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deflected by the waves. The review of Gerbeau, Le Bris & Lelièvre (2006) contains a rich
bibliography on this subject.

Liquid metal batteries are structurally similar to reduction cells but have three layers of
stacked fluids (light metal, molten salt, heavy alloy) rather than two (cryolite, aluminium).
Existing prototypes of liquid metal batteries (Bradwell et al. 2012; Wang et al. 2014) are
certainly not yet as large as industrial reduction cells, but if they were to be made as
large in the future, then it is likely that metal pad roll instability will also be present in
these batteries and affect their efficiency. Zikanov (2015) is the first to discuss metal pad
roll instability in liquid metal batteries. In this paper, the solid-slab model of Davidson
& Lindsay (1998) is extended to the three-layer case, which suggests that the physical
mechanism causing metal pad instability in batteries is essentially the same as in reduction
cells. Shallow-layer magnetohydrodynamic models give a more precise description of the
metal pad roll instability and were very popular in the two-layer reduction cell context
(see Bojarevics & Romerio 1994; Bojarevics 1998; Davidson & Lindsay 1998; Zikanov
et al. 2000; Lukyanov, El & Molokov 2001; Sun, Zikanov & Ziegler 2004; Zikanov, Sun
& Ziegler 2004). In Bojarevics & Tucs (2017), Tucs, Bojarevics & Pericleous (2018a,b)
and Molokov (2018), we find three-layer extensions of these shallow-layer modes, adapted
to large-scale batteries. All these models can find the most unstable mode and how this
depends on the type of battery, the materials and also the geometry of the cell. Dissipation
is less easily modelled, but should be less important in such large-scale cells. Tucs
et al. (2018b) make an interesting numerical application for 10 different metal–salt–alloy
combinations that have been used to build liquid metal batteries. Considering a large-scale
cell with a design that is close to that of an industrial aluminium reduction cell (8 m by
3.6 m, total current 105 A, metal–salt–alloy heights 20, 4 and 20 cm, respectively), they
find from theory that metal pad instability requires no more than 0.1–0.6 mT of vertical
magnetic field. This very low critical magnetic field can easily be driven by the power lines
that would surround the cells, and confirms that large-scale liquid metal batteries, if they
are built as reduction cells, will likely be unstable.

In parallel to the shallow-layer approach, several groups have used direct numerical
simulations (DNS) to study metal pad roll instability in three-layer systems. Weber et al.

(2017a,b) study a small cylindrical Mg‖Sb liquid metal battery using the OpenFOAM
code. Many physical parameters (e.g. current, imposed magnetic field, viscosities,
densities, fluid layer heights) were varied to see how they affect the instability. The
bottom layer of the Mg‖Sb battery is so heavy that it almost remains at rest, and as
a result, metal pad roll instability is very similar to that found in two-layer reduction
cells. Horstmann, Weber & Weier (2018) continue this study and show that other wave
types are possible. In the simulations, wave selection depends on the ratio of density
jumps D = (ρ2 − ρ1)/(ρ3 − ρ2). When D is very different from 1, metal pad roll will
be as in a two-layer system. When D ≈ 1, all three layers are coupled hydrodynamically,
and a wave with synchronously rotating top and bottom interfaces is observed. Xiang &
Zikanov (2019) present 21 numerical case studies on metal pad roll in cuboid cells. These
simulations are also done with OpenFOAM, and the role of the parameter D in selecting
different wave patterns is confirmed by this study.

Both shallow-layer models and DNS provide useful information on what metal pad roll
instability could look like in liquid metal batteries, but we need to underline that they are
describing essentially different cells. Where shallow models are designed for large-scale
cells, all the simulated cells in DNS are without exception small, typically some 10 cm in
size. DNS does not filter out turbulent fluid motion, and this limits simulations to Reynolds
number flows Re < 104 in practice. With realistic viscosities that are often lower than
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Stability theory for metal pad roll

10−6 m2 s−1, and typical flow magnitudes of just a few cm s−1, we are already reaching
the interval Re ∈ [103, 104] in 10 cm cells. This explains why all simulations are done
in small cells. Qualitatively, metal pad roll instability is similar in shallow models and
DNS, but quantitatively, we can expect significant differences. The small cells in DNS are
rarely shallow and also much more prone to viscous dissipation. In small cells, a larger
magnetic field needs to be imposed in order to trigger the metal pad roll instability, in
which case inductive currents can also cause an extra magnetic damping (Sreenivasan,
Davidson & Etay 2005). A stability theory that matches quantitatively with DNS of small
cells needs to be non-shallow and it needs to include a precise description of dissipative
effects.

The previous observations have motivated us to run a research programme on metal
pad roll instability in two- and three-layer systems, in which we seek for common ground
between stability theory and DNS. Our focus is on cylindrical cells that have been studied
before by Weber et al. (2017a,b) and Horstmann et al. (2018). We can simulate these
cells with two different numerical solvers, OpenFOAM and SFEMaNS (see Guermond
et al. 2007, 2009; Nore et al. 2016; Cappanera et al. 2018). The cylindrical geometry
also greatly simplifies the stability theory with respect to the case of rectangular section
cells. In Herreman et al. (2019) (referred to as H19 in what follows) we derived the
two-layer stability theory. The idea is that near the threshold of the metal pad roll
instability, the Lorentz force is weakly destabilising the free gravity waves. Using standard
perturbation methods, we can model the effect of the Lorentz force and viscous dissipation
perturbatively. This results in an explicit formula for the growth rate that should be
valid near the threshold. In H19, we quantitatively validated this theory by comparing
numerically measured growth rates from DNS to the theory. In Nore et al. (2021), we
modified the two-layer theory to show that metal pad roll instability in a small centimetre
scale experiment that places gallium over mercury is possible. This new paper is our third
contribution on the subject of metal pad roll instability, and it extends our perturbative
stability theory to three-layer liquid metal batteries.

The paper is structured as follows. In § 2, we present the stability theory, following the
same steps as in H19. In § 3, we apply the theory to different cylindrical liquid metal
battery models. In § 3.1, we apply the theory to the Mg‖Sb cell of Weber et al. (2017a,b)
and show quantitative agreement with DNS. In § 3.2, we apply the theory to the three-layer
set-ups simulated by Horstmann et al. (2018). Our theory indeed suggests that we can have
both types of symmetrical and antisymmetrical waves as the most unstable wave, and that
this depends on the density jump ratio D. In the vicinity of D ≈ 1, we also find that metal
pad roll instability in three-layer systems may be very weak, because the Lorentz force
can be locally stabilising in one fluid layer and locally destabilising in another. This is a
peculiarity of metal pad roll in three-layer systems that has no two-layer equivalent. Tucs
et al. (2018a) have studied metal pad roll in a small square Na‖Bi cell using a shallow
model, and in § 3.3, we apply our theory to a cylindrical analogue of this square cell.
According to our theory, this cell is much less unstable, and this is also confirmed by a
challenging numerical simulation. In § 3.4, we take inspiration from Tucs et al. (2018b) and
compute the critical magnetic fields Bz,c for the onset of instability in a hypothetical 105 A
cylindrical cell. We find very similar critical magnetic fields for the onset of instability.
Finally, in § 3.5, we map the domain of stability of different types of batteries in a size of
cell versus current density chart and in a worst case scenario. Using this type of figure,
we can give a lower bound on the battery size that is needed to find metal pad roll
instability.
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Figure 1. Sketch of the base state under study. (a) Three liquid layers with different electrical conductivity,
density and kinematic viscosity are stacked stably on top of each other due to gravity. A homogeneous
current density J runs vertically through the layers and creates an azimuthal magnetic field Bθ . A uniform
vertical magnetic field Bz is applied externally. (b) Our three fluid domains V1,V2,V3 have respective heights
H1, H2, H3 and radius R. The solid boundaries are referred to as Σ1, Σ2, Σ3, and the interfaces as S12 and S23.

2. Metal pad roll stability theory

2.1. Base state

We model metal pad roll (MPR) instability in an idealised three-layer cylindrical liquid
metal battery (LMB). We use the notations of figure 1(a), which shows the base state that
we assume in our model. The cylinder has radius R, and the heights of the three layers
are Hi, with i = 1, 2, 3. We use cylindrical coordinates (r, θ, z) and basis (er, eθ , ez). The
electrical conductivity, density and kinematic viscosity are denoted σi, ρi and νi in layers
i = 1, 2, 3. We will denote density differences as

�ρ12 = ρ2 − ρ1, �ρ23 = ρ3 − ρ2, (2.1a,b)

Standard gravity is g, and we ignore surface tension in this study. We assume a base state
with all fluids at rest separated by planar interfaces at z = 0 (1|2 interface) and z = −H2

(2|3 interface). The base state pressure Pi is hydrostatic, ∂zPi = −ρig, and continuous
at the interfaces, so (P1, P2, P3) = P0 + (−ρ1gz, −ρ2gz, −ρ3g(z + H2) + ρ2gH2), with
P0 denoting an arbitrary ambient pressure. We have solid electrodes connecting to the
liquids at z = H1 and z = −H2 − H3, with an electrical conductivity that is supposed
significantly smaller compared to that of the liquid metals in zones 1 and 3. A perfectly
homogeneous electrical current with density J = Jez runs vertically through the three
layers. The base-state electrical potential Φi is defined by J = −σi ∂zΦi and is continuous
at the interfaces. This yields (Φ1, Φ2, Φ3) = Φ0 + J(−σ−1

1 z, −σ−1
2 z, −σ−1

3 (z + H2) +
σ−1

2 H2) inside the cell, with Φ0 arbitrary. A uniform vertical magnetic field Be = Bzez

is applied externally to the cell, and the total magnetic field is B = (μ0Jr/2)eθ + Bzez.
In the following, we refer to the unperturbed fluid volumes as V1,V2,V3. The boundaries
of these fluid domains are δV1, δV2, δV3 and include the solid walls Σ1, Σ2, Σ3, and the
interfaces z = 0 and z = −H2 are S12 and S23.
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Stability theory for metal pad roll

2.2. Linear perturbation problem

We are interested in the linear stability of the base state defined previously. We denote
by ui, pi, bi, ji and ϕi the linear perturbations of flow, pressure, magnetic field, current
density and electrical potential, respectively. We assume that the quasi-static limit of
magnetohydrodynamics is adequate. A necessary condition is that σiμ0ωR2 � 1 in all
three layers. Here, ω is any typical frequency of the flow or magnetic field and will be
the typical gravity wave frequency in our theory. This inequality is well satisfied in all our
applications. The linearised magnetohydrodynamic equations for the perturbations are

ρi ∂tui + ∇pi = J × bi + ji × B + ρiνi �ui, (2.2a)

∇ · ui = 0, (2.2b)

ji = σi(−∇ϕi + ui × B), (2.2c)

∇ · ji = 0. (2.2d)

The magnetic field perturbation bi satisfies ∇ × bi = μ0 ji and ∇ · bi = 0, but we will
not need to calculate this field explicitly. We use the following hydrodynamical boundary
conditions. Fluid adheres on the solid wall of the cylinder, so

ui = 0|Σi
. (2.3a)

We locate the deformed interfaces at z = η12(r, θ, t) and z = η23(r, θ, t). The linearised
kinematic boundary conditions that apply at these interfaces are

∂tη12 = u1,z|z=0, ∂tη12 = u2,z|z=0, (2.3b)

∂tη23 = u2,z|z=−H2, ∂tη23 = u3,z|z=−H2 . (2.3c)

In viscous fluids, we must also require that tangential flow is continuous at the interface:

u1,r|z=0 = u2,r|z=0, u1,θ |z=0 = u2,θ |z=0, (2.3d)

u2,r|z=−H2 = u3,r|z=−H2, u2,θ |z=−H2 = u3,θ |z=−H2 . (2.3e)

The dynamic boundary conditions express the continuity of stress at the interface. From
the normal component, we derive that

�ρ12 gη12 + 2ρ2ν2 ∂zuz,2|z=0 − 2ρ1ν1 ∂zuz,1|z=0 = p2|z=0 − p1|z=0, (2.3f )

�ρ23 gη23 + 2ρ3ν3 ∂zuz,3|z=−H2 − 2ρ2ν2 ∂zuz,2|z=−H2 = p3|z=−H2 − p2|z=−H2, (2.3g)

and from the tangential components,

ρ1ν1 ∂zu1,r|z=0 = ρ2ν2 ∂zu2,r|z=0, ρ1ν1 ∂zu1,θ |z=0 = ρ2ν2 ∂zu2,θ |z=0, (2.3h)

ρ2ν2 ∂zu2,r|z=−H2 = ρ3ν3 ∂zu3,r|z=−H2, ρ2ν2 ∂zu2,θ |z=−H2 = ρ3ν3 ∂zu3,θ |z=−H2 .

(2.3i)

Electrical boundary conditions on the solid walls are

ji · ni = 0|Σi
. (2.4)

Here, ni is the unit normal. This relation is exact on the isolating radial sidewall. It is
also a good approximation on the top and bottom lids, z = H1 and z = −H2 − H3, if we
assume that solid electrodes above layer 1 and under layer 3 have an electrical conductivity
that is significantly lower than σ1 and σ3 of the metals. Similar assumptions were made
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in previous shallow-layer models (Molokov 2018; Tucs et al. 2018a,b) and simulations
(Weber et al. 2017a,b; Horstmann et al. 2018). At the interfaces, we express that the total
normal electrical current (J + j) · n and total electrical potential Φ + ϕ are continuous.
After linearisation, this yields

j2,z|z=0 − j1,z|z=0 = 0, (2.5a)

j3,z|z=−H2 − j2,z|z=−H2 = 0, (2.5b)

ϕ2|z=0 − ϕ1|z=0 = J(σ−1
2 − σ−1

1 )η12, (2.5c)

ϕ3|z=−H2 − ϕ2|z=−H2 = J(σ−1
3 − σ−1

2 )η23. (2.5d)

Notice here how the surface elevations η12, η23 cause jumps in the electrical potential
perturbation ϕ when the conductivities of the layers are different. This physical ingredient
is essential for MPR instability. The magnetic field boundary conditions are not so relevant
as we will not need to compute bi.

The linear stability problem is now defined entirely. We may search for solutions in

which arbitrary field components f grow as f = f̂est. In the following, hatted variables
(f̂ ) always represent the spatial structure of a field, s ∈ C is named complex growth rate,
and instability requires Re(s) > 0. As in H19, we choose to not non-dimensionalise the
stability problem because there are too many physical parameters.

2.3. Instability mechanism in three-layer systems

Before calculating the growth rate, we discuss the physics of the instability mechanism.
In figure 2, we consider a gravity wave that rotates as indicated by the black arrow. The
instantaneous interface deformation can be of three different, typical types. In case (a),
called the decoupled case by Horstmann et al. (2018), the wave leaves the lower interface
mainly undeformed. This situation is the common one in most batteries, because we often
have �ρ12 � �ρ23. In some batteries, we can have �ρ12 ≈ �ρ23, and both interfaces will
then deform similarly. We can have either (b) antisymmetrically deformed interfaces or (c)
symmetrically deformed interfaces.

In the top diagrams of figure 2, we draw the instantaneous flow, u, using green arrows.
To understand the direction of u, just imagine how fluid material will be displaced when
the wave is rotating in the direction of the black arrow. The red arrows of varying thickness
suggest the spatial variation of total electrical current, J + j. Since the electrolyte is a bad
conductor, the current will be intensified (thicker arrows) near the shallower parts of the
electrolyte, and weakened (thinner arrows) near the thicker parts of the electrolyte.

In the bottom diagrams of figure 2, we suggest the typical loops associated with the
current deviation j. In cases (a) and (b), we expect a single j loop, but in case (c), we will
rather have a pair of j loops to be able to create a small horizontal current deviation defect
within the inclined electrolyte layer. Having these loops in mind, we can now draw the
instantaneous direction of the Lorentz force, j × Be (light green arrows). If the Lorentz
force is to be destabilising, then it has to align more or less with the instantaneous flow
as u · ( j × Be) > 0 indeed indicates that the wave is being powered electromagnetically.
This power injection is obviously very different in cases (a), (b) and (c) according to the
sketch.

Let us discuss case (a) first. Figure 2 suggests that u aligns with j × Be in the top layer,
so the wave is being powered by the Lorentz force in this layer. As the same figure can
be drawn at any rotated position, we can expect a permanent injection of power and hence
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u1
u1

u1

J + j

Be Be Be
j × Be j × Be j × Be
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u3 ≈ 0
u3

u3

u1

u3

u1 u1

u3

j
j
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Figure 2. Metal pad roll instability mechanism in batteries, in three characteristic situations. The top diagrams
show interface deformations, instantaneous flows for a rotating wave and current deflections. The bottom
diagrams show perturbed current loops and compare the direction of Lorentz force j × Be to that of u. In
many LMBs, �ρ12 � �ρ23, and we expect a waveform as in (a) where the bottom interface remains almost
flat. When �ρ23 ≈ �ρ12, other waveforms are possible: (b) antisymmetrical waveforms, or (c) symmetrical
waveforms.

a permanent electromagnetic amplification. In this battery type with �ρ12 � �ρ23, the
bottom layer is almost at rest, and hence with u3 ≈ 0, this layer will not be receiving much
power from the Lorentz force. The result is that MPR will be very much as in a two-layer
system, and we already know that this is true from the simulations of Weber et al. (2017a,b)
of Mg‖Sb batteries. Notice finally that the direction of rotation of the wave is crucial for
amplification. If we invert the rotation direction, then u changes sign and hence anti-aligns
with j × Be. The wave rotating in the opposite direction would be electromagnetically
damped.

When �ρ12 ≈ �ρ23, other waveforms are possible, as we know from Horstmann et al.

(2018), and power injection will also be rather different in this situation. On the typical j

loops, it is easy to draw the instantaneous direction of the Lorentz force j × Be, and this
has been done in the sketch. Interestingly, it seems that u · ( j × Be) > 0 in the top layer,
but that u · ( j × Be) < 0 in the bottom layer, for both symmetrical and antisymmetrical
waveforms. What this suggests is that energy may be injected into a rotating wave in one
layer (top), but that at the same time, energy will be withdrawn from the wave in the
other layer (bottom). This situation of opposing power transfers is obviously a peculiarity
of the MPR instability in three-layer systems and of these symmetrical or antisymmetrical
waveforms. It also seems to suggest that with �ρ12 ≈ �ρ23, we can end up with a situation
where as much electromagnetic power is being injected as there is electromagnetic power
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being withdrawn. This seems to suggest that MPR instability can be very weak when
�ρ12 ≈ �ρ23. We will see that our stability analysis confirms this idea.

In the previous diagrams, we have considered only the vertical, external magnetic field
Be = Bzez, but it is instructive to make similar diagrams using the azimuthal magnetic
field Bθ = μ0Jr/2. This allows us to see that the Lorentz force j × (Bθeθ ) never really
aligns with the instantaneous wave flow, which suggests that the azimuthal magnetic field
cannot cause electromagnetic amplification of gravity waves. Our theory confirms this
suggestion. The azimuthal field can only change the frequency of the waves, but it will
never amplify them, just as in two-layer systems (see H19 and Sneyd 1985; Sneyd & Wang
1994).

2.4. Perturbative solution

We now come to the main objective in this linear stability problem: the calculation of the
complex growth rate s of different wave modes. We apply the perturbative method of H19
to the three-layer case. Let us recall the general idea. Near the instability threshold, when
the Lorentz force is sufficiently small compared to pressure and inertia, we can expect that
the unstable modes will be weakly perturbed rotating gravity waves. Near the threshold,
the complex growth rate of a rotating wave will be

s = iω + λ+ iδ
︸ ︷︷ ︸

small shift

. (2.6)

Here, ω is the frequency of the free inviscid gravity wave. Small viscosity and small
Lorentz forces cause a small complex shift of the eigenvalue iω, which we split into a
real and an imaginary part as λ+ iδ. The quantity δ captures a real frequency shift, and
we will not calculate it explicitly, since it has no impact on the stability of the wave. We
will rather focus on the real growth rate λ that is further split into three independent terms:

λ = λv + λvv + λvisc. (2.7)

In this formula, the Lorentz force creates the terms λv and λvv , and the viscous force
creates the correction λvisc. We have this additive structure because both types of forces
are considered as weak independent perturbations in the model. The term λv ∼ JBz is
the only one that can be positive, and it relates to the instability mechanism that was
discussed in the previous subsection. The term λvv < 0 is the weak magnetic damping
due to induction in the top and bottom metals. Proportional to B2

z , it is very small for low
imposed magnetic fields. The term λvisc < 0 is the viscous damping of the wave. This
damping is due to dissipation in the thin Stokes layers that exist at the solid boundaries
and near the 1|2 and 2|3 interfaces.

In the following subsections, we calculate λv , λvv , λvisc by taking the following steps.
In § 2.4.1, we solve the unperturbed wave problem: we calculate the spatial structure
and frequency ω of free inviscid gravity waves in the three-layer system. In § 2.4.2, we
formulate sufficient conditions to use perturbation methods: we estimate when the Lorentz
and viscous forces are small compared to pressure forces and inertia. In § 2.4.3, we solve
the electrical problem in the electrostatic limit: we find the dominant part of the electrical
current perturbation that is caused by the interface elevations created by the waves. In
§ 2.4.4, we compute the growth rate λv of instability in the dissipationless limit using a
perturbative expansion and a solvability condition. In § 2.4.5, we compute the magnetic
damping correction λvv that is due to inductive corrections in Ohm’s law. In § 2.4.6, we
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Stability theory for metal pad roll

calculate the viscous damping correction λvisc. We identify the Stokes boundary layer
structure and compute dissipation therein.

Once everything is computed, we can better estimate the domain of applicability of
the theory. What we really need to have in the perturbative limit is a small shift in the
eigenvalue, meaning that

∣
∣
∣
∣

λv

ω

∣
∣
∣
∣
� 1,

∣
∣
∣
∣

λvv

ω

∣
∣
∣
∣
� 1,

∣
∣
∣
∣

λvisc

ω

∣
∣
∣
∣
� 1, (2.8a–c)

are necessary. In all the numerical applications of § 3, we satisfy these inequalities.

2.4.1. First step: unperturbed wave problem

The perturbative approach starts with a characterisation of the leading-order inviscid
hydrodynamical wave problem. We will denote these wave solutions as

[ui, pi, η12, η23] = [ûi, p̂i, η̂12, η̂23] eiωt, (2.9)

using hatted variables for the spatial structure, and ω for the inviscid frequency. Without
Lorentz and viscous forces, we need to solve

ρi(iω)ûi + ∇p̂i = 0, ∇ · ûi = 0, (2.10a)

with the inviscid limit of the boundary conditions (2.3), ûi · ni = 0|Σi
on the solid walls,

and

iωη̂12 = û1,z|z=0 = û2,z|z=0, iωη̂23 = û2,z|z=−H2 = û3,z|z=−H2, (2.10b)

�ρ12 gη̂12 = p̂2|z=0 − p̂1|z=0, �ρ23 gη̂23 = p̂3|z=−H2 − p̂2|z=−H2 (2.10c)

on the interfaces. This three-layer wave problem was already studied in detail by
Horstmann et al. (2018). We use slightly different notations to remain as close as possible
to the presentation of H19 that we wish to extend. The flow is potential: ûi = ∇φ̂i and
∇2φ̂i = 0. We find the hydrodynamic potentials and the interface deformations as

φ̂1 = ωR

k
a

cosh(k(z − H1))

sinh(kH1)
Jm(kr) eimθ , (2.11a)

φ̂2 = ωR

k

(

b
cosh(kz)

sinh(kH2)
− a

cosh(k(z + H2))

sinh(kH2)

)

Jm(kr) eimθ , (2.11b)

φ̂3 = −ωR

k
b

cosh(k(z + H2 + H3))

sinh(kH3)
Jm(kr) eimθ , (2.11c)

and

η̂12 = Ria Jm(kr) eimθ , (2.11d)

η̂23 = Rib Jm(kr) eimθ . (2.11e)

Pressure relates to hydrodynamic potential by p̂i = −iωρiφ̂i. In these formulas, Jm

represents a Bessel function of the first kind, m ∈ N is the azimuthal wavenumber
that can be considered positive, and k is the radial wavenumber that takes the discrete
values k = κmn/R, with κmn the nth zero of J′

m(κmn) = 0. The solution (2.11) satisfies
impermeability on the solid walls and the kinematic boundary conditions on the interfaces.

962 A6-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



W. Herreman and others

The non-dimensional amplitudes a, b are still undetermined, but they are non-trivially
related by the algebraic system that is found by expressing the dynamic boundary
conditions (2.3f ) and (2.3g) as

⎛

⎜
⎜
⎜
⎝

ω2
12

ω2
− 1

ρ2

ρ̄12 sinh(kH2)

ρ2

ρ̄23 sinh(kH2)

ω2
23

ω2
− 1

⎞

⎟
⎟
⎟
⎠

(

a

b

)

=
(

0
0

)

. (2.12)

Henceforth, we use the notation

ρ̄12 = ρ1

tanh(kH1)
+ ρ2

tanh(kH2)
, ρ̄23 = ρ2

tanh(kH2)
+ ρ3

tanh(kH3)
, (2.13a)

ω2
12 = �ρ12 gk

ρ̄12
, ω2

23 = �ρ23 gk

ρ̄23
. (2.13b)

The frequencies ω12 and ω23 are the wave frequencies of the respective two-layer systems.
Existence of non-trivial solutions of (2.12) requires that

[

1

ω2
− 1

ω2
12

][

1

ω2
− 1

ω2
23

]

=
ρ2

2

ρ̄12ρ̄23 sinh2(kH2) ω2
12ω

2
23

, (2.14)

from which we can find that there are two possible values of ω2:

ω2
± =

⎛

⎜
⎝

1

2

(

1

ω2
12

+ 1

ω2
23

)

∓ 1

2

√
√
√
√

(

1

ω2
12

− 1

ω2
23

)2

+ 4

ω2
12ω

2
23

ρ2
2

ρ̄12ρ̄23

1

sinh2(kH2)

⎞

⎟
⎠

−1

.

(2.15)

The sign ± chooses between the rapid frequency (+) branch and the slow frequency (−)
branch, and here we use the same notation as in Horstmann et al. (2018). Returning these
two possible values of ω2 to the original system (2.12), we find unique amplitude ratios
ε = b/a for both the slow and rapid branches:

ε±=C ±
√

C2 + D, (2.16a)

with

C = 1

2

(
ρ̄12

ρ2
− �ρ12

�ρ23

ρ̄23

ρ2

)

sinh(kH2), D = �ρ12

�ρ23
. (2.16b)

Fast waves always have ε+ > 0: both interfaces deform in phase, and have their maxima
and minima at the same azimuthal angle θ . This waveform is referred to as symmetrical in
Horstmann et al. (2018). Slow waves always have ε− < 0: both interfaces deform in phase
opposition. Troughs of the upper 1|2 interface will be right above crests of the lower 2|3
interface. This waveform is referred to as antisymmetrical in Horstmann et al. (2018). The
difference is illustrated visually in figure 3 for the fundamental slow and fast waves that
have m = 1 and n = 1.

In the following, we will refer to a particular wave by providing the triplet (m, n, ±). For
each triplet (m, n, ±), we have unique values of ω± and ε±. The frequency ω itself can take
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Stability theory for metal pad roll

Slow (1, 1, −) wave Rapid (1, 1, +)  wave(b)(a)

Figure 3. Illustration of the typical interface deformation for a rotating (1, 1, ±) wave. The green arrows
suggest a positive rotation direction for a wave with ω < 0. Top and bottom interface deformations are (a) in
phase opposition for slow − waves, with the amplitude ratio ε− < 0. For rapid + waves, they are (b) in phase,
with the amplitude ratio ε+ > 0.

four values, +ω−, −ω−, +ω+, −ω+, and the sign of this frequency carries information on
the direction of rotation of the wave. By convention, we fix m > 0, and by definition, all
field profiles are proportional to exp(i(mθ + ωt)). Hence with ω < 0 we have a wave that
rotates in the positive +eθ direction. In figure 3, this rotation direction is suggested by the
green arrows.

2.4.2. Second step: sufficient conditions that allow the use of perturbation methods

Near the threshold of instability, when Lorentz forces (J × bi + ji × B) and viscous forces
(ρiνi �ui) are small in comparison to inertia and pressure forces (ρi∂tui and ∇pi), we can
model their effect on the waves perturbatively. Using the same order of magnitude analysis
as in H19 (§ 2.5), not repeated here, we can delimit this perturbative parameter regime by
expressing that the inequalities

νi

ωR2
� 1,

μ0J2

ρiω2
� 1,

μ0σiJRB

ρiω
� 1,

JB

ρiω2R
� 1,

σiB
2

ρiω2R
� 1 (2.17a–e)

need to be satisfied in all three layers i = 1, 2, 3, and with B = Bz or μ0JR. This set
of conditions is to be interpreted only as qualitative, sufficient conditions. More precise
conditions can be formulated only a posteriori, by expressing the inequalities (2.8a–c).

2.4.3. Third step: electrical problem in the electrostatic limit

If we consider the Lorentz force as a small perturbation in the momentum balance, then the
leading-order hydrodynamical problem has the purely hydrodynamical waves as solutions.
These waves cause a redistribution of electrical current that we need to compute. In this
subsection, we find the dominant part of the current perturbation that is due to interface
deformation (boundary conditions (2.5c) and (2.5d)). This can be done using a static
approximation of Ohm’s law that ignores the inductive term (σiui × B). In § 2.4.5, we
will identify the much smaller electrical current corrections that are due to induction.

We write [ ji, ϕi] = [ ĵi, ϕ̂i] eiωt. The spatial structures of these fields need to satisfy

ĵi = −σi ∇ϕ̂i ∇ · ĵi = 0, (2.18a,b)
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W. Herreman and others

together with all boundary conditions (2.4) and (2.5), expressed in terms of hatted
variables. We find the electrical potential solutions as

ϕ̂1 = JR

σ1
c

cosh(k(z − H1))

sinh(kH1)
Jm(kr) eimθ , (2.19a)

ϕ̂2 = JR

σ2

(

d
cosh(kz)

sinh(kH2)
− c

cosh(k(z + H2))

sinh(kH2)

)

Jm(kr) eimθ , (2.19b)

ϕ̂3 = −JR

σ3
d

cosh(k(z + H2 + H3))

sinh(kH3)
Jm(kr) eimθ . (2.19c)

All electrical boundary conditions on the solid walls are built-in, and one can check that
jz is indeed continuous at z = 0 and z = −H2. The coefficients c, d are still undetermined,
but they are related to a, b by the algebraic equations that follow from the jump conditions
on the electrical potential perturbations (2.5):

(

−A12 (σ2 sinh(kH2))
−1

(σ2 sinh(kH2))
−1 −A23

)
(

c

d

)

=
(

i(σ−1
2 − σ−1

1 )a

i(σ−1
3 − σ−1

2 )b

)

. (2.20a)

Here, we note

A12 = σ−1
1 tanh−1(kH1) + σ−1

2 tanh−1(kH2), (2.20b)

A23 = σ−1
2 tanh−1(kH2) + σ−1

3 tanh−1(kH3). (2.20c)

Explicit formulas for c and d, as functions of a and b, can be calculated for arbitrary
conductivities σi, but these formulas are not practical. To get deeper insights and much
simpler expressions for c and d, we add a supplementary hypothesis: we will assume that
layers 1 and 3 are much better conductors than layer 2 or, more precisely, that

σ2

σi

� min

(∣
∣
∣
∣

tanh(kHi)

tanh(kH2)

∣
∣
∣
∣
, 1

)

, i = 1, 3. (2.21)

In this limit, we can simplify the jump conditions (2.5c) and (2.5d) to

ϕ2|z=0 ≈ Jσ−1
2 η12, ϕ2|z=−H2 ≈ Jσ−1

2 η23, (2.22a,b)

and find

c ≈ i
b − a cosh(kH2)

sinh(kH2)
, d ≈ i

b cosh(kH2) − a

sinh(kH2)
. (2.23a,b)

Notice that these formulas for c, d are conductivity-independent. Just as in aluminium
reduction cells, the dominant part of the perturbed current distribution is independent
of σi if the difference in conductivities between the salt and the metal layers is large
enough. This approximation is certainly justified in LMBs: the molten salt electrolyte has
conductivity σ2 that is easily 104 times lower than σ1 and σ3 in the metal layers. This
approximation was also used in all previous theoretical models for MPR instability in
LMBs (Bojarevics & Tucs 2017; Molokov 2018; Zikanov 2018).
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Stability theory for metal pad roll

2.4.4. Fourth step: growth rate λv of instability in the dissipationless limit

Knowing the leading-order hydrodynamic and electrical fields, we can now propose a
perturbative ansatz to the linear inviscid stability problem. This perturbative solution has
the structure

[ui, pi, η12, η23, . . .] = ([ûi, p̂i, η̂12, η̂23, . . .] + [ũi, p̃i, η̃12, η̃23, . . .]) e(iω+α)t. (2.24)

The dots suggest similar expansions for the electrical variables. Hatted variables
correspond to the leading-order spatial structures, and field variables with tildes are
unknown small perturbations of spatial structure. We introduce a complex frequency shift
α that we suppose small with respect to ω in magnitude. By injecting this ansatz into the
linear inviscid stability problem, we can find the first-order hydrodynamical perturbation
problem:

ρiαûi + ρi(iω)ũi + ∇p̃i = J × b̂i + ĵi × B, (2.25a)

∇ · ũi = 0. (2.25b)

Notice how the Lorentz force emerges on the right-hand side as a first-order perturbation.
On the solid boundaries, we have impermeability ũi · ni|Σi

= 0. On the interfaces, we have
to satisfy boundary conditions

iωη̂12 + αη̃12 = ũ1,z|z=0 = ũ2,z|z=0, iωη̃23 + αη̂23 = ũ2,z|z=−H2 = ũ3,z|z=−H2,

(2.26a)

�ρ12 gη̃12 = p̃2|z=0 − p̃1|z=0, �ρ23 gη̃23 = p̃3|z=−H2 − p̃2|z=−H2 . (2.26b)

Notice the non-trivial terms αη̃12 and αη̃23 in the kinematic boundary conditions. We
do not write the first-order electrical and magnetic problems because they are not
needed to compute α, the quantity of interest. An equation for this shift is found by
expressing a solvability condition. Technically, we integrate and sum the equations as
∑

i=1,2,3

∫

Vi
[û∗

i · (2.25a) + p̂∗
i · (2.25b)] dV . This gives

α
∑

i=1,2,3

∫

Vi

ρi ‖ûi‖2 dV

︸ ︷︷ ︸

T1

+
∑

i=1,2,3

∫

Vi

[û∗
i · (iωũi + ∇p̃i) + p̂∗

i (∇ · ũi)] dV

︸ ︷︷ ︸

T2

=
∑

i=1,2,3

∫

Vi

û∗
i · (J × b̂i + ĵi × B) dV

︸ ︷︷ ︸

P

. (2.27)

The right-hand side P is a complex-valued measure of ‘power’ injected by the Lorentz
force. On the left-hand side, we have two terms, T1 and T2. The term T1 is a measure
for the slow variation of kinetic energy. The term T2 is simplified as follows: (i) using
partial integration, we first bring all differential operators to the hatted variables ûi and
p̂i; (ii) using the leading-order equation iωûi + ∇p̂i = 0, we then observe that all volume
integrals involving tilde variables vanish; (iii) the remaining collection of boundary terms
is simplified using the boundary conditions (2.10) and (2.26). In this way, we can show
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W. Herreman and others

that

T2 = α

[

�ρ12 g

∫

S12

|η̂12|2 dS + �ρ23 g

∫

S23

|η̂23|2 dS

]

︸ ︷︷ ︸

K

. (2.28)

The term T2 measures the slow variation of potential energy. Clearly, T1 + T2 is some
complex measure for the slow variation in time of mechanical energy. We also define the
integral K here, which will be used often in what follows. Using the fact that flow is
potential, partial integration and the inviscid boundary conditions, we can manipulate T1
to show that T1 = T2. After all these simplifications, we end up with a simple equation for
the complex frequency shift:

α = P

2K
. (2.29)

Both integrals P and K can be explicitly calculated using the leading-order hatted field
expressions. As in H19, we split the power P into a part Pv ∼ JBz due to the external
vertical field Bz (hence index v) and a part Ph ∼ J2 due to the horizontal (azimuthal) field
Bθ = μ0Jr/2 (hence index h):

Pv =
∑

i=1,2,3

∫

Vi

û
∗
i · ( ĵi × Bzez) dV, (2.30a)

Ph =
∑

i=1,2,3

∫

Vi

û
∗
i · ( ĵi × Bθeθ + Jez × b̂i) dV. (2.30b)

Before calculating these integrals, it is instructive to remark that Pv is real and Ph is purely
imaginary. This is due to the systematic phase lags between the different field components.
Taking the constants a, b defining the hydrodynamic potentials (2.11) to be real (this is not
an assumption – the initial phase of the wave is arbitrary in our linear problem), one can
recognise that

{φ̂i, ûi,r, ûi,z, ĵi,θ , b̂i,r, b̂i,z}
exp(imθ)

∈ R,
{η̂12, η̂23, ûi,θ , ϕ̂i, ĵi,r, ĵi,z, b̂i,θ }

exp(imθ)
∈ iR. (2.31a,b)

The phases of magnetic field components follow immediately from ∇ × b̂i = μ0 ĵi,

∇ · b̂i = 0 and the fact that there is no external field other than Bz in our model. Using
this information, it is easy to recognise that Pv is real and Ph is purely imaginary: for
example,

Ph =
∑

i=1,2,3

∫

Vi

[(û∗
i,z ĵi,r − û∗

i,r ĵi,z)Bθ + (û∗
i,θ b̂i,r − û∗

i,rb̂i,θ )J] dV ∈ iR. (2.32)

The result is that we can split the complex frequency shift as

α = Pv

2K
︸︷︷︸

λv

+ Ph

2K
︸︷︷︸

iδh

, (2.33)

with λv ∈ R being the real growth rate, and δh ∈ R being the real frequency shift of the
wave. We find here that the azimuthal base state magnetic field Bθ = μ0Jr/2 does not
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Stability theory for metal pad roll

destabilise rotating waves, just as in the two-layer case (see H19 and Sneyd 1985; Sneyd
& Wang 1994). Only the vertical imposed magnetic field Bz can destabilise rotating waves
in the perturbative limit. Unlike H19, we will not compute an explicit formula for δh;
we focus on the real growth rate λv . We evaluate Pv and K using some standard Bessel
function integrals (see H19), and this yields the following formula for the inviscid growth
rate:

λv = mω

κ2
mn − m2

JBz

(�ρ12 + ε2 �ρ23)g
Ξ, (2.34a)

with

Ξ = 1

2

[

(ε2 − 1) +
(

ε

sinh(kH2)
− 1

tanh(kH2)

)(
kH1

sinh2(kH1)
+ 1

tanh(kH1)

)

−
(

ε

sinh(kH2)
− ε2

tanh(kH2)

)(
kH3

sinh2(kH3)
+ 1

tanh(kH3)

)]

. (2.34b)

We have tested the validity of this formula by comparing it to numerical evaluations
of the integrals. As in H19, we find the growth rate λv as the product of the factor
mω/(κ2

mn − m2), the factor that balances force density JBz over a gravitational force
density (�ρ12 + ε2 �ρ23)g, and the factor Ξ that depends on the wave and on the
geometry of the cell. This factor Ξ may be either positive or negative.

To apply the formula, we fix the geometry of the cell, Hi and R, and select the densities
ρi of the layers. For each wavenumber pair m, n, we compute a unique k and find the
amplitude ratios ε± and frequencies ω±. For each m, n pair, we can then have four different
waves, with frequencies ω = ω−, −ω−, ω+, −ω+, and respective amplitude ratios ε =
ε−, ε−, ε+, ε+. Instability requires λv > 0, and according to our formula, this is equivalent
to Sgn(mωJBzΞ) > 0 or Sgn(mω) = Sgn(JBzΞ). This means that, out of the four possible
waves, only two can be destabilised: those rotating in a specific direction, i.e. those with
the right sign of ω. Considering that our waves are proportional to exp(i(mθ + ωt)) and
that m > 0 by convention, we can predict the direction of rotation of the unstable wave as
follows:

Sgn(JBz Ξ) =
{+1, unstable waves have mω > 0, rotate along −eθ ,

−1, unstable waves have mω < 0, rotate along +eθ .
(2.35)

When Ξ = 0, no wave is being destabilised. In this particular case, Pv = 0, and this
means that the Lorentz force injects locally as much power as it is withdrawing elsewhere.
This possibility was already mentioned above in the discussion of figure 2(c) for strongly
coupled interfaces. Below, we will study this particular case in more detail.

2.4.5. Fifth step: magnetic damping correction λvv

In the calculation of the perturbed current density in § 2.4.3, we have ignored the inductive
term σiûi × B. This relies on the assumption that

σωRB

J
� 1, (2.36)

with either B = Bz or μJ0R. When the external magnetic field is small, this inequality
is well satisfied, and inductive effects can be ignored safely. In a small-scale set-up, be
it laboratory experiments (Pedchenko et al. 2009; Pedchenko, Molokov & Bardet 2016;
Eltishchev et al. 2022) or simulations (Nore et al. 2021; H19), the imposed field Bz can be
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W. Herreman and others

quite large, and inductive effects then cause an extra magnetic damping (Sreenivasan et al.

2005). Here, we calculate the weak magnetic damping of gravity waves in the three-layer
system.

As in H19, we admit that there are small inductive corrections to all the electrical and
magnetic variables. In our ansatz, we use

[ϕi, ji, bi] = ([ϕ̂i + Ψ̂ v
i + Ψ̂ h

i , ĵi + Ĵ v
i + Ĵ h

i , b̂i + B̂v
i + B̂h

i ] + · · · ) e(iω+α)t. (2.37)

The following equations need to be satisfied:

Ĵ v
i = σi(−∇Ψ̂ v

i + ûi × Bzez), ∇ · Ĵ v
i = 0, ∇ × B̂v = μ0Ĵ

v
i , (2.38a)

Ĵ h
i = σi(−∇Ψ̂ h

i + ûi × Bθeθ ), ∇ · Ĵ h
i = 0, ∇ × B̂h = μ0Ĵ

h
i . (2.38b)

The suffixes v and h refer here to inductive effects caused by the vertical field (Bz) or the
horizontal field (Bθ ). On the boundaries and interfaces, we need to satisfy the conditions

Ĵ v
i · n|Σi

= 0, (2.39a)

Ĵ v
1,z − Ĵ v

2,z|z=0 = 0, Ψ̂ v
1 − Ψ̂ v

2 |z=0 = 0, (2.39b)

Ĵ h
2,z − Ĵ h

3,z|z=−H2 = 0, Ψ̂ v
2 − Ψ̂ v

3 |z=−H2 = 0, (2.39c)

and the same conditions for the fields with suffix h. In the perturbation theory, these
inductive corrections will cause new Lorentz forces that add new terms in the solvability
condition (2.27). The injected power P will now be the sum Pv + Ph + Qvv + Qhh +
Qvh, with new terms

Qvv =
∑

i=1,2,3

∫

Vi

û∗
i · (Ĵ v

i × Bzez) dV, (2.40a)

Qhh =
∑

i=1,2,3

∫

Vi

û∗
i · (Ĵ h

i × Bθeθ + Jez × B̂h
i ) dV, (2.40b)

Qvh =
∑

i=1,2,3

∫

Vi

û∗
i · (Ĵ h

i × Bzez + Ĵ v
i × Bθeθ + Jez × B̂v

i ) dV. (2.40c)

Using phase relations such as those of (2.31a,b), it is easy to show that Qvv,Qhh are real
and Qvh is imaginary. After imposing the solvability condition, we find a corrected shift

α = Pv

2K
︸︷︷︸

λv

+ Qvv

2K
︸︷︷︸

λvv

+ Qhh

2K
︸︷︷︸

λhh

+ Ph

2K
︸︷︷︸

iδh

+ Qvh

2K
︸︷︷︸

iδvh

. (2.41)

Next to λv , we find two inductive damping terms λvv ∼ B2
z and λhh ∼ μ2

0J2, and a real
frequency shift δvh. In H19, all these extra inductive terms have been calculated in the
case of two arbitrary fluid layers. In our numerical applications, we will run into the strong
field situation only with Bz � μ0JR. This means that λvv � λhh, and motivates us to focus
on the damping term λvv only.

To calculate λvv , we need Ĵ v
i , and this is not such a simple field to find for arbitrary

fluid combinations. But since we have already assumed that only fluids 1 and 3 are good
conductors, we know that Joule damping can arise only in these layers. This also means
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Stability theory for metal pad roll

that Ĵ v
2 = 0 is a very good approximation, and that corrections Ψ̂ v

1 and Ψ v
3 may be sought

as the solutions of the simpler, electrically decoupled problems

∇2Ψ̂ v
1 = 0, ∂zΨ̂

v
1 |z=0 = ∂zΨ̂

v
1 |z=H1 = 0, ∂rΨ̂

v
1 |r=R = ûθ,1|r=RBz,

∇2Ψ̂ v
3 = 0, ∂zΨ̂

v
3 |z=−H2 = ∂zΨ̂

v
3 |z=−H2−H3 = 0, ∂rΨ̂

v
3 |r=R = ûθ,3|r=RBz

}

.

(2.42)

Inserting the velocity profiles ûθ,1 and ûθ,3, we recognise that these problems are
structurally identical to the one that was solved in H19. Hence we can reuse the solution of
H19 in the present problem. We find Ψ̂ v

1 and Ψ̂ v
3 as an expansion on harmonic functions,

and use this solution to evaluate the integral Qvv . Divided by 2K, we find the magnetic
damping term λvv as

λvv = λvv,1 + λvv,3, (2.43)

with

λvv,1 = σ1B2

�ρ12 + ε2 �ρ23

ω2

gk

[

−1

4

(
1

tanh(kH1)
+ kH1

sinh2(kH1)

)

+ 1

k2R2 − m2

×

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m

kH1
+ 4m2

∞
∑

j=1

(
1

jπ

)
k3

R

(

k2 +
(

jπ

H1

)2
)2

Im

(
jπR

H1

)

Im−1

(
jπR

H1

)

+ Im+1

(
jπR

H1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(2.44a)

λvv,3 = ε2 σ3B2

�ρ12 + ε2 �ρ23

ω2

gk

[

−1

4

(
1

tanh(kH3)
+ kH3

sinh2(kH3)

)

+ 1

k2R2 − m2

×

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m

kH3
+ 4m2

∞
∑

j=1

(
1

jπ

)
k3

R

(

k2 +
(

jπ

H3

)2
)2

Im

(
jπR

H3

)

Im−1

(
jπR

H3

)

+ Im+1

(
jπR

H3

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(2.44b)

Here, Im and Im±1 are modified Bessel functions. The sum over j quickly decays with
increasing j, and is truncated when machine precision is attained.

2.4.6. Sixth step: viscous damping correction λvisc

Viscosity causes a weak damping of the waves that is due mainly to dissipation in the
boundary layers near the solid walls and interfaces. Here, we compute the viscous damping
correction λvisc using the same method as in H19 (appendix D).

In the perturbative limit, viscous damping is of purely hydrodynamic origin, hence we
ignore the Lorentz force in this part. The viscous gravity wave problem is defined by

ρi ∂tui + ∇pi = ρiνi �ui, ∇ · ui = 0, (2.45)

in all three layers i = 1, 2, 3, together with the hydrodynamical boundary conditions (2.3).
With small viscosity, we expect weakly damped gravity waves with a predominantly
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W. Herreman and others

inviscid structure in the bulk and Stokes boundary layers near the solid wall and interfaces.
We propose a perturbative solution to this viscous problem that is

(ui, pi, η12, η23) = [(ûi + ˆ̄ui, p̂i + ˆ̄pi, η̂12, η̂23) + (ũi + ˜̄ui, p̃i + ˜̄pi, η̃12, η̃23)] e(iω+α)t.

(2.46)
We recycle the notation α for the complex eigenvalue shift, here caused by viscosity. Next
to bulk variables, e.g. ûi at leading order and ũi at first order, we also find boundary
layer corrections ˆ̄ui at leading order and ˜̄ui at first order. By definition, these boundary
layer corrections are non-zero only in a

√
νi/ω neighbourhood of the boundaries δVi. We

suppose that this Stokes boundary layer scale is much smaller than the layer heights and
cell radius:

√

νi/|ω| � R and
√

νi/|ω| � Hi. (2.47a,b)

This assumption allows us to use a boundary layer analysis to compute the boundary layer
corrections. We inject the ansatz into the viscous wave problem. At leading order and
in the bulk, we find the inviscid wave problem that sets the fields ûi, p̂i, η̂12, η̂23 and
ω. These inviscid fields do not satisfy the viscous boundary conditions, hence we need

to correct them with ˆ̄ui, ˆ̄pi at leading order. By construction, boundary layer corrections
decay rapidly in the direction normal to δVi and inwards into the bulk. We will express this
functional dependency using a local wall-normal coordinate ζi, defined by

ζ1 =

⎧

⎨

⎩

R − r, near r = R,

H1 − z, near z = H1,

z, near z = 0,
ζ2 =

⎧

⎨

⎩

R − r, near r = R,

−z, near z = 0,

H2 + z, near z = −H2,
(2.48a)

ζ3 =

⎧

⎨

⎩

R − r, near r = R,

H2 − z, near z = −H2,

H2 + H3 + z, near z = −H2 − H3,
(2.48b)

at the different boundary parts. By construction, ζi = 0 at the boundaries and inwardly
increases into the bulk. We split the boundary layer corrections into a locally wall-normal
component and local tangential part:

ˆ̄ui = ˆ̄ui,nni + ˆ̄ui,t. (2.49)

Here, ni is the outer unit normal at the surface δVi. Considering the rapid wall-normal
variation of boundary layer corrections, we have from incompressibility that

∂ζi
ˆ̄ui,n = 0 ⇒ ˆ̄ui,n = 0, (2.50)

at leading order. A ζi-independent value is not possible since the correction needs to decay
into the bulk, for large ζi. From the normal component of the momentum equation, we
similarly find

0 = −∂ζi
ˆ̄pi ⇒ ˆ̄pi = 0. (2.51)

In summary, there is no leading-order boundary correction of normal velocity and
pressure. From the tangential part of the momentum balance, we then deduce that

iω ˆ̄ui,t = νi ∂
2
ζiζi

ˆ̄ui,t ⇒ ˆ̄ui,t = ct e−Γ
√

|ω|/νi ζi . (2.52)

It is here that we recognise that the boundary layer is a Stokes layer with typical width√
νi/|ω|. We denote Γ = (1 + i Sgn(ω))/

√
2, and keep only the solution that decays
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Stability theory for metal pad roll

exponentially into the bulk. The value of ct is different on each boundary part, and it
is set by the viscous boundary condition that applies locally. Near all solid walls Σi,

we express the no-slip condition as ûi + ˆ̄ui|Σi
= 0. We already have impermeability

ûi,n|Σi
+ ˆ̄ui,n|ζi=0 = 0, and from the tangential part, we deduce that

near Σi, ˆ̄ui,t = −ûi,t|Σi
e−Γ

√
|ω|/νi ζi . (2.53)

Near the 1|2 and 2|3 interfaces, we also have boundary layers, and there, we need to
express the boundary conditions (2.3b)–(2.3i) that link two boundary layer regions beneath

and above both interfaces. With ˆ̄ui,n = 0, ˆ̄pi = 0 and considering the inviscid boundary
conditions (2.10b) and (2.10c), we are satisfying the boundary conditions (2.3b) and
(2.3c) at leading order. From the requirements of continuity of tangential stress and total
tangential velocity, we have

ρ1ν1 ∂z
ˆ̄u1,t = ρ2ν2 ∂z

ˆ̄u2,t|z=0, û1,t + ˆ̄u1,t = û2,t + ˆ̄u2,t|z=0, (2.54a)

ρ2ν2 ∂z
ˆ̄u2,t = ρ3ν3 ∂z

ˆ̄u3,t|z=−H2, û2,t + ˆ̄u2,t = û3,t + ˆ̄u3,t|z=−H2, (2.54b)

at leading order. Using this set of equations, we can express the interfacial boundary layer
corrections in terms of the boundary values of the bulk fields:

near S12, ˆ̄u1,t = −
(

1 + ρ1
√

ν1

ρ2
√

ν2

)−1

(û1,t − û2,t)|z=0 e−Γ
√

|ω|/ν1 z, (2.55a)

ˆ̄u2,t =
(

1 + ρ2
√

ν2

ρ1
√

ν1

)−1

(û1,t − û2,t)|z=0 eΓ
√

|ω|/ν2 z, (2.55b)

near S23, ˆ̄u2,t = −
(

1 + ρ2
√

ν2

ρ3
√

ν3

)−1

(û2,t − û3,t)|z=−H2 e−Γ
√

|ω|/ν2 (z+H2), (2.55c)

ˆ̄u3,t =
(

1 + ρ3
√

ν3

ρ2
√

ν2

)−1

(û2,t − û3,t)|z=−H2 eΓ
√

|ω|/ν3 (z+H2). (2.55d)

The leading-order boundary layer structure is now known, and the next logical step in
the perturbative calculation is to write the first-order perturbation problem for the tilde
quantities. As in § 2.4.4, we can then compute the complex shift α caused by viscosity,
using a solvability condition. This method was also used in H19, and leads to the formula

α ≈ λvisc + iδvisc = 1

2K

∑

i=1,2,3

1

Γ

√
νi

|ω|

∫

δVi

∇tp̂
∗
i · ˆ̄ui,t|ζi=0 dS. (2.56)

H19 has a typo in this equation: the factor
√

νi/|ω| was forgotten. (The detailed derivation
of this formula is technical and passes by the derivation of non-trivial boundary conditions
for the tilde fields. All the steps are given in the supplementary material available at https://
doi.org/10.1017/jfm.2023.238.) In this formula, we ignore higher-order contributions that
are due to the viscous terms 2ρiνi ∂zui,z in the viscous conditions that express continuity
of normal stress, (2.3f ) and (2.3g). When we evaluate this formula using the leading-order
bulk and boundary layer profiles, we find the damping term λvisc and the frequency
shift δvisc = Sgn(ω) λvisc. As explained by H19, there is also an alternative approach
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W. Herreman and others

to computing λvisc using the method of Case & Parkinson (1957). Instead of using a
solvability condition in the momentum equation, we can use the mechanical energy
balance as a starting point. This alternative approach yields the formula

λvisc = D′

4K
, withD′ = − 2√

2

⎛

⎝

∑

i=1,2,3

ρi

√

νi |ω|
∫

δVi

‖ ˆ̄ui,t‖2 dS

⎞

⎠ (2.57)

for the damping rate. When we inject the leading-order profiles into the formulas (2.56)
and (2.57), we can show that they both lead to the same formula for the viscous
damping rate λvisc. In practice, we calculate the surface integrals over each boundary
part analytically and then sum the separate contributions. In doing so, we ignore the more
complex boundary layer structure that exists near the corner and moving meniscus regions.

The calculation results in a rather complex explicit damping formula in which we
have found it useful to separate interfacial contributions (suffix (i)) from solid wall
contributions (suffix (s)):

λvisc = λ(i)visc + λ(s)visc,1 + λ(s)visc,2 + λ(s)visc,3. (2.58)

The contributions from the interfacial boundary layers are

λ
(i)
visc = − 1

2
√

2

ω2√|ω|
(�ρ12 + ε2 �ρ23)g

∑

j=1,2

Λ2
jj+1

(

1

ρj
√

νj

+ 1

ρj+1
√

νj+1

)−1

, (2.59a)

with

Λ12 = (tanh−1(kH1) + tanh−1(kH2)) − ε/ sinh(kH2), (2.59b)

Λ23 = ε(tanh−1(kH3) + tanh−1(kH2)) − 1/ sinh(kH2). (2.59c)

The solid wall contributions are

λ
(s)
visc,1 = − 1

2
√

2

1

kR

ρ1ω
2√ν1|ω|

(�ρ12 + ε2 �ρ23)g

[
k(R − H1)

sinh2(kH1)
+ k2R2 + m2

k2R2 − m2

1

tanh(kH1)

]

,

(2.60a)

λ
(s)
visc,2 = 1

2
√

2

1

kR

ρ2ω
2√ν2|ω|

(�ρ12 + ε2 �ρ23)g

[

(ε2 + 1)

(
kH2

sinh2(kH2)
− k2R2 + m2

k2R2 − m2

1

tanh(kH2)

)

− 2ε

(
kH2 cosh(kH2)

sinh2(kH2)
− k2R2 + m2

k2R2 − m2

1

sinh(kH2)

)]

, (2.60b)

λ
(s)
visc,3 = − 1

2
√

2

1

kR

ρ3ω
2√ν3|ω|

(�ρ12 + ε2 �ρ23)g
ε2
[

k(R − H3)

sinh2(kH3)
+ k2R2 + m2

k2R2 − m2

1

tanh(kH3)

]

.

(2.60c)

We use these damping formulas in all our following applications, and we have also checked
that the assumptions (2.47a,b) are always verified. Considering that boundary layer regions
near the moving contact line and corners are not modelled properly, there remains a degree
of uncertainty in these formulas. In reality, damping will also depend on wetting properties
and, although theoretical modelling is possible for free-surface waves (Viola & Gallaire
2018), it does not yet exist for two- or three-layer systems.
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Stability theory for metal pad roll

2.5. Supplementary material: Jupyter notebook

All the theoretical formulas for ω±, ε±, λv, λvv, λvisc are explicit but cumbersome. In the
supplementary material, we provide a Jupyter notebook that encodes them all. One can
easily change the material properties and the geometrical parameters defining the battery,
in a single parameter variable. The notebook then allows us to calculate the growth rates
of all the possible waves (m, n, ±). It also includes all the procedures that were used to
produce most of the figures that are in this paper.

3. Applications

3.1. Mg‖Sb simulations of Weber et al. (2017a,b)

MPR instability in an Mg‖Sb battery was studied numerically by Weber et al. (2017a,b)
in a small, centimetre-scale cell with geometrical parameters

(R, H1, H2, H3) = (0.05, 0.045, 0.01, 0.045) m. (3.1)

Material parameters are

(ρ1, ρ2, ρ3) = (1577, 1715, 6270) kg m−3,

(σ1, σ2, σ3) = (3.6 × 106, 80, 8.7 × 105) S m−1,

(ν1, ν2, ν3) = (6.7, 6.8, 2) × 10−7 m2 s−1.

⎫

⎪
⎬

⎪
⎭

(3.2)

The peculiarity of Mg‖Sb LMBs is that the density jump is such that �ρ12 � �ρ23. As
a result, interfaces are decoupled, and MPR instability is nearly as in a two-layer system.
This was already shown in Weber et al. (2017a,b), and H19 showed that the two-layer
stability theory captures precisely the MPR instability in this cell. Nevertheless, this
Mg‖Sb cell still remains a useful test case for our three-layer model. For a large number
of waves (m, n, ±), we compute

λ̄v = λv

JBz Sgn(ω)
, λvisc, λ̄vv = λvv

B2
z

, (3.3)

using our theory. The growth rate is then calculated a posteriori for varying J and Bz

using the formula λ = |λ̄v| JBz + λvisc + λ̄vvB2
z . For given Bz, instability occurs when the

current density exceeds a critical value J > Jc. According to our theory, this critical current
density is

Jc = −
λ̄vvB2

z + λvisc

|λ̄v| Bz

. (3.4)

In figure 4(a), we show some theoretical marginal stability curves in the plane J ∈
[0, 10 000] A m−2, Bz ∈ [0, 0.1] T. In this part of the parameter space, we find only
unstable (m, 1, −) waves. Waves with higher radial label, n > 1 or + waves from the
fast branch are stable. The large-scale sloshing wave (1, 1, −) is first destabilised, and
it is also the most unstable everywhere according to theory. This wave has frequency
ω− = 2.74 s−1, which corresponds to the value observed by Weber et al. (2017a,b). Its
amplitude ratio is ε− = −0.022, which means that the lower 2|3 interface is practically
undeformed, as expected. In figure 4(b), we show the growth rate λ of this (1, 1, −) wave
in the J–Bz plane. The shape of this growth rate diagram is similar to what we have seen
in H19 and in Nore et al. (2021). Magnetic fields as high as Bz = 0.1 T are very unlikely
in reality, but allow us to see the possibly stabilising effect of magnetic damping.
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Figure 4. Three-layer theory applied to the small Mg‖Sb cell of Weber et al. (2017a,b). (a) Marginal stability
curves for various waves in the J–Bz plane. (b) Growth rate λ (s−1) of the dominant, fundamental sloshing
wave (1, 1, −) in the J–Bz-plane. Numerical growth rate measurements are available along the red line with
Bz = 10 mT.

The simulations of Weber et al. (2017a,b) were done with OpenFOAM. We have done a
small number of complementary simulations of the same set-up using SFEMaNS. These
simulations confirm that the (1, 1, −) wave is the most destabilised wave. A snapshot from
a simulation with J = 10000 A m−2 and Bz = 10 mT is shown in figure 5(a). We show the
deformed interfaces, together with the flow intensity and some streamlines for the current
perturbation jtot − Jez. The bottom 2|3 interface is indeed almost undeformed. Over time,
this entire pattern rotates in the positive +eθ direction, in agreement with (2.35): JBz >

0, and for this wave Ξ = −2.39 < 0. In figure 5(b), we compare the theoretical growth
rates to the numerical values measured in our simulations and to those reported by Weber
et al. (2017a) for Bz = 10 mT and variable J. For this rather low Bz, magnetic damping
is almost negligible with respect to viscous damping (λvv = −0.00389 s−1 compared to
λvisc = −0.0674 s−1).

Overall, the three-layer theory agrees well with the numerical simulations for this
Mg‖Sb battery, but it is not better than the two-layer theory (see figure 14-b in H19).
As in H19 and Nore et al. (2021), the theory suggests slightly larger growth rates. Viscous
dissipation is a bit higher in the simulations, and a small part of that extra damping is due
to numerical dissipation.

3.2. The three-layer simulations of Horstmann et al. (2018)

As explained by Horstmann et al. (2018), not all LMBs behave as two-layer systems. When
the density jump ratio is D = �ρ12/�ρ23 ≈ 1, interfaces are coupled, and all three layers
can then participate in the wave motion. We apply our theory to the three-layer set-ups
studied numerically by Horstmann et al. (2018). The fluid layers have the same sizes as in
the previous section:

(R, H1, H2, H3) = (0.05, 0.045, 0.01, 0.045) m. (3.5)
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Figure 5. (a) Snapshot of a (1, 1−) wave that grows in a small Mg‖Sb battery simulated using SFEMaNS with
J = 104 A m−2 and Bz = 10 mT. We visualise the interfaces, the flow intensity and lines of the current density
perturbation jtot − Jez associated with the wave. (b) Growth rate of the instability as a function of current
I = JπR2 for fixed Bz = 10 mT. The theory compares well to growth rates measured in numerical simulations
done with OpenFOAM and SFEMaNS.

Material properties are allowed to vary more freely, i.e.

(ρ1, ρ2, ρ3) = (variable, 3000, 3500) kg m−3,

(σ1, σ2, σ3) = (106, 500, 106) S m−1,

(ν1, ν2, ν3) = (6.7, 6.7, 6.7) × 10−7 m2 s−1,

⎫

⎬

⎭
(3.6)

and do not reflect an actual type of LMB. In their simulations, Horstmann et al. (2018)
varied the top-layer density ρ1 ∈ [500, 2950] kg m−3. The external magnetic field was
held fixed at Bz = 10 mT, and the total imposed current I = JπR2 was varied in the
interval I ∈ [0, 500] A. All simulations were done with a small surface tension γ1|2 =
γ2|3 = 0.1 N m−1, which affects the waves only weakly and hence is ignored in our theory.

As the density ρ1 and applied total current I vary, different unstable waves can be
observed in the simulations; see figure 6. In figure 6(a), we show the theoretical periods
T = 2π/ω of the waves (1, 1, +) and (1, 1, −) as functions of �ρ12/�ρ23, along with
the numerically measured periods in the late-time state. For both low and high values of
�ρ12/�ρ23, it is evident that the (1, 1, −) mode is observed. For values of �ρ12/�ρ23
close to 1, the fast mode (1, 1, +) is the one that is observed at late time. The inset
figures show the typical interface deformations that are observed in the simulations. In this
diagram, information on the value of the current I is lacking. In figure 6(b), we locate the
simulations that found unstable waves in the �ρ12/�ρ23–I plane, using a + symbol when
a (1, 1, +) wave was observed, and a − symbol when a (1, 1, −) wave was observed. We
clearly see the interval of dominance of each wave mode, and also that unstable (1, 1, +)

waves require significantly higher currents of order 400 A to appear in the simulations.
Let us now apply our theoretical model. We compute the numbers λ̄v, λvisc, λ̄vv for

both waves (1, 1, ±) and for varying ρ1 ∈ [500, 2950] kg m−3. We then use (3.4) to
calculate the critical current Ic = πR2Jc for both waves as a function of ρ1. These critical
currents define the marginal stability curves that are visible as solid lines in figure 6(b).
One can notice immediately that the marginal instability curves move up to very high I

when �ρ12/�ρ23 ≈ 1. All numerical simulations that yield (1, 1, −) modes are above
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Figure 6. (a) The period T = 2π/ω of the unstable wave in the simulations of Horstmann et al. (2018) varies
with �ρ12/�ρ23 and suggests that both (1, 1, −) and (1, 1, +) wave modes can be selected. (b) Phase diagram
in which we locate MPR-unstable simulations in the �ρ12/�ρ23–I plane: + for the (1, 1, +) wave, and −
for the (1, 1, −) wave. The solid lines correspond to the theoretical marginal instability curves of the (1, 1, ±)

waves. Cyan vertical lines indicate frontiers between different selected wave patterns according to the numerics
(solid lines) and our linear stability theory (dotted lines).

the theoretical marginal stability line. For (1, 1, +) modes, this is often the case but not
always. The theoretical �ρ12/�ρ23 interval where the (1, 1, +) wave is dominant (the
distance between the cyan dotted lines) is significantly narrower than what is observed in
the simulations (the distance between the cyan solid lines). The transition from (1, 1, −)

to (1, 1, +) modes near �ρ12/�ρ23 ≈ 1.4 is surprisingly well reproduced by the theory.
In figure 6(b), we have compared late-time nonlinear states with linear stability

characteristics. This obviously make little sense when the nonlinear evolution that leads
to the late-time state is complex. Complex nonlinear transitions are observed in all the
numerical simulations that result in (1, 1, +) waves. In figure 7, one can see an example
of such a transient in the simulation with I = 450 A, �ρ12/�ρ23 = 1. We show the
difference between the maximal and minimal interface deformations as a function of time,
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Figure 7. Time series of interface deformation (OpenFOAM) and modal kinetic energy (SFEMaNS).
(a) Example of nonlinear transition towards a state in which the (1, 1, +) wave dominates (I = 450 A,
ρ1 = 2500 kg m−3, Bz = 10 mT). Growth rates cannot be measured here. (b,c) For lower currents, we can
measure growth rates using exponential fits on the maximal interface deformation in OpenFOAM or modal
kinetic energy in SFEMaNS (I = 200 A, ρ1 = 1000 kg m−3, Bz = 10 mT). (a) Complex nonlinear transition,
�ρ12/�ρ23 = 1; (b) OpenFOAM fit; and (c) SFEMaNS fit.

on both 1|2 and 2|3 interfaces. After an initial rapid growth of an axisymmetric bulge
that was described in Horstmann et al. (2018), the signal gradually decays to settle into
a low-amplitude, symmetrical (1, 1, +) wave at late time (t > 300s). This transition is
clearly too nonlinear for linear stability theory to make much sense. For lower currents
I = 200 A, we have observed much simpler weakly nonlinear dynamics, in which a clear
phase of exponential growth leads to a saturated (1, 1, −) wave. For these simulations,
we can obtain growth rate measurements. In OpenFOAM, we have done exponential fits
on the maximal interface deformation data that are slightly noisy; see figure 7(b) for
an example. In SFEMaNS, we use a Fourier representation along the azimuth, and this
allows us to follow the growth of weak non-axisymmetric waves through modal kinetic
energies, per azimuthal wavenumber m. Exponential fits on these data provide very precise
measurements of the numerical growth rates; see figure 7(c).
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W. Herreman and others

ρ1 �ρ12/�ρ23 λ (theory) λ (OpenFOAM 1|2 fit) λ (OpenFOAM 2|3 fit) λ (SFEMaNS)

500 5 0.110 — — 0.090
1000 4 0.098 0.093 ± 0.02 0.11 ± 0.01 0.084
2750 0.5 0.081 — — 0.074
2800 0.4 0.139 0.168 ± 0.008 0.144 ± 0.02 0.131

Table 1. Comparison of the theoretical growth rate λ (s−1) with numerically measured growth rates, for
different values of ρ1 (kg m−3), I = 200 A and Bz = 10 mT. Other geometrical and material parameters are
specified in (3.6).
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Figure 8. (a) Growth rate of various waves (m, 1, ±) as a function of �ρ12/�ρ23 for I = 200 A and several
numerical measures. Near �ρ12/�ρ23 ≈ 1, there is a gap where all waves are stable. Data points from
OpenFOAM simulations in white and black dots; data points from SFEMaNS simulations in red squares.
(b) The relative dissipationless growth rate |λv |/JBz as a function of �ρ12/�ρ23 vanishes near �ρ12/�ρ23 ≈ 1.

In table 1, we gather the numerically measured growth rates and we compare them to
the value estimated by our theory. As can be seen, the numerical growth rates match fairly
well the theoretical growth rate values. As in H19, we see small differences between both
solvers, OpenFOAM and SFEMaNS. In figure 8(a), we add these numerically measured
growth rates on a background of theoretical growth rate lines for various waves and
as a function of �ρ12/�ρ23 (OpenFOAM fit in white and black dots, SFEMaNS fit
in red squares). The quantitative agreement with theory can be appreciated visually.
According to theory, the (1, 1, −) wave is the most unstable one over the entire �ρ12/�ρ23
interval. It is interesting to notice here that other waves (m, 1, −), with higher azimuthal
wavenumber m, are also destabilised at approximately similar rates when �ρ12/�ρ23 < 1.
Near �ρ12/�ρ23 ≈ 1, there are no unstable waves for this value of current, I = 200 A.

The existence of a ‘forbidden’ region is certainly not due to an increased dissipation.
Rather, it is a consequence of the fact that the dissipationless growth rate λv vanishes at
some point near �ρ12/�ρ23 ≈ 1. This can be seen better in figure 8(b), which shows the
relative dissipationless growth rate |λv|/JBz for various waves as a function of �ρ12/�ρ23.
Each wave has a unique value of �ρ12/�ρ23 for which λv = 0. Most slow branches
(−) reach 0 at �ρ12/�ρ23 ≈ 1. Most fast branches (+) vanish near �ρ12/�ρ23 ≈ 0.8.
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Stability theory for metal pad roll

Notice that the fact that λv can be zero also explains why the marginal stability curves
in figure 6(b) went up so high. Interestingly, we also understand better why the (1, 1, +)

wave can be the most unstable one near �ρ12/�ρ23 ≈ 1: the (1, 1, −) wave has a nearly
vanishing λv there.

We now show that the existence of weak instability regions in our theory relates to the
opposing power transfers that were mentioned in the discussion of figures 2(b) and 2(c).
To show this more precisely, we start by looking back at the theoretical formula (2.34) for
λv . In the present set-up, with H1 = H3, we can simplify the factor Ξ to

H1 = H3 : Ξ = 1

2
(ε2 − 1)

[

1 + 1

tanh(kH2)

(
kH1

sinh2(kH1)
+ 1

tanh(kH1)

)]

. (3.7)

This means that in this cell with H1 = H3, we can have Ξ = 0 or λv = 0 when the
interfaces are deformed in exactly symmetrical (ε = +1) or antisymmetrical (ε = −1)
ways. Using the theoretical expression (2.16) of the amplitude ratio ε, we can identify for
which values of ρ1 we have ε± = ±1:

wave (1, 1, −) : ε−= − 1 for ρ1 ≈ 2523 kg m−3, �ρ12/�ρ23 = 0.954, (3.8a)

wave (1, 1, +) : ε+= + 1 for ρ1 ≈ 2610 kg m−3, �ρ12/�ρ23 = 0.78. (3.8b)

These values indeed coincide with the points where λv = 0 in figure 8(b). Let us now
rewrite the integral expression λv = Pv/2K as

λv =
∑

i=1,2,3

∫

Vi

pi dV, with pi =
û∗

i · (ĵi × Bz)

2K
. (3.9)

In this formula, the field pi is a normalized power density. If pi > 0, then the Lorentz
force is locally pointing in the direction of the instantaneous flow and hence locally
magnifying the wave. If pi < 0, then the Lorentz force is, on the contrary, opposing the
instantaneous flow, hence it will locally damp the wave.We show the spatial distribution
of pi/JBz in meridional planes for both types of waves (1, 1, −) in figure 9(a), and
(1, 1, +) in figure 9(b), and for these very particular values of ρ1 that yield λv = 0.
We observe perfectly antisymmetric distributions of power density that will cause
λv =

∑

i=1,2,3

∫

Vi
pi dV = 0. When λv = 0, this indeed means that the Lorentz force is

destabilising in one half of the cell, but stabilising in the other half. In other cells with
H1 /= H3, a similar balance of power can yield λv = 0, but not with ε± = ±1 exactly, and
for values of �ρ12/�ρ23 that can be different for each wave.

We conclude that our three-layer stability theory describes well the simulations of
Horstmann et al. (2018). We cannot always explain why the (1, 1, +) wave appears in the
late-time state of the simulations since this is also the result of more complex nonlinear
dynamics. On the growth rates that we were able to measure, we have reached quantitative
agreement.

3.3. A cylindrical version of the Na‖Bi cell of Tucs et al. (2018a)

Tucs et al. (2018a) study MPR instability inside discharging Na‖Bi cells with square
cross-section and lateral sizes Lx = Ly = 0.2 m. Square and cylindrical cells are very
comparable for what concerns the MPR instability, because the rotating waves (1, 1, ±)

of the cylindrical cell are similar to the most unstable superposition of standing waves
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Figure 9. The normalized power density pi is perfectly antisymmetrical in the special case of a vanishing
dissipationless growth rate. We show pi/JBz in the meridional plane of the cell of Horstmann et al. (2018)
when λv = 0 exactly: (a) for the slow (1, 1, −) wave with ε− = −1 at ρ1 = 2523 kg m−3; (b) for the fast
(1, 1, +) wave with ε+ = 1 at ρ1 = 2610 kg m−3.

in squares, often labelled (1, 0) + (0, 1) there. Therefore, we have found it interesting to
apply our stability model to a cylindrical version of the cells studied by Tucs et al. (2018a).
The geometry of our cylindrical equivalent is

(R, H1, H2, H3) = (0.2/
√

π, variable, 0.01, variable) m. (3.10)

Our cell has the same cross-section as that of Tucs et al. (2018a). We consider
MPR instability in the interval H1 ∈ [0.02, 0.05] m, with H3 = 0.07 m − H1. Material
properties are

(ρ1, ρ2, ρ3) = (831, 2540, 9720) kg m−3,

(σ1, σ2, σ3) = (3.5 × 106, 200, 0.69 × 106) S m−1,

(ν1, ν2, ν3) = (0.26, 0.67, 1.1) × 10−6 m2s−1.

⎫

⎪
⎬

⎪
⎭

(3.11)

As in Tucs et al. (2018a), we send a total current I = −130 A through the cell, equivalent to
current density J = −3250 A m−2. We vary the magnetic field Bz. Our electrical boundary
conditions on the side and the top and bottom plates are also identical to those of Tucs
et al. (2018a). Our modelling of the viscous damping is, however, very different from that
of Tucs et al. (2018a): they use the classical shallow fluid layer friction formula of Landau
& Lifshitz (1987) that excludes damping in interfacial boundary layers.

In figure 10, we show the theoretical growth rate λ of a function of H3 for two different
values, Bz = 1mT and Bz = 30 mT. Solid lines show the general non-shallow theory, and
dashed lines correspond to the shallow limits derived in § A.1. A shallow description is
clearly adapted to this cell. For the low value Bz = 1 mT that was used by Tucs et al.

(2018a) (figure 10a), our theory indicates a stable cell: all waves have λ < 0 for all values
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Figure 10. Theoretical growth rates λ as functions of H3 for various waves in the cylindrical version of the
Na‖Bi cell of Tucs et al. (2018a). The general theory (solid lines) is well approximated by the shallow limit
formulas (dashed lines). (a) With low Bz = 1 mT, we do not find unstable waves. (b) A high magnetic field
Bz = 30 mT is necessary to destabilise a (1, 1, −) mode, and only in cells with large enough H3. The red square
is a data point from an SFEMaNS simulation that is reasonably close to the theoretical curve.

of H3. According to our theory, MPR instability needs magnetic field intensities that are
at least 13 times higher for the cell to become unstable in the studied H3 interval. In
figure 10(b), we show the growth rate diagram with Bz = 30 mT. For this significantly
higher Bz, the magnetic damping term λvv is not negligible. Our theory suggests a stable
cell for low H3 and an unstable cell for large H3. This wave has ω− ≈ 3.5 s−1 over
the entire H3 interval, which yields f = ω/2π ≈ 0.56 Hz as frequency, a value that is
remarkably close to the 0.55 Hz observed in the square cell by Tucs et al. (2018a).

According to our theory, the cylindrical version of the Na‖Bi cell is much less unstable
than the comparable square cell of Tucs et al. (2018a). This may be due to the fact that
Tucs et al. (2018a) have used a viscous damping formula that is perhaps not really adapted.
We have done a small number of direct numerical simulations using SFEMaNS to check
our theoretical predictions. DNS of this set-up are incredibly difficult, because they need
to be very finely resolved. Boundary layers in which damping occurs have an estimated
width

√
ν/ω ≈ 0.5 mm. We use meridional grids that have minimal mesh sizes that reach

this fine scale, which is more than 200 times smaller than the radius R of the cell. To
handle this fine spatial resolution, we need time steps that are smaller than 0.4 ms, which
means that we need no fewer than 5000 steps per wave period (≈ 2 s). By initialising the
calculation with the expected rotating wave, we are able to catch the exponential growth on
a total integration time that covers only 10 rotation periods. For the set-up with H3 = 5 cm,
this yields a growth rate measure of about λ = 0.063 s−1. This data point is added in
figure 10(b) and is reasonably close to the theoretical line, which is reassuring for our
model.

3.4. Critical magnetic field Bz,c for 105 A cells

Tucs et al. (2018b) formulate an MPR stability theory for shallow large-scale LMBs. In one
of their numerical applications, they consider a rectangular cell with lateral sizes Lx =
8 m and Ly = 3.6 m. Fluid layer heights are fixed at (H1, H2, H3) = (0.2, 0.04, 0.2) m.
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W. Herreman and others

Cell no. Type (ρ1, ρ2, ρ3) in kg m−3 �ρ23/�ρ12

1 Li‖Te (489, 2690, 5782) 1.40
2 Na‖Sn (801, 2420, 6740) 2.67
3 Li‖Bi (488, 2690, 9800) 3.23
4 Li‖Pb (488, 2690, 10 463) 3.53
5 Na‖Bi (831, 2549, 9720) 4.17
6 Li‖Zn (488, 1628, 6509) 4.28
7 Li‖Sn (495, 1644, 6877) 4.55
8 Ca‖Sb (1401, 1742, 6270) 13.28
9 Ca‖Bi (1434, 1803, 9720) 21.46
10 Mg‖Sb (1577, 1715, 6270) 33.01

Table 2. Densities of the different layers and density jump ratio �ρ23/�ρ12, for the different LMBs studied
by Tucs et al. (2018b).

A total current I = 105 A passes through the cell, which is equivalent to current density
J = 3472 A m−2. These numbers are inspired by typical values for industrial aluminium
reduction cells. Viscosity is held fixed at νi = 10−6 m2 s−1 everywhere. Ten different
types of LMB using different metal–electrolyte–alloy combinations are compared, and,
in table 2, we recall the densities of the three layers in those LMB types (data from
Horstmann et al. 2018). For each of these LMBs, Tucs et al. (2018b, figure 7) calculate
a critical vertical magnetic field Bz,c for the onset of MPR instability.

Rectangular and cylindrical cells are different, but we have found it interesting to see
what a similar critical magnetic field diagram would look like according to our theory.
We use the same heights of fluid layers (H1, H2, H3) and the same total current I. Fixing
R =

√

LxLy/π = 3.03 m, our cylindrical cell has the same cross-section so we also have
the same current density J. For a large variety of waves (m, n, ±), we calculate the relative
dissipationless growth rate λ̄v = λv/JBz and the viscous damping λvisc. Magnetic damping
λvv can be ignored here because the fields Bz are very low. We can estimate theoretically
the critical magnetic field for the onset of MPR instability of a particular wave (m, n, ±)

in this hypothetical large-scale cell as

Bz,c = − λvisc

|Jλ̄v|
. (3.12)

We minimize this Bz,c over all waves, and this defines our critical magnetic field intensity.
In figure 11, we show this minimal Bz,c as a function of density jump ratio �ρ23/�ρ12,
for the ten different types of LMB. We use a symbol + when the (1, 1, +) wave is the
first to be destabilised, and a symbol − when it is the (1, 1, −) wave. Typical values of
the critical Bz,c are everywhere found within the 0.1–1.2 mT range, and surprisingly close
to the values given by Tucs et al. (2018b, figure 7) despite the geometrical differences.
Here, Bz,c is the lowest for the Mg‖Sb cell, which is not really surprising considering
that this type of LMB has the lowest density difference between the top layer and the
salt: �ρ12 = 138 kg m−3. Deforming this interface simply requires less Lorentz force, and
this explains the lower threshold. Cell 1 with the exotic combination Li‖Te (improbable
in a large-scale device) is the only one to have a symmetrical (1, 1, +) wave as the first
destabilised one. Interestingly, this cell also has the ratio �ρ23/�ρ12 closest to unity.
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Figure 11. Critical magnetic field Bz,c for the onset of MPR instability in large-scale cylindrical LMBs of
ten different types (see table 2) that alter the density jump ratio �ρ23/�ρ12. Symbols ± indicate that either
(1, 1, ±) can be the first destabilised waves. Here, (R, H1, H2, H3) = (3.03, 0.2, 0.04, 0.2)m and I = 105 A.

3.5. Domains of stability in a radius–current density diagram

Rather than using the magnetic field to express the instability threshold, we can also
estimate the domain of stability of a cell with fixed layer heights in a R–J plane. This
allows us to measure the critical size of a cell operating with a given current density in
a worst-case scenario. Let us give an example. We fix (H1, H2, H3) = (0.2, 0.04, 0.2) m
as in the large-scale study of Tucs et al. (2018b). We vary R ∈ [0.1, 5] m. Rather than
taking some ad hoc, fixed value of Bz, we take into account that the magnetic field Bz

will somehow need to be generated by the wires that bring the total current I = JπR2 to
the cell. In the worst-case scenario, this magnetic field can be of order Bz ≈ μ0I/2πR ≈
μ0JR/2 (field at distance R from a wire carrying current I). The vertical field would then be
of the same order of magnitude as the azimuthal magnetic field Bθ created by the current
density. Using this estimate of Bz and the numbers λvisc and λ̄v = λv/JBz, we compute for
each wave and for each cell radius the critical current density as

Jc ≈
√

−2λvisc

|λ̄v|μ0R
. (3.13)

Magnetic damping is also ignored here. The wave with the lowest Jc defines the threshold,
and most often this is the slow mode (1, 1, −). In figure 12, we show this theoretical
threshold current density Jc for the different LMBs as a function of R. We observe a
power law Jc ≈ R−5/4 for large R. The Mg‖Sb LMB clearly is the one that is most
easily destabilised, closely followed by the Ca‖Sb and Ca‖Bi cells. In real LMBs, the
current density is limited. Maximal current densities that were used in experiments are
J = 3000 Am−2 for Mg‖Sb cells (Bradwell et al. 2012), J = 5000 A m−2 for Ca‖Sb cells
(Ouchi et al. 2014), and up to J = 10000 A m−2 for Li‖Pb(Sb) cells (Wang et al. 2014). In
figure 12, we have placed dots on the curves for these batteries for these maximal current
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Figure 12. Critical current density Jc for the onset of MPR instability in different types of LMB with varying
radius R, and fixed fluid layer heights (H1, H2, H3) = (0.2, 0.04, 0.2) m. We use a worst-case scenario estimate
for the vertical magnetic field, Bz ≈ μ0JR/2.

densities. We measure in their horizontal coordinates a critical radius

Rc =

⎧

⎨

⎩

0.49 m for Mg‖Sb cell,
0.43 m for Ca‖Sb cell,
0.51 m for Li‖Pb cell.

(3.14)

Considering that this is a worst-case scenario with maximal current density, we can expect
that batteries with R < Rc will remain stable. Furthermore, considering that cylindrical
cells are commonly the most unstable ones in any MPR theory, we can likely extend this
prediction to cells with arbitrary cross-section. For these values of H1, H2, H3 and these
three LMB technologies, we expect that cells smaller than typically one metre (≈ 2Rc)
in lateral extent will be stable. In our view, this is a valuable outcome of our academic
study because it tells us when MPR instability may be possible and when it is not.
Such information was previously unavailable in the literature. Stability diagrams for other
choices of H1, H2, H3 can be made easily with our Jupyter notebook in the supplementary
material.

4. Conclusion

We have presented a new linear stability theory for the metal pad roll (MPR) instability in
an idealised cylindrical liquid metal battery (LMB) with three layers of stacked fluids. This
theory extends the perturbative approach of H19 to the case of three layers, and produces
explicit formulas for the growth rate corrected with dissipation. These formulas are valid
near the threshold of instability.

Our stability theory correctly captures the growth rate of the rotating wave observed
by Weber et al. (2017a,b) in a cylindrical Mg‖Sb cell. A few new simulations done with
SFEMaNS also confirm this quantitative agreement. The Mg‖Sb cell, with its very low
density jump ratio (�ρ12/�ρ23 = 0.03), behaves much as a two-layer system. As pointed
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out by Horstmann et al. (2018), a density jump ratio �ρ12/�ρ23 ≈ 1 is needed to observe
different wave modes that involve all three layers, so it was interesting to compare our
three-layer theory to these simulations. All growth rates that we were able to measure in
numerical simulations match well with theory, but this always concerned the (1, 1, −)

mode. We could not compare quantitatively growth rates of (1, 1, +) modes, as these
modes always appeared through complex nonlinear transients. Our theory reproduces the
fact that different wave modes, symmetrical and antisymmetrical waves (1, 1, ±), can be
selected when �ρ12/�ρ23 is varied, but the theoretical interval in which the fast waves
(1, 1, +) dominate is smaller. This is likely due to nonlinearity. The changing mode
selection near �ρ12/�ρ23 ≈ 1 is the consequence of weak instability regions. Each wave
has its own particular value of �ρ12/�ρ23 close to 1 where its dissipationless growth rate
λv exactly cancels. When this happens, the Lorentz force is injecting as much power in one
fluid layer as it is withdrawing from the flow in the other fluid layer. While this idea of a
self-cancelling MPR instability in three-layer systems is physically appealing, it certainly
is anecdotic in most real LMBs. Except for the very special Li‖Te battery, most LMBs
have �ρ12/�ρ23 � 1, and we will be far away from weak instability regions. Overall, we
conclude that our new stability theory performs well on these cylindrical test cases.

We found it interesting to apply our stability model to several other thee-layer set-ups,
taking inspiration from previous studies on shallow rectangular and square section cells.
In a first application, we have considered a cylindrical analogue of the square Na‖Bi
cell of Tucs et al. (2018a) operated with the same total current I and same current
density J. According to our theory, a rotating wave with almost the same frequency can
be destabilised, but only with much higher imposed magnetic fields Bz. This may be
due to the supplementary interfacial damping terms present in our model but ignored
in Tucs et al. (2018a). In a second application, we estimated the critical magnetic field
that would be needed to destabilise a hypothetically large shallow 105 A cylindrical cell,
and we found that it is of the order of Bz = 0.1–1 mT, for several known LMB material
combinations. Despite the fact that cylindrical cells of this size are absolutely unlikely, we
find it interesting to see that the critical magnetic field values still are very comparable to
those given by Tucs et al. (2018b) for a rectangular 105 A cell. This suggests that viscous
dissipation is not so negligible in defining the threshold of instability. In a third numerical
application, we have shown how our theory allows us to compute worst-case scenario
stability diagrams. Combined with actual limitations on current density in LMBs, we have
shown how our theory can be used to compute a critical cell size beneath which we expect
cells to be stable.

In the end, we would like to remember that our theory was made for an academic cell and
with a lot of assumptions. Hence it should not be taken too far out of context. If large-scale
LMBs ever come to be, then they will surely not be cylindrical, and the external magnetic
field Bz will also not be homogeneous. Metal pad roll instability will be in competition with
many other types of flows (thermal and solutal convection, electro-vortex flow, Marangoni
flow; see Kelley & Weier (2018) for a comprehensive review). Capturing all this extra
complexity requires more advanced models and more applied studies that we leave to the
future.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.238.
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Appendix A. Special limits of the theory

The perturbation theory can be simplified in particular limits. The shallow limit, where
all three layers are very thin with respect to the wavelength (or R), would be particularly
interesting for large-scale shallow LMBs. The deep–shallow–deep limit is also interesting,
mainly because the theoretical formulas are significantly simpler.

A.1. Shallow-layer limit

All our theoretical formulas for ω, ε, λv, λvisc, λvv can be written in a shallow limit for
which kHi � 1. For all but the magnetic damping term λvv , it is sufficient to replace

sinh(kHi) ≈ kHi, cos(kHi) ≈ 1, tanh(kHi) ≈ kHi (A1a–c)

in the general formulas (we do not write the lengthy expressions that are found here). In
the shallow limit, we can use

λvv = ω2

gk

(
σ1B2

�ρ12 + ε2 �ρ23

1

kH1
+ σ3B2

�ρ12 + ε2 �ρ23

ε2

kH3

)(

−1

2
+ m

k2R2 − m2

)

(A2)

as the magnetic damping formula. We have used these shallow-limit formulas to create the
dashed lines in figure 10 that clearly converge towards the general theory.

A.2. Deep–shallow–deep limit

The theoretical formulas take particularly simple forms in the limit of a shallow electrolyte
layer and deep top and bottom layers. Using

ρ̄12 ≈ ρ1 + ρ2

kH2
, ρ̄23 ≈ ρ3 + ρ2

kH2
, (A3a,b)

we find that ω2
± for the slow and fast branches reach the leading-order limits

ω2
− ≈ �ρ12 �ρ23 gk

ρ2 �ρ13
kH2, ω2

+ ≈ �ρ13 gk

ρ1 + ρ3
= ω2

13. (A4a,b)

Here, we write �ρ13 = ρ3 − ρ1. The slow wave branch is gradually approaching zero as
kH2 → 0, whereas the rapid branch tends towards the dispersion relation of the two-layer
fluid system with liquid 1 above liquid 3. Along with these branches, we find the amplitude
ratios

ε−≈−�ρ12

�ρ23
, ε+≈1 + kH2

(
ρ1 �ρ23

ρ2 �ρ13
− ρ3 �ρ12

ρ2 �ρ13

)

. (A5a,b)

As in Horstmann et al. (2018), the amplitude ratio of the fast waves is ε+ ≈ 1, which means
that the upper and lower interfaces are similarly deformed. We need the O(kH2) correction
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Figure 13. Comparison of deep–shallow–deep (dsd) limit formulas for the dissipationless relative growth rate
|λv/JBz| (dashed lines) to the general theory (solid lines) and for two different geometries: (a) the cell of
Horstmann et al. (2018), with (R, H1, H2, H3) = (5, 4.5, 1, 4.5) cm; (b) a cell with taller metal zones and a
thinner electrolyte layer, with (R, H1, H2, H3) = (5, 7, 0.1, 7) cm. Material properties are as in (3.6).

in ε+ to compute the leading-order dissipationless growth rate that we find as

λv,− ≈ m

κ2
mn − m2

JBz√
g

1√
H2

�ρ12 − �ρ23

2
√

ρ2 �ρ12 �ρ23 �ρ13
, (A6a)

λv,+ ≈ m

κ2
mn − m2

JBz√
g

√
k

√

�ρ13

ρ1 + ρ3

ρ1 �ρ23 − ρ3 �ρ12

ρ2 �ρ2
13

. (A6b)

These formulas show more clearly when the dissipationless growth rate can be very
small. Slow waves are weakly destabilised near �ρ12/�ρ23 = 1. Fast modes are
weakly destabilised near �ρ12/�ρ23 = ρ1/ρ3. Far away from these values, we see that
λv,+/λv,− ∼

√
kH2 � 1, and this suggests that slow waves will generally be the more

unstable ones, except in the immediate vicinity of �ρ12/�ρ23 = 1.
In figure 13, we compare the general theory to the deep–shallow–deep limit. We

show the relative dissipationless growth rate |λv/JBz| for the cells of Horstmann et al.

(2018) with variable ρ1 ∈ [500, 2950] kg m−3 and (ρ2, ρ3) = (3000, 3500) kg m−3.
In figure 13(a), we see that in the original set-up with fluid layers of dimensions
(R, H1, H2, H3) = (5, 4.5, 1, 4.5) cm, MPR instability is not so well modelled by this
deep–shallow–deep limit, although we have the correct tendency. With taller top and
bottom layers, and a thinner electrolyte, say (R, H1, H2, H3) = (5, 7, 0.1, 7) cm, the
deep–shallow–deep limit is very well adapted; see figure 13(b).
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