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Abstract

The geographic ranges in which species live is a function of many factors

underlying ecological and evolutionary contingencies. Observing the geographic

range of an individual species provides valuable information about these historical

contingencies for a lineage, determining the distribution of many distantly related

species in tandem provides information about large-scale constraints on evolution-

ary and ecological processes generally. We present a linear regression method that

allows for the discrimination of various hypothetical biogeographical models for

determining which landscape distributional pattern best matches data from the

fossil record. The linear regression models used in the discrimination rely on geo-

desic distances between sampling sites (typically geologic formations) as the inde-

pendent variable and three possible dependent variables: Dice/Sorensen similarity;

Euclidean distance; and phylogenetic community dissimilarity. Both the similarity

and distance measures are useful for full-community analyses without evolution-

ary information, whereas the phylogenetic community dissimilarity requires phy-

logenetic data. Importantly, the discrimination method uses linear regression

residual error to provide relative measures of support for each biogeographical

model tested, not absolute answers or p-values. When applied to a recently pub-

lished dataset of Campanian pollen, we find evidence that supports two plant com-

munities separated by a transitional zone of unknown size. A similar case study of

ceratopsid dinosaurs using phylogenetic community dissimilarity provided no evi-

dence of a biogeographical pattern, but this case study suffers from a lack of data

to accurately discriminate and/or too much temporal mixing. Future research aim-

ing to reconstruct the distribution of organisms across a landscape has a statistical-

based method for determining what biogeographic distributional model best

matches the available data.
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1 | INTRODUCTION

Quantifying biodiversity across time and reconstructing
the phylogenetic relationships of that biodiversity are the
two legs supporting the majority of macroevolution
research. Peter Dodson's career has been devoted to bol-
stering these two pillars, especially in the Cretaceous of
North America and Asia. Early in his career, Dodson
(1975) used allometry to greatly reduce the assumed bio-
diversity of hadrosaurids in the, then, Oldman Formation
(now the Dinosaur Park Formation) by demonstrating
the numerous species of Prochenosaurus were juveniles
of the genera Lambeosaurus and Corythosaurus. Since
that landmark paper, he set his sights on quantifying the
total number of dinosaurs that existed during the Meso-
zoic, which resulted in a preliminary count of 336 discov-
ered genera (Holmes & Dodson, 1997), with subsequent
revised estimates of approximately 1,850 genera (Wang &
Dodson, 2006) and 1,936 species (Starrfelt & Liow, 2016)
using more complex statistical methods.

Additionally, Peter Dodson considered the role of bio-
diversity in paleoecology by studying dinosaurs (Dodson,
Behrensmeyer, Bakker, & McIntosh, 1980) and the small
vertebrates that lived alongside them (Dodson, Currie, &
Koster, 1987). Some of his most influential works in
paleoecology stem from studies of taphonomy
(Dodson, 1971; Dodson et al., 1980), which he used to
identify biases in the fossil record that could, once identi-
fied, be accommodated in paleoecological interpretations.
The contribution presented here follows in the same vein
of understanding aspects of ancient ecosystems and bio-
geography by incorporating known biodiversity data and
accommodating preservation biases.

Modeling biotic geographic range distributions across
a landscape can inform us about the underlying ecologi-
cal parameters that shape range boundaries (Brown, Ste-
vens, & Kaufman, 1996). Individual species geographic
ranges are expected to vary in shape and size due to the
sum of interactions between an organism's phenotype
and extrinsic factors such as the abiotic environment or
density-dependent biotic influences like competition, pre-
dation, and disease (Brown et al., 1996; Gaston, 2003;
Lomolino, Riddle, & Brown, 2005). Indeed, biogeography
and biodiversity theory rely heavily on observations of
geographic range size and shape. For instance, Rapoport's
rule states that the latitudinal range size of organisms liv-
ing at the poles is larger than those living toward the
equator (Rapoport, 1982). Researchers have also docu-
mented that, within a given latitude, there is greater spe-
cies diversity in topographically complex regions,
compared to flatter regions (Badgley et al., 2017;
Finarelli & Badgley, 2010). Each of these generalizations
requires species-specific geographic range data, yet the

combination of these data results in emergent properties
at larger scales that are often the focus of study and
simultaneously complex to model and describe.

Overlaying the geographic ranges of every species
within an ecosystem presents in a mosaic of varying
range shapes and sizes that morph across a landscape. As
a result, geographic localities will differ in the number of
species that overlap their range, ultimately producing
variability in species composition across a gradient.
Likely the most conspicuous of these biodiversity turn-
overs is the modern-day latitudinal diversity gradient,
which describes the phenomenon of greater species
diversity near the equator than observed at the poles
(Hillebrand, 2004; Pontarp et al., 2019). Despite being a
canonical phenomenon of extant ecology, it remains
unclear why the latitudinal biodiversity gradient forms.
Records of ancient life have the potential to provide valu-
able information about ecosystem and geographic range
shifts over long time intervals, something unattainable
using only extant biotic records and some authors have
therefore suggested that paleontological records hold the
key to deciphering this pattern (Fraser, 2017; Jablonski &
Hunt, 2006; Mittelbach et al., 2007).

As we observe with modern species, a terrestrial
ancient species would have occupied a two-dimensional
geographic range that covered a region of earth's surface.
However, nonrandom and discontinuous preservation of
these past ecosystems within sedimentary basins (i.e., in
geologic formations) biases this record. In essence, this
nonrandom preservation turns near-continuous biotic
geographic range distributions into a series of discrete
point distributions, each marked by occurrences in fossil
localities (Figure 1). Geographic ranges of extant species
are interpolated based on many point occurrences, yet
the taphonomic filters that bias the fossil record provide
many fewer point occurrences (sometimes only a single
occurrence) to interpolate for extinct organisms. None-
theless, paleontologists can utilize the phenomenon of
varying species compositions at fossil sites distributed
across a landscape to determine generalized range distri-
butions of ancient species. For instance, Jablonski and
Hunt (2006) reconstructed the geographic range of
extinct mollusks and gastropods, ultimately finding that
differences in range distributions played a role in their
extinction and speciation rates. Pimiento et al. (2016)
approximated the geographic range of the shark Otodus
megalodon as global, based on the occurrences of fossil
teeth from this taxon around the world. Utilizing data
from phylogenetics, ecological function, fossil spatial
occurrences, and paleoenvironment, García-Gir�on et al.
(2021) predicted the geographic ranges of dinosaur spe-
cies during the latest Cretaceous of North America was
segregated based on ecological gradients and physiology.
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Early in the 21st century, Ree and Smith (2008) intro-
duced the Dispersal, Extinction, and Cladogenesis (DEC)
model of biogeography that allowed for estimation of biogeo-
graphic area evolution across a clade while taking to account
the probabilities of various connections between geographic
regions at different geologic times (Matzke, 2013). A windfall
of subsequent methods followed over the next 15 years that
expanded on the basic premise of the DEC model by allow-
ing more complex ecological information to be added to the
analysis (e.g., Clarke, Thomas, & Freckleton, 2017;
Nuismer & Harmon, 2015), and in some cases, even these
supplemental data are utilized in algorithms that estimate
biogeographic area shifts through jointly considering phylo-
genetic and ecological data (Landis, Eaton, et al., 2021; Lan-
dis, Edwards, & Donoghue, 2021; Quintero & Landis, 2020).
Each of these methods provides critical information about
the diversification process of a single clade, even when inves-
tigating the role of biome shifts in speciation and dispersal.

Another interesting approach presented by Meseguer,
Lobo, Ree, Beerling, and Sanmartìn (2015) uses ecologi-
cal niche modeling in combination with phylogenetic
information to determine biogeographical history based
on the estimation of appropriate ecological parameters
for the species under study. Ecological niche modeling
has gained further traction in paleontological studies to

predict the extent of environmental conditions that were
favorable to a species, all in an effort to estimate how
large geographic ranges could be for ancient taxa
(Chiarenza et al., 2019; Saupe et al., 2019; Dudgeon,
Landry, Callahan, Mehling, & Ballwanz, 2021; García-
Gir�on et al., 2021).

In some cases, environmental predictions from eco-
logical niche models or observing the spread of fossil
occurrences across a study area might suggest large-scale
eco-evolutionary drivers that could affect diversification
rates. Describing the pattern of taxonomic turnover
between biomes or across a landscape is prevalent in
paleontology. Perhaps the most studied biogeographic
pattern is the provinciality of various biotas throughout
geologic time, especially in relation to phylogenetic con-
figurations (e.g., Boucot, 1975; Ezcurra, 2010;
Hallam, 1974; Systra & Jensen, 2006; Varela, Tambusso,
Patiño, Di Giacomo, & Fariña, 2018). Hypotheses of pro-
vinciality within the Late Cretaceous (Campanian) West-
ern Interior Basin of North America have a particularly
contentious history. Russell (1967) initially proposed that
the continent was divided into northern and southern
regions composed of different dinosaur species. Subse-
quent studies concurred with these findings
(Lehman, 1987, 1997; Sloan, 1969, 1976), and some sug-
gested that the biogeographic distribution of multiple ver-
tebrate species (Gates et al., 2010) and plant groups
(Burgener et al., 2021) was more complicated than a sim-
ple north–south division. Opposition to the provinciality
hypothesis centered on the lack of spatiotemporally con-
tiguous faunal and temporal data (Chiarenza et al., 2019;
Dean, Chiarenza, & Maidment, 2020; Lucas, Sullivan,
Lichtig, Dalman, & Jasinski, 2016; Maidment, Dean,
Mansergh, & Butler, 2021; Sullivan & Lucas, 2006), or on
phylogenetic trees of dinosaur clades defying expecta-
tions of a simple two-zone distribution system
(Berry, 2018; Longrich, 2014). Other studies (Fowler &
Fowler, 2020; Gates, Jinnah, Levitt, & Getty, 2014; McDo-
nald, Wolfe, Fowler, & Gates, 2021) present results that
support the hypothesis of separate biotas in the Western
Interior Basin based on clade-specific phylogenetic trees.

We present here a new approach in which the ecolog-
ical community makeup is used as primary data to recon-
struct the pattern of species turnover across an ancient
landscape within a model-discrimination framework.
Our proposed methodology provides an evidence-based
approach, akin to the philosophy of Bayesian biogeo-
graphic methods (Matzke, 2013), in order to assess the
possibility of one geographic range model versus other
candidate models. Importantly, the data analytic philoso-
phy utilized here does not prescribe to a single answer
but provides concordance error of actual fossil occurrence
data compared to idealized species distribution models.

FIGURE 1 Conceptual diagram of overlapping species

geographic ranges. (a) Colored shapes represent the geographic

ranges of species (letters). Black circles represent the geographic

location of sample sites. (b) Species that are present in each locality

due to overlapping geographic ranges
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We demonstrate the proof of concept for this method
from simulation studies that validate the procedure, dis-
cuss its use in time-series analyses, and analyze a dataset
of pollen and dinosaurs from the Late Cretaceous West-
ern Interior Basin of North America.

2 | MATERIALS AND METHODS

2.1 | Presence–absence matrices

Binary presence–absence (PA) matrices form the back-
bone of the analytical methods. A single binary matrix of
fossil occurrence data is compared to at least two simu-
lated matrices of known occurrence, in order to deter-
mine which of two simulated matrices most closely
matches the fossil data. In the analyses for this study, we
focused on PA matrices that represent idealized versions
of biogeographic distribution patterns discussed in the
paleontological literature, including: Random; Cosmopol-
itan; Gradational change; Two isloated biotic zones
(Bizonal); and three variations of the Bizonal model in
which a transition zone exists between the main biotic
regions (see below for a description of each model). The
R code, available in the Supplementary Material, allows
complete customization of the PA matrix to fit any hypo-
thetical biogeographic distribution.

Computation of the idealized PA matrices begins with
an assumption that each locality is placed in rows that
correspond to their placement along a linear transect
(i.e., the locality at the top of the idealized matrix is the
greatest geographic distance from the locality at the bot-
tom of the matrix). Next, a series of 1's is placed in each
row so that there are no species shared with another
locality (equal to the total number of species within the
entire matrix divided by the number of localities).
Amount of species overlap is determined by two values,
prelap and postlap, which represent the number of spe-
cies shared between a focal locality and the site above it
in the matrix (prelap) or below it in the matrix (postlap).
All positive values of prelap and postlap will increase the
number of species shared with the respective adjacent
localities, whereas negative values will decrease the
shared species. Any hypothetical distribution matrix can
be created by modifying these two parameters.

This study focuses on discriminating more “classic” bio-
geographic distribution models. Figure 2 provides a visual
representation of the PA matrix for each of the distribution
models. We focus on these particular distributions because
they are ones cited in prior paleobiogeographic studies. The
three transitional models were deemed necessary distribu-
tions to test in our model discrimination framework
because they are subtle alterations of a single theme and

allowed us to investigate the power of these methods to dif-
ferentiate biogeographic nuance.

In an effort to more accurately reflect the fossil
record, binary matrices can be produced to replicate the
non-discovery of a taxon at a particular site by randomly
adding 0's to the simulated matrix. We refer to this modi-
fication as Noise.

2.2 | Community biogeography models

We tested six species distributional models in this study
(Figure 2). As an initial distributional model we included
a Random model that stochastically assigns species to
sites. In addition to providing a convenient null model
for biotic distribution, the Random model could be an
indication of temporal mixing in which different times
are being sampled in different parts of the ecological gra-
dient. A Cosmopolitan model posited that every organism
in our hypothetical study area occurs in every sampling
site, which would mean that the environment was suit-
able for all species identified. The Gradational model

FIGURE 2 Biogeographic distribution models visualized as

presence–absence matrices. Black regions represent presences (1's)

in the matrix, whereas white regions are absences (0's)
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assumes that the biotic community that occurs at one
end of our hypothetical ecological gradient is different
from the community at the opposite end of the gradient,
and that the change between the two end-members
changes gradually and continuously. Continuous change
in the abiotic environment across the ecological gradient
could be a reason that would explain this distributional
pattern. The Bizonal model is one where the ecological
gradient is divided into two equal pieces in which each
has a unique fauna/flora that do not have any similarity
with each other. This dichotomous distribution could
occur if an abiotic boundary prevented interaction
between two communities. Three variations of transi-
tional zones provide subtle differences that highlight eco-
logically important distinctions between species.
Transitional A has all the taxa present in the study occur
in a few sites at the center of the ecological gradient,
whereas the other sampling sites on either side of the
transition zone have otherwise distinct biotic communi-
ties. Transitional B greatly reduces the number of species
that mix between the dichotomous communities. Transi-
tional C takes the differentiation even further by having
three distinct biotic communities, but the central com-
munity is much smaller than either sandwiching commu-
nity. These transitional zones could occur if, respectively,
the environment in the central portion of the gradient
was ideal for all taxa, or a few species in the two major
communities had slightly greater eurytopic environmen-
tal tolerances that allowed them to occupy greater geo-
graphic ranges than other species in their community, or
as in the last case, if the central portion of the ecological
gradient contained such unique environmental condi-
tions that only a uniquely adapted suite of species could
live there.

2.3 | Biogeographic model distribution

Model discrimination between the fossil distribution data
and the hypothesized distribution models is implemented
through linear regression with a choice of three depen-
dent variables. At least two hypothetical biogeographic
models must be tested in the model discrimination pro-
cess (although users can input as many hypothetical
models as desired). For model testing purposes, we rec-
ommend that the number of localities chosen in the
hypothetical distributions equal the number of actual
sites in the fossil dataset.

Dependent variables within the linear regressions are
produced by calculating a pairwise similarity between
localities. The first linear regression method utilizes PA
biodiversity similarity measures to produce pairwise
values between each formation in the PA matrix. Our

preference is the Dice/Jaccard index because of its rela-
tive reliability in providing accurate similarity values
between localities despite missing data or rare taxa
(Archer & Maples, 1987; Hurbalek, 1982; Maples &
Archer, 1988; Shi, 1993), although any similarity measure
can be used.

The second linear regression method obtains the
dependent variable by calculating the pairwise Euclidean
distance between each site, which is calculated from the
eigenvectors derived from a detrended correspondence
analysis on each PA matrix being tested.

Our final method for obtaining dependent variables is
by utilizing phylogenetic community dissimilarity (PCD;
Ives & Helmus, 2010). In this method, PCD is derived via
the product of the similarity of the community of shared
taxa between pairwise sites and the phylogenetic similar-
ity of the taxa not shared between pairwise sites. In addi-
tion to a PA matrix, calculation of this value also requires
a time-scaled phylogenetic tree of all taxa present in the
PA matrix. PCD is calculated here in the R package
caper v. 1.0.1.

Independent variables are the geodesic distance
between localities calculated in the R package fossil
v. 0.4.0. Although fossil localities are not distributed
equally in space, we assume that the distribution of
organisms across our hypothetical model space is contin-
uous, meaning that distance between sites will provide
the distribution pattern of an ideal situation.

Model discrimination within the linear regression
framework is accomplished by use of either mean abso-
lute error (MAE) or root mean square error (RMSE). The
latter has the property of penalizing residuals with expo-
nential error corresponding to the distance they occur
from the regression line. MAE, on the other hand, treats
residuals linearly.

2.4 | Simulation tests

Analysis of covariance was performed using R (R Core
Team, 2021) via RStudio version 1.4.1717 on all hypotheti-
cal models listed above to test which of the geographic dis-
tributions could be differentiated reliably via the linear
regression methods (i.e., which of the slopes and intercepts
for each geographic distribution were statistically distinct).

To ground-truth these methods, we tested each geo-
graphic distribution with a copy of the Bizonal distribu-
tion model. In addition to running tests of the data
without modification, we also modified the geographic
positions of the localities as well as increased the noise in
the data. Site locations were first run as evenly distrib-
uted across the study region, then randomized with
retaining the locality order, run with the locations of
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fossil sites in pollen data published in Burgener
et al. (2021; see below), both with and without the East
Fork Formation, and finally, all sites and locations across
the hypothetical gradient randomized. We tested the
impact of noise on the fidelity of model discrimination by
randomly increasing the number of 0's and 1's in the
Bizonal dataset by 25, 50, and 75%. In each linear regres-
sion test, we used the RMSE because it shows the most
dramatic differences between models.

Simulation of the PCD required both a PA matrix and
a phylogenetic tree. For the former, we used the evenly
distributed PA matrix; for the latter, we used the ceratop-
sid phylogenetic time-averaged tree (see below).

2.5 | Pollen data

As a test of the model-discrimination methods on fossil data,
we used the Campanian pollen dataset from Burgener et al.
(2021), producing a matrix of 26 localities and 1,312 palyno-
taxa. Additionally, we followed Burgener et al. (2021) in
including both species-level and genus-level occurrences
within the data to provide “paraphylogenetic” data. In order
to test the sensitivity of our data, we removed a series of
localities chosen non-randomly. To test the sensitivity of
locality position along the hypothetical ecological gradient,
we ran the model discrimination technique after removing
the East Fork Formation since this locality is greater than
1,000 km further north that the next nearest locality and its
removal would more evenly distribute the fossil sites across
the landscape. Finally, we performed tests to see the effect
of removing pollen taxa that had minimal overlap with
other formations. Columns with only one, two, and three
taxa were iteratively removed from the database, repeating
the calculations at each iteration.

2.6 | Ceratopsian data

Occurrence data for all Campanian ceratopsid dinosaurs
was collected from the literature and a phylogenetic tree
grafted using Fowler and Fowler (2020) and Dalman,
Lucas, Jasinski, and Longrich (2022). One hundred time-
scaled trees were produced using the cal3 method in the
R package paleotree v. 3.3.25, which we then averaged all
branch lengths to produce a single consensus time-tree
(Supplementary Material).

3 | RESULTS

The majority of all geographic distributions can be differ-
entiated from each other using linear regression analysis

(Figure 3; Supplementary Material). Random and Cosmo-
politan models both have a slope near zero, so are indis-
tinguishable based on slopes, but their intercepts were
drastically different. Most difficult to parse are the
models with subtle differences in the transition from one
distinct region to another. Using the Similarity measure,
the only models that cannot be statistically separated are
the Bizonal-Transitional B and the Bizonal-Transitional
C. The distance measure has more difficulty parsing the
Bizonal and transitional models; no combination of these
models can be differentiated with the distance measure.
Given the subtle difference in species prelap and postlap
in these three models, Figure 3 shows that the difference
in slope is similar between Bizonal, Transitional B, and
Transitional C.

Increasing noise (either increased absences or ran-
domly allotting 0's or 1's) in PA matrices makes biogeo-
graphic distributions trend toward Random (Figure 4).
This is not surprising, but reinforces the importance of
taxonomy and adequate sampling in studies that rely on
biodiversity as data.

3.1 | Simulation tests

As expected, the linear regression discrimination method
performed admirably when testing the pure Bizonal
model against all others, with zero error in the similarity
metric and 0.05 for the distance metric error (well-below
the next closest model). Applying the locality distribu-
tions to match the Burgener et al. (2021) localities yielded
closer error values for the similarity metric, but a much
more distinct preference for the Bizonal model using the
distance metric. The Random model was the preferred
model under the similarity metric when we randomized
the distance and placement of the sites. Interestingly, the
distance metric managed to retain the Bizonal signal
(Table 1).

Applying an increasing number of taxon absences to the
Bizonal model indicates that with moderate (~25%) levels of
noise both the linear regression similarity and distance met-
rics preferred the Bizonal model. At 50% and greater, only
the distance metric supported the Bizonal model, but this
model preference is marginal at high levels of noise.

3.2 | Campanian Western Interior Basin
pollen

Linear regression RMSE results differed between the sim-
ilarity index and distance measure calculations (Table 2).
The former measure consistently retrieved the Random
model as the most preferred in four out of the five data
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transformations. A Gradational model was the second
most preferred in these same data iterations. When the
East Fork Formation was removed from the analysis both
the Random and Gradational models were equally likely.
MAE results differed from the RMSE in that the Grada-
tional model was preferred in three of the five iterations.
The third most likely model was the Transition C model
in all instances with the Dice/Sorensen similarity
measure.

The Euclidean distance measure provided a different
discrimination of the models compared to the Dice/
Sorensen measure (Table 2). Interestingly, the Bizonal,
Transitional A, and Transitional B models were the top
three most preferred with RMSE when we analyzed the
original dataset, but these followed behind a Random
model when discriminating with MAE. In short, at least
one of the Bizonal, Transitional A, or Transitional B

models were always of the most preferred models
throughout the data manipulations and discriminating
with either RMSE or MAE. In all linear regression ana-
lyses, less data equates to a stronger Random model
signal.

3.3 | Campanian Western Interior Basin
ceratopsid dinosaurs

Incorporating both community dissimilarity and phyloge-
netic similarity of the ceratopsid dinosaurs inhabiting the
Cretaceous Western Interior Basin unambiguously sup-
ported a Random model using the RMSE and MAE
(Table 3). A gradational model came out as the second-
best option, followed by Transitional C with almost twice
as much error.

FIGURE 3 Linear regression

representation of each idealized biotic

distributional model. Panel (a) shows

the linear regression lines produced

from using the Dice/Sorensen similarity

index, whereas, Panel (b) shows the

linear regression lines obtained from

using the same data but analyzing with

Euclidean distance. Panel (c) contains

the equivalent linear regression lines

from the phylogenetic community

dissimilarity metric and Panel (d) has

the phylogenetic topology of ceratopsid

dinosaurs used in the phylogenetic

community dissimilarity (PCD)
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4 | DISCUSSION

Much of the paleobiogeographic discourse in recent years
revolves around determining the global immigration and
emigration of individual clades using phylogenetic-
centered methods (e.g., Matzke, 2013; Lam, Stigall, &
Matzke, 2018; Lam, Sheffield, & Matzke, 2021; Gates,

Gorscak, & Makovicky, 2019; Ding et al., 2020; Landis,
Edwards, & Donoghue, 2021; Landis, Eaton, et al., 2021).
Additionally, speciation and extinction rates among clades
is an area of biogeographic interest for ecological turnover
as well as phylogenetically because the methods men-
tioned above each require a time-calibrated phylogeny that
can be extremely affected by extinction rates (Bapst, 2013;
Sanmartín & Meseguer, 2016). In many clades, however, a
reliable phylogeny is not available for fossil taxa, so
methods utilizing PA ordination, faunal similarity metrics,
or simply visual approximations of species biogeography
are used to hypothesize the ecosystem-scale interactions
within and between formations. The Western Interior
Basin of North America is no exception, with most of the
biogeographic research being conducted through these
methods (e.g., Burgener et al., 2021; Fowler, 2017; Gates
et al., 2010; Lehman, 1997; Lucas et al., 2016;
Russell, 1967; Sloan, 1969). Other research has centered
on the quality of the dataset itself—that is, the adequacy
of the fossil record—for determining the biogeographic
distribution of organisms, most of which proposes that the
record is simply not good enough (Chiarenza et al., 2019;
Dean et al., 2020; Maidment et al., 2021).

Arguments purported for abandoning the practice of
deciphering the geographic distributional pattern of
extinct organisms due to an inadequate fossil record are
persuasive in so much as the incomplete ecosystem data,
asynchronicity of faunal comparisons, and incorrect tax-
onomy are limitations to paleontological data that con-
tinue to be updated with more research. All prior
concerns, indeed, need to be considered carefully before
attempting such a focus, still there are critical biogeo-
graphic data that can be leveraged. The model-

FIGURE 4 Analytical effect of adding random absences to the

Bizonal presence–absence matrix. (a) Linear regression Dice-

Sorensen similarity method and (b) linear regression Euclidean

distance method. In all cases, increasing absences in a presence–
absence matrix moves candidate distributional models toward

random distribution. Phylogenetic community dissimilarity was not

included here because the results are the mirror of the Dice

similarity regressions with decreasing similarity between sites as

the dissimilarity proceeds to 1, which is exacerbated by the

phylogeny obtaining more randomness

TABLE 1 RMSE results obtained from running analyses on a Bizonal distribution across a variety of site distances. Equal distribution

has equal spacing between locations. Random distribution places each site randomly among the hypothetical gradient. Fossil distribution

replicates the site locations from Burgener et al. (2021). Sim and Dist refer to RMSE values using the similarity index or the Euclidean

distance measure, respectively. Percentage columns show the error values after adding that number of 0's to the matrix prior to running the

linear regression analyses. The preferred model for each iteration is designated by a white box

Equal distribution Random distribution Fossil distribution 25% 50% 75%

Sim Dist Sim Dist Sim Dist Sim Dist Sim Dist Sim Dist

Random 0.500 0.559 0.503 0.561 0.500 0.536 0.382 0.896 0.289 1.050 0.390 1.655

Cosmo 0.703 0.576 0.709 0.558 0.519 0.541 0.624 0.919 0.741 1.098 0.869 1.733

Grad 0.460 0.435 0.633 0.429 0.387 0.369 0.192 0.884 0.166 1.105 0.189 1.771

Bizonal 0.00 0.053 0.515 0.035 0.238 0.038 0.121 0.713 0.238 0.951 0.366 1.631

Trans A 0.395 0.413 0.588 0.418 0.395 0.290 0.274 0.826 0.350 1.040 0.478 1.694

Trans B 0.264 0.286 0.508 0.120 0.304 0.156 0.143 0.728 0.259 0.965 0.388 1.644

Trans C 0.432 0.447 0.628 0.421 0.405 0.322 0.274 0.824 0.286 1.044 0.326 1.700

Abbreviation: RMSE, root mean square error.
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discrimination methods described here provide an oppor-
tunity to use available data to its utmost potential, while
allowing for uncertainty to play a role in choosing which
distributional models best fit the available data. Specifi-
cally, the MAE and RMSE values provide measures of
differentiation between models, a method quite distinct
from traditional null-hypothesis, p-value-centered statis-
tical treatments. Model discrimination methods do not
provide a definitive answer to what the correct biogeo-
graphic distribution model is, but they provide a measure
of the most likely model(s) given: (a) the available data;
and (b) the array of models tested by the researcher.

Of all the PA distributions tested in this study, only
the Bizonal and two transitional models were difficult to
distinguish from one another. These results show some
limitation to the linear regression method, but other
more complex analyses may be brought to bear (see
below). Nonetheless, it can be determined if a paleobiota
is best described as possessing a transitional zone, with
further discussion about the type of transition being sup-
ported by small changes derived from these methods.

As with any analysis, the linear regression-based
model discrimination methods described here perform
better with more data. Nonetheless, the knowledge that
randomness in absences leads to greater preference for
the Random model in the discrimination process can be
utilized when making final assessments of which models
best fit the available biogeographic data. Additionally,
researchers utilizing these methods should be aware of
the hypothesis they are testing, then make test distribu-
tional models that correspond. For example, if one sus-
pects that a boundary isolates 75% of the biota in a
particular ecological gradient, then the hypothetical dis-
tribution models should reflect this (especially those such
as the transitional and Bizonal models). Finally, we
advise using this method to discriminate, and in some
cases eliminate, models of biotic distribution, not use this

as the sole source of information about how organisms
were arrayed across a landscape. Resulting statistical
errors will only be as good as the data that is input.

4.1 | Late Cretaceous Western Interior
Basin

Burgener et al. (2021) presented evidence of a steep cli-
matic shift in the Late Cretaceous Western Interior Basin
likely created by the mixing of warm and cool waters in
the adjacent Western Interior Seaway. In order to test if
the climatic boundary had any effects on biotic distribu-
tions the authors used a sliding window approach of cal-
culating the variance of Dice/Sorensen similarity index
values to the north, south, and overlapping a series of lat-
itudes. Compiled results suggested that plant species
were indeed restricted to northern and southern regions
because of the climatic boundary. However, it was
unclear if a transitional zone existed between the differ-
ent regions and how a potential zone may have been dis-
tributed geographically.

Here, we reanalyzed the pollen distribution data from
Burgener et al. (2021) to determine if: (a) parallel results
for a climatic influence on plant distribution would be
obtained; and (b) if so, whether the boundary between
the northern and southern plant biomes resembled a
sharp demarcation or a larger transitional zone. Overall,
the available fossil data fit most closely with a Random
model of pollen distribution. Certainly, a paucity of fossil
pollen data has played some role in the Random model
discrimination (as shown above, decreasing the number
of fossil occurrences moves a bizonal model toward a
random distribution). Another factor that likely contrib-
uted to the selection of a random plant distribution
model is that a subset of the pollen species are found
throughout the Western Interior Basin (Burgener
et al., 2021). If there is a sample of data points that occurs
throughout a region and another set of data points
restricted to either a southern or northern zone, along
with non-equal species absences, a random model does
indeed make sense.

There are also intriguing clues that a more complex
distribution is present, especially from the distance met-
ric. A transitional model is one of the top three contend-
ing models in each iteration, and in many cases, the
transitional model is either most preferred or second in
preference. RMSE using the distance measure has the
Bizonal model as the preferred model when using the
entire dataset, with two transitional models trailing as
the second and third preferred models.

Overall, the results of these analyses support both a
random distribution as well as bifid northern and

TABLE 3 Residual error of Campanian Western Interior Basin

ceratopsid dinosaurs using the phylogenetic community

dissimilarity measure

RMSE MAE

Random 0.343 0.291

Cosmopolitan 3.268 1.439

Gradational 0.686 0.582

Bizonal 1.754 1.694

Transitional A 3.202 1.808

Transitional B 1.439 1.340

Transitional C 1.299 1.005

Abbreviations: MAE, mean absolute error; RMSE, root mean square error.
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southern plant biozones. We interpret the opposing
results as a consequence of missing data and a mismatch
between the data distribution and that of the tested
models. For instance, in the initial pollen analysis the
more northerly location of the East Fork Formation com-
pared to other localities provided a better distributional
match to the Bizonal/Transitional models, whereas when
the East Fork Fm. was removed, the same distribution
represented in the Bizonal/Transitional models was offset
from the distribution of the data with the climatic transi-
tion zone occurring more northerly (Burgener et al., 2021).
More rigorous testing of this hypothesis would involve cre-
ating hypothetical PA matrices with the switch between
bioregions matching the fossil distribution more closely.

Data sparsity is one issue in fossil PA matrices that
leads to Random models being preferred regardless of the
actual biotic distribution. The calculation of the Dice-
Sorensen similarity index inherently leads toward a pref-
erence of randomness as datasets become more homoge-
nous, because the numerator in the Dice-Sorensen
equation stays relatively constant (or minorly decreasing)
with the removal of taxa that occur in only a few forma-
tions. Simultaneously, the denominator decreases
because absolutely more taxa are removed from the total
dataset, making the Dice–Sorensen index approach 1 in
all cases, irrespective of geographic distance individual
formations lie from one another. This phenomenon
explains the decreasing RMSE values in Table 2 as more
pollen taxa are removed from the data.

An important lesson in this example is that large sam-
ple sizes are better for determining biogeographic pat-
terns, especially incorporating taxa that are found in
single formations. Therefore, when RMSE scores from
the distance measures and the similarity measures are
taken together, our initial results parallel those from Bur-
gener et al. (2021) suggesting that plants from the Cam-
panian of the Western Interior Basin indeed show a
distribution with different taxonomic compositions in the
north versus the south with a transition zone of
unknown width between them.

Ceratopsid dinosaur data are much sparser than pol-
len data during the Campanian of the Western Interior
Basin. Yet, unlike pollen, these dinosaurs have a rela-
tively well-understood phylogeny that contains further
information that could be incorporated to unravel their
greater biogeographic distribution. We incorporated the
evolutionary information with the PCD metric (Ives &
Helmus, 2010), finding that a Random model again sup-
ported the available data best. In addition to data sparsity
being a contributing factor in the resulting model dis-
crimination, the fact that differential fossil preservation
causes ceratopsid fossils to be unevenly distributed across
the study area and study time means that inherently the

null hypothesis should be a random distribution. Phylo-
genetic information should be able to fill in some of the
holes with more ceratopsid data. Regardless if ceratopsids
were randomly distributed in time and space or had dis-
tinct geographic ranges bounded by the same climatic
boundary as the plant communities, the PCD proposed
here is another tool that can aid paleontologists in dis-
criminating biogeographic models.

4.2 | Influence of narrow geographic
ranges

The geographic range size of a taxon is dependent on
attributes of the local to regional environment and the
tolerances of individuals of that taxon to the environment
(Brown et al., 1996; Gaston, 2003; Lomolino et al., 2005).
Low tolerance for environmental variations results in
species or populations that have small geographic ranges
compared to other taxa that proliferate in a variety of
environmental conditions. Prior work on fossil assem-
blages (Badgley et al., 2017; Burgener et al., 2021;
Darroch & Saupe, 2018; Finarelli & Badgley, 2010; Gates
et al., 2010; Gates, Prieto-M�arquez, & Zanno, 2012;
Jablonski & Hunt, 2006), provided data that suggest that
some species occur over a large geographic area whereas
others are much more restricted.

Within the context of the methodology described
here, taxa restricted to a single geologic formation are
essential to be included in order to understand the best
representation of community distribution. In the most
extreme example, a complete cosmopolitan distribution
is represented by every taxon occurring everywhere,
whereas at the opposite extreme the complete isolation
pattern is where each taxon occurs in only a single for-
mation. Both of these extremes will produce a zero slope
on the similarity linear regressions (with the former pro-
viding a consistent y-intercept of 1 and the latter inter-
cepting at 0; note that both of these cases cannot be
calculated in the detrended correspondence analysis).

The cautionary point of including taxa with narrow
geographic ranges (e.g., those that only occur in a single
geologic unit) is that the RMSE values will often suggest
a Random model as a highly rated model, but examina-
tion of the intercepts within the linear regression models
can help discern a true Random model (y-intercept » 0.5)
from the Cosmopolitan and nonoverlapping geographic
distribution.

Finally, taxonomy plays a crucial role in the acquisi-
tion of preferred biotic distribution models. For instance,
upon studying a specimen from a particular site, a
researcher will decide that the evidence either most sup-
ports the inclusion of that specimen in the hypodigm of a
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currently existing taxon or create a new species
(e.g., Gates & Sampson, 2007; Gates & Scheetz, 2015; Prieto-
M�arquez, 2014; Zanno, Varricchio, O'Connor, Titus, &
Knell, 2011). These decisions can result in either increased
similarity between sites that house specimens of the taxon
or decreased similarity between sites because a new taxon is
included the species data. Additionally, the decision of a
researcher to include (as we have done) the generic taxo-
nomic level in the biodiversity data will increase the similar-
ity of geologic units that contain species of the genus, even if
each of those sites contain different species.

The use of a phylogenetic tree in the PCD offers a dif-
ferent mathematical approach to the taxonomy consider-
ations above. The community dissimilarity portion of the
PCD metric compares taxa that are same between com-
munities and the phylogenetic component incorporates
the amount of shared ancestry of taxa that are not equiv-
alent between communities. This means that using gen-
era and species separately in the community PA matrix is
not possible, as well as the fact that by making the deci-
sion to subsume a specimen from a new sampling site
into a current species hypodigm will cause that specimen
to not be utilized in the phylogenetic component of the
PCD calculation. Inversely, making it a new taxon will
mean that it will not be part of the shared taxa in the
community dissimilarity calculation. In short, taxonomic
decisions of researchers have real ramifications for quan-
titative paleoecology that impacts calculations involving
biodiversity, standard models of phylogenetic relation-
ships, and geographic ranges; all of which feedback to
support hypotheses about evolutionary mechanisms.

4.3 | Use in time series

Another use of the model discrimination method
described here is to detect the number and types of
changes to ecosystems within a single geographic location
through time by employing data from individual layers
through a stratigraphic section. This can be done by creat-
ing biotic PA matrices for as many stratigraphic levels as
possible, and then performing the model-discrimination
analysis as above using the mean age (or height above the
lowest sample) for each layer for which data are being
included. Results suggesting a Random distribution could
be evidence for rapid, frequent faunal turnover through
time (or sparse data), a Bizonal model could suggest a sin-
gle rapid replacement event, whereas Transitional models
and the Gradational model would signal for a much
slower transition from one paleocommunity to another.
These model-discrimination results could then support
inferences about abiotic (e.g., emplacement/removal of
physical (e.g., geodispersal; Lieberman & Eldredge, 1996)

or climatic [e.g., Burgener et al., 2021] barriers), biotic
(e.g., invasive species [Holland & Patzkowsky, 2007;
Patzkowsky & Holland, 2007], or habitat tracking [Brett,
Hendy, Bartholomew, Bonelli Jr, & McLaughlin, 2007;
Raia, Passaro, Fulgione, & Carotenuto, 2012]) controls on
community evolution.

5 | CONCLUSIONS

Biogeographic distributions of organisms hold vital clues
about the structuring of ancient ecosystems. To date,
there has been limited ability to test different hypotheses
of faunal distributions in fossil assemblages, with the
most analytically rigorous being those incorporating
Bayesian inference with phylogenetic trees. The biggest
limitation to these methods is that they are focused
largely on single clades, not entire communities. We pre-
sent here model discrimination methods that allow for
differentiation of various geographic distributional
hypotheses using information about entire communities.

Simulation tests of the method show that model dis-
crimination is accurate with complete datasets, but has
sensitivity to missing data, making randomness more
preferred. Notwithstanding the latter observation, it
seems that the Euclidean distance metric method may
preserve more of the geographic distribution signal than
using a similarity measure (such as the Dice/Sorensen
used in this study) when missing data pervade.

A recent study (Burgener et al., 2021) suggested that
the North American Cretaceous Western Interior Basin
had two climatic regimes, a warmer southern and a
cooler northern regime, divided from each other by a
sharp temperature gradient. Model discrimination analy-
sis of Campanian pollen from this region provided com-
pelling evidence that indeed plants had distinct biotic
distributions related to the climatic regimes. As with
most paleontological data, missing data are prevalent, yet
the Euclidean distance metric consistently showed a
divided model as one of the most likely. Ceratopsid dino-
saur distribution data over the same time period is likely
too sparse to provide accurate model discrimination;
nonetheless, linear regression that incorporates PCD sug-
gested that Random biotic distribution was the most pre-
ferred followed by gradational latitudinal change.

A potential analytical extension of this linear regres-
sion method is to incorporate the epsilon matrix in gener-
alized least squares regression to provide a priori
association or dissociation between fossil sites, irrespec-
tive of the similarity provided by the raw data. In some
cases, this might be similar to the probability matrices
used in the DEC biogeographic analysis (Ree &
Smith, 2008). New computational power has also allowed
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the implementation of machine learning algorithms for
ecological datasets. These computational tools may be
ideal for the types of questions and data offered in this
study (e.g., Olden, Lawler, & Poff, 2008; Thessen, 2016;
Viana, Keil, & Jeliazkov, 2022). With additional fossils,
environmental data, and refinement of computational
techniques we can advance our understanding of ancient
biome constraints and their downstream evolutionary
ramifications.

Incomplete preservation of biotic data is a perennial
problem for paleontological analyses that has led previ-
ous studies (e.g., Dean et al., 2020; Lucas et al., 2016;
Maidment et al., 2021) to question the very practice of
attempting to decipher paleobiogeographic patterns. The
model discrimination method presented here accepts the
fundamental issues presented in previous studies and
provides a means to use the data at hand in order to find
out which geographic distribution hypotheses are more
likely than others without abandoning the practice all
together. Phylogeneticists have utilized this methodologi-
cal philosophy for decades, continuing to refine analyses
with more data and taxa. Biogeographers similarly can
continue to expand datasets, refine biogeographic distri-
bution models, and increase the resolution of our paleo-
ecological picture.
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