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A B S T R A C T   

The multi-principal element alloys (MPEAs) exhibit the unprecedented combinations of the 
excellent mechanical properties, especially high strength and good ductility. However, the ac-
curate and reasonable models for describing the mechanical behavior of MPEAs are still scarce 
due to their distinctive serious lattice distortion effects, which limit the performance prediction. 
Here, we develop a new general framework by combining the atomic simulation, discrete 
dislocation dynamics, and crystal plasticity finite element method, to study the strain-hardening 
behavior for MPEAs, which achieves the influence of the complex cross-scale factors, including 
the lattice distortion at the nanoscale and the dislocation hardening at the microscale, on the 
plastic deformation. Compared with the classic crystal plasticity finite element, the bottom-up 
hierarchical multiscale model could couple the underlying physical mechanisms from the nano- 
micron-meso scales and captures the inhomogeneous strain field induced by the serious lattice 
distortion, thus showing the high accuracy and ubiquitous availability for MPEAs. The result 
shows that the prediction of the strain-stress curve in the polycrystal MPEAs agrees well with the 
experimental result at the quasi-static tension, which verifies the accuracy of the proposed 
method. In addition to the dislocation evolution, the heterogeneous strain distribution combined 
with the significant change from the orientation of some grains could be an important reason for 
the enhanced strength at the micron scale. The present work not only gives an insight into the 
relationship between the multiscale microstructure and strain hardening considering the mech-
anistic linkages of the lattice distortion, dislocation behavior, and grain structure, but also pro-
vides a general approach to physically predict the mesoscopic mechanical response in MPEAs.   

1. Introduction 

In comparison with the traditional alloys, the multi-principal element alloys (MPEAs) composed by the multiple elements in near- 
equiatomic or equiatomic proportions (Yeh et al., 2004; Cantor et al., 2004), show the excellent performance, including the good 
fatigue resistance, high yielding strength, corrosion resistance, high ductility, and thermal stability (Hemphill et al., 2012; Zhang et al., 
2014; Shi et al., 2017; Miracle and Senkov, 2017; Thurston et al., 2017; Shukla et al., 2018; Li et al., 2020; Pan et al., 2021; Shi et al., 
2021; Fang et al., 2021; Zhang, et al., 2022). Therefore, the MPEAs are expected to be widely used in the key structural and functional 
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applications, such as the damage-resistant materials and tool materials, which have attracted the significant attentions (Otto et al., 
2013; Gludovatz et al., 2014; Li et al., 2018; Fang et al., 2019; Bahramyan et al., 2020; Li et al., 2020; Peng et al., 2021). The ex-
periments and simulations (Joseph et al., 2017;Fang et al., 2019; Xiao et al.,2019; Smith et al., 2020; Peng et al., 2021) show that 
different atomic types in MPEAs result in the large atomic lattice distortion to control the mechanical properties (Wang et al., 2018), 
different from the traditional alloys. 

Recent numerical simulations reveal the deformation mechanisms of MPEAs from the nanoscale to microscale. For example, 
molecular dynamics (MD) simulations provide a powerful tool to deeply understand the plastic deformation of the MPEA at the 
nanoscale (Li et al., 2020). The dislocation-dislocation interaction, dislocation-solid solution interaction, deformation twinning and 
detwinning in the AlFeCrNiCu MPEA under the uniaxial tensile loading are systematically studied by MD simulations (Li et al., 2016). 
The solidification behavior of the AlxCoCrFeNiCu MPEA from 2200 K to 300 K and their compressive behaviors after the solidification 
are explored, revealing the change of lattice distortion with the increasing Al content by MD simulations (Bahramyan et al., 2020). The 
operation mechanisms of the Frank-Read sources in MPEAs are explored at the microscale using the phase field dislocation dynamics 
simulation, revealing their strong size dependences (Smith et al., 2020). The discrete dislocation dynamics (DDD) can capture the 
dynamic evolution of a large number of dislocations at the microscale, and reveals the microscale mechanism of the 
dislocation-mediated plasticity (Arsenlis et al., 2006; Zhang et al., 2021). At the mesoscale, a crystal plastic finite element (CPFE) 
method can consider the various meso deformation mechanisms, such as the phase transition, dislocation slip and deformation 
twinning (Roters et al., 2019), and it has an obvious advantage for describing the plastic behavior of materials based on the micro-
structure evolution. A crystal plasticity model is developed to describe the cyclic plasticity of the MPEA (Lu et al., 2020). The modeling 
method of the solid-dissolution induced back-stress model is verified in a non-equiatomic MPEA using a finite element method (Kim 
et al., 2022). It is worth noting that the parameters of the crystal plasticity constitutive model are usually achieved by fitting the 
macroscopic experimental results (Deka et al., 2006). Unfortunately, the fitting parameters may not be unique, and thus reduce 
prediction accuracy of the CPFE simulation due to the lack of the submicron deformation mechanism (Chandra et al., 2018). Since the 
microstructures of MPEAs are multiscale, such as atomic vacancies and lattice distortion, microscale dislocations, and mesoscale 
grains, we need to consider the microscale deformation mechanism to obtain the exact parameters of the crystal plasticity constitutive 
model, and then develop a new simulation method integrated from the nano-micro-meso-scale microstructures. 

The strengthening mechanism and the plastic deformation behavior in crystalline materials come from the complex interactions 
among the dislocations, solid solutions, grain boundaries, precipitation, and other defects (Essmann and Mughrabi, 1979; Kalidindi 
et al., 2001; Zhang et al., 2008; Li et al., 2016, 2020). Most of these phenomena are coupled at different scales, and the deformation 
behavior at the small scales determines the mechanical response of materials at the large scales (McGinty and McDowell, 2004). For 
example, the significant work has been done to unveil the multiscale relationship among the atomic lattice distortion, nanoscale 
precipitation, microscale dislocation behavior, and mesoscale mechanical property (Liang et al., 2018; Ding et al., 2019; Zhang et al., 
2021). Therefore, developing a new model that crosses the time and length scales to solve this multiscale issue is necessary. There are 
two types of models, namely a parallel multiscale model and a hierarchical multiscale model. In the first kind of the parallel multiscale 
model, the simulation regions around the studied key regions (such as precipitates and cracks) uses detailed atomic simulations, and 
the continuity method is applied in the edge region. Scholars have developed many parallel multiscale models with various coupling 
modes, boundary conditions and simulation tools (Shenoy et al., 1998; Ortiz and Phillips, 1998; Wang et al., 2001; Shilkrot et al., 2002; 
Miller et al., 2004; Kulkarni et al., 2008; Davydov et al., 2014; Kim et al., 2014). Although this kind of model can calculate the plastic 
deformation from multiple-scale microstructures at the same time, the interface coupling between the regions contained the 
nano-micro-meso-scale microstructures still faces the major challenges. (Fish et al., 1997; Jarvis et al., 2001; Kouznetsova et al., 2002; 
Massart et al., 2007; Ghosh et al., 2009). Hierarchical-multiscale models include the asymptotic homogenization method (Fish et al., 
1997; Massart et al., 2007; Ghosh et al., 2007), self-consistent framework (Zecevic and Knezevic, 2018), distribution-enhanced ho-
mogenization method (Alleman et al., 2015), and nonlinear homogenization method based on the varied fable principles (Song and 
Castañeda, 2018). Recently, the parametric homogenization-constitutive model was developed for multiscale modeling of deformation 
in the titanium alloy (Ozturk et al., 2019; Kotha et al., 2020; Ozturk et al., 2021). 

The hierarchical multiscale models avoid the spurious wave reflections in the connection region caused by the direct coupling 
different scales, and thus have more extensive applications and powerful functions (Ozturk et al., 2019). At the atomic scale, the elastic 
constants, lattice constants, thermal expansion coefficients, and dislocation properties (including the dislocation mobility, Peierls 
stress, and Burgers vector) can be extracted from MD simulations as the input for the microscale simulation, which has been widely 
used (Po et al., 2016; Cho et al., 2016; Yin et al., 2021). Then, the results from the microscale DDD simulation are used to quantify the 
hardening parameters in the mesoscale CPFE constitutive equation (Groh et al., 2009; Chandra et al., 2015), for obtaining the 
hardening parameters of the single crystal material at the grain level. Since the polycrystalline materials are composed of the 
countless-randomly orientation grains, we need to calibrate the hardening parameters of a polycrystalline-constitutive model using the 
hardening parameters of the single crystal material. However, it is a severe challenge. The mechanical response of the polycrystalline is 
employing an appropriate Taylor factor calculated from the average of the single crystal response oriented at [100] and [111] (Hansen 
and Huang, 1998), but this method lacks the physical mechanisms. The potential hardening parameter of a representative volume 
element (RVE) in a polycrystalline material is calibrated using the simple average of a single-crystal response with [001], [111], [101], 
and [123] orientations (Renner et al., 2016), to reveal the deformation response of the FCC polycrystal Ni. However, the predicted 
results are not accurate due to the existence of the localized plastic strains (Renner et al.,2016). Therefore, a various oriented 
single-crystal response needs to be included to adequately calibrate the hardening parameters of the polycrystal RVE. More recently, 
the selected seven crystal orientations covering the standard stereographic triangle have successfully captured the mechanical 
response of a polycrystal copper during the uniaxial tension (Chandra et al., 2018). 
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The strengthening mechanisms considered by the various hierarchical multiscale models mentioned above (Groh et al., 2009; 
Chandra et al., 2015, 2018) are the dislocation strengthening. However, compared with the traditional alloys, MPEAs produce 
particularly extraordinary lattice distortions due to the differences in the atomic size and shear modulus between the different 
principal elements. Due to the local stress field caused by the severe lattice distortion in MPEAs strongly hinders the dislocation 
movement, the previous hierarchical multiscale-modeling approach without considering lattice-distortion effects is difficult to apply to 
explore the plastic behavior of MPEAs. 

In this study, a hierarchical multiscale approach that can capture the severe lattice distortion in MPEAs is proposed by coupling 
with the MD, DDD, CPFE simulation methods and the random-field theory (Fig. 1), for modeling MPEAs, and this approach connects 
three length scales (nanoscale, microscale, and mesoscale). Among the studied MPEA systems, the AlxFeCoCrNi MPEA has been 
extensively studied due to its excellent specific strength, radiation resistance, and low-temperature mechanical properties (Zhang 
et al., 2014; Miracle and Senkov, 2017; Wang et al., 2012). Here, the FCC Al0.1FeCoCrNi MPEA is used as the model alloy in our work. 
The mechanical response of the polycrystal RVE at different strain rates is investigated using a proposed method in a model of 
Al0.1FeCoCrNi MPEA. The elastic constants and the single dislocation motion information of MPEAs extracted by the nanoscale MD 
simulations are integrated into higher scale DDD simulations. The stress field caused by lattice distortion is introduced in the 
microscale DDD simulations using the random-field theory. Then, we establish DDD simulations with various crystal orientations 
(including [001], [011], [111], [102], [112], [212], and [213], which covers the standard stereotaxic triangle) because the 
Al0.1FeCoCrNi MPEA is simulated to obtain the hardening parameters of the crystal plasticity model. At the mesoscale, we predict the 
mechanical response of the single crystals with 7 crystal orientations, and calibrate the hardening parameters of polycrystals using the 
hardening parameters of 7 orientated single crystals. The rationality and accuracy of the proposed multiscale method are verified by 
comparing the predicted mechanical response with the experimental observations (Wu et al., 2017; Jiang et al., 2020) of uniaxial 
tension of the polycrystal Al0.1FeCoCrNi MPEA at different strain rates. We analyzed the pole figures and the distribution of stress and 
strain in the polycrystal Al0.1FeCoCrNi MPEA at various plasticity strains under different strain rates. 

2. Hierarchical multiscale crystal plasticity framework 

2.1. Molecular dynamics 

Molecular dynamics is mainly based on the classical Newtonian mechanics and Hamiltonian equation. The total energy of a system 
containing N atoms is the sum of the kinetic energy and potential energy of every atom in the system, which can be expressed as follows 

Utotal = Uke + Upe =
∑n

i=1

(
Uke,i +Upe,i

) (1)  

where Uke and Upe are the kinetic energy and potential energy of the system, respectively. Uke,i and Upe,i are the kinetic energy and 
potential energy of the atom i, respectively. 

The force on an atom, i, in the system is the gradient of the potential energy 

F
→

i = −∇iUpe = −
(

i
→ ∂

∂xi

+ j
→ ∂

∂yi

+ k
→ ∂

∂zi

)
Upe (2) 

Fig. 1. A hierarchical multiscale-modeling strategy to estimate the hardening parameters in the crystal plasticity constitutive model. The coupled 
models of MD, DDD, and CPFE to predict the mechanical response of the polycrystalline materials at different length scales. 
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Here, F→i = mi ai
→. Thus, the dynamics of atoms obeys the Newton’s law. 

2.2. Discrete dislocation dynamics 

The dislocation line in the DDD simulation is discretized into some dislocation segments, which is limited by nodes. The force acting 
upon these nodes, Fnode

i , can be obtained by superimposing the contributions of all dislocation segments connecting this node, i: 
Fnode

i =
∑

j

fij (3)  

where the segment force, fij, is obtained by a line integral: 

fij =
∫

Cj

N
j
i (s)f PK

ij (s)dL(s) (4) 

Here, Cj represents the segment, ij. Nj
i(s) = s (0 ≤ s ≤ 1) is an interpolation function, and s is the location index. For example, the 

positions specified by s = 0, 0.5, and 1 are the node, j, the midpoint of the segment, ij, and the node, i, respectively. The Peach–Koeler 
force, fPK

ij (s), at the position, s, is dependent on the local stress, σ(s): 
f PK
ij (s) =

[
σext
(
s
)
+ σdisl

(
s
)
+ σmpea

(
s
)]

• b × tij (5)  

where σext(s) is the external load stress, and σdisl(s) is the stress from other dislocations. σmpea(s) is the stress induced by the atomic 
lattice distortion in the MPEAs which is calculated by a fractal function, as presented in the next section. ̂t ij is the unit vector parallel to 
a dislocation line, and bij is the Burgers vector of the segment, ij. Once the force on the node, i, is known, the velocity of the node, i, is 
given by the kinetic law: 

vi = Fnode
i

/
B (6)  

where B is a viscous drag coefficient. 
The cross-slip process dominated by an energy barrier relies on the Escaig stress (Kuykendall et al., 2020), and depends on the local 

stress, σ(s). Based on the Arrhenius-type law, the cross-slip rate is: 

R = v0exp

(
− Eb

KBT

)
(7)  

where KB is the Boltzmann’s constant, T is the temperature, and v0 = vD(L /L0) is the attempt frequency. vD is the Debye frequency, L is 
the length of a screw dislocation segment, and L0= 1 μm stands for a reference length. The energy barrier can be expressed as 

Eb = Ea − VaΔτE (8)  

where Ea = 0.4eV is the energy required to form a constriction point on the screw dislocation (Hussein et al., 2015; Rao et al., 2017), Va 
= 20b3 is the activation volume (Hussein et al., 2015), and ΔτE is the difference between the Escaig stresses on the primary and 
cross-slip planes. 

Therefore, the dislocation velocity is calculated by Eq. (6) under an external stress. Accordance to the Orowan’s law, the plastic 
shear strain from that a dislocation segment with Burgers vector, bn, glides a distance, δ, on a slip plane, An, can be written as: 

δγp
n = bnδAn

V
(9) 

The overall macroscopic plastic-strain rate tensor can be calculated as: 

δε̇ij =
∑12

α=1

1

2

(
n
(α)
i ⊗ b

(α)
j + b

(α)
j ⊗ n

(α)
i

)
δγ̇(α) (10)  

where n(α)
i is the unit normal vector of a slip plane, α, and b(α)j is the Burgers vector. The velocity of a single dislocation calculated by MD 

simulations is introduced into the DDD simulation to obtain the strain-hardening behavior caused by the large-scale collective 
dislocation movement in the single crystals, which provides material-hardening parameters for the crystal plasticity model. 

2.3. Crystal plasticity 

The constitutive behavior of the Al0.1FeCoCrNi MPEA is illuminated by a crystal plasticity framework to capture the slip-based 
plastic deformation of the polycrystalline materials. The crystal plasticity model is originally developed by the previous work (Kali-
dindi et al., 1992). For the completeness, the partial key ingredients can be presented, and thus the detailed content concerning 
theoretical equations and numerical implementation of the crystal plasticity are not specified. The more details are discussed in the 
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references (Kalidindi et al., 1992; Anand et al., 1996; Yaghoobi et al., 2019). 
The plastic deformation is accommodated across slip on the specified slip systems. Accordingly, the total deformation gradient 

tensor, F, and the macroscopic velocity gradient tensor, L, can be decomposed into the elastic and plastic components, respectively, 
F=FeFp; L=Le + Lp (11)  

where Fe represents the rigid body rotation and the elastic distortion of the crystal lattice, and Fpstands for the glide of dislocations on 
the active slip systems. The plastic part of the macroscopic velocity gradient, Lp, is given as the sum of the shearing rates on all slip 
systems: 

Lp = ḞpF−1
p =

∑N

α=1

γ̇αmα
0 ⊗ nα

0 (12)  

where mα
0 is the slip direction, nα

0 is the slip plane normal, and γ̇α is the plastic shearing rate on the αth slip system (γ̇α > 0). The integer, 
α, is the crystal-slip system for 12 slip systems in FCC materials. The Cauchy-Green elastic strain tensor, Ee, is related to the defor-
mation gradient acting on the intermediate configuration as 

Ee ≡ (1 / 2)
(
FT

e Fe − I
)
, T ≡ CEe (13)  

where C is the fourth-rank elasticity tensor. The resolved shear stress, τ, on α(mα0,nα0) slip system is expressed as 
τ =

(
FT

e FeT
)
·Sα

0 (14)  

where Sα
0 = mα0 ⊗ nα0 is the Schmid tensor. In the crystal plasticity theory, the evolution of the plastic strain rate in each slip system, γ̇α,

is adopted the strain-rate-sensitivity method (Asaro et al., 1985): 

γ̇α = γ̇0

⃒⃒
⃒⃒τ

α

τα
sr

⃒⃒
⃒⃒

1/m

sign(τα

)
(15)  

where γ̇0 is the reference value of the slip rate, and represents the macroscopic plastic strain rate applied to the material. τα is the 
applied shear stress on the slip system, ταsr (> 0) is the slip-system-deformation resistance, and m is the strain rate sensitivity index of the 
slip. The resistance parameter, τ̇α

sr, of the α-slip system is in accordance with the following equation 
τ̇α

sr =
∑

β

⃒⃒
γ̇β
⃒⃒
hαβ (16)  

where γ̇β quantifies the shear rate of each slip system. hαβ = [q0 + (1 − q0)δαβ]hβis the hardening matrix, which describes both the 
latent hardening and self-hardening of the slip systems. δαβ is the Kronecker delta. The self-hardening parameter,hβ, is multiplied by the 
latent-hardening parameter,q0, and constitutes the hardening matrix hαβ. The self-hardening parameter is expressed as 

hβ = h0

⃒⃒
⃒⃒1 − τβ

sr

s
β
s

⃒⃒
⃒⃒

rβ

(17)  

where h0 is the initial hardening parameter, rβ is the hardening exponent for the β-slip system, and sβs is the slip resistance at the 
hardening saturation for the β-slip system. The slip resistance parameters, including {h0, s0, ss, rβ}, are assumed to be the same for all 12 
slip systems and serve as the input parameters to the CPFE simulations (Sundararaghavan et al., 2008; Lu et al., 2020). According to the 
previous work (Li et al., 2013), the latent-hardening parameter and hardening exponent used in our CPFE simulations are q0 =1.4 and 
r = 2.25, respectively. 

2.4. MD- and DDD- driven CPFE framework 

In this section, we briefly introduce the transmission strategy of connecting nano-micron-meso-scale parameters in a multiscale 
modeling method. The single dislocation velocity and thermodynamic parameters (including the potential barrier and activation 
volume) of the MPEAs generated by the nanoscale MD simulation are transferred to the micronscale DDD simulations. Compared with 
the traditional alloys, the local stress fields caused by the severe lattice-distortion effect in MPEAs strongly hinder the dislocation 
movement and enhance the dislocation nucleation rate, improving the strength of materials. For the DDD simulations, the lattice- 
distortion effect for MPEAs is considered by embedding a three dimension (3D) lattice-strain field. The relevant parameters 
required for the flow and hardening rules of the above crystal plastic model need to be obtained from the micron scale DDD 
simulations. 

The collective movement of a large number of dislocations causes the plastic hardening and deformation of materials. The 
dislocation hardening is related to the strengthening relationship predicted by the mathematical equation of the CPFE model. 
Therefore, we can couple the DDD results with the constitutive equation of the crystal-plasticity model. 

The evolution of the plastic shearing strain rate, γ̇α, of the CPFE model is specified by γ̇α = γ̇0|τ
α

ταsr
|1/msign(τα

)
. Using the theory of a 
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thermally-activated glide, γ̇0and the strain rate sensitivity, m, can be expressed as a function of temperature(Fivel et al., 1998) 

γ̇0 = b2ρmvdexp

(−ΔQs

kT

)
, andm = kBT

αb2μr0

(18)  

where γ̇0 represents the macroscopic plastic strain rate imposed on the material, b is the Burgers vector magnitude, ρm is the mobile 
dislocation density, vd is the average dislocation velocity, kB = 1.38× 10−23JK−1is the Boltzmann constant, T is the temperature, α is 
the average forest strength, μ is the shear modulus, r0 is the dislocation radius, and ΔQS is the activation energy for the slip. At room 
temperatures, r0 is approximately 5b, and the strain rate sensitivity is 0.04. In addition, the hardening is more strongly affected by the 
temperature than the yielding stress in an FCC alloy (Li, 2008). 

In the current work, the applied shear stress, τα, on the slip system can be decomposed into two components(Balasubramanian and 
Anand, 2002): 

τα = τα
thermal + τα

p (19)  

where τα
thermal and ταp represent thermal and athermal components of the slip resistance during plastic deformation. In MPEAs, τα

thermal is 
predominantly dominated by the solid solution strengthening and lattice friction effects (Jiao et al., 2018; Li et al., 2020), and ταp is 
controlled by the interaction between dislocations. The solid solution strengthening in alloys is essentially the elastic interactions 
between the local stress fields formed by solute atoms and the dislocation. Compared with the traditional alloys and multi solute 
element alloys, MPEAs have particularly severe lattice distortion effects (Li et al., 2020). The local stress field from the severe lattice 
distortion in MPEAs strongly hinders the dislocation movement. The lattice distortion effect is considered in the DDD simulations by 
embedding a 3D lattice strain field for the CPFM simulation (The details are described in the next section). 

Therefore, the flow rule, γ̇α = γ̇0|τ
α

ταsr
|1/msign(τα

)
, can be rewritten as 

γ̇α = γ̇0

⃒⃒
⃒⃒τ

α
thermal + τα

p

τα
sr

⃒⃒
⃒⃒

1/m

sign(τα

)
(20)  

where γ̇αis obtained from the strain rate history computed by the DDD simulations. The constants (γ̇0, m) are determined by a priori 
based on the previous work (Li et al., 2008; Groh et al., 2009). The other parameters are depicted in the simulation setup for the next 
section. 

It can be noted that τα and γ̇α are a function of time, which can be obtained by the DDD simulations. Now, only one unknown, ταsr, in 
Eq. (20) evolves with the simulation time, as the deformation progresses. Hence, Eq. (20) is used to calculate the evolution of the total 
slip resistance, ταsr, over time. Thus, the change rate of the total slip resistance can be quantified using DDD simulations during the 
deformation. 

Based on Eqs. (16) and (17), when shearing on the β-slip system, the evolution process of the slip resistance of the α-slip system can 
be given: 

τ̇α
sr =

∑

β

⃒⃒
γ̇β
⃒⃒[

q0 +(1− q0)δαβ
]
h

β

0

⃒⃒
⃒⃒1 − τβ

sr

ss

⃒⃒
⃒⃒

rβ

(21) 

In the DDD simulations, the plastic deformation caused by the dislocation slide must be balanced with the externally applied 
deformation. As the total plastic-strain rate of all slip systems is constant (Mecking et al., 1981; Groh et al., 2009; Chandra et al., 2018). 
In this manner, the evolution of the slip resistance of each slip system can be expressed as 

τ̇α
sr(t) = γ̇

∑

β

[
q0 +(1− q0)δαβ

]
h

β

0

⃒⃒
⃒⃒1 − τβ

sr(t)
ss

⃒⃒
⃒⃒

r

(22)  

where γ̇ =∑|γ̇β|, τ̇α
sr(t) is the change rate of the slip resistance on the α-slip system, and τβsr(t) is the change rate of the slip resistance on 

the β-slip system with time. For each time node of the DDD simulations, 12 equations correspond to 12 slip systems, and each equation 
includes the same unknowns of h0 and ss. Then, a calibration program is built using the Newton-Raphson method, to determine the 
several hardening parameters. 

For the α-slip system, the residual, dα, can be calculated by: 

dα(t) = τ̇α
sr(t) − γ̇h0

∑

β

[
q0 +(1− q0)δαβ

]⃒⃒⃒⃒1 − τβ
sr(t)
ss

⃒⃒
⃒⃒

r

(23) 

The function, g(ss, h0) represents the sum of squares of the residual dα: 
g(ss, h0) =

∑

α

(dα)2 (24) 

The minimum value of the residual is obtained by calculating the partial derivative of function, g(ss,h0)
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f1(ss, h0) =
∂g(ss, h0)

∂ss

= 0; f2(ss, h0) =
∂g(ss, h0)

∂h0

= 0 (25) 

By minimizing the residuals, two coupled nonlinear differential equations, (h0, ss), are obtained. The initial conjecture value is 
given and solved by the standard Newton-Raphson program of nonlinear equations, and the final converged values of the hardening 
parameters, (h0, ss), at each time step are obtained. The slip resistance, τsr(t), evolves with the deformation in the DDD simulations. The 
evolution of hardening parameters, (h0, ss), with time can be obtained by repeating the above process for each time step of the DDD 
simulations. 

The initial slip resistance,s0 of the CPFE model influences the initial yielding from the stress-strain curve. In general, the initial slip 
resistance can be determined through dividing the measured macroscopic yielding stress by the Taylor’s factor (Zeng et al., 2016). 
Therefore, the initial slip resistance is readily estimated from the results of the DDD simulations, including different single crystal 
orientations. Specifically, the critical resolved shear stress (CRSS) is extracted from the stress-strain curves of the DDD simulations. 
Here, three values are extracted from the curve, which include the initial yielding stress, 0.02% offset yielding, and 0.04% offset 
yielding. These yielding stresses are averaged and divided by the Taylor’s factor (The details are described in the next section). 

The motion of a single dislocation is simulated by MD simulations to obtain the mechanical characteristic parameter (drag coef-
ficient, B), and this parameter is imported into the DDD simulations to model the plasticity and hardening induced by the multiple 
dislocations. Then, the DDD simulations are coupled with the CPFE model to calculate the hardening parameters, and the massive 
dislocation collective hardening behavior at the grain level is predicted using the CPFE simulations. 

3. Simulation setup and parameter transition 

The essence of the multiscale modeling is to predict the mechanical behavior of materials on the basis of physics. Because it needs 
the huge of time and length scale of the model from the electronic structure to macroscale stress-strain response, it is necessary to 
model and analyze some key points of the multiscale model. In this case, DDD simulation is used as a bridge between the single 
dislocation behavior in the nanoscale and mesoscale continuum crystal plasticity model, to calculate the interaction behavior of a large 
number of dislocations. DDD simulation outputs the decomposition information of each slip system, and then uses the framework in 
Section 2 to provide the hardening parameters for the CPFE. Since the DDD simulations fluctuate over the time, the hardening pa-
rameters of the CPFE are calibrated by smoothing the data fluctuations so that the average values of the parameters are constant after a 
certain time. By verifying that these values are almost similar after the selected time point, it is reasonable to average the data within 
the selected time period. This averaging method smears out the interactions between various type dislocations, which is similar to 
coarse-graining over DDD results containing the giant dislocation groups. 

In this work, the strain rates from different scales vary greatly, leading to the difference of time steps in the nano-micron-meso 
scales. The strain rate of MD simulation is about 109 s−1, and the time step is 10−10 s; the corresponding values of DDD simulation 
are 104 s−1 and 10−10 s; and that of CPFE simulation are 10−3 s−1 and 10−2 s. The key to the coupling of the nano-micron-meso scales in 
the hierarchical multiscale modeling strategy is the parameter transfer between the nano-micron-meso-scale model. In this process, the 
simulation models at each scale are discussed in detail to test the reliability of parameters at the single and integrated levels. 

The atomic scale modeling focuses on the mechanism of the single dislocation behavior (dislocation mobility) as input to the DDD 
simulations. This method is used in the previous studies, where MD simulations are calibrated the dislocation mobility at the strain rate 
of 109 s−1 and used as input for higher scale DDD simulations at the strain rate of 102~104 s−1 (Chandra et al., 2015; Li et al., 2022). 
Because of the large difference of time scales for the DDD and CPFE simulations, the strain rate effect occurs considering these time 
scales, but this is to make a compromise between the accuracy of prediction results at higher length scales and the computational 
burden (Chandra et al., 2018). These problems can be solved using the concurrent multiscale models (Chakraborty et al., 2021). 
However, the parallel multiscale model has the problem of coupled boundary conditions, there is no parallel multiscale model 
including MD, DDD and CPFE at present (Chakraborty et al., 2021). 

In this section, the simulation settings used for the hierarchical multiscale method are presented. The parameters required for the 
scale transmission under different time- and length- scales are calculated. The MD simulations are applied to obtain the drag coeffi-
cient, B, and the dislocation-linear mobility (V = F/B) for the DDD simulations. For the single-crystal hardening parameters s0, h0and 
ss with different crystal orientations, we calibrate them with the microscale DDD simulations. For the parameters of the polycrystalline 
CPFE, the average values of the single crystal parameters for different crystal orientations are used. 

3.1. MD simulations 

The dislocation mobility required in DDD simulations is obtained by MD simulation. The phonon drag or damping is the main 
damping, which is controlling the edge dislocations. For the nanoscale MD simulations, this damping is quantified by a drag coeffi-
cient, which is an inherent characteristic of the materials and independent of the boundary conditions and strain rates. Some MD 
simulations reveal that the dislocation type is mainly edge dislocation in the FCC alloy (Olmsted et al., 2005). In addition, the dif-
ference of the mobility between the screw and edge dislocations has no obvious effect on the strain-hardening behavior in DDD 
simulations (Cai et al., 2004; Groh et al., 2009; Zhou et al., 2010). Thus, in the current work, the MD simulations only focus on the edge 
dislocations. 

To compute the dislocation mobility in the Al0.1FeCoCrNi MPEA, the dislocation line is inserted in the simulation cell based on the 
Burgers vector. The MD simulations are performed using an open source LAMMPS code (Plimpton, 1995) and visualized using an Ovito 
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package (Stukowski, 2009). The inter-atomic potential employs the embedded atom method (EAM) potential (Farkas and Caro, 2020), 
which is in good agreement with various properties of the Al0.1FeCoCrNi MPEA, including the dislocation behavior under the 
deformation. The sizes of the sample with about 393,300 atoms are 30.0 × 14.0 × 10.0 nm3. It has been confirmed that the size of the 
cell has no effect on the calculated drag coefficient. 

A ½[110] edge dislocation is inserted at the center of the simulation box, where its line direction is y = [112], the slip direction is x =
[110], and the normal of the glide-plane is z = [111]. Burgers vector is b = 2.52 × 10−10 m. The periodic boundary conditions are along 
the x and z directions, and the fixed boundary condition is along the y direction (Fig. 2). The sample is initially relaxed and equilibrated 
at the targeted temperature with the pressures in the x- and z- directions equilibrated to zero through the isothermal-isobaric (NPT) 
ensemble for 100 ps. Then, the system is relaxed under the canonical (NVT) ensemble for 100 ps. The motion of the dislocation at every 
time step is monitored. With the increase of a shear load, an a/2[110] edge dislocation experiences a significant local motion and 
continuous slip under the loading. 

Fig. 3 shows the evolution of the velocity of an edge dislocation in the Al0.1FeCoCrNi MPEA with the ratio of different shear stresses 
to temperature by MD simulations. In the range of the applied stress that we tested, the dislocation velocity increases almost linearly 
with σ/T, which is in-line with the phonon damping theory (Brailsford, 1972; Olmsted et al., 2005): 

v = v0 + (bσ /T)Γ, Γ = B/T (26)  

where σ is the ratio of the shear stress to temperature, and B is the drag coefficient. Based on the linear mobility law, the drag co-
efficient is B = 2.20602 × 10−4 Pa⋅s at 300 K. The dislocation mobility predicted by MD simulations can be used as an input for the 
microscale DDD simulations to quantitatively predict the collective behavior of a great quantity of dislocations in the Al0.1FeCoCrNi 
MPEA, and then the hardening parameters are obtained for the CPFE simulations. 

3.2. DDD simulations 

All DDD simulations in the current work are performed by a ParaDiS program (Bulatov et al., 2006). The dislocation hardening 
behavior of the FCC Al0.1FeCoCrNi MPEA is obtained using DDD simulations. The material parameters of the Al0.1FeCoCrNi MPEA are 
listed in Table 1. At present, the DDD package is only available for simulations based on the isotropic assumption. However, the results 
so obtained are generally accepted by the materials community (Rao et al., 2019; Zhang et al., 2021; Wei et al., 2019; Chandra et al., 
2018). Therefore, the same shear modulus is used for the DDD simulations with different tensile orientations. Based on the previous 
DDD simulations (Lehtinen et al., 2018; Arsenlis et al., 2012), the cube simulation box is set up with the periodic-boundary conditions 
and a size of 2 μm. The initial dislocation density is ρ0 ≈ 5.5 × 1012 m−2, which is consistent with the previous result measured 
experimentally (2 × 1012 m−2 to 5 × 1013 m−2) (Dimiduk et al., 2005; Norfleet et al., 2008). Then, these dislocations are evenly 
distributed on 12 slip systems, and relaxed without a load. The strain rate is ε̇ = 104 s−1 (Fan et al., 2021), and the crystallographic 
orientations are along [001], [112], [111], [212], [101], [102], and [213]. 

Since the phase structure is stable over a wide temperature range in the FCC MPEA with a low Al content, the precipitation is 
difficult to generate. Therefore, the lattice distortion effect in the Al0.1FeCoCrNi MPEA is mainly considered in the current model 
(Gangireddy et al., 2019). In order to capture the effect of a heterogeneous lattice strain field induced by the lattice distortion on the 
strain hardening in the MPEAs, a 3D lattice-strain field needs to be developed and embedded into DDD simulations. Based on the 
experimentally-measured lattice-strain field of the Al0.1FeCoCrNi MPEA, the fractal characteristics of the lattice-strain field are 
confirmed. Therefore, we use the generalized Weierstrass-Mandelbrot (W-M) fractal function to construct the 3D lattice-strain field 
fractal function (Ausloos and Berman 1985; Yan and Komvopoulos 1998): 

ε

(
r

)
= HD−3

(
lnγ

M

)1
2∑M

m=1

∑nmax

n=0

[
cos
(
ϕm,n

)
− cos

(
2πγn n→m · r

L
+ϕm,n

)](
γn

L

)D−4

(27)  

where k0 = 2π
L 

is a wavenumber, nmax = int
[

log(L/Ls)
logγ

]
is the upper limit, and Ls = 4b is the cut-off size. γ =1.5 is the frequency density, M 

=50 is the number of superposed ridges, n→m is unit vectors evenly distributed in a unit 3D hypersphere, and ϕm,n is a random phase. D 

Fig. 2. MD simulation cell of dislocation mobility for the edge dislocation gliding on the (111) plane.  
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and H are the fractal dimension and strain amplitude (Table 2), which are obtained using the structure-function method (Wu, 2002) 
and the lattice strain field of the Al0.1FeCoCrNi MPEA measured experimentally (Shao et al., 2019). According to the experimentally 
measured lattice strain field of the Al0.1FeCoCrNi MPEA (Shao et al., 2019), L = 200 nm is equal to the sample size. 

The stress field, σmpea(s), from the lattice strain is obtained by the generalized Hooke’s law: 
σij = 2Gεij + λεkkδij (28) 

To eliminate the non-equilibrium caused by the random phase, the 3D strain-field function should minus the average value, ε, of the 
entire DDD simulation. This box is obtained from 100 × 100 × 100 evenly distributed discrete points, ε =∑

k

∑
m

∑
n

ε(xk, ym, zn,H,D,φm,n)

/106 (k, m, n = 1...100). 
The effect of mobility of the edge and screw segments on the stress-strain curve of the Al0.1FeCoCrNi single crystal along [001] 

orientation has been investigated by DDD simulations. Fig. 4 shows that the stress-strain curves for various dislocation mobility do not 
vary significantly in comparison to the curve for the same mobility. Consequently, different mobility values used in the DDD simulation 
do not bring an appreciable change in the prediction of the calibrated hardening parameters (Chandra et al., 2018). In addition, the 
existing MD simulations indicate that the difference of the drag coefficients between the edge dislocation and screw dislocation is small 
in the FCC FeNiCrCoCu HEA (Shen and Spearot, 2021). Therefore, as with other DDD simulation studies of the FCC crystals, only the 
mobility of the edge dislocation is considered (Sills et al., 2018; Lu et al., 2019; Rao et al., 2019). 

In Section 2, the total plastic-strain rate for all slip systems is set as the constant value in the MPEAs, which is certificated by 
investigating the relationship between the total plastic-shear strain for all slip systems of the Al0.1FeCoCrNi MPEA. The evolution of the 
total plastic-shear strain shows that the plastic-shear strain increases linearly with time in the Al0.1FeCoCrNi MPEA along the [212] 
direction (Fig. 5). The slope is applied to characterize the plastic-shear strain rate. It is worth noting that the total plastic-shear strain 

Fig. 3. Relationship between the edge-dislocation velocity and applied shear stress divided by temperature (σ/B) in a single crystal Al0.1Fe-
CoCrNi MPEA. 

Table 1 
Material parameters in DDD simulations for the Al0.1FeCoCrNi MPEA.  

Parameter Symbol Value 
Shear modulus μ 80.1 GPa 
Poisson’s ratio v 0.3 
Magnitude of Burgers vector b 0.252 nm 
Dislocation radius r0 5b nm  

Table 2 
The fractal dimension and strain amplitude for the strain components in the Al0.1FeCoCrNi MPEA according to the experimental data (Shao et al., 
2019).  

Strain components εxx εyy εzz εxy εxz εyz 

Fractal dimension, Dij Dxx Dyy Dzz Dxy Dxz Dyz 
3.9065 3.8855 3.8961 3.9281 3.9281 3.9281 

Strain amplitude, Hij (× 10−4) Hxx Hyy Hzz Hxy Hxz Hyz 
5.539 5.539 5.539 3.2659 3.2659 3.2659  
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rate from the slope in Fig. 5 (9.84 × 103 s−1) is close to the load strain rate (1 × 104 s−1). Therefore, the total plastic-slip rate is obtained 
by the relationship between the total plastic-shear strain and time, which is in equilibrium with the applied strain rate using the DDD 
simulations during the plastic deformation. 

Fig. 6 shows the relationship between the stress and strain in the FCC Al0.1FeCoCrNi MPEA along [001], [112], [111], [212], [101], 
[102], and [213] crystal orientations from DDD simulations. The yielding stress difference for various load directions is caused by the 
Schmid factor, which dominates the active dislocation-slip systems. In the plastic deformation stage, the serration occurs in the stress- 
strain curve for all the considered crystal orientations (Fig. 6), which is caused by the initial dislocation density being incapable of 
coping with the strain rate during the deformation. 

The initial slip resistance,s0, in the CPFE model for different single crystal orientations, is estimated from the initial yielding of the 
stress-strain curve. Specifically, the CRSS is extracted from the stress-strain curves from the DDD simulations. Due to the obvious 
fluctuation of the curve (Fig. 6), the extract values for each crystal orientation show the first deviation form linearity, 0.02% offset 
yielding, and 0.04% offset yielding. Then, we average these yielding stresses, and multiply them by Schmidt factors, respective. The 
initial resolved slip resistance of the CPFE model is listed in Table 3 for a single-crystal Al0.1FeCrCoNi MPEA with different loading 
orientations. 

The DDD simulations output the resolved stresses of all active slip systems, and then provide hardening parameters for the CPFE 
model. The forest hardening is widely used to investigate strain hardening in alloys (Devincre et al., 2006; Zhou et al., 2010; Shehadeh, 
2012). The dislocation hardening meets the Taylor law as: 

Fig. 4. Comparison of stress-strain curve for the FeCoCrNiAl0.1 single crystal along [001] orientation obtained from DDD simulations at various 
dislocation mobility. 

Fig. 5. The relationship between the total plastic-shear strain over all slip systems and time in DDD simulations in the FCC Al0.1FeCoCrNi MPEA 
along the [212] orientation. 
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τ = αμb
̅̅̅
ρ

√ (29)  

where μ is the shear modulus, b is the magnitude of the Burgers vector, ρ is the dislocation density, and α is the dislocation hardening 
parameter. The evolution of dislocation hardening parameter with the increased strain is obtained by the Taylor law. In the traditional 
alloys, the dislocation hardening parameter in the forest hardening ranges from 0.25 to 0.45 for the dislocation density about 1012 m−2 

(Madec, 2001). The lattice distortion hinders the dislocation movement, and the resolved shear stress in the MPEAs is higher than that 
in the traditional alloys for the same dislocation structure. Therefore, α is higher in MPEAs than that in traditional alloys using DDD 
simulations (Fig. 7). From the change trend of the stress-strain curve, the data computed by the DDD simulations is intermittent. 
Therefore, in order to obtain the average value of the hardening parameter for the CPFE model, the DDD simulations need the time 
averaging. Fig. 7 shows the evolution of dislocation hardening parameter with the increasing time for the Al0.1FeCrCoNi MPEA along 
the [212] crystal orientation, in which there are two different regions (separate with a black solid line). The value of α is seriously 
jumping in the first region because the initial dislocation structure cannot match the deformation rate of loading. As the strain 

Fig. 6. The mechanical responses of the single crystal Al0.1FeCrCoNi MPEA at different loading crystal orientations using DDD simulations.  

Table 3 
Hardening parameters from DDD simulations for different load directions of the single crystal Al0.1FeCoCrNi MPEA.  

Orientation [001] [102] [101] [111] [112] [212] [213] 
s0 (MPa) 60.37 71.56 59.34 57.53 62.02 55.65 80.05 
h0 (MPa) 359.74 303.87 304.08 402.34 343.45 312.51 285.05 
ss (MPa) 492.46 405.82 396.49 581.75 509.05 407.84 388.58  

Fig. 7. The evolution of the dislocation hardening parameter as a function of time along the [212] crystal orientation.  
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increases, the dislocations begin to move and proliferate. Subsequently, the dislocation hardening parameter in the second regime 
fluctuates slightly around a constant value of 1.44 (a red dashed line, as shown in Fig. 7), indicating that the current dislocation 
structure (after the multiplication and movement of dislocations) matches the deformation rate to reach the strain hardening stage. 

Based on the above the smooth region of the dislocation hardening parameter evolution and the theoretical framework of hier-
archical multiscale in Section 2.4, the hardening parameters, h0 and ss, with the increasing time are presented in Fig. 8. The fluctu-
ations of hardening parameters tend to be a constant value (Fig. 8). The average values of hardening parameters for time, t > t0, are 
distill (a blue solid line and red dotted line parallel to the x-axis), and applied to the crystal plasticity models to capture the mechanical 
response of the Al0.1FeCrCoNi MPEA at the microscale. The average fluctuations of the hardening parameters do not obviously change 
with the increasing time. The hardening parameters of the single crystal Al0.1FeCrCoNi MPEA with different loading orientations are 
listed in Table 3. 

3.3. CPFE simulation 

The quasi-static deformation of the single crystal and polycrystalline Al0.1FeCoCrNi MPEAs under the uniaxial tension is presented 
using the CPFE simulations, to explore the deformation behavior at the mesoscale. The effectiveness of the current method is verified 
by the comparison of the experimental result and CPFE result (Jiang et al., 2020). The CPFE simulations are performed using an 
open-source PRISMS-Plasticity framework (Yaghoobi et al., 2019), and a finite element method (FEM) code is built on top of the deal.II 
open-source FEM library (Bangerth et al., 2007). The results are visualized using an open-source software package Paraview (Ahrens 
et al., 2005). The material flow-rule parameters (Eq. (15)) used in the crystal plastic model are estimated from the previous literature, 
as listed in Table 4. The anisotropic elastic constants of the Al0.1FeCoCrNi MPEA (C11, C12, and C44) are calculated by the MD sim-
ulations and confirmed by the references (Gnäupel-Herold et al., 1998; Jiang et al., 2020). The hardening parameters (s0,ss, and h0) are 
calculated using the DDD simulations. 

3.4. Single crystals 

A finite element model with a box size of 1000 μm × 1000 μm × 2000 μm is established using 3D-brick elements, to simulate the 
mechanical response of a single crystal Al0.1FeCoCrNi MPEA under the uniaxial tension (Fig. 9a). The model is discrete by 16,000 (20 
× 20 × 40) C3D8 (one integration point) hexahedral finite elements. The z-axis of the reference frame is oriented along the crystal 
directions of [001], [102], [101], [111], [112], [212], and [213]. Then the specimen is uniaxially stretched along the z-axis at room 
temperature with a constant strain rate of 10−3 s−1. The tensile loading is applied employing a variable positive displacement at the top 
of the simulation box, keeping a zero displacement for the bottom of the simulation box along the z-axis, and setting two nodes fixed at 
the bottom of the simulation box to avoid the rigid-body movement. The final solution is obtained in 2000 time increments with an 
initial time step of Δt=0.1 s. The maximum number of the nonlinear equilibrium iterations is 4 for each increment. 

In order to capture the mechanical response of the polycrystalline Al0.1FeCoCrNi MPEA, we select 7 single crystal directions at the 
edge and center of the stereographic triangle, as shown in Fig. 9(b). The crystal plasticity calculations are carried out for 7 crystal 
orientations of the single-crystal Al0.1FeCoCrNi MPEA, to predict the stress-strain response. 

Table 4 shows the elastic-parameter values (C11, C12, and C44) and the constitutive parameters of the CPFE model Eqs. (15)–((17)), 
to simulate the mechanical response of the Al0.1FeCoCrNi MPEA. The constitutive parameters (γ̇0, r, h0, s0, and ss) are assumed to be the 
same and fixed for all 12 slip systems. These values serve as the input parameters of the CPFE simulations (Sundararaghavan et al., 
2008; Lu et al., 2020). The hardening parameters are calculated using DDD simulations for different single crystalline orientations in 

Fig. 8. The evolution of hardening parameters, ss, and, h0, with the time in the single crystal Al0.1FeCoCrNi MPEA along the [212] orientation using 
DDD simulations. The horizontal line represents an average value of the hardening parameters extracted over a period of time (t > t0). 
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the previous section. The parameter of a single crystal is used to quantify and calibrate the hardening parameters of a polycrystal. 

3.5. Polycrystalline 

The finite element model geometry is generated in the open-source software package of DREAM.3D (Groeber et al., 2014), and 
meshed using the modules of the open-source software PRISMS-Plasticity (Yaghoobi et al., 2019). Compared with the Voronoi 
tessellation, the grains from the polycrystalline RVE generated in DREAM.3D is much more realistic (Knezevic et al., 2014). Fig. 10(b) 
shows that the RVE contains 200 grains and discrete by 32 × 32 × 32 C3D8 finite elements. As well known, compared with traditional 
alloys, the microstructure characteristics of grain boundaries in the MPEAs are more complex due to their severe lattice distortions. In 
addition, although some crystal plasticity models considering the influence of grain boundary have been developed, there is no highly 
recognized model and no model has been widely used (Lu et al., 2020; Ganesan et al., 2021; Lakshmanan et al., 2022). Therefore, the 
effect of grain boundary does not be considered in the current crystal plastic model. Compared with a tetrahedral mesh, the hexahedral 
mesh can post-process the results faster and visualize them easier. We have tested the amount of grains and elements sufficient to 

Table 4 
Material parameters used to simulate the mechanical responses of the single crystalline and polycrystalline Al0.1FeCoCrNi MPEAs.  

Symbol Description Value 
C11 Elastic constants 275.31 GPa (Jiang et al., 2020) 
C12 Elastic constants 107.02 GPa (Jiang et al., 2020) 
C44 Elastic constants 106.59 GPa (Gnäupel-Herold et al., 1998; Jiang et al., 2020) 
m Strain-rate-sensitivity exponent 0.04 
γ̇0 Reference shearing rate 10−3 s−1 (Kalidindi, 1992) 
q0 Latent-hardening parameter 1.4 (Anand et al., 1996) 
r Hardening exponent 2.25 (Anand et al., 1996) 
s0 Initial slip resistance From DDD simulations 
h0 Initial hardening modulus From DDD simulations 
ss Saturation stress From DDD simulations  

Fig. 9. The tension model of a single crystalline CPFE simulation (a). The specific crystal orientation at the edge and center of the stereographic 
triangle (b). 

Fig. 10. The boundary condition for the polycrystal (a). The model diagram of RVE including 200 random distribution grains (b).  
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accurately capture the mechanical response of a polycrystalline Al0.1FeCoCrNi MPEA (in the next section). This trend would not lead to 
stepped-like grain boundaries, which makes the predicted stress-field inhomogeneity. Since there is no significant texture in the EBSD 
measurement (Gangireddy et al., 2018), the random grain orientations represent an approximately isotropic block. Fig. 11 shows the 
pole figures in the polycrystalline MPEAs. 

The boundary and loading conditions applied to RVE are presented in Fig. 10(a). For the simplicity, the degrees of freedom along 
the axes of X, Y, and Z are represented as UX, UY and UZ, respectively. To prevent a rigid body displacement during the loading, UZ =
0 is set at the bottom of RVE, UX = UY = UZ = 0 on the point at the coordinate origin, and UY = 0 at the outermost point of the X axis. 
The top of RVE is the loading surface with the variable positive displacements and quasi-static strain rates, to simulate the uniaxial 
tension at room temperature (Stopka et al., 2021). 

4. Result and discussion 

In this section, the results of the mesoscale CPFE simulations in the Al0.1FeCoCrNi MPEA are presented. The hardening parameters 
of different single crystal orientations are calculated using the DDD simulations, and the hardening parameters of the polycrystalline 
system are obtained by calibrating the single crystal hardening parameters. 

4.1. Single crystal 

The mechanical responses of a single crystal with different crystal orientations are predicted by CPFE simulations, as exhibited in 
Fig. 12. Compared with the [001]-[111] symmetry axis, the strain hardening rates in the stress-strain curves of other orientations, such 
as [212] and [213], are closer to the [101] zone axis in the standard stereographic triangle. Except for [111], the yielding strengths of 
other crystal orientations range from 100 to 150 MPa. The hardening parameters (Table 3) calibrated by DDD simulations also reflect 
the work hardening rates. The results show that the hardening parameters along the [111] orientation are the highest, which are 402.3 
MPa, and 581.7 MPa. These work hardening behaviors of the single crystals have been widely discussed in the past (Moon et al., 2018; 
Kireeva et al., 2020; Kawamura et al., 2021). Since our main objective is the successful implementation of a hierarchical-multiscale 
theory, these aspects would not be discussed. 

Table 5 shows the Schmidt factors of the corresponding crystal orientations in the Al0.1FeCoCrNi MPEA. The Schmidt factor of 
[111] is equal to 0.27, which is quite different from other orientations, and the corresponding hardening behavior is stronger. The 
maximum Schmidt factor is 0.49 for [101] and [102]. Accordingly, their stress-strain slopes are flat, as shown in Fig. 12. The difference 
of hardening behaviors in distinct crystal orientations is due to different Schmidt factors in crystal orientations, and the shear stress 
required for the dislocation activation is distinct. Therefore, different dislocation proliferation rates lead to the difference of strain- 
hardening rates (slopes of a stress-strain curve) between different crystal orientations. 

4.2. Polycrystals 

It is very difficult and time-consuming to carry out authoritative experiments on the mechanical behavior of the single crystals in 
multiple orientations. Concurrently, it is difficult to model the mechanical behavior of the polycrystalline RVE at present. Therefore, 
the deformation characteristics of the polycrystalline materials is quantified by fitting the mechanical response of the polycrystalline 
RVE with the corresponding experimental curve (Li Y et al., 2013; Prithivirajan et al., 2018; Baudoin et al., 2019; Bandyopadhyay 
et al., 2020; Lu et al., 2021). 

In the process of the deformation of the polycrystalline materials under the uniaxial loading, the boundary conditions of grains are 
more complex than a single-crystal uniaxial loading experiment due to the interaction of the surrounding grains. Hence, it is rather 
cumbersome to accurately represent the mechanical responses of polycrystals aggregates containing such the complex boundary 
conditions. Previously, the plastic response of the polycrystal is usually quantified, using the average single crystal response of the 
appropriate Taylor factor in the [100] and [111] orientations. However, the predicted polycrystalline material has obvious deviation 
from the experimental response curve under the large deformation. More recently, the hardening parameters of a polycrystalline RVE 
are calibrated using the average values of hardening parameters in seven directions of the single crystals (Chandra et al., 2018), 

Fig. 11. The representation of an initial texture of the Al0.1FeCoCrNi MPEA simulated by a set of 200 grains.  
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revealing the deformation mechanisms of Cu. Although the deformation curve is consistent with the experiment, the initial slip 
resistance still needs to fit the experimental curve. Because the boundary conditions of the RVE grains are more complex than that in a 
single crystal, CRSS in the polycrystal can not be characterized by a simple average of the single crystal. Our previous work (Li et al., 
2020) has accurately predicted the CRSS of MPEAs (including FCC and BCC alloys). Therefore, the CRSS can be easily calculated in the 
Al0.1FeCoCrNi MPEA, and divide by the Taylor’s factor of 3.05 to obtain s0 (62.5MPa) (Zeng et al., 2016). Other hardening parameters, 
h0 and ss, for seven single crystal orientations have been quantified in the hierarchical multiscale modeling in the previous sections, as 
shown in Table 2. The relationship between different orientations is to establish, for obtaining the single crystal and polycrystalline 
hardening parameters. After several ways, h0 and ss present approximately normal distributions. Fig. 13 shows the distribution his-
togram of hardening parameters. The average values of h0 and ss are 330 MPa and 454 MPa, respectively. 

Now, the hardening parameters of the polycrystalline Al0.1FeCoCrNi MPEA would be obtained. In order to improve the efficiency of 
simulation and fully capture the mechanical response of the polycrystalline MPEAs, the effects of the elemental number and grain 
number on the simulation results should be investigated. The stress-strain response curves of RVEs with the same number of grains (i. 
e., 200) and different numbers of finite elements are plotted in Fig. 15(a). The results show the mechanical responses of RVEs 

Fig. 12. The strain-stress curves for the seven groups of crystal orientations.  

Table 5 
The Schmid factors of the Al0.1FeCoCrNi MPEA under different loading directions.  

Dislocation slip system Loading direction 
[001] [102] [101] [111] [112] [212] [213] 

Schmid factor 0.41 0.49 0.49 0.27 0.41 0.41 0.47  

Fig. 13. Distribution histogram of the single crystal hardening parameters (h0 and ss), where the dotted line is the average value of hard-
ening parameters. 
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containing 32,768 (32 × 32 × 32) elements almost converge. The RVEs with different numbers of grains are established, and their 
grain orientations are random as previously described (Fig. 14(a)). Four RVEs during the uniaxial tension are simulated, and all other 
conditions are the same. As shown in Fig. 14(b), the stress-strain curves approach gradually the same value with the increasing grain 
number. From 200 to 400 grains, the stress-strain curves are nearly overlapped. Therefore, for obtaining a balance of the calculated 
accuracy and cost, 32,768 (32 × 32 × 32) elements and 200 grains are used to represent the polycrystalline model. 

Fig. 15(b) shows that the mechanical response of the Al0.1FeCoCrNi MPEA polycrystalline RVE at strain rates of 1 × 10−3 s−1 and 
2.5 × 103 s−1. The experimental data (Wu et al., 2017; Jiang et al., 2020) is added for the comparison. The results show that the 
simulated stress-strain curve at a quasi-static strain rate of 1 × 10−3 s−1 is in good agreement with the experimental data. The variation 
of the maximum stress is within 26 MPa, which verifies our calibration procedure. Fig. 16 shows the microstructural deformation of 
RVE at 1%, 5%, 10% and 20% strain stage. The simulated stress-strain curve with a strain rate of 2.5 × 103 s−1 is obtained by changing 
the strain rate of 1 × 10−3 s−1, and keeping all other conditions, including hardening parameters and flow parameters of simulation 
constants. It can accurately predict the mechanical response of the Al0.1FeCoCrNi MPEA at 2.5 × 103 s−1 strain rate within 8%. 

The detection of the local microscale strain plays a significant role for the optimization of the microstructures, which would 
enhance obviously the mechanical property. Fig. 17 shows the position and grain shape of the RVE section. The strain distribution is 
investigated at the applied strains of 0.05%, 0.1%, 0.5%, and 1%, as presented in Fig. 18, in order to study its effect on the plastic 
deformation. Considering the crystal orientation hardening behavior, the grain orientation leads to the softening from some grains, 
which appear to be sensitive to the anisotropic strain responses even if the same loading conditions. Namely, the adjacent grains have 
the extremely contrasting strain distributions. Subsequently, when the sample enters the yielding stage, the strain amplitude increases 
and the deformation region basically maintains the original state (Fig. 18b, f). In the strain hardening stage, the strain amplitude is 
further increased, and a few overly high strain regions even appear in the original low strain region. Especially, there is no obvious 
consistent relationship between the strain and stress, suggesting that the high strain region corresponds to the low stress region 
(Fig. 18c, g and d, h). Here, the higher local stresses occur in some low strain regions. In particular, the probability statistics of strain 
and stress distribution for different strain stages is counted in Fig. 18 i, j. With the increasing tensile deformation, the average values of 
strain and stress increase (corresponding to the stress-strain curve), the inhomogeneity of the high strain and stress region at the 
corresponding stage also increases. In other words, this result suggests that a strong stress/ strain gradient exists with the increase of 
applied loading (Fig. 18 i, j), resulting in an important contribution to the material strength. In the experiment, it is easier to capture 
the strain field by an in-situ observation equipment. Thus, the strengthening mechanism of MPEAs can be revealed by analyzing the 
distribution law of the strain field. Hence, in addition to the nanoscale dislocation evolution, the heterogeneous strain distribution may 
be an important reason for the enhanced strength at the micron scale. Fig. 19 shows the pole figures of the extracted grain orientations 
from the simulated data with the increase of the tension strain. The more newly-added local extreme points indicate that the orien-
tation of some grains would change significantly. This trend may be to adapt to the incongruous deformation behavior in the later stage 
of work hardening. 

4.3. Strain rate 

The strain rate plays a great influence on the mechanical properties of the FCC MPEAs (Jiang et al., 2020). In the comparison of the 
static or quasi-static loading process, the metal materials show some obvious behaviors at the high strain rate loading (Park et al., 
2018). In addition, under the dynamic conditions, the dislocation motion is quietly different due to the viscous resistance effect 
(Meyers, 1994). Therefore, it is necessary to study the mechanical response of the Al0.1FeCoCrNi MPEA at different strain rates. Here, 
the mechanical responses and stress-strain distributions of the polycrystalline Al0.1FeCoCrNi MPEA are predicted at different applied 
strain rates of 10−2 s−1, 10−1 s−1, 1 s−1, 10 s−1, and 102 s−1. In the current CPFE simulations, the reference strain rate is 10−3 s−1. 
Fig. 20 shows the stress-strain responses of the polycrystalline Al0.1FeCoCrNi MPEA at different strain rates. With the increase of the 
strain rate, the yielding stress increases monotonically under the same strain, and the slope of the stress-strain curve increases 
gradually. It is obvious that this result is consistent with the experimental observation (Moon et al., 2018; Kireeva et al., 2020). 

Fig. 21 shows that a high strain rate causes the large strain and stress stored in grains. At the same time, higher strain gradients are 
generated in the adjacent grains with the increased strain rate (Fig. 21a–e). This interesting observation also appears in the stress fields 
(Fig. 21f–j). In other words, the extremely-high deformation gradients can handle the energy brought by higher strain rates in the 
MPEAs (Miracle and Senkov, 2017; Pan et al., 2021), revealing the root cause of a good energy absorption capacity. The comparison of 
the pole figures shows that the high extreme points appear in almost the same position. The trend indicates that the grain rotation 
hardly occurs (Fig. 22). Thus, the good energy absorption characteristics of the MPEAs depends upon the strong deformation gradient. 

Although the current work is trying its best to establish the dislocation-based strengthening and toughening of MPEAs using the 
multiscale simulations of the close correlation among the nanoscale, micronscale and mesoscale, the other key microstructures, such as 
the deformation twinning, interstitial element, and precipitate, also play a key role in their mechanical properties. The deformation 
twinning not only greatly improve the plasticity at low temperatures (Gludovatz et al., 2014), but also enhances the strength of MPEAs 
at room temperature (Jo et al., 2017; Zhang et al., 2017; Huang et al., 2018). For example, the recent experimental studies (Yu et al., 
2016; Choudhuri et al., 2018; Huang et al., 2021) show the deformation twinning take place at a later stage of the plastic deformation 
process in the Al0.1CuCrFeNi MPEAs due to the low stacking fault energies, resulting in the improvement of the MPEA strength. 
However, it would be considered in the future for the following two reasons: (i) Lack of a reasonable deformation twin strengthening 
model for MPEAs due to their unique atomic scale serious lattice distortions, extremely different from the conventional alloys; (ii) Lack 
of the experimental quantitative data to determine the twin volume fraction and thickness using the synchrotron-based X-ray 
micro-diffraction experiment. Hence, the present work only focuses on the dislocation-related strengthening and plasticity. 
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5. Conclusion 

In this study, we propose a multiscale modeling method that can capture the effect of the nano-micron-meso-scale structure on the 
mechanical properties of the MPEAs. The elastic parameters and dislocation resistance coefficients required for the microscale DDD 
simulations are extracted from the nanoscale MD simulations, and then the lattice distortion strain field caused by the atomic mismatch 

Fig. 14. (a) Representation of an initial texture of the Al0.1FeCoCrNi MPEA simulated at the grain number of 30, 100, 200, and 400. (b) Com-
parison of RVE mechanical responses with different numbers of grains (elements: 32 × 32 × 32). 

Fig. 15. (a) Comparison of RVE mechanical responses with different numbers of elements (grains: 200). (b) The predicted and experimental stress- 
strain curves of polycrystals at the strain rates of 1 × 10−3 s−1 and 2.5 × 103 s−1. 

Fig. 16. The comparison of the microstructural deformation of RVE at 1%, 5%, 10% and 20% strain stage.  
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Fig. 17. The position of RVE section (a). The grain shape of the selected region (b).  

Fig. 18. The strain distribution for the elastic stage at the strain of 0.05% (a), the yielding stage at the strain of 0.1% (b), and the strain-hardening 
stage at the strain of 0.5% and 1% (c, d). The stress distribution for the elastic stage at the strain of 0.05% (e), the yielding stage at the strain of 0.1% 
(f), and the strain-hardening stage at the strain of 0.5% and 1% (g, h). For different strain stages, the probability statistics of stress and strain 
distribution (i, j). 

Q. Fang et al.                                                                                                                                                                                                           



Journal of the Mechanics and Physics of Solids 169 (2022) 105067

19

is added to the DDD simulations of the single crystals with different crystal orientations to quantify the interactions between the 
dislocation and lattice distortion on the dislocation motion. The dislocation collective behavior parameters with the lattice distortion 
are matched with the hardening parameters of a crystal plasticity model based on the slip, and the hardening parameters of the single 
crystals are obtained to predict the mechanical behavior of the single crystal Al0.1FeCoCrNi MPEA under the uniaxial tensile loading. 
The hardening parameter sets of the polycrystals are obtained by statistically averaging the seven calibrated single crystal hardening 
parameters. The CPEM simulation results show that the Al0.1FeCoCrNi MPEA model established can accurately predict the mechanical 
response of the polycrystal RVE on the mesoscale. The newly developed method provides an insight into deeply understanding of the 
microscale deformation mechanisms related to the nano-micron-meso-scale structure, and gives some possibilities and avenues to 
investigate the superior mechanical properties associated with the regulation of multiscale microstructures for the advanced MPEAs. 
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