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Abstract—

Analyzing multithreaded programs is notoriously hard due to
the exponential number of thread interleavings. Although race
detectors can help developers find and fix such bugs before the
code is deployed, multithreaded code may still be buggy due
to memory errors and assertion violations that are not due to
race conditions. This paper presents a property directed symbolic
execution of multithreaded code. Our approach, named SIFT,
differs from previous work on detecting errors in multithreaded
code by being property directed and by handling both memory
safety and assertion checking that can be further customized by
the user. SIFT can detect bugs that may or may not be due
to data races, and works in an iterative way. In each step, it
explores the state space using selective scheduling based on a set
of interleaving points that have been inferred in the previous step.
We have developed three partitioning strategies for improved
effectiveness and performance. We have implemented SIFT on
top of the KLEE symbolic execution engine and applied it to
various real-world and academic benchmarks. SIFT could detect
more vulnerabilities than a state-of-the-art memory vulnerability
detector.

Index Terms—concurrency, symbolic execution, bug finding

I. INTRODUCTION

Analyzing multithreaded programs is notoriously difficult
due to the exponential number of thread interleavings. Al-
though race detectors [14], [6], [13] can help developers find
and fix such bugs before the code is deployed, multithreaded
code may still be buggy due to memory errors and assertion
violations that are not due to race conditions. Also, race
condition warnings may require additional analysis in case the
programmers may not be convinced of the potential risks.

There have been some recent efforts [9], [12], [17], [4],
[11], [7], [13] to fill this gap in the reliability and security of
multithreaded software. These approaches share in common
the idea of analyzing the dependencies in the state space of a
multithreaded code and inferring bug revealing schedules.

Some of these works depend on an offline static analysis
for pointer analysis [9], [13] while others analyze dynamic
execution traces [12], [17], [4], [11] to identify the schedule
relevant program actions. Thread scheduling related search
space reduction techniques include assertion guided prediction
of error relevant states [9], constraint solving [12], [17],
[11], distributed trace partitioning [11], leveraging stack traces
from crashing runs [4], and distance-based selection of event

reordering [7]. The approach in [9] targets assertion failures.
Cortex [17] and the approach in [12] do not target specific
types of bugs. ConCrash [4] is not restricted in terms of the
types of bugs it can detect as long as the crash report con-
tains sufficient information about the crash. UFO [11] detects
Use-After-Free (UAF) vulnerabilities. ConVul [7] detects, in
addition to UAF, the Null pointer dereferencing and Double-
Free (DF) vulnerabilities. RAZZER [13] guides its fuzzing
engine to detect race conditions.

We think that there is a need for a generic property directed
approach for the analysis of multithreaded programs. The
properties of interest include memory safety and other user
defined safety properties. The analysis should be able to
identify property relevant data-flow dependencies as precisely
as possible to effectively search the huge state space of
scheduling scenarios.

This paper presents a property directed symbolic execution
of multithreaded code. We choose symbolic execution as
the underlying program analysis technique due to its precise
memory model and its intrinsic capability to detect memory
vulnerabilities. Our approach, named SIFT, differs from previ-
ous work on detecting errors in multithreaded code by being
property directed and by handling both memory safety and
assertion checking that can be further customized by the user.
SIFT can detect bugs that may or may not be due to data races,
and works in an iterative way. In each step, it explores the
state space using selective scheduling based on a set of thread
interleaving points that have been inferred in the previous step.
We have developed three partitioning strategies for improved
effectiveness and performance. We have implemented SIFT on
top of the KLEE symbolic execution engine [5] and applied it
to various real-world and academic benchmarks. SIFT could
detect more vulnerabilities than a state-of-the-art memory
vulnerability detector.

This paper makes the following contributions:

o We present a property guided selective symbolic execu-
tion technique that performs on-the-fly data-flow analysis
without relying on any offline analysis. The state space
search can be optimized using three different partitioning
strategies with different strengths.

« We have implemented the presented approach in a tool



called SIFT' on top of the KLEE symbolic execution
engine.

o We have applied SIFT to a variety of real-world and aca-
demic benchmarks. Experimental results show that SIFT
is fast in detecting bugs and detects more vulnerabilities
than what could be detected by ConVul [7].

This paper is organized as follows. In Section II, we provide
motivating examples to demonstrate the underlying insights of
our approach. In Section III, we present the technical details
of our approach. In Section IV, we present an evaluation of
our approach on various benchmarks. In Section V, we discuss
our work within the context of related work. In Section VI,
we conclude with directions for future work.

II. A MOTIVATING EXAMPLE

In this section, we present a motivating real-world example
and demonstrate the salient features of our approach. Figure
2 shows a simplified code snippet from the security sub-
system of the Linux kernel. When two threads execute the
lookup_user_key and the install_user_keyrings
concurrently, a NULL pointer dereference may be encountered
as shown in Figure 1. This is because Thread 0, which
performs the key lookup, first finds out the session keyring
has not been created yet. So, it decides to install it by calling
install_user_keyrings, but before it actually attempts
to install the keyring, a context switch happens. When Thread
1 executes, it also realizes that the keyring is not created yet
and, so, it creates the keyring and starts installing it. However,
Thread 1 can only partially install the keyring as it can only
perform the update for the uid_keyring field at line 130
and a context switch happens before it can execute the line at
131 that sets the session_keyring. When Thread O con-
tinues executing, it checks only the uid_keyring field, and
assumes that the keyring must have been properly installed.
Accessing the not yet initialized session_keyring at line
174, leads to a kernel crash. An error revealing scheduling
scenario is depicted in Figure 1.

The manifestation of the vulnerability depends on whether
the context switches between the two threads happen at
some specific program locations. We call such locations the
interleaving points. For this example, the first interleaving
point is when the program counter of Thread O refers to the
read operation at line 114 and the second interleaving point
is when the program counter of Thread 1 refers to the write
operation at line 131. The context switch happens before the
instructions referred by the program counter gets executed.

Although this bug is due to a data race (see Section III for a
vulnerability not due to a data race), not all thread schedules
of this code would lead to the NULL pointer dereferencing
problem. So, our approach leverages the inherent capability of
a symbolic execution engine in detecting memory errors, and
performs on-the-fly data-flow analysis on a minimal number
of paths to infer the interleaving points. For instance, SIFT can
leverage even a seemingly useless thread scheduling scenario

! Available at https://github.com/sysrel/SIFT.

such as Thread O performing the keyring installation as part
of its lookup, followed by Thread 1 checking if the keyring
needs to be installed and finding that the keyring has actually
been installed, to glean information to identify interleaving
points. This is because in addition to using the data-flow facts
available on an execution trace, it also performs light-weight
on-the-fly static analysis to identify branches that may be error
relevant. Then, in an iterative way, SIFT generates additional
scheduling scenarios and performs data-flow analysis on the
new traces to enrich the set of interleaving points until it
detects the error.

III. APPROACH

In this section, we present the technical details of our prop-
erty directed symbolic execution approach for multithreaded
code using the running example provided in Figure 3, in which
each of the functions is executed by a separate thread. This
example contains a use-after-free at line 27 that is not due to
a data race and two memory overflows at lines 29 and 30 that
involve data races.

Section III-A presents the terminology related to multi-
threaded execution. Section III-B presents the inference rules
for identifying program locations that will be used as inter-
leaving points. Section III-C presents how dynamic symbolic
execution is extended to leverage the inferred interleaving
points in effective exploration of a multithreaded code with
the goal of detecting errors.

A. Preliminaries

We assume that the multithreaded code runs under a se-
quentially consistent memory model. In this work, we consider
memory safety and safety properties that can be checked using
assert statements or customized error checking functions. Our
approach can handle memory vulnerabilities such as memory
out of bounds, NULL pointer dereferencing, Use-After-Free,
and Double-Free. We abstract the semantics of an execution
path P in terms of the property relevant memory objects
accessed by the end of the path, O, and the property relevant
instructions that get executed on P, PR, and represent this
fact with P - O, PR.

Given an execution path P and an expression exp that got
evaluated on P, Mem(exp) denotes the set of memory objects
that are accessed while evaluating exp on P and Def(exp)
denotes all the instructions that define exp on P. For a
given address expression aexp, PointsTo(aexp) denotes the
memory object that aexp refers to. Note that aexp may refer to
multiple objects due to being a symbolic expression rather than
a concrete value. However, we assume that it gets resolved
into a single object by the time the instruction completes its
execution as in symbolic execution a separate path would be
generated for each candidate object that the pointer expression
refers to. Our approach assumes that each array and each
struct is modeled as a single memory object, and, therefore,
our points-to analysis maps address expressions that refer to
different elements of the same array to the memory object
that represents the array. Similarly, it maps address expressions
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1 THREAD 0 (executing lookup_user_key)
) =============

3if (!cred->user->session_keyring)
4 // interleaving point at

{ // Line 166

® 9 o v

9 { ... if (user->uid_keyring) return 0; }
okey = cred->user->session_keyring;
11atomic_inc (¢key->usage); [OOPS] // Line 174

12

THREAD 1

(executing install_user_keyrings)

114 in install_user_keyrings

114
// Line

if (!user->uid_keyring) { // Line
user->uid_keyring = uid_keyring;
// interleaving point at 131

130

// Line 114

user—->session_keyring = session_keyring; //

— ine 131

Fig. 1: The erroneous thread interleaving scheduled produced by SIFT to detect the NULL pointer dereference at line 92

(accessed from line 174) within the code shown in Figure 2.
1void atomic_inc (atomic_t * v) { (v->counter)++; }
— // Line 92

2int install_user_keyrings (int thread_num) {

3 user = cred->user;

4 if (user->uid_keyring) return 0; // Line 114

5 mutex_lock (¢key_user_keyring_mutex) ;

6 if (!user->uid_keyring) { // Line 122

7 uid_keyring = (key *)malloc(sizeof (struct
— key))i

8 session_keyring = (key *)malloc (sizeof
s (struct key));

9 user->uid_keyring = uid_keyring; // Line
— 130

10 user->session_keyring = session_keyring; //

— Line 131

11 }

12 mutex_unlock (&key_user_keyring_mutex);

13 return 0;

14}

15

16 key_ref_ t lookup_user_key(...) {

17 if (!cred->user—->session_keyring) { // Line
— 166

18 printf ("thread 1: session_keyring not

— exist\n");

19 ret = install_user_keyrings(1l);

20 if (ret < 0) goto error;

21 }

2 key = cred->user->session_keyring;

23 atomic_inc (¢key->usage); // Line 174

Fig. 2: A simplified multithreaded code segment related to
CVE-2013-1792 [1] that involves a NULL pointer dereference.

that refer to different fields of the same struct object to the
memory object that represents the struct object.

We abstract the load instructions by ignoring the offset
value and represent them with read operations, read =, where
x refers to a memory object. In a similar way, we abstract
the store instructions by ignoring the written value and by
representing them with write operations as write x.

We distinguish memory objects with a global scope us-
ing the predicate isGlobal. We consider a local variable as
escaping if the address of the local variable is stored into
a global memory object or if it is directly or indirectly
passed as an argument to the thread creation API function.
We distinguish local variables that escape the local scope
from those that do not with the predicate local Escapes(x),

1 pthread_mutex_t mutex;

2int data = 0;

3char x*name = NULL;

4char xaddress = "1000NW1O0thSt";
schar letter;

6 char xzipcode = "66666";

7int ind=4;

8

9void xthreadl (void xarg) {

10 pthread_mutex_lock (&émutex) ;

11 if (data > 0)

12 free (name) ;

13 pthread_mutex_unlock (&émutex) ;
14 return 0;

17void xthread?2 (void *arg) {

18 pthread_mutex_lock (&émutex) ;

19 data++;

20 pthread_mutex_unlock (émutex) ;
21 ind++;

2 return 0;

23}

24

s void *thread3 (void xarg) {

26 pthread_mutex_lock (&mutex) ;
27 letter = name[10];

28 pthread_mutex_unlock (émutex) ;
29 letter = address[1l2+datal;
30 zipcode[ind] = '1"';

31 return 0O;

32}

3¢ int main ()

35 {

36 name = malloc (20);
37 pthread_mutex_init (émutex, 0);
33 pthread_t tl, t2, t3;
39 pthread_create(&tl, O,
40 pthread_create(&t2, O,

threadl, 0);
thread2, 0);

41 pthread_create (&t3, 0, thread3, 0);
4 pthread_join(tl, 0);

43 pthread_join(t2, 0);

4  pthread_join(t3, 0);

45  printf ("Letter %d\n", letter);

46 return 0;

Fig. 3: An example multithreaded application with three
threads.

where z is the locally defined memory object. We consider
a memory object as globally visible if it is a global variable
or it is an escaping local variable and denote this fact with

the globallyVisible predicate, i.e., globallyVisible(x) =



isGlobal(x) V local Escapes(zx).

The instructions in a multithreaded program are related to
each other according to the happens-before relation [15]. There
is a happens-before relationship between two instructions 7;
and i, that get executed on the same path P, denoted by ¢, b,
io if one of the following holds: "

e 71 and i are executed by the same thread and i; gets
executed before 72 according to the program order.

e 11 gets executed by a thread ¢; before ¢; creates thread
t; that executes .

e 11 gets executed by a thread ¢, after ¢ joins thread ¢;
that executes is.

e 11 is a release operation on a lock object o and 5 is an
acquire operation on o and i; and iy gets executed by
different threads.

e There exists 73 such that 7; h—;> i3 and i3 % 9.

B. Inferring Interleaving Points

Our goal is to analyze an execution trace of a multithreaded
program and to identify the program locations at which a
thread interleaving, i.e., context switch, may lead to a failure of
a correctness property such as memory safety or an invariant
that must hold at a specific program location. We call such
program locations interleaving points. In our approach, the
process of inferring interleaving points works in three steps for
each execution path: 1) Collecting data-flow and control-flow
facts about the instructions executed on that path, 2) Creating
thread access information for each property relevant object
discovered in Step 1), and 3) Filtering out accesses that must
not happen in parallel. Below, we present the details about
each step.

1) Step 1: Collecting data-flow and control-flow facts:
Figure 4 shows the inference rules that are applied to the
instructions that get executed on an execution path P. All
the rules are applied on the instructions executed on a path P
until a fixpoint is reached for the property relevant memory
objects O and the property relevant instructions PR.

Rule ARRAY ACCESS analyzes expressions that are used
in array element accesses. We analyze the trace to find
instructions that get involved in defining the expression as
well as the objects that are accessed in the construction of
the expression. Such objects and instructions are included in
the error relevant object and instruction sets, respectively. For
example, the array index expression at line 27 in Figure 3 is a
constant, and, hence, it would not yield any memory objects
or instructions whereas the array access at line 29 would mark
the global variable data and the write operation at line 19 as
property relevant depending on the order of scheduling, i.e.,
if line 19 gets executed before line 29 on the analyzed path.

Rule DEALLOC analyzes the pointer expressions that
are passed to deallocation functions, which we denote with
free(z). As long as the pointer expression x refers to a
globally visible object, the object and the deallocation instruc-
tions are included in the error relevant object and instruction
sets, respectively. An important detail to consider is that, we

record the deallocation instruction as a write operation as it
deallocates the object and interferes with any subsequent read
operation. For example, both the deallocation operation on line
12 as well as the read operation at line 27 that depends on
line 12 are marked as property relevant.

Rule ALLOC analyzes the addresses that are returned by
allocation functions such as malloc, which we denote with
x < malloc(size). As long as the pointer expression x refers
to a globally visible object, the object and the allocation
instruction are included in the error relevant object and in-
struction sets, respectively. An important detail to consider is
that, we record the allocation instruction as a write operation
as it creates the object and interferes with any subsequent read
and write operations. For example, because of the deallocation
operation at line 12, the dynamic memory operation and the
memory object created at line 36 are both marked as property
relevant.

Rule READ and WRITE analyze the load instructions and
the store instructions, respectively. As long as the accessed
object is globally visible, the object and the access instruction
are included in the error relevant object and instruction sets,
respectively. For example, the read operations at lines 11, 12,
19, 21, 27, 29, and 45 and the write operations at lines 19, 21,
30, and 36 would be marked as property relevant. Similarly,
the variables mutex, data, name, address, letter, ind, and
zipcode would be marked as property relevant.

Rule TARGET incorporates functions that are deemed im-
portant by the user. T'arget denotes the set of function names
provided by the user as property relevant, and we will refer
to it as the target list. At callsites of these functions, the
expressions that correspond to the arguments are analyzed
and the instructions that define these expressions and memory
objects accessed during the computations of these expressions
are included in the error relevant instruction and object sets,
respectively. In our approach, by default we consider the
assert and abort functions as part of the target list.
However, the user can specify additional function names to
be used as targets.

Rule CNTFLOWI1 analyzes the branch instructions with
multiple targets. If the segment of the execution trace that
gets executed after the branch instruction have error relevant
instructions recorded, we also include the instructions that
define the branch condition and the memory objects that are
accessed during the computation of the expressions in the
error relevant instruction and object sets, respectively. For
example, consider the if statement at line 11. Assume that
the condition evaluates to false and the instructions that get
executed under the false branch condition includes a property
relevant instruction, e.g., the read operation at line 29. This
makes any objects accessed for evaluating the loop condition,
i.e., data, also property relevant.

Rule CNTFLOW?2 also analyzes the branch instructions
with multiple targets. However, the goal of this rule is to
statically analyze the instructions that are reachable by the
branch target, to, that was not executed on the current path.
Since we do not have runtime information about such in-



P=P';Alexp] P +O',PR

[ARRAY ACCESS]
P+ O'UMem(exp), PR’ U Def(exp)

[DEALLOC]

P = P’; free(z) globallyVisible(PointsTo(x)) P+ O', PR’
P+ O'U{PointsTo(z)}, PR' U{write x}

(ALLOC] P = P';z < malloc(size)  globallyVisible(PointsTo(z)) P'+ O', PR’ [READ] P=Preadx globallyVisible(z) P’'+ O, PR’

P+ O'U{PointsTo(z)}, PR' U{write z} P+ O'U{z}, PR' U {read z}

(WRITE] P = P;write globallyVisible(x? P'+0O',PR (TARGET] P=P;f(args) f€Target P'+O, PR
P+ O"U{z}, PR U{write x} P O'"UlUyeargs Mem(a), PR' U Def(a)
P = Pyjbranch exp, t1,to; Py Py Oy, PRy Py+ Oy, PRy PR
[CNTFLOW1] 1; branch exp, t1,t2; Pa 1-01,PR1 P2k Oz, PRy 2 # 0
PF O1UO2U Mem(exp), PR1 U PR U Def(exp)

[CNTFLOWZ} P = Pijbranch exp, t1,t2; P t1 executed in P iSTaTgetRelevant(tQ) P+ O1,PRy P> F Oz, PRy

PF O1UO2U Mem(exp), PR1 UPR2 U Def(exp)

Fig. 4: The rules used by ComputeDFCFFacts for the collection of data-flow and control-flow facts for error relevant

instructions.

PF {2z} UO,{write; x} UPR tid(write; =) =t
{(tg,write; )} C WM|z]

Pr{z}UO,{read; x} UPR tid(read; x) =ty
{(tg,read; )} C RM|[x]

Fig. 5: The rules used by ComputeWriteReadMaps for
constructing the write (W M) and read (RM) maps for each
error relevant memory object.

structions, we determine the relevance based on whether there
are any reachable memory allocation/deallocation instructions
and any callsites that involve functions from the target list.
We use the predicate isTargetRelevant(t) to refer to the
result of this static analysis stage, which is performed intra-
procedurally and can be configured with respect to the depth
of the search that is expressed in terms of the number of basic
blocks analyzed. We use a default value of 1, which means the
immediate basic block that was not executed, ¢, is analyzed
only. If so, we include the instructions that define the branch
condition expression and the memory objects that are accessed
during the computation of the expression in the error relevant
instruction and object sets, respectively. For example, if the if
statement at line 9 evaluates to false, with the CNTFLOW2
rule, the global variable data would be considered as property
relevant as there is a callsite of the free function in the
branch that was not executed. However, we would not be able
to reason about the objects that get accessed at that callsite.

We record each instruction along with the context infor-
mation. This is because an instruction of a function may be
property relevant in one calling context but it may not be
property relevant in others. So, we capture the stack trace
to represent the calling context of each instruction. However,
since the property relevant instructions will be eventually used
as interleaving points in other paths, we scrub path specific

information such as the actual arguments of the functions from
the stack traces that we use as context information.

2) Step 2: Creating thread access maps on property relevant
objects: Recall that in Step 1, we record each property relevant
instruction as either a write operation or a read operation. In
Step 2, for a given execution path P we create thread access
maps, WM and RM, for the write accesses and the read
accesses, respectively, based on the property relevant objects
that have been collected in Step 1. Figure 5 shows the rules for
creating these maps. Once each instruction gets executed on
P, we record the thread that executes it. We use the notation
t; to refer to a thread instance with the unique identification
number ¢ and the function tid(inst) to refer to the thread
instance that executes the instruction inst on P.

3) Step 3: Filtering out accesses that must not happen in
parallel: In this step, we use the read and write access maps
that were created in Step 2 to identify conflicting accesses,
i.e., the write-write and write-read accesses that are performed
on common memory objects. Our goal is to identify those
pairs of accesses that may be subject to a different order
of execution on some alternative schedule. In this step, we
generate a set of shared objects, Shared, that may be accessed
by different threads in a different order in some alternative
schedule and a map from these shared memory objects to the
set of instructions that may be reordered, IPM. So, I PM|z]
denotes the set of conflicting instructions that access shared
object = and may be used as interleaving points. If we identify
that the two conflicting accesses do have only one possible
ordering, which was realized on the current execution path
P, we ignore these access pairs as they would not happen
in parallel in any execution path that satisfies the same data
constraints that hold on P. So, a memory access a is only
filtered out if there are no other conflicting memory accesses
on P that may happen in parallel with a.

We define two rules: INSYNC and NOTINSYNC. In both
rules, for conflicting operations, a; x and a; z, we check if



PFO,PR z€O (lg,a; )€ WM[z] (tm,a; ) € WM[z]U RM|z] t), # tm inCommonSync(a; x,a; x)
a; T 7l)i> create t,  term tm 7& aj x aj T 7& create t;,  term ty 7l£> a; x
[INSYNC] r L i r
{aj ®,a; £} U Sync(a; x) U Sync(a; ) C IPM[z], x € Shared
P-O,PR z€0O (tg,a;x) € WM[z] (tm,a; x) € WM[z]U RMz]ty # tm —inCommonSync(a; x,a; x)
a; T 7&) create t,  term ty, 793 a; T a; T 711b—> create tm  term ty % a; T
[NOTINSYNC] P L P il

{a; z,a; } C IPM|[z],,

x € Shared

Fig. 6: The rules used by UpdatelnterleavingPoints for inferring interleaving points that may create error revealing schedules.

there are any happens-before ordering between them due to
thread creation or thread join operations. If so, we continue
checking for other pairs of accesses. Otherwise, we consider
the pair of accesses as interleaving relevant. However, we need
to do an additional check on whether these two accesses are
embedded within synchronization blocks that access the same
lock object. This is because switching from one thread to the
other when the former is holding a lock that the latter may
try to acquire may create unnecessary switching overhead. As
once the latter one gets blocked another thread will need to
be scheduled. So, if the two conflicting instructions are within
related synchronization blocks, in rule INSYNC, we find all
the acquire instructions that precede the memory accesses
without a matching release operation that also comes before
the memory access. Similarly, we find the matching release
operations for those acquire instructions. Let Sync(i) denote
the acquire and release pairs that enclose instruction i. We
include Sync(a; =) and Sync(a;i x) in IPM[x] along with
the conflicting instructions. Otherwise, in rule NOTINSYNC,
only the conflicting instructions, a; x and a; x, are included
in IPM|z]. In both cases, we include x in Shared.

For example, lines 10, 13, 18, and 20 would be marked as
property relevant due to the conflicting accesses on lines 11
and 19. On the other hand, since the conflicting instructions
on lines 21 and 30 are not enclosed by the acquire and release
operations of a common lock, lines 21 and 30 would be
marked as property relevant.

C. Selective Symbolic Execution

In this section, we present the technical details of per-
forming selective symbolic execution for multithreaded code.
Our goal is to direct symbolic execution to select thread
schedules that are likely to reach some error over those
that may not. Below, first we provide some background on
symbolic execution, and then present how we adopt baseline
symbolic execution to achieve our goal of detecting errors in
multithreaded code faster.

1) Background on Dynamic Symbolic Execution: Dynamic
symbolic execution is a static program analysis technique
that can reason about symbolic inputs. The word “dynamic”
refers to the fact that concrete and symbolic values can be
mixed on an execution path. Dynamic symbolic execution
has two major flavors: concolic and execution-tree generation
based. A symbolic execution engine typically interprets the

instructions of an intermediate language, such as the LLVM
IR [16], so that expressions that involve symbolic values are
manipulated according to the semantics of the instruction. In
this paper, we focus on the execution-tree generation based
approach. When interpreting conditional branch instructions
with symbolic branch conditions, a symbolic execution engine
checks the satisfiability of the branch condition for each target
using an SMT solver and to simulate each feasible target
it generates a separate path. On each path it conjoins the
symbolic branch conditions to generate the path constraint. So,
the symbolic execution engine generates a tree of symbolic ex-
ecution paths or states, where the internal nodes with multiple
children denote branching points and each leaf node denotes a
completed execution corresponding to an equivalence class of
the input space. A challenge in symbolic execution is the well-
known path explosion problem as the tree of executions may
grow exponentially with the increasing number of branching
instructions. So, symbolic execution is typically configured to
run up to some timeout value.

Algorithm 1 The main algorithm as implemented by the SIFT

tool.
1: SIFT(Prog: Multi-threaded Program, pmode: SINGLETONS, COM-
MON, ONE, timeout: Real, N: Natural)

2: (IP, Shared) + (0,0)

3: partitions < {0}

4: for ¢: 1 to N do

5: for each p € partitions do

6: (TIP,TShared) + EzplorelnferSelective(Prog, p, timeout)
7.

8

9

10

IP+ IP UTIP
Shared < Shared U TShared

end for
if pmode is COMMON then
11: partitions < {IPM|z] | z € Shared} © Initialize partitions
12: while exists s1,s2 € partitions s.t. s1 N s2 # 0 do >
Common int. points
13: partitions < partitionsU{s1 U s2}\ {s1, s2} > Merge
14: end while
15: partitions < sortNonDecreasing(partitions)
16: else
17: if i = N — 1 and pmode is SINGLETONS then > Apply each
int. point separately
18: partitions < U, cshareat{iP} | ip € IPM[z}]
19: else > pmode is ONE or earlier steps for SINGLETONS
20: partitions < {U,csnareq IPM[z]}
21: end if
22: end if
23: end for




2) The main algorithm: SIFT: Algorithm 1 shows our
approach at a high-level. It takes as input a multithreaded
program, Prog, the mode of partitioning the interleaving
points, pmode, a timeout value, timeout, and the number of
steps, N. In each step, SIFT performs symbolic execution
on the given multithreaded program by selectively generating
alternative scheduling of the threads based on the current set
of interleaving points and generates new interleaving points to
be considered for the next step.

SIFT can be configured to use the interleaving points
according to one of the three modes of partitioning, which
can be ONE, SINGLETONS, or COMMON. In the
ONE mode, all interleaving points are combined in a single
partition. Although this mode provides the most exhaustive
exploration of the thread schedulings with respect to the
interleaving points, it is the most costly one due to the number
combinations. In the SINGLETON S mode, SIFT generates
as many partitions as the number of interleaving points so that
each of them can be considered as the only interleaving point
during symbolic execution. This mode can be more efficient
than the ON E mode. However, it can only be effective for
generating error paths that require only a single voluntary
context switch, i.e., one that is not due to a blocking operation,
at a specific program location. In the COMMON mode, a
separate partition is created for each shared object. However,
if two partitions somehow have common interleaving points
then they get merged into one.

For example, for our running example in Figure 3, the set of
shared objects that are used to identify the partitions consists
of data, name, and ind. The read operation at line 21 and
the write operation at line 30 are included in one partition due
to the shared object ind and the remaining property relevant
instructions, lines 10, 13, 18, 20,, 26, 28, 29, 36, end up
being placed in another partition due to the shared objects
data and name. The reason instructions that access data and
those that access name get merged in one partition is due to
being enclosed by common acquire and release instructions.

The COM MON mode can have better coverage than the
SINGLETON S mode and if multiple partitions can be gen-
erated, it can achieve better performance than the O N E mode.
In this mode, we also sort the partitions in nondecreasing order
of their sizes.

So, at every step SIFT goes through each partition and uses
the interleaving points in that partition to reach the error state
and at the same time it generates the interleaving points for
the next state. The SINGLETON S mode is different from
the ONE and COMMON modes as it only gets applied
in the last mode. This means that when configured in the
SINGLETONS mode, SIFT works in the ONE mode in
all steps except the last one.

3) Selective Scheduling Exploration: 1t is intractable to
generate all possible thread interleavings during the analysis
of a multithreaded program. Algorithm 2, instead, uses the
given set of interleaving points, [P, to explore the thread
interleaving space of the given program Prog. Similar to
baseline symbolic execution, it first creates an initial symbolic

Algorithm 2 An algorithm for inferring thread interleaving
points from the symbolic execution of a program until a bound

is reached.

1: ExploreInferSelective( Prog: Multi-threaded Program, I P: Set of Inter-
leaving Points, timeout: Real): (Set of Interleaving Points, Set of Shared
Objects)

2: state < init(Prog)

3: States < {state}

4: Let IP <+ 0

5: while States not empty and timeout not reached do

6: cur < ChooseNext(States)

7.

8

9

10

if s.thread is blocked then
succs < EzecuteNextInstConservative(s, s.thread)
else
: succs < EzecuteNextInstInterleave(s, s.thread, I P)
11: end if

12: for each suc € succs do

13: if bug manifested in suc then
14: Report bug

15: else

16: if suc terminated then

17: Term < Term U {suc}
18: else

19: States < States \ {cur} U {suc}
20: end if

21: end if

22: end for

23: end while

24: (IP',Shared’) < (Az. 0,0)

25: for each state € States U Term do

26: (O, PR) < ComputeDFCFFacts(state.Path)

27: (WM, RM) <+ ComputeWriteReadMaps(state.Path, O, PR)

28: (T1P, TShared) — UpdatelnterleavingPoints(Prog,
state.Path,W M ,RM)

29: (IP’,Shared’) + (Ax.IP'[x < IP'[z] U TIP[z]],Shared U
T Shared)

30: end for

31: return (IP’, Shared’)

Algorithm 3 The algorithm that symbolically executes an
instruction for a multi-threaded program and keeps executing
the same thread until it gets blocked.

1: ExecuteNextInstConservative(s: Execution State, ¢: Thread): set of
Execution States
2: if isEnabled(s,t) is false then

3: 140

4: while ¢ < s.queue.size() do

5: t' + s.queue.remove()

6: if isEnabled(s,t’) is true then
7: break

8: else

9: s.queue.add(t")

10: t—t

11: end if

12: 14— 1+1

13: end while
14: if ¢/ =t then

15: Report deadlock and terminate path
16: else

17: s.queue.add(t)

18: s.thread + t'

19: end if

20: end if

21: return ExecuteNextInst(s, s.thread.stack, s.thread.pc)

execution state, in which the global variables with initializers
have been initialized, the stack frame has the stack frame for
the ma in function, the program counter, pc, is initialized to the



first instruction of the main function, and the path constraint
, PC, is initialized to true. We have extended a symbolic
execution state to accommodate multiple threads. Each thread,
including the main thread, has its own stack and the program
counter and is identified by a unique integer. The state keeps
track of the id of the current thread that is in execution. It
keeps other threads in a queue and records whether a thread is
enabled or not. It keeps track of the symbolic execution states
in States and in each iteration of the main loop, it chooses
one state according to some scheduling policy, executes the
next instruction for the current thread.

Algorithm 4 The algorithm that symbolically executes an
instruction for a multi-threaded program and creates alternative
thread schedules at the interleaving points.

1: ExecuteNextInstInterleave(s:  Execution State, t:
1 P:Interleaving Points): set of Execution States

Thread,

2: if s.thread.pc € IP is true then > An interleaving point

3: succ 0

4: for each thread t' # s.thread do > Schedule every other enabled
thread

5 if isEnabled(s,t’) then

6 s’ + s.copy()

7: s'.queue.remove(t’)

8: s’ .queue.add(s’ .thread)
9: s’ .thread + t'

10: succ <+ succ U {s'}
11: end if

12: end for
13: return succ U ExecuteNextInst(s, s.thread.stack, s.thread.pc)

14: else > Do not schedule any other thread and keep executing the current
one

15: return ExecuteNextInst(s, s.thread.stack, s.thread.pc)

16: end if

The execution of an instruction involves thread scheduling,
which depends on two factors: 1) whether the current thread is
enabled or not, and 2) whether the instruction to be executed
is an interleaving point. If the current thread is not enabled,
Algorithm 2 calls Algorithm 3 to choose the next enabled
thread from the queue and executes the instruction mostly like
baseline symbolic execution except the fact that any updates to
the local variables are performed on the relevant thread’s stack.
If the thread is enabled then Algorithm 2 calls Algorithm 4,
which generates an alternative schedule in a copy of the current
execution state if the executed instruction is an interleaving
point. An alternative schedule based on an interleaving point
is generated before the interleaving point gets executed as
shown in Algorithm 4. However, there is an exception to this
rule: the release operations. This is because scheduling another
thread while the lock is held by the current thread would just
incur extra overhead in terms of extra context switching if
the scheduled thread would attempt to acquire the same lock.
We abstract away this implementation detail in Algorithm 4
to keep it concise. If the instruction to be executed is not an
interleaving point then the instruction gets executed similar to
the baseline symbolic execution while updating thread related
data structures properly.

After generating the symbolic execution states, Algorithm
2 goes over each state and analyzes the execution path to
perform data-flow analysis as explained in Section III-B.

TABLE I: Comparing partitioning modes of SIFT on SV-
COMP and CVE benchmarks in terms of the number of times
yielding the minimum detection time within a timeout of 500
secs.

N S PI SINGLETONS COMMON ONE
2 RC 10 13 4 1
2 RC 100 13 2 5
2 D 10 5 5 11
2 D 100 4 9 6
3 RC 10 3 11 6
3 RC 100 6 10 4
3 D 10 6 11 11
3 D 100 10 10 3

Total 60 62 47

Finally, it returns the interleaving point map and the set of
shared objects to be used in the next step in Algorithm 1.

IV. EVALUATION

We have implemented our approach on top of the KLEE
symbolic execution engine [5]. SIFT currently works on the
LLVM 3.8 bitcode. We have run our experiments on an
Intel Xeon CPU 2.30GHz with 256 GB memory. We have
applied SIFT to the Linux device driver benchmarks from
SV-COMP [3] and to the CVE benchmarks that were used
to evaluate ConVul [7], [2]. For each mode of partitioning the
interleaving points, SINGLETONS, COMMON, and ONE, we
have explored various configurations in terms of the number
of steps (see the input to Algorithm 1), N, the path scheduling
algorithms, S, as provided by the symbolic execution engine
(D for Depth-First Search and RC fr Random and coverage
based), and the maximum number of paths analyzed to in-
fer the interleaving points, PI. Motivated by the empirical
evidence [20], [19], [18] that only few thread interleavings
manifest concurrency bugs, we bounded the maximum number
of context switches to 3 on each symbolic execution path. For
each configuration and benchmark combination, we ran SIFT
three times and computed the average time to detect the error.

While Table I shows a summary of overall results, Tables
IT and III show the lowest average error detection times in
seconds for each benchmark, for N = 2 and N = 3, respec-
tively, along with the configuration that yielded those times.
Among the SV-COMP benchmarks, race-1_1-join and
race—4_1-thr are known not to have any bugs. Therefore,
SIFT does not report any errors for these benchmarks as
denoted by “-”. In the following subsections, we evaluate our
approach with regards to various research questions.

A. In which partitioning mode SIFT detects the errors the
fastest?

Table I shows the number of times each partitioning strategy
yields the fastest detection for each configuration. as well as
the total numbers across all configurations. Comparing the to-
tal number of cases, the COMMON and SINGLETONS modes
perform better than the ONE mode. Also, as shown in Table
IIl.a, for the SV-COMP benchmark race-4_2-thr, SIFT
could detect the error within 500 secs only in the COMMON
mode. Although, the SINGLETONS mode, perform close to



TABLE II: Comparing various configurations that yield the lowest average error detection times for the three modes of SIFT.
Timeout=500 secs. N=2. ET, S, and PI denote the error detection time in seconds, the path scheduling algorithm, and the
number of paths analyzed to infer interleaving points, respectively. RC' denotes random + coverage based scheduling and D
denotes depth-first search. - means the error could not be detected.

a) Error detection for SV-COMP benchmarks.

Benchmark SINGLETONS COMMON ONE
ETGs) S PI|ET() S PI|ET(s) S PI
race-1_1-join - - - - - - - - -
race-1_2-join 0.19 D 100 007 D 100| 0.06 D 10
race-1_3-join 019 D 100 006 D 100| 0.06 D 10
race-2_1-con. 087 D 10 022 D 100 022 D 10
race-2_2-con. 0.18 D 100 0.19 D 100| 018 D 10
race-2_3-con. 0.21 D 100 0.18 D 100 018 D 10
race-2_4-con. 021 D 100| 019 D 100| 019 D 10
race-2_5-con. 021 D 100 022 D 100 022 D 10
race-3_1-con. 090 D 100 063 D 100| 021 D 10
race-3_2-con. 0.35 D 100 058 D 100| 020 D 10
race-4_1-thr. - - - - - - - - -
race-4_2-thr. - - - - - - - - -

b) Error detection for real world CVE benchmarks

TABLE III: Comparing various configurations that yield the lowest average error detection times for the three modes of SIFT.

Timeout=500 secs. N=3.
a) Error detection for SV-COMP benchmarks.

Benchmark SINGLETONS COMMON ONE
ET(s) S PI| ET (s) S PI|ET() S PI
race-1_1-join - - - - - - - - -
race-1_2-join  0.07 D 100 007 RC 10| 0.07 D 100
race-1_3-join 0.07 D 100 0.06 D 10 0.07 D 100
race-2_l-con. 0.22 D 100 0.22 D 100 022 D 10
race-2_2-con. 0.19 D 100 0.18 D 100 0.19 D 100
race-2_3-con. 0.18 D 100 0.18 D 100 0.19 D 10
race-2_4-con. 0.19 D 100 0.19 D 100 019 D 10
race-2_5-con. 0.22 D 100 0.22 D 10| 022 D 10
race-3_l-con. 0.21 D 100 0.65 D 100 022 D 10
race-3_2-con. 0.19 D 100 058 D 100 019 D 10
race-4_1-thr. - - - - - - - - -
race-4_2-thr. - - -| 5208 RC 10 - - -

Benchmark SINGLETONS COMMON ONE

ET (s) S PI|ET(s) S PI|ET() S PI
CVE_2009_3547 020 D 100| 014 D 100| 014 D 100
CVE_2011_2183 832 D 10| 620 D 100| 16.14 D 100
CVE_2013_1792 - - - - - - - -
CVE_2015_7550 0.72 RC 100 0.42 D 10 0.44 D 100
CVE_2016_1972 - - - - - - - -
CVE_2016_1973 1996 D 10 431 RC 100 499 D 10
CVE_2016_7911 0.38 D 10 0.28 D 100 0.16 D 100
CVE_2016-9806 056 D 100 207 D 10 055 D 10
CVE_2017_15265 2.98 D 10 529 D 10 - -
CVE_2017-6346 140 D 100 1.36 D 100 149 D 100

b) Error detection for real world CVE benchmarks

Benchmark SINGLETONS COMMON ONE

ET(s) S PI|ET(s) S PI|ET() S PI
CVE_2009_3547 0.14 D 100 0.14 D 100 0.14 D 100
CVE_2011_2183 849 D 10 0.91 D 100 | 20.04 D 10
CVE_2013_1792 - - 825 RC 100| 24.62 D 100
CVE_2015_7550 044 D 100 0.37 D 100 037 D 100
CVE_2016_1972 770 D 10 1346 D 10 772 D 10
CVE_2016_1973 536 D 10 420 RC 100 534 D 10
CVE_2016_7911 0.14 D 100 0.28 D 100 0.15 D 10
CVE_2016-9806 055 D 100 4.18 RC 100 056 D 10
CVE_2017_15265 529 D 100 1.69 D 10 - - -
CVE_2017-6346 1.47 D 100 1.39 D 100 148 D 100

the COMMON mode, SINGLETONS cannot detect errors that
require multiple context switches. An example for this case is
the CVE-2013-1792 benchmark that was presented in Section
II. As shown in Figure 1, it requires two context switches.
Therefore, as shown in Table I1.b, SIFT cannot detect this error
in the SINGLETONS mode while it can in the COMMON
mode.

B. What is the impact of specific configurations on the parti-
tioning modes?

As shown in Tables II and III, the depth-first search path
scheduling yields the shortest error detection times. This can
be explained as having more states with completed executions,
and, hence, yielding a more complete picture of the dependen-
cies among program statements. Although one may think that
SIFT can be configured to use depth-first search, it should
be noted that there could be cases such as the SV-COMP
benchmark race-4_2-thr, where depth-first search algorithm
may miss the error within the given time bound.

Although SIFT could detect the errors when N = 2 for most
of the benchmarks, as shown in Tables II.b and IIl.b, SIFT
could detect the error for benchmark CVE-2016-1972 only
when N = 3. Similarly, as shown in Il.a and IIl.a, SIFT could
detect the error for SV-COMP benchmark race—-4_2-thr
only when N = 3.

C. What is the overhead of on-the-fly data-flow analysis in
SIFT?

We have computed the time spent for on-the-fly data-
flow analysis to infer the interleaving points, which includes
computation of data-flow facts, read/write maps, happens-
before analysis, and updating the partitions. We wanted to find
out what percentage of the time to error detection is spent on
the on-the-fly data-flow analysis.

It turns out that the overhead of on-the-fly data-flow analysis
is higher when depth-first search is used compared to the
path scheduling based on a combination of random and
coverage based. For the CVE benchmarks, the overheads for



the SINGLETONS, COMMON, and ONE modes with depth-
first search are 18.74%, 21.20%, and 21.12%, respectively,
and those with the random and coverage based scheduling
are 15.37%, 14.46%, and 7.59%, respectively. For the SV-
COMP benchmarks, the overheads for the SINGLETONS,
COMMON, and ONE modes with depth-first search are
19.49%, 24.36%, 28.91%, respectively, and those with the
random and coverage based scheduling are 16.94%, 8.82%,
6.61%, respectively. We think that the reason for the overhead
difference is due to having more complete paths and more
data-flow facts to glean and to process. While this increases
the processing time, it also improves error detection and leads
to faster detection.

Finally, SIFT could detect all the memory errors in these
benchmarks including CVE-2011-2183, which could not be
detected by ConVul as mentioned in [7]. We think that the
success of SIFT relies on its property guided exploration of
the search space. SIFT could detect this bug with all the
partitioning modes, while achieving the fastest detection with
the COMMON mode.

V. RELATED WORK

It is impractical to exercise all possible scheduling scenarios
to analyze multithreaded software. Previous work dealt with
this challenge by designing a Domain Specific Language for
developers to guide the exploration [8] and by synthesizing
thread schedules from sequential tests [21] or from concurrent
execution traces [10], [12]

Our approach is similar in spirit to all the approaches
that analyze an execution trace to derive data-flow and syn-
chronization dependencies among the events on an execution
trace including Partial Order Reduction [22] and others [21],
[12], [9]. However, SIFT’s exploration is guided by property
relevant interleaving points that are computed over the precise
memory model provided by symbolic execution.

Maximal Causality Reduction (MCR) generates an equiv-
alence class of traces with respect to happens-before rela-
tionship using constraint solving [10]. Although MCR avoids
redundancy in generating interleaving scenarios, it is not
property or failure directed. Maximal Path Causality (MPC)
is combined with symbolic execution in [23] to effectively
search the input and the schedule space. Our approach, on
the other hand, searches the state space of input and inter-
leaving scenarios in a systematic way by leveraging the path
scheduling algorithms implemented by the symbolic execution
engine. SIFT prioritizes scheduling relevant scenarios based on
the property relevance.

Concolic execution is used in [12] to find scheduling-
sensitive branches. The trace partitioning used in this work
is complementary to our interleaving point partitioning.

An assertion guided pruning strategy is used to symbolically
execute multithread programs in [9]. This approach uses an ap-
proximate weakest precondition computation for the explored
states to filter out execution paths that are guaranteed not to
reach the failure state. It also uses static slicing and dynamic
partial order reduction to reduce the exploration stage. Our

approach leverages the precise memory model of dynamic
symbolic execution for points-to analysis and, therefore, it
can handle non-standard pointer arithmetic that is found in
systems code more precisely than standard points-to analysis
techniques [24]. Also, our approach explores the state space
in an incremental fashion to reduce the overhead of on-the-fly
data-flow analysis.

Real execution traces, static analysis, and guided symbolic
execution are combined in [17] to generate failing variants
of the real execution traces and to identify root cause of the
failures via differential trace analysis.

ConVul [7] analyzes dynamic execution traces to identify
exchangeable events that are either not ordered with respect
to a happens-before order or are transitively ordered through
a small number of close proximity events. Our approach
also analyzes access to shared objects when determining the
interleaving points. SIFT could detect the vulnerabilities in all
the CVE benchmarks that could be detected by ConVul and it
can even detect the one, CVE-2011-2183, that was missed
by ConVul. Furthermore, SIFT can support errors that are
manifested via assertion failures in addition to the three types
of memory vulnerabilities detected by ConVul.

UAF [11] analyzes dynamic execution traces to detect Use-
After-Free vulnerabilities. It considers allocation, deallocation,
and memory access operations as scheduling relevant and uses
the maximal causality model to infer error revealing schedules.
SIFT handles additional types of memory vulnerabilities as it
supports a more generic definition of error relevant events.

ConCrash analyzes the stack traces of crashes to reproduce
crash inducing thread interleavings [4]. SIFT, on the other
hand, analyzes a state space without prior knowledge of the
erronous behavior. Race detection approaches [14], [6], [13]
may miss memory vulnerabilities that are due to logical errors
and those that are not due to races.

VI. CONCLUSIONS

We have presented, SIFT, a property directed selective
scheduling approach for symbolic execution of multithreaded
code. SIFT leverages the precise memory model of symbolic
execution for precise detection of property relevant data-
flow and uses this information to identify interleaving points.
We have equipped SIFT with three partitioning techniques
to support a wide range of applications with different pat-
terns of error revealing scheduling scenarios. SIFT has been
implemented on top of the KLEE symbolic execution en-
gine. Experimental results show that SIFT can effectively sift
through a huge state space of scheduling scenarios and quickly
detects memory vulnerabilities and assertion failures. In future
work, we will extend SIFT with the handling of additional
synchronization primitives.
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