SEESAW: A Tool for Detecting Memory
Vulnerabilities in Protocol Stack Implementations

Farhaan Fowze
University of Florida
USA
farhaan104@ufl.edu

Abstract

As the number of Internet of Things (IoT) devices prolifer-
ate, an in-depth understanding of the IoT attack surface has
become quintessential for dealing with the security and relia-
bility risks. IoT devices and components execute implementa-
tions of various communication protocols. Vulnerabilities in
the protocol stack implementations form an important part
of the IoT attack surface. Therefore, finding memory errors
in such implementations is essential for improving the IoT
security and reliability. This paper presents a tool, SEESAW,
that is built on top of a static analysis tool and a symbolic
execution engine to achieve scalable analysis of protocol
stack implementations. SEESAW leverages the API model of
the analyzed code base to perform component-level analysis.
SEESAW has been applied to the USB and Bluetooth mod-
ules within the Linux kernel. SEESAW can reproduce known
memory vulnerabilities in a more scalable way compared to
baseline symbolic execution.

CCS Concepts: « Software and its engineering — Soft-
ware testing and debugging; « Security and privacy —
Software and application security;

Keywords: 10T, Bluetooth, USB, memory vulnerability, sym-
bolic execution, static analysis

ACM Reference Format:

Farhaan Fowze and Tuba Yavuz. 2021. SEESAW: A Tool for Detect-
ing Memory Vulnerabilities in Protocol Stack Implementations. In
19th ACM-IEEE International Conference on Formal Methods and
Models for System Design (MEMOCODE °21), November 20-22, 2021,
Beijing, China. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3487212.3487345

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

MEMOCODE 21, November 20-22, 2021, Beijing, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9127-6/21/11...$15.00
https://doi.org/10.1145/3487212.3487345

Tuba Yavuz
University of Florida
USA
tuba@ece.ufl.edu

1 Introduction

The landscape of Internet of Things (IoT) is vast and diverse.
A typical IoT ecosystem consists of constrained IoT devices,
routers/edge devices, mobile phones, and the cloud. The
communication protocol implementations form an important
part of the attack surface due to their complexity. The Linux
kernel forms an important of the IoT landscape due to its
market share on routers, edge devices, and mobile phones.
The complexity of the APIs in the Linux kernel makes it
challenging to analyze and identify vulnerabilities in the
implementations of communication protocols such as the
USB and Bluetooth protocols.

A recent report on the Blueborne family of vulnerabili-
ties [1] that were found in various implementations of the
Bluetooth protocol indicate the difficulty of using dynamic
analysis for detecting vulnerabilities. Therefore, static pro-
gram analysis approaches that do not require a real device
offer advantages over dynamic analysis. Static analysis al-
lows one to achieve high coverage. However, it is difficult to
strike a balance between precision and analysis. Dynamic
symbolic execution, as implemented in KLEE [5], provides a
precise memory model, but it has limited scalability due to
the path explosion problem.

In this paper, we introduce a tool, called SEESAW, that
combines the scalability of static analysis with the precise
memory model of symbolic execution to detect memory vul-
nerabilities in IoT relevant protocol stack implementations.
SEESAW applies symbolic execution at the component level
and under the guidance of static analysis, which can provide
a more complete view of the program state space. Our ap-
proach leverages Directed Symbolic Execution (DSE) [10],
which is a well-known technique for guiding symbolic ex-
ecution to a target code location. However, our approach
differs from previous applications of DSE in three ways:
1) SEESAW focuses on detecting memory errors that are
protocol-relevant, which are induced due to wrong handling
of the protocol fields, instead of generic errors. SEESAW uses
a novel approach to automatically detect protocol relevant
program variables. 2) SEESAW utilizes under-constrained
symbolic execution [7, 11] to perform modular execution
on the analyzed programs. 3) SEESAW allows two ways of
communication between the symbolic execution and the

Source code is available at https://drive.google.com/drive/folders/120g3-
zRjNoYEjJBJHiFRWNMI2c4y664-?usp=sharing

https://doi.org/10.1145/3487212.3487345
https://doi.org/10.1145/3487212.3487345
https://doi.org/10.1145/3487212.3487345
https://drive.google.com/drive/folders/12Og3-zRjNoYEjJBJHiFRwNMl2c4y664-?usp=sharing
https://drive.google.com/drive/folders/12Og3-zRjNoYEjJBJHiFRwNMl2c4y664-?usp=sharing

MEMOCODE 21, November 20-22, 2021, Beijing, China

Test Program

i

I
)
«-
ﬁ

Protocol
Model

Fowze et al.
Static Analysis Target Paths _| symbolic Execution
D o D
» Analysis
= - = Result
) Paths Exploration Results

Figure 1. Architecture of SEESAW for protocol guided vulnerability detection.

static analysis components. While static analysis provides
target paths to symbolic execution, guided symbolic exe-
cution provides the static analysis with resolved function
pointer information to improve the precision and complete-
ness of the analysis. We have applied our approach to the
widely used USB and Bluetooth modules from the Linux
kernel.

The paper is organized as follows. Section 2 provides an
overview of our approach Section 3 presents our results on
applying SEESAW to the USB and Bluetooth implementa-
tions in the Linux kernel. Section 4 discusses related work.
Section 5 concludes with directions for future work.

2 Overview

This section presents the overview of SEESAW, our protocol
guided vulnerability detection methodology. We utilize proto-
col information in detecting vulnerabilities within protocol
stack implementations. Figure 1 shows the major compo-
nents of SEESAW.

2.1 Specifying and Mapping Targets

Our analysis engine finds out targets based on protocol do-
main information. Our analysis engine needs protocol de-
pendent aspects to be specified. We can define the types of
the protocol relevant fields as input. Most of these domain
relevant fields are defined within some special data type,
e.g., structs in the Linux kernel code. We can specify these
at the file level. For each protocol we want to model, we
can specify the list of header files that contain the protocol
relevant fields. This is a reasonable assumption since the
protocol stack implementations are reasonably structured
and modular. Based on the protocol information, the anal-
ysis engine first maps the targets within the program. For
example, to detect memory corruption errors we specified
targets as memcpy callsites. The target mapper initially finds
out all explicit calls to memcpy. This is then passed to our
core execution engine shown in Figure 1. The targets are
systematically filtered in the next stages using domain in-
formed analysis. Our system works on the LLVM IR. Clang

compiler generated bitcode is traversed to find the required
target instructions.

2.2 Static Analysis Component

SEESAW utilizes an open-source static analysis tool SVF
[3] for static analysis. SVF is the state-of-the-art tool for
inter-procedural value-flow and pointer analysis of C pro-
grams. It is scalable, and built on the LLVM IR. SVF can build
value-flow information and points-to analysis in an iterative
manner. We utilize SVF’s ability to integrate external points-
to analysis results to improve precision. SVF divides pointer
analysis into loosely coupled Graph, Rules and Solver [12].
These three components allows users to tailor the tool ac-
cording to their analysis needs. The recent advancement of
the tool allows customizable analysis: context, flow, and field
sensitive pointer analysis.

Once the targets are mapped within the bitcode, we uti-
lize SVF’s value-flow graph to gain insights on the targets.
We treat the targets as sinks and try to explore the inter-
procedural value-flow to find out all the sources from which
the target gets its values. We use the context-sensitive anal-
ysis provided by SVE. Our extension here is two-fold. Firstly,
we utilize our protocol guidance in the analysis. Using the
domain information SEESAW finds out the targets that are
dependent on protocol relevant fields. For these targets we
find out all the incoming paths from different function entry
points. These paths are passed to the symbolic execution
component along with the entry points. The second exten-
sion is related to the interaction with the symbolic execution
component. We utilize our symbolic execution component in
resolving function pointer targets that static analysis could
not resolve. This resolution is passed back to the static anal-
ysis component to get more precise value-flows and control
dependencies. Therefore, our static analysis is multi-pass.
It interacts with the symbolic execution resolutions until a
fixed point is reached in the function pointer target resolu-
tions.

SEESAW: A Tool for Detecting Memory Vulnerabilities in Protocol Stack Implementations

2.3 Symbolic Execution Component

The symbolic execution component of SEESAW is built on
the PROMPT tool [13], which implements under-constraint
symbolic execution and API model guided analysis on top of
KLEE [5]. PROMPT allows specification of an environment
in the form of API models. Specifically, we have specified
the enclosing relationship between struct types to deal with
the pointer arithmetic used in the container_of macro that
is heavily used in the Linux kernel. Since such pointer arith-
metic uses a negative offset, it represents a challenge for
static analysis tools like SVF, which assume that the pointer
arithmetic expressions do not go outside of the object.

Our approach extends the standard symbolic execution in
KLEE with a path prioritization algorithm that prefers paths
that follow the sequence of basic blocks as specified by the
static analysis over those that deviate. The idea is to spend
the resources on paths that are likely to reach target locations
or protocol relevant memory access locations. For a given set
of target paths, our symbolic execution engine performs two
tasks. First, it explores the path to target starting from the
given entry point. This is the detection phase where we try to
figure out if there exist any out of bound memory accesses in
the path. Any error condition found during the exploration is
recorded. Second, we record any function pointer resolutions
during the path exploration. The resolutions may come from
following the exact path or some paths feasible from the
entry point. This result is passed back to the static analysis
engine so that it can leverage this information. We employ
caching in the solver provided by the symbolic execution
engine to reduce the time in solving queries.

2.4 Combining Static Analysis and Symbolic
Execution

This work combines two major analysis techniques: static
analysis and symbolic execution. This combination allows us
to gain from the qualities of both. Static analysis is scalable
but imprecise. Symbolic execution utilizes a precise memory
model but runs into the path explosion problem. SEESAW’s
static analysis engine provides the protocol-relevant targets
to the symbolic execution engine to explore. The symbolic ex-
ecution engine explores the paths to find bugs and to record
function pointer resolutions. The new found function pointer
resolutions are provided back to static analysis which can
explore more parts of the code. The combination iteratively
finds and explores all detected targets. To keep the compo-
nents independent we use source line information as the
basis of communication between the engines. We chose to
use source information as the basis so that the engines can
perform regardless of the tooling issues, e.g., the version
of the IR. Our approach works on the LLVM IR. The target
paths from static analysis are first recorded as sequences
of basic blocks. For each path, a summary is created using
the terminating instruction of the basic blocks in the path.

MEMOCODE ’21, November 20-22, 2021, Beijing, China

This summarized sequence is used by symbolic execution in
determining for each path which successor to prioritize.

Our hybrid exploration heuristic can be performed in var-
ious configurations. For example, symbolic execution can
be started from any specified entry point to reason about a
known target. If no memory errors are found, it might very
well be the case that static analysis is not required further.
In the case of detecting a memory error, there is a possibility
that it is a false positive due to the under-constrained con-
text. So, static analysis can be used to find a specific calling
context and to provide the paths with constrained contexts
back to symbolic execution so that the bugs within that
context can be confirmed. As we have seen in many experi-
ments the constraint context reduces these false positives.
The complex pointer arithmetic that could not be handled by
static analysis gets resolved by symbolic execution and the
path explosion in symbolic execution stays contained due to
prioritizing relevant paths provided by static analysis.

The example code snippet provided in Figure 2 is from
the Linux kernel version 4.14-rc2. It is a part of the Blue-
tooth module. We provided memcpy functions as targets to
find out memory safety problems. The target mapping phase
of our analysis first identified a target, the memcpy func-
tion called on line 35. Through static analysis we were able
to find out all the possible paths to this function call. The
analysis engine then found the sources of the parameters.
The destination buffer, scan_rsp_data field of adv_instance,
and the length of the copy operation, scan_rsp_len field of
adv_instance, were found to be dependent on some proto-
col fields. This is because adv_instance is a pointer of type
“struct adv_info”, which is defined in the file *hci_core.h”.
SEESAW uses the header file paths related to a protocol
implementation for modeling protocol information. Since
the header file hci_core.h” is stored under one such path,
include/net/bluetooth, *struct adv_info” is considered
protocol relevant, and, hence, the values used as the desti-
nation buffer and length parameters to the memcpy at line
35 are also considered protocol relevant. The three possi-
ble entry points for this memcpy callsite include the func-
tions create_instance_scan_rsp_data, set_local_name, and
__hci_req_update_scan_rsp_data. Symbolic execution en-
gine is then passed all these paths grouped by the entry
point to explore on. The symbolic execution can now start
from each of the entry point listed above and search for any
memory vulnerabilities involving the targets.

3 Evaluation

To evaluate the effectiveness of SEESAW, we applied it to the
detection of protocol relevant vulnerabilities in the Linux
kernel, specifically, to the Bluetooth and USBCore modules.
The version we utilized was v4.14-rc2. We used the clang
compiler to generate the bitcodes. We utilized two versions of
the clang compiler due to tooling issues. The static analysis

MEMOCODE 21, November 20-22, 2021, Beijing, China

// net/bluetooth/mgmt.c:3083
static int set_local_name(struct sock =*sk,
struct hci_dev *hdev, void *data, ul16 len) {

L N

if (!memcmp(hdev->dev_name, cp->name,

— sizeof(hdev->dev_name)) &&

6 I'memcmp (hdev->short_name, cp->short_name,
— sizeof (hdev->short_name))) {

8 goto failed;

9 }

10 . // More conditions are checked

11

12 if (lmp_le_capable(hdev) && hci_dev_test_flag(hdev,
— HCI_ADVERTISING))

13 __hci_req_update_scan_rsp_data(&req,

— hdev->cur_adv_instance);
14
15 }
16
17 // net/bluetooth/hci_request.c:1055
18 void __hci_req_update_scan_rsp_data(struct
19 hci_request *req, u8 instance) {

20 struct hci_dev *hdev = req->hdev;

21 struct hci_cp_le_set_scan_rsp_data cp;

22 .

23 if (instance)

24 len = create_instance_scan_rsp_data(hdev, instance,
< cp.data);

25 .

26}

27
28 // net/bluetooth/hci_request.c:1027

29 static u8 create_instance_scan_rsp_data(struct
30 hci_dev xhdev, u8 instance, u8 #*ptr) {

31 struct adv_info *adv_instance;
32 u32 instance_flags;
33 u8 scan_rsp_len = 0;
34 .
35 memcpy (&ptrlscan_rsp_len],
— adv_instance->scan_rsp_data,
36 adv_instance->scan_rsp_len);
37 .
33}

40 // include/net/bluetooth/hci_core.h:198
41 struct adv_info {

43 __ul6 scan_rsp_len;

44 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
45 };

Figure 2. A minimal code snippet of a Bluetooth protocol
within the Linux kernel with a protocol relevant target at
line 35.

component utilized clang-7 to generate the LLVM bitcodes.
The symbolic execution component utilized clang-3.8, which
was the most recent LLVM version in PROMPT, and, hence,
in our underlying symbolic execution tool KLEE. The basis of
information sharing between the two analysis components

Fowze et al.

is the source line information. So, all the modules were built
with the debug flag to enable source line recordings for each
instruction in the LLVM bitcode. Section 3.1 evaluates the
effectiveness of our protocol guided target filtering and Sec-
tion 3.2 evaluates the performance of our guided symbolic
execution component. Section 3.3 evaluates the effectiveness
of SEESAW in terms of bug detection.

3.1 Protocol Relevant Target Finding

The static analysis phase is responsible for protocol relevant
target finding. We have generated the protocol knowledge for
Bluetooth from the header files under /include/net /bluetooth/
and /net /bluetooth/ directories. For USB, we used the header
files from /include/linux/usb.h, /drivers/usb/core/, and
/include [uapi/linux[usb/ch9.h. We consider the structures
and their fields that were defined in these files to be protocol
relevant. Our protocol knowledge informed static analysis
achieved great reductions in the number of paths and the
number of targets to test. As Table 1 shows, we found 461 and
35 protocol relevant fields in the Bluetooth and USB modules,
respectively. There were a total of 397 (Bluetooth) and 20
(USB) memcpy targets in the modules. Using the protocol
information, we were able to reduce the number of targets
to 203 for Bluetooth and only to 4 for USB. This allowed us
to gain 48.87% reduction in the Bluetooth targets and 40%
reduction in the USB targets.

Ground truth evaluation. To evaluate the effectiveness
of our API model based approach, we have analyzed all the
targets in the USB and the Bluetooth modules. Using our
static analysis engine we have found all the struct types the
targets are dependent on. Based on the list of files provided
earlier, we have determined the protocol relevance of each
of these structs. All the protocol relevant targets we have
found were precise for both modules. For example, 28 out
of the 39 protocol relevant types in the USB header files
are the protocol fields/descriptors like device_descriptor,
config_descriptor etc. The rest of the types includes struct
types that represent various abstractions in the protocol like
usb_host_endpoint, usb_host_config, etc. For the Bluetooth
module, there were 227 struct types like hci_command_hdr
and hci_event_hdr related to the Host Controller Interface
(HCI) layer. There were 36 types including [2cap_cmd_hdr
and [2cap_conn_req related to the Logical Link Control and
Adaptation Layer Protocol (L2CAP) layer. The rest of the
types include implementations from the Bluetooth modules
smp, amp, mgmt, bnep, and rfcomm.

As shown in Table 1, we have achieved great reductions
in analysis targets by determining the protocol relevant
targets. For USBCore we found that 8 of the targets were
not dependent on the USB protocol. We found these tar-
gets to be dependent on core kernel relevant structs like
kernel_symbol and kernfs_node. For the Bluetooth mod-
ule we have achieved higher reduction in the number of

SEESAW: A Tool for Detecting Memory Vulnerabilities in Protocol Stack Implementations

MEMOCODE ’21, November 20-22, 2021, Beijing, China

Table 1. Protocol relevant target finding using static analysis

Protocol #Relevant fields #Targets #Protocol relevant targets Reduction
Bluetooth 461 397 203 48.87%
USB 39 20 12 40%

targets. From the sources of the reduced targets, we have
seen that our approach missed two protocol relevant types:
smp_chan and sco_pinfo. These struct types were defined in
/net [bluetooth/sco.c and /net/bluetooth/smp.c. Since our
API model focused on structs defined in the header files, the
approach could not mark these structs as protocol relevant.

3.2 Performance of Guided Symbolic Execution

Based on the target paths provided by static analysis, our
symbolic execution explores relevant portions of the pro-
gram to gain coverage. Compared to the baseline symbolic
execution, our guided execution covers relevant code with
significant speed-up. A representative set of Bluetooth target
timing data is shown in Table 2. There are multiple entry
points for some of the targets. Our symbolic execution step
runs on groups of paths that start from the same entry point
and end at the same target. This allows us to build a com-
prehensive execution context on each target. We ran our
symbolic execution phase with a timeout of 6 hours. The
maximum time taken for our prioritized execution is 875.43
seconds for Target No. 3 as shown in Table 2. Baseline sym-
bolic execution could not reach this target within the given
time bound. There were 32-41 branches in different paths to
this target. Baseline symbolic execution faced path explosion
before it could follow the relevant paths. The target that took
the least time is Target No. 2. It took 1.8 seconds for SEESAW
to explore compared to 2.4 seconds on the baseline. Similarly,
targets 8-10 have almost similar performance for baseline
and SEESAW. The reason is that for these paths there were
only a few branches to explore in the path. For such small
code samples the baseline approach can cover the paths eas-
ily. For targets 3-7 and 11, baseline symbolic execution could
not reach the targets. These paths were relatively longer and
had multiple function calls with multiple loops. Therefore, it
is difficult for the baseline symbolic execution to reach these
targets.

Our approach has shown its effectiveness in exploring
USB module related targets as well. None of the targets were
reachable by the baseline symbolic execution engine. Our
targets were reachable within the given time bound and
we were able to execute all paths to the targets. Baseline
symbolic execution could not scale in this regard, the US-
BCore module code size (18,004 lines of C) is smaller than
the Bluetooth module (43,607 lines of C). Due to the high
number of branches from the entry points, it is difficult for

’These line numbers were generated using David A. Wheeler’s
"SLOCCount’.

baseline symbolic execution to reach a target. In addition
to that, all the USB targets were deep in the code. Baseline
symbolic execution was not able to reach deep Bluetooth
targets either.

Relevant code coverage. We have evaluated our relevant
code coverage compared to the baseline symbolic execution
to evaluate our approach. Our path prioritization technique is
able to focus the execution directly on the required path. And
even when the execution deviates the system can recognize
the paths that return to the desired track and prioritize them
accordingly. Our approach has achieved 100% coverage of the
relevant code for all the targets. Baseline symbolic execution
was able to achieve 100% coverage for the targets it could
reach (Target 1, 2, 8-10). For the rest, the highest relevant
code coverage of baseline symbolic execution is less than 10%
within the given time bound. This is one of the reasons why
path prioritization is necessary for analysis and effectively
shows the impact of our analysis.

Pointer resolution. Our symbolic execution engine was
able to resolve pointers that could not be resolved by static
analysis for two of the entry points. This was enabled by API
modeling of the container_of macro, which got involved
in some function pointer expressions. Once resolved, we
supplied the data back to static analysis engine. The resolved
targets of the function pointers were small functions with
minimal operations and did not contribute to the control-
flow. Therefore, static analysis did not find any new paths
spawning from them.

3.3 Bug Detection

We have evaluated SEESAW’s bug detection capability by
applying it to the detection of known bugs in both the US-
BCore and the Bluetooth modules. Our results have shown
that SEESAW can effectively detect memory vulnerabilities
in both modules.

Bluetooth vulnerability detection. We have applied SEE-
SAW to detecting one (CVE-2017-1000251 [2]) of the Blue-
Borne [1] family of vulnerabilities. The vulnerability is man-
ifested in the extended flow specification (EFS) feature of
the L2CAP protocol implementation in the Linux kernel.
There was a lack of size check in the incoming configu-
ration response parsing phase of L2ZCAP. This allowed an
attacker to utilize any arbitrary sized response to illegally
overwrite data within the program. The vulnerable func-
tion [2cap_parse_conf _rsp is shown in Figure 3. The func-
tion receives a configuration response buffer (rsp) and its

MEMOCODE 21, November 20-22, 2021, Beijing, China

Fowze et al.

Table 2. SEESAW Bluetooth target reaching times. The timeout used for all the execution was 6 hours (21600 seconds). "-"

denotes target could not be reached within 6 hours.

Target No. #Entry points SEESAW time(s) Baseline Time(s)
1 7 52.12 280.51
2 1 1.80 2.46
3 5 875.43 -
4 1 28.83 -
5 1 27.35 -
6 1 26.22 -
7 1 29.02 -
8 1 4.83 4.44
9 1 4.13 5.11

10 1 4.11 6.66
11 1 48.22 -

Table 3. SEESAW USB target reaching times. The timeout used for all the execution was 6 hours (21600 seconds). "-" denotes

target could not be reached within 6 hours.

Target No. #Entry points

SEESAW time(s) Baseline Time(s)

O 00 1 QN U W=

—_
o

—_
—_
NN R I3 = 3w

—_
no

967.14 -
1308.50 -
2361.88 -

1.80 -
2833.76 -

267.12 -
3509.71 -

793.62 -
1434.23 -
1490.49 -
1588.58 -

890.62 -

length (length) as argument. The elements of the buffer
are extracted by [2cap_get_conf_opt and are written to the
buffer pointed by the data variable. After every write, the
pointer ptr is advanced, and it indicates the destination of
the next element from the response buffer. The vulnerabil-
ity arises from the lack of a check on the destination buffer
size. Therefore, a crafted large response can cause out of
bound memory access. SEESAW detected the vulnerabil-
ity in the [2cap_get_conf_opt from the calling context in
[2cap_parse_conf_rsp under the case L2CAP_CONF_EFS
(line 36 in Figure 3). It took SEESAW 2296.39 seconds to
detect the out of bound memory access while baseline sym-
bolic execution could not reach the bug location within the
6 hours timeout.

Reducing False Positives. SEESAW reported four false
positives within the Bluetooth module. These were mani-
fested due to a lack of the calling context. These are mainly
due to the static analysis component’s reporting of all entry
points that may lead to a particular protocol relevant target.

However, some of these entry points may not provide a pre-
cise context. Such false positives can be reduced by manually
restricting the entry points. For the USB module, SEESAW
did not report any false positives.

4 Related Work

SVF [12] is a scalable static analysis tool with precise points-
to analysis. However, it cannot detect memory overflow er-
rors and cannot reason about pointer arithmetic that goes
outside the boundary of an object to get its container. SEE-
SAW leverages symbolic execution to detect memory over-
flow vulnerabilities and mitigates the non-standard pointer
arithmetic problem by using API model guided symbolic
execution to resolve the function pointer targets and passing
them to the static analysis phase to explore additional paths.
K-miner [8] builds on the LLVM compiler suite to analyze
commodity operating system kernels like Linux. K-miner
reduces the number of relevant paths by using system call
interfaces as entry point, this partitions the kernel along

SEESAW: A Tool for Detecting Memory Vulnerabilities in Protocol Stack Implementations

1 static int l2cap_parse_conf_rsp(struct l2cap_chan *chan,
— void *rsp,

int len, void *data, ul6 *result) {

struct 12cap_conf_req *req = data;

void *ptr = req->data;

int type, olen;

unsigned long val;

struct 12cap_conf_rfc rfc = { .mode = L2CAP_MODE_BASIC
= }

struct 12cap_conf_efs efs;

I R B NI R)

10 BT_DBG("chan %p, rsp %p, len %d, req %p", chan, rsp,
— len, data);

12 while (len >= L2CAP_CONF_OPT_SIZE) {

13 len -= 12cap_get_conf_opt(&rsp, &type, &olen,
— &val);

14

15 switch (type) {

16 case L2CAP_CONF_MTU:

17 c..

18 12cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, 2,
— chan->imtu);

19 break;

20

21 case L2CAP_CONF_FLUSH_TO:

22 chan->flush_to = val;

23 12cap_add_conf_opt (&ptr, L2CAP_CONF_FLUSH_TO,

24 2, chan->flush_to);

25 break;

26 ..

27 case L2CAP_CONF_EFS:

28 if (olen == sizeof(efs))

29 memcpy (&efs, (void *)val, olen);

30

31 if (chan->local_stype != L2CAP_SERV_NOTRAFIC &&

32 efs.stype != L2CAP_SERV_NOTRAFIC &&

33 efs.stype != chan->local_stype)

34 return -ECONNREFUSED;

35

36 12cap_add_conf_opt(&ptr, L2CAP_CONF_EFS,
— sizeof(efs),

37 (unsigned long) &efs);

38 break;

39

40 case L2CAP_CONF_FCS:

41 ...

42 }

43 }

44 ..

45 return ptr - data;

46 3}

Figure 3. Code snippet related to Bluetooth vulnerability

separate execution paths. An inclusion-based pointer analy-
sis is done to resolve constraints of the function pointers. A
flow sensitive pointer-analysis is done to improve precision
further. Our work differs from K-miner by utilizing static
analysis to gain the protocol relevant context. We are able
to automatically identify user provided targets and relevant

MEMOCODE ’21, November 20-22, 2021, Beijing, China

entry points are determined based on the protocol domain
knowledge. Sys [4] combines light-weight static analysis
with incomplete symbolic execution, which may skip parts of
the code inside a function. SEESAW, on the other hand, uses
precise static analysis to guide API model guided symbolic
execution. While manual specification in Sys is at the static
analysis stage, in SEESAW manually specified API models
are used during symbolic execution to explore system-level
code components in a precise and scalable way.

There have been prior tools that have combined symbolic
execution with static analysis. Woodpecker [6] can speedup
path exploration of symbolic execution by avoiding paths
that are not related to a user provided checker. It cannot
perform program modeling and must find a complete path
starting from the main function. SEESAW is able to utilize
any entry point in the program. Our configurations allow
the targets and entry points to be decided by domain-model
or it can also be user specified.

Dowser [9] combines guided fuzzing with program analy-
sis and symbolic execution. It targets deep buffer-overflow
vulnerabilities in program logic. It uses static analysis to iden-
tify targets. A combination of fuzzing and symbolic execution
is used to steer execution towards the targets. Compared to
Dowser our targets are not strictly typed. Our targets are
found based on value-flow in the program and, therefore,
SEESAW is able to explore the relevant input space without
being restricted by the fuzzed inputs.

5 Conclusion

We presented SEESAW, a framework for detecting vulnera-
bilities in protocol stack implementations using API model
guided extraction of protocol knowledge. It combines two
major program analysis techniques: static analysis and sym-
bolic execution. Both analysis techniques interact with each
other and share the analysis results that benefit the whole
analysis. Static analysis uses protocol information to find out
relevant targets. Symbolic execution’s scalability issues are
handled by prioritizing paths that follow the target paths pro-
vided by static analysis. We utilize the precise memory model
of symbolic execution in aiding static analysis for resolving
indirect callsites. The components can interact iteratively to
improve the precision of the analysis. Our methodology has
been applied to the USB and Bluetooth protocol stack im-
plementations in the Linux kernel. Our domain-knowledge
guided analysis can detect memory vulnerabilities in proto-
col stack implementations in a scalable way and with up to
a 99% speedup. Thus, SEESAW can be effectively used in the
attack surface analysis of an IoT framework.

Acknowledgments

This work was partially funded by the US National Science
Foundation under awards CNS-1815883 and CNS-1942235
and by the Semiconductor Research Corporation.

MEMOCODE 21, November 20-22, 2021, Beijing, China

References

(1]
(2]

(3]
(4]

(10]

(11]

(13]

[n. d.]. BlueBorne. https://www.armis.com/blueborne/.

[n.d.]. CVE-2017-1000251 Detail. https://nvd.nist.gov/vuln/detail/CVE-
2017-1000251.

[n. d.]. Static Value-Flow Analysis Framework for Source Code. https:
//github.com/SVF-tools/SVF.

Fraser Brown, Deian Stefan, and Dawson R. Engler. 2020. Sys: A
Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code.
In 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020. USENIX Association, 199-216.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-
sisted and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENLX Conference on
Operating Systems Design and Implementation (OSDI’08). 209-224.
Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying
systems rules using rule-directed symbolic execution. ACM SIGPLAN
Notices 48, 4 (2013), 329-342.

Dawson Engler and Daniel Dunbar. 2007. Under-constrained execution:
making automatic code destruction easy and scalable. In Proceedings
of the 2007 international symposium on Software testing and analysis.
1-4.

David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi.
2018. K-Miner: Uncovering Memory Corruption in Linux.. In NDSS.
Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert
Bos. 2013. Dowser: a guided fuzzer to find buffer overflow vulnerabili-
ties. In Proceedings of the 22nd USENIX Security Symposium. 49-64.
Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks.
2011. Directed symbolic execution. In International Static Analysis
Symposium. Springer, 95-111.

David A Ramos and Dawson Engler. 2015. Under-constrained sym-
bolic execution: Correctness checking for real code. In 24th { USENIX}
Security Symposium ({USENIX} Security 15). 49-64.

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow
analysis in LLVM. In Proceedings of the 25th international conference
on compiler construction. 265-266.

Tuba Yavuz and Ken Yihang Bai. 2020. Analyzing system software
components using API model guided symbolic execution. Autom.
Softw. Eng. 27, 3 (2020), 329-367.

Fowze et al.

https://www.armis.com/blueborne/
https://nvd.nist.gov/vuln/detail/CVE-2017-1000251
https://nvd.nist.gov/vuln/detail/CVE-2017-1000251
https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF

	Abstract
	1 Introduction
	2 Overview
	2.1 Specifying and Mapping Targets
	2.2 Static Analysis Component
	2.3 Symbolic Execution Component
	2.4 Combining Static Analysis and Symbolic Execution

	3 Evaluation
	3.1 Protocol Relevant Target Finding
	3.2 Performance of Guided Symbolic Execution
	3.3 Bug Detection

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

