 12,

Fig. 5. Channel estimation NMSE in dB versus number of BS antennas M .

Fig. 6. Channel estimation NMSE in dB versus number of active users K .

K = 3, SNR = 10 dB. Figure 6 shows NMSE versus
the number of active users for fixed M = 8, L = 12,
SNR = 10 dB. In each figure it is seen that the networks
obtain superior NMSE compared to the standard algorithms,
with the VAMP-ISTA-Net slightly outperforming ADMM-Net
when K is large, and ADMM-Net is favored when L is small.
Figure 7 shows the receiver operating characteristic (ROC),
averaged over 1000 samples, for fixed M = 8, L = 12,
K = 3, and SNR = 0 dB. It is seen that the unfolded
networks exhibit detection performance comparable to the
corresponding standard methods.

F. Cell-Free MIMO

Here we simulate a cell-free system with distributed
processing architecture as described in Section II-B and IV-D.
In the following, K, L, M and SNR are fixed. The neural
networks used in this section are trained according to
Section V-D.2.

We consider a fixed set of Na APs that have been desig-
nated, e.g. by a random access protocol, to serve a set of N
users and we assume that all N potentially active users are
within range of those APs. The active users broadcast their
uplink pilots, which are received by all Na APs and assumed to
be perfectly synchronized in time. The uplink training signals
are based on the model (6) and it is assumed that A is known
at each AP. For each user there are Na unknown channel
vectors to be estimated. The active users’ channel vectors are
assumed to be statistically independent; for inactive users, the
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Fig. 7. ROC curves for user activity detection in the single-BS simulation.
Here SNR = 0dB.

Fig. 8. ROC curves for cell-free user activity detection with Na = 5.

channel vectors are identically zero. Each AP computes local
channel estimates, based on which each AP computes local
decision statistics, which are subsequently collected at the CP
for activity detection. Specifically, AP i = 1, . . . , Na obtains
the channel estimates x̂n,i, n = 1, . . . , N and then computes
the statistics

tn,i =
�x̂n,i�2∑N
j=1 �x̂j,i�2

(48)

for all n, i (i.e., the �2 norms of the channels, normalized to
sum to 1) and sends them to the CP, which, given a decision
threshold τ , computes for each n the decision α̂n defined as

α̂n = �

(
Na∑
i=1

tn,i > τ

)
, (49)

where if α̂n = 1 then user n is decided active, and if α̂n = 0,
inactive. The empirical detection probabilities are computed
via

PFA =
1

N −K

N∑
n=1

�(α̂n − �(n ∈ S)) (50)

PMD =
1
K

N∑
n=1

�(�(n ∈ S)− α̂n) (51)

where S is the index set corresponding to the active users
(|S| = K).

Fig. 9. ROC curves for cell-free user activity detection with Na ∈ {1, 5, 9}.

A channel realization is generated as follows. A set of Na

propagation path coefficient matrices Zi = [z1,i · · · zN,i]T ∈
CN×P , i = 1, . . . , Na, each having identical row supports
Si = {n | �zn,i�2 > 0} (i.e., Si = Sj for all i, j), are
generated such that whenever n ∈ Si the elements of zn,i

are drawn Bernoulli-Gaussian as in Section V-E. Thus each
AP observes identical device activities while the active user
channel vectors are statistically independent and have on
average a proportion � nonzero entries. As before, � is set
such that each nonzero row of Zi has exactly 2 nonzero
entries. The measurements Yi, i = 1, . . . , Na, were generated
via Yi = AZiΦT + Ni, where Ni a complex Gaussian
noise matrix scaled to achieve a given SNR. The pilot matrix
A ∈ CL×N was generated with entries i.i.d. CN (0, 1/L).
The array response dictionary Φ contains the array responses
evaluated over G as in Section V-E. The APs have identical
arrays, and thus each employs the same Φ.

The cell-free simulation is repeated for 1000 realizations
and we report the average detection probabilities. Fig. 8 shows
the ROC results for each method for the scenario where Na =
5, L = 12, each BS has M = 8 antennas, SNR = 0 dB, and
K = 3 out of N = 50 users are active. Fig. 9 shows DUNN
detection performance as Na increases. Detection performance
improves as more APs are added, which is to be expected
because the effective array size, i.e. number of measurements,
increases linearly with Na. Even though each AP performs
local estimation and obtains its own set of decision statistics,
the CP decision becomes more accurate as Na increases since
its decision is based on the average of all AP statistics.

VI. CONCLUSION

We have presented two neural network architectures inspired
by the VAMP-ISTA and linearized ADMM algorithms.
In every scenario tested, the deep unfolded networks out-
perform and require significantly less computation than the
iterative methods. Overall the two networks exhibit similar
accuracy. It remains to be seen whether the networks are able
to adapt when there is mismatch between the training or test
data and the signal model on which the networks are based.
Further investigation could also illuminate differences between
various possible parameterizations of a given algorithm and
seek to reduce the number of learnable parameters.
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