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THE EXTENDED HAAGERUP FUSION CATEGORIES

BY PiNnHAS GROSSMAN, Scort MORRISON, Davib PENNEYS,
EmMiLy PETERS anD NoaH SNYDER

ABSTRACT. — We show there are exactly four fusion categories in the Morita equivalence class of
the Extended Haagerup (£H) subfactor, and a unique Morita equivalence between each pair. The EH
subfactor corresponds to the Morita equivalence between £H1 and £H;. The new categories EH3 and
EH4 give new exotic subfactors. The £H categories are the only known fusion categories unrelated to
(quantum) groups or Izumi quadratic categories.

To construct EH3 and EH4, we give a general computational recipe to construct fusion categories
in the Morita equivalence class of a subfactor. We show that subfactor planar algebra embeddings
from P, into graph planar algebras are equivalent to pivotal module C* categories over Po. We
construct EH3 and £H4 by embedding the EH planar algebra inside the graph planar algebras of two
new graphs. This technique answers a long-standing question of Jones: which graph planar algebras
contain a given subfactor planar algebra?

REsuME. — Nous montrons qu’il existe exactement quatre catégories de fusion dans la classe
d’équivalence au sens de Morita du sous-facteur « Extended Haagerup » (£H), et unicité de ’équi-
valence entre chaque paire. Le sous-facteur £H correspond a ’équivalence de Morita entre EH; et
EH,. Les nouvelles catégories EH3 et EH4 donnent de nouveaux exemples de sous-facteurs exotiques.
Les catégories EH sont les seules catégories de fusion connues qui ne sont pas reliées a un groupe
(quantique) ou a une catégorie quadratique d’Izumi.

Pour construire £H3 et EH4, nous élaborons une construction générale de catégories de fusion au
sein d’une classe d’équivalence de Morita d’un sous-facteur. Nous montrons que les plongements de
l’algebre planaire de sous-facteurs Po dans les algébres planaires de graphe sont en équivalence avec
les catégories de modules de pivot C* sur Ps. Nous construisons EH3 et EH4 en plongeant I’algebre
planaire EH dans les algébres planaires de deux nouveaux graphes. Cette technique répond a une
question de Jones de longue date : quelle algébre planaire de graphe contient une algébre planaire de
sous-facteur donnée?

0012-9593/02/© 2023 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2541
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590 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

1. Introduction

Group theory provides a unifying language for symmetries across classical mathematics,
but in many settings related to quantum mechanics, a more general notion of quantum
symmetry is required. One of the first appearances of this new kind of symmetry was in
the theory of subfactors, i.e., inclusions of von Neumann factors, developed by Jones,
Ocneanu, Popa, and others [56, 35, 78, 89, 90]. Here, the appropriate notion of ‘Galois
theory’ requires considering structures more general than groups. But such symmetries have
since appeared in many other places, most notably the representation theory of groups of Lie
type, polynomial link invariants, topological quantum field theory, conformal field theory,
and topological phases of matter. Tensor categories [24, 21] provide the modern language
to describe these more general quantum symmetries. Roughly speaking, a tensor category is
a category that looks like the category of representations of a group—namely, the category
has tensor products and duals. But critically, this tensor product can be noncommutative,
sothat X ® Y and Y ® X are not identified, and need not even be isomorphic. The simplest
and most widely studied tensor categories are fusion categories, which have strong finiteness
and semisimplicity properties analogous to the category of representations of a finite group
over a field of characteristic prime to the size of the group.

The most well-known examples of tensor categories come from Lie theory. Following
Drinfeld and Jimbo [19, 52], one can deform the universal enveloping algebra of a Lie
group, and the category of representations of this quantized universal enveloping algebra
is a tensor category. These are not fusion categories, because they are too large. For SL,,
Reshetikhin and Turaev constructed fusion categories built from these quantum groups
specialized to roots of unity [92], and this construction was generalized to classical groups
by Turaev-Wenzl [100] and all semisimple Lie groups by Andersen and Gelfand-Kazhdan
[1, 31]. The big question which motivates this article is whether there are examples of ‘exotic’
fusion categories which do not ‘come from’ quantum groups at roots of unity [49]. This
is an inherently vague question, because there are many constructions (often of a group-
theoretical nature) that can be applied to a fusion category to get a new one. It is possible for
a fusion category to look exotic at first, but a later construction might provide a connection
to quantum groups. A version of this question was posed by Moore and Seiberg [70] in
1990. Even the simplest special case of this question, whether weakly integral fusion cate-
gories come from applying known constructions to the trivial fusion category Vec, remains
open [23].

The first ‘exotic’ examples which appeared to be unrelated to quantum groups came from
Haagerup’s small index subfactor classification program [44], namely the even parts of the
Haagerup and Asaeda-Haagerup subfactors constructed in [2] and the even part of the
Extended Haagerup subfactor constructed in [6] (after numerical evidence for existence was
given by [50]). However, with time, the first two of these three examples were shown to be
related to the more general story of Izumi quadratic fusion categories. ) Izumi generalized
the Haagerup subfactor to a possibly infinite family of quadratic 3¢ subfactors [S1, 26].
Recently in [38], Grossman-Izumi-Snyder found all fusion categories Morita equivalent

(D Tt is a very interesting open question whether these quadratic categories can be constructed from quantum groups
via Evans-Gannon’s conjectural grafting process [26, 37].
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THE EXTENDED HAAGERUP FUSION CATEGORIES 591

to the Asaeda-Haagerup fusion categories, and discovered that one is an Izumi quadratic
category. Thus the only known examples of fusion categories which appear unrelated to
quantum groups at roots of unity or Izumi quadratic categories are the Extended Haagerup
fusion categories.

The Extended Haagerup subfactor gives a Morita equivalence between two unitary fusion
categories called EH; and EH,. The goal of this paper is to find all fusion categories Morita
equivalent to these fusion categories. We find two new fusion categories, seven new subfactors
(along with their duals and reduced subfactors—see Section 2), and several interesting new
intermediate subfactor lattices. Unlike in the Asaeda-Haagerup case where one of the new
categories was a quadratic category, in the Extended Haagerup case neither new category
has nontrivial invertible objects and so neither can be a quadratic category. This means
the Extended Haagerup fusion categories appear to be more exotic than the Haagerup and
Asaeda-Haagerup fusion categories.

THEOREM 1.1. — There are exactly two further fusion categories in the Morita equivalence
class of EH1 and EH,, which we call EH3 and EH4. Between any two of these four fusion
categories, there is exactly one Morita equivalence.

For every choice of simple object in each of these Morita equivalences, we get a subfactor.
In addition to the original 7-supertransitive Extended Haagerup subfactor, we get two new
3-supertransitive subfactors: one is self-dual and comes from the Morita auto-equivalence
of £H5 and the other comes from the Morita equivalence between £H3; and EHy4. Their
principal graphs are:

and f—o—o—%, fﬁ—’—@ .

The structures of EH3 and £H4 are explained in more detail in Section 2. Neither appears
to be easily understood using any general techniques, but we encourage the reader to look
for a new way to construct them which could give a better understanding of the Extended
Haagerup subfactor.

The proof of the main theorem has two parts. On the one hand we need to limit the
possible fusion categories and Morita equivalences, and on the other hand we need to
construct the remaining possibilities. The former is an application of the techniques intro-
duced in [43], using combinatorial restrictions for compatible fusion rules for the hypothet-
ical fusion categories and bimodule categories.

We construct EH 3 and £H4 using a general graph planar algebra [57] technique for finding
module categories over any fusion category where we have a good skein theoretic description.
This technique can be viewed as a generalization of the Ocneanu cell technique for SU(n)
([79], [27], [87]) to arbitrary tensor categories with good skein theoretic descriptions. From
our combinatorial calculation we know that there is at most one module category over each

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



592 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

of EH, and EH, whose dual can be EH3 (or EH4). So if we can construct a module category
with the correct fusion rules, we will have a construction of EH3 (or £H4) as the commutant
category.

We can package £H; and EH, together with their Morita equivalence into a single
multifusion category which is the Extended Haagerup planar algebra. The fusion rules
for tensoring simple objects in a module with the single strand in Extended Haagerup
give a bipartite graph I". We prove a graph planar algebra embedding theorem for module
categories, which shows such module categories for this planar algebra correspond (up to
gauging and graph automorphism) to embeddings of the Extended Haagerup subfactor
planar algebra inside the graph planar algebra of I'. This generalizes the original graph
planar algebra embedding theorem [62] which only applied to the principal graphs.

THEOREM 1.2. — Suppose P. is a finite depth subfactor planar algebra. Let € denote
the unitary pivotal multifusion category of projections in Peo with distinguished object
X =1dy + € P1,+. There is an equivalence between:

1. Planar t-algebra embeddings Pe — GPA(I)e, where I is a finite connected bipartite
graph, and

2. indecomposable finitely semisimple pivotal left € -module C* categories M whose fusion
graph with respect to X is T.

This theorem answers a long-standing problem of Vaughan Jones: given a finite depth
subfactor planar algebra P., determine all bipartite graphs I' for which P. embeds
in GPA(T)..

By the skein theoretic description of Extended Haagerup in [6], in order to construct a
map from Extended Haagerup into a graph planar algebra, we need only to specify a number
for each loop of length 16 and check a large number of linear and quadratic equations in these
numbers.

THEOREM 1.3. — The Extended Haagerup planar algebra can be embedded into the graph
planar algebras of each of the following bipartite graphs:

I3 = and Ty = z>—o—o—T—o—o<

Thus, the existence of £H3 and EH4 is now a corollary to Theorems 1.2 and 1.3.

From our complete classification of module categories, we see that there are exactly four
graphs whose graph planar algebras take maps from the Extended Haagerup planar algebra:
the principal and dual principal graphs for the original subfactor, and the two graphs in
the previous theorem. (One may think of these embeddings as giving four independent
constructions of the Extended Haagerup subfactor planar algebra.)

Theorem 1.2 also connects the results of [86] and [42] to complete the classification of
graph planar algebra embeddings for the Haagerup planar algebra. In the last section of [86],
three embeddings of the Haagerup planar algebra into graph planar algebras were found,
corresponding to the two principal graphs and the ‘broom’ graph. However, it was not proven
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THE EXTENDED HAAGERUP FUSION CATEGORIES 593

there could not be others. The main result of [42] shows there are exactly three module
categories over the Haagerup subfactor planar algebra. Thus we have:

COROLLARY 1.4. — The Haagerup subfactor planar algebra embeds into GPA(T)e if and
only if T is one of the following:

( Haagerup principal graph)

@_._o_<<: (dual principal graph)

( ‘broom’ graph)

Here, the two unshaded vertices of the ‘broom’ graph correspond to the third Ho-module from
[42, Cor. 3.16].

Section 2 summarizes the combinatorial structure of the four Extended Haagerup fusion
categories and the Morita equivalences between them. In particular, we describe the fusion
rules for each fusion category, and give the principal and dual principal graphs for all the
subfactors coming from small objects in the bimodule categories. This section concludes with
a table of all lattices of intermediate subfactors coming from these fusion categories, which
can be read off from the fusion rules of the bimodule categories following [106, Cor. 2.4].
There are several particularly interesting examples: a (3,3)-supertransitive non-commuting
but cocommuting quadrilateral with indices (7.0283...,8.0283...), a (2,2)-supertransitive
non-commuting but cocommuting quadrilateral with indices (13.3305...,14.3305...),
and a hexagonal intermediate subfactor lattice whose lower and upper inclusions are the
7-supertransitive index 4.3772... extended Haagerup subfactor, and whose middle inclu-
sions are 2-supertransitive with index 13.3305... The first of these quadrilaterals is the
smallest known example of index above 4 in Class II of the Grossman-Izumi classification
[36] of highly supertransitive non-commuting quadrilaterals. It is striking that the smallest
examples in Class 11T and Class IV are respectively the Asaeda-Haagerup and Haagerup
subfactors.

The main goal of Section 3 is to prove Theorem 1.2. We begin by recalling some key
background about module categories, bimodule categories, Brauer-Picard groupoids,
and the Maximal Atlas. This background is used throughout the paper. We also recall
the relationship between module categories and functors ¥ — End(M). We then relate
End(M) to a version of graph planar algebra. We hope this exposition will make graph
planar algebra techniques accessible to readers with a background in tensor categories. In
particular, we prove a purely algebraic analogue of Theorem 1.2 directly from the action
map ¢ — End(M). In order to adapt this simple algebraic argument to prove Theorem 1.2,
we recall some technical background on the definition and classification of unitary pivotal
structures from [83], and the correct unitary pivotal analogues of module categories (anal-
ogous to [16] in the unitary non-pivotal case and [96] in the non-unitary pivotal case).
Note that the unitary pivotal version of this result is essential to our main results, because
the characterization of maps out of the Extended Haagerup planar algebra in [6] relies on
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positive definiteness in order to check more complicated skein relations based on only a few
simple skein relations.

In Section 4 we show that there are at most four fusion categories in the Extended
Haagerup Morita equivalence class and exactly one Morita equivalence between each pair
of categories in this class. Furthermore we determine all the fusion rules between objects
in each of these potential fusion categories and bimodule categories. This closely follows
the techniques introduced in [43] by computing compatible fusion rules for the hypothetical
fusion categories and bimodule categories.

In Section 5 we recall and slightly modify the characterization of maps out of the Extended
Haagerup planar algebra proved in [6]. We then prove Theorem 1.3, again following the
outline of [6].

The version of this paper on the ArXiv [41] also contains two appendices, not intended
for publication. The first online appendix gives an alternate construction of £H3 by directly
constructing a Q-system on 1 @& f© in the Extended Haagerup planar algebra using its
explicit embedding into the graph planar algebra of its principal graph. This approach does
not work for £H4 because the smallest Q-system yielding EH4 lives in too large a box space
for computer calculations to be feasible. The second online appendix outlines one promising
skein theoretic approach which could give a more natural description of EH3 and EHy.

Throughout the paper we will use the notation (X — Y) to denote the morphisms
between objects X and Y in the category €.

1.1. Acknowledgements

This work was completed at the 2016 and 2017 AIM SQuaRE “Classifying fusion
categories.” The authors would like to thank AIM for their hospitality, and the referee for
suggesting many improvements. NS and DP would like to thank André¢ Henriques and Corey
Jones for helpful conversations. In particular, André had an immense impact on the ideas
and results in Section 3. PG was supported by ARC grants DP140100732 and DP170103265.
SM was supported by Discovery Projects ‘Subfactors and symmetries” DP140100732 and
‘Low dimensional categories’ DP160103479, and a Future Fellowship ‘Quantum symme-
tries’ FT170100019 from the Australian Research Council. DP was supported by NSF DMS
grants 1500387/1655912 and 1654159. EP was supported by NSF DMS grant 1501116. NS
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2. Facts about the Extended Haagerup fusion categories

In this section, we describe the Extended Haagerup fusion categories from Theorem 1.1.
The logic here is somewhat convoluted; the statements of this section logically depend on the
later sections (and we’re careful not to use the statements here in those sections!). We have
decided to put this summary first in order to make the structure of these new fusion categories
as accessible as possible.

Recall that by the main results of this paper, there are exactly four unitary fusion categories
EH1, EH,, EH3, and EH 4 in the Extended Haagerup Morita equivalence class, and between
any two of these four, there is exactly one Morita equivalence.
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THE EXTENDED HAAGERUP FUSION CATEGORIES 595

Given any two invertible bimodule categories 4K and gL the composition 4K Xz gLy
is again invertible. But if we fix one invertible bimodule category in each equivalence class,
there may be several equivalences 4Kp Xg gLy — 4Me. More specifically, they form
a torsor for the group of invertible objects in the center of A. The center of the Extended
Haagerup fusion category has no nontrivial invertible objects [73]; indeed, £H; has no non-
trivial invertible objects, and the induction matrices computed in [73] show that only the
identity object forgets to 14, . Thus there’s a unique composition functor for each compos-
able pair of invertible bimodules between fusion categories in the Extended Haagerup
Morita equivalence class.

NotaTION 2.1. — For 1 <i, j <4, we denote by £H;; the unique invertible EH; — EH;
bimodule category, and notice that EH;; = EH;. One may view EH = (gHij)?’j=1 as a
single 4 x 4 unitary multifusion category.

We interpret the fusion ring EH := K((EH) for EH as a single ring whose basis consists
of the disjoint union of a set of representatives of simple objects Irr(EH;;) for each EH;;.
We denote by £ H;; the span of the set of representatives of simple objects in Irr(E€H;;), and
notice that EH;; = Ko(EH;). Of course the products of objects which are not composable
are declared to be zero; that is, £ H is faithfully graded by the standard system of matrix units
for M4(C).

Within each £H;; we order simple objects by increasing dimension, so Oikj denotes the kth
smallest simple object in £H;; (or, abusing notation, the corresponding basis element in the
Grothendieck ring). When there are duplicate dimensions the ties are broken arbitrarily.

We describe the fusion ring £H in the Mathematica notebook EHmult.nb, which is a
wrapper for the data file EHmult.txt, both of which are bundled with the arXiv sources
of this article. Therein, we supply a 6-dimensional tensor 7" whose (i, j, k, x, y, z)-entry is
the coefficient of the z-th basis element of E H;; in the product of the x-th basis element
of EH;; and the y-th basis element of £ H ;. On the level of categories, these coefficients are
the dimensions of Hom spaces between simple objects and tensor products of pairs of simple
objects. That is,

0} ® 0, = Pra.jk x.y.2)0;.
z

In this section, we gather information on all the Extended Haagerup fusion categories,
including fusion rules, the simplest Q-systems, and intermediate subfactor lattices.

We begin by recalling the well-known dictionary between finite index overfactors M of a
II; factor N and simple Q-systems (Endg_o(Q) = C) in Bim(N). Given such a subfactor
N C M, L?(M) € Bim(N) is a simple Q-system. Conversely, given a Q-system Q € Bim(N),
one can recover M directly as the bounded vectors in Q. This folklore result is certainly
known to experts (see, e.g., [68, 45], [54, 55], or [8, §4] for more details).

REMARK 2.2. — The relationship between unitary fusion categories and finite index,
finite depth subfactors has a difficult analytic part, and a well-understood algebraic part.
The difficult analytic part is, given a particular factor N, to understand all the ways a given
unitary fusion category ¢ can be realized as a category of N-N bimodules. This analytic
part clearly depends on which factor you look at. For the hyperfinite II; factor, this question
was completely answered by Ocneanu and Popa [78, 89] (see [46] for a complete proof in
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the language of unitary fusion categories based on the classification results of [98]), while
there are many interesting results for other factors [101, 102, 17, 28]. In this paper we only
address the algebraic part, i.e., understanding Q-systems in unitary fusion categories. Once
you realize € as a category of bimodules over a factor N, then one can apply the above
well-known dictionary to recover the associated subfactors.

Let us quickly recall how one can read off the Q-systems (or, in the algebraic setting,
separable algebra objects) from a tensor category and the module categories over it following
[67, 69, 75, 80]. Namely, if & is a unitary fusion category, M is a module category over
it, and m is a simple object in M, then the internal Hom m ® m gives a Q-system [77,
Thm. A.1]. Moreover, all irreducible Q-systems appear this way. ® See [38, §2] for a more
detailed summary. Since a finite index, finite depth subfactor N C M gives a unitary fusion
category with a Q-system, these are algebraic analogues of subfactors.

There are two key constructions which construct a new subfactor from an old one. First,
given a subfactor coming from a simple object m in a module category, one can keep the
same module category but change the choice of simple object. Provided m’ appears inside
a tensor power of m, this is called the reduced subfactor construction. Second, M gives a
Morita equivalence between % and the dual category End« (M), so there is a dual subfactor
coming from m as an object in M thought of as module over the dual category. Thus for
each bimodule category, choosing a favorite simple (typically the smallest one), all the other
subfactors coming from that bimodule arise as reduced subfactors after possibly taking the
dual subfactor. In our case there are 4 + (3) bimodule categories, three of which only involve
EH, and EH, and so were already known. This is why there are 7 genuinely new subfactors
in this article, plus their duals and their many reduced subfactors.

NotaTION 2.3. — Our convention for principal graphs of subfactors and fusion graphs
of fusion categories is that we always tensor on the right. In particular, the fusion graph
for X has dim(EH(A® X — B)) oriented edges between simples A and B. Later, in §4.4, we
will discuss fusion graphs for left module categories, which use the opposite convention.

Finally, we recall that a subfactor is k-supertransitive if there are no branches in the prin-
cipal graph before depth k; in particular a subfactor is 2-supertransitive if the corresponding
algebra object is of the form 1 & X with X simple.

2.1. Structure of £H;

The fusion rules for £H; (which is the dual even half of the Extended Haagerup subfactor)
are given by

@ More precisely, the 2-groupoid of algebra objects in €, algebra isomorphisms, and equalities is equivalent to
the 2-groupoid whose objects are pairs (M, m), 1-morphisms are pairs (F, f) where F : M — N is a module
equivalence and f : F(m) — n is an isomorphism, and 2-morphisms natural isomorphisms compatible with the
pointing isomorphisms f . In particular, for any invertible object g in the dual category, the internal endomorphisms
of the objects m and mg in M give isomorphic algebras. Since none of our fusion categories have non-trivial
invertible objects, this over-counting will not be relevant.
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Here we have given more informative names to the objects, corresponding to those used
in [6] rather than merely naming them Of.

The dimensions of the objects (f @, f®, £© P’ Q') are roughly (3.4,7.0,13.3,16.0,8.7),
and this determines the ordering used in the Of, notation. In particular O}, = 1,
0% = f@, 0}, = f®, 0 = Q' (as it has the next smallest dimension), 05, = f©,
and 0%, = P’

A Morita equivalence between 4" and D gives a braided equivalence Z (%) = Z(D). Any
such D is of the form A-mod for A a Lagrangian algebra in Z (%) [95, 22, 13]. In general there
might be several Lagrangian algebras yielding a given D, but in our case since the Brauer-
Picard group is trivial there is a unique Lagrangian algebra for each D. Using the notation of
[30] for the objects in the center Z(EH), the Lagrangian algebra giving £H; has underlying
object:

wo D w; G wry da; oy D as.
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2.2. Structure of EH,

The fusion rules for £H, (which is the principal even half of the Extended Haagerup

subfactor) are given by

® | @ F@ £
7@ ‘ 1o f@Dg @ @D g r@g r© fDew
0| O g g e 12IPe [PefPe
fPaew A®B®2W
@ g @
r© fPew STesTe lowWez
A®B®2W
P | Ae W f@eBo2w  fOgoez
0 | Bow fDeae2w  fOgrez
A P f®g0 fYeBaw
B | 0 f@ap fQosow
® | P 0 B
@ Bew AdW 0 P
@ f@eaeow f@eBew  fOer f©a0

f(6) ‘ f(G)@Q@Z

f®eprez [fDeoBew [fDodew

P | 1ePez fQ@ez  [@Peosaew [Dew
0| sr9ez le0®Z fPew [fPeoBeow
A ‘ f@Oaw fDoaew £©® 1@ P
B | f@eBew  fWew 1®0 f©

using the abbreviations W = f© 4+ P4+ Qand Z = A+B+ f@ +2f® +3r© 43P 130.

REMARK 2.4. — In the arXiv sources of this article [41, Appendix A], we give an alternate
construction of £H3 by constructing a Q-system on 1+ £(® in £H, whose dual category is

EHs. This construction is viable because

dim(Hom(f© ® f© — f©)) =4

is not too large.
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The dimensions of (f®, f®, f© P 0, A, B)areroughly (3.4,7.0,13.3,12.3,12.3,3.7,3.7),
which again determines the ordering in the O3, naming.

Since A and B = A have small dimension we also record the fusion graph for tensoring
with A and the principal graph for the corresponding subfactor. The fusion graph is:

v,
B——m— 0
1 / f(6) — f® f(2) .

A¢——— P

N

The corresponding subfactor 1 C AA has index roughly 13.3. It has the following

principal and dual principal graph. Notice that every simple appears twice—once as an even
vertex and once as an odd vertex.

@ A B o f(4)

@.1)

The Extended Haagerup subfactor planar algebra constructed in [6] (see §5) provides a
Morita equivalence between £H; and £H,. The generating object X in the Morita equiva-
lence is the smallest object O}, in the unique invertible bimodule category between these two
fusion categories. The principal graphs are

1 f(Z) f(4) f(6) L 4 1 f(2) f(4) f(6)
(2.2) b—O—O—O—O—O—O—C: .
0 B

Notice all even vertices are self dual except for A = B.

/

Q/

The Lagrangian algebra giving £H, has underlying object:

wo D w1 B wy D 201 D ay.
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2.3. Structure of £H;

The fusion rules for £H3 are as follows.
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® ‘ X g1 Y2
X | U 187> Vax W
X| 1en % XoVv
e \ W XoV loVewer, Uavew
Ys \ Vex Uavew 1&VeW oY,
U \ Xow WX UsVeweY, UaVeWaY
U2V @2W XoUa2V
V| Vewer VWY, SV WO PUOVS
X®Y1PY2 2W Y 1Y,
XoUa2V U2V ®3W
W | UsveweY, UsVewer PUOVS SV SN O
IWeY, Y, XPY8Y,
® | U y %
X \ Xow VoW aYs, UsVeweY;
X | W®X Vewer UaVeWwaY,
XaoUa2V U2V @3w
Y UsVeWaY, eUere VeI
QWY 160Y, XoY10Y>
U2V @2w XaoUa2V
Y> UsVeWaY; eV eUere
X®Y18Y, IWRY 1Y,
laUaV XoUa3V
U PUSV® U2V &3W Y, DYs eUeve
WeaY eY, IS XPY10Y>
16X D2U 4V XP3UP5V
V | US2Ve3WaY,aY, BLHIIAT D LTS
SWEX@2Y82Y,  6WaX@2Y 82V,
W XoUa3Voe X®3UB5V P 16X P3UDOV
IVOXDY10Y> WBX®2Y82Y,  TWEXB3Y183Y,

The dimensions of (X, X, Y1, U7V, W) are approximately (2.6, 2.6, 6.0, 6.0,7.0, 13.3, 15.9).

They are listed in the order 0%, 035, etc.
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The fusion graph for X € EH3 is given by

The principal graph of the subfactor corresponding to the algebra object X ® X € £H; is

given below. It has index roughly 7.0. Notice that each simple of £H3 appears twice—once
as an even vertex and once as an odd vertex.

X X

U U

Y,

% w w

1 XYL,V VY ¥ 1

Y,
2.3)

This paper establishes that £H3 is a categorification of the above ring, but we do not know
that this is the only such categorification. Thus in order to construct the Extended Haagerup
subfactor from an alternative proposed construction of £H3 one would need to do additional
work. Since the even parts of the Extended Haagerup subfactor are the only categorifications
of their fusion rings, it would be enough to construct a categorification of the £H3 fusion ring
plus an algebra structure on 1 U, and check that the fusion ring of the commutant category
corresponding to the algebra 1 @ U is the fusion ring of EH,.

We are able to list all Q-systems in EH3. The Q-system corresponding to O, has relatively
small dimension and its underlying object is 1 @ U. The dual algebra in this caseis 1 @ f©
in £H;. The index of this subfactor is approximately 14.3, and the principal graphs are:
(2.4)

P X
0 X
X @ X Y,
1 I F@ 1 v Y,
A U
B w

The Lagrangian algebra in Z(EH) giving £H3 has underlying object:
wo ® w1 © w2 S 201 S az.

Note that this is the same underlying object as the Lagrangian algebra corresponding to EH>;
the algebra structures must be different.
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2.4. Structure of EH4

We now turn to describing some of the combinatorial structure of £H4. The fusion rules

for £H4 are as follows.

® | z Z G H
168G HoK>d G@H@KléB
Z | GOKOKOL  pokel LeZ®Z KoLoZ
= 16GD HOK® GOHBK &
Z HOK &L CGOKIOKSL LOZDZ K,®L®Z
G HoOK & HOK>& 16GOH D GeH®K &
LOZ®Z LOZBZ Ki®K,®L K,oLoZDZ
" GOH®DK D GOHOK & GOHOK & 16GOHBK &
K;®L®Z K,®LaZ KeL®ZDZ K, ®P2LBZDZ
X HOK ® GOHOK & GOHOK O GOH®2K, &
! K>®2LBZ K:®LOZDZ K, ®2LBZ K, ®2LBZDZ
x| CeH8K® HOK® GOHOK® GOH®K &
2 KeLeZoZ Kr®2LDZ Kr®2LDZ 2K, ®2LDZDZ
I3 GOH®K D GOH®2K &P GOH®2K D GO2HP2K 1 ®
2K, 2LBZDZ  Kry®2LOZDZ 2K,P2LSZDZ 2K, PILSZDZ
® Ky K> L
7z GoOH®K & HOK® GOH®2K &
K@L®ZDZ K, ®2L®Z K, ®2LdZZ
VA HOK 1@ G@H@fl@ G@H@K_IEB
K, ®2LBZ K:®LOZDZ 2K, P2LDZDZ
G GOH®K D GOHOK & GOH®2K,®
K, ®2LBZ K, ®2LBZ 2K, ®2LBZDZ
H GOH®2K D GOHBK D GP2H®2K &
K®2LeZdZ 2K, ®2LBZDZ 2K, ®3LBZDZ
K 16GH2HDK, ® GOH®2K D 2GH2H D2K 1 P
U 2k,02L0 707 2K, ®D2LBZDZ 2K, ®3LBZD2Z
K GOHP2K D 1GH2HP2K1®  2GO2HP2K 1D
2 2K, 2L 77 K:®2LBZDZ 2K, ®3LB2ZDZ
L 2GD2H ®2K 1D 26GBE2HD2K D 1D2GP3HB3IK 1D
2K, ®3LB2ZDZ 2K, PI3LBZB2Z 3K, DALP2ZB2Z
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The dimensions of the objects (Z, Z.G,H K, K>, L) are approximately (6.3, 6.3,7.0, 8.6,
9.6,9.6, 13.3). These are already in increasing order, so the objects O}, appear in this order.

None of the objects in EH4 is small enough to have a nice fusion graph. The Q-system
corresponding to O}, does give a 3-supertransitive subfactor. The underlying object of this
Q-system is 1 @ G and the dual Q-system is 1 @ U in £H3, and the index is roughly 8.0. The
principal graphs for this subfactor are given by:

2.5)
Y Q _

1% K>

— ¥
Ce
M
—e %

i

As with £H, and £H3, the Lagrangian algebra giving £H4 has underlying object:
wo ® w1 @ wr @ 2001 D .

We thus see that this object must have three distinct algebra structures on it.

2.5. Intermediate subfactors

In this section we describe all the lattices of intermediate subfactors for subfactors coming

from the simple objects in the Extended Haagerup bimodule categories.
For a subfactor N € M, an intermediate subfactor is a factor P between N and M, i.e.,

N € P C M. One of the original motivations for subfactor theory was an analogy with
Galois theory. Nakamura and Takeda showed that for a fixed-point subfactor of an outer
action of a finite group on a factor, the intermediate subfactors are precisely the fixed-point
algebras of the subgroups [76]. In the 1990s, Watatani proposed studying more generally a
lattice of intermediate subfactors as a noncommutative analogue of the subgroup lattice of
a group [103]. Of particular interest are quadrilaterals, consisting of a pair of intermediate

subfactors P and Q suchthat PAQ =Nand PV Q =M.
Following [106], we can read the intermediate subfactor lattices directly from the

bimodule fusion rules in the Brauer-Picard groupoid (see Section 3.2). For an intermediate
subfactor N € P € M, we have yL?(P)p ®p pL*(M)y = yL*(M)3s. Conversely, if an
object « Zp in a bimodule category over unitary fusion categories factors as 4 X ¢ Q¢ ¢¥Y p,
then X ¢ ®¢ £ X  is a subalgebra of the algebra object « Zp ®p pZ« in €, and determines
an intermediate subfactor of the corresponding subfactor (see Remark 2.2 and the adja-
cent discussion and references for the relationship between subfactors, algebra objects, and
objects in (bi)module categories). So to determine the intermediate subfactors of a subfactor
corresponding to a given object in a bimodule category, we only need to know when different
factorizations of the object correspond to the same subalgebra/intermediate subfactor. Note
that it is rare to have a pair of simple objects X, Y such that the product X ® Y is simple,

and this explains why irreducible subfactors typically have few intermediates.
In full generality, understanding when two factorizations correspond to the same subal-

gebra is somewhat delicate, but for Extended Haagerup these complications do not arise.
For this reason, we plan to fully address this question in a subsequent paper considering
intermediate subfactors related to the Asaeda-Haagerup subfactor where more complicated
phenomena occur. Here is a very terse sketch of why there is no over-counting in the case

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



604 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

of Extended Haagerup. Recall as in Footnote 2 that a similar phenomenon happened for
algebras themselves, where pairs (M, m) classify algebra objects, but naively they over-count
algebra objects, as pairs (M, m) and (M, m’) can be equivalent as pairs via (F, f) where F is
a nontrivial autoequivalence of M. Here, we can classify subalgebras of the algebra corre-
sponding to (M, m) in terms of a tuple (D, N, L, F,n, £, f) where D is a tensor category,
N is a Morita equivalence between ¢ and D, L is a module category over D, n is an object
in NV, £ is an object in £, F is a module equivalence N Xp £ — M, and f is an isomorphism
F(n®L) — m. A Type III subfactor version of this result was proved by Xu in [106, Cor 2.4].
In particular, we get over-counting from tensor autoequivalences of D, bimodule autoequiv-
alences of /' (which are a torsor for invertible objects in the center of ¢’), and module autoe-
quivalences of M (which correspond to invertible objects in the dual category). However, if
none of the tensor categories Morita equivalent to ¢ have nontrivial autoequivalences, nor
nontrivial invertible objects, nor nontrivial invertible objects in the center (which is the case
for the Extended Haagerup fusion categories), then there is no over-counting, and interme-
diate subalgebras correspond precisely to factorizations of objects in bimodule categories as
products of objects in other bimodule categories.

Each row of the following table lists triples of simple objects X = Oi"j, Y = OJka, and
their simple product X ® ¥ = O7 . The columns labeled ‘ST” and ‘Index’ indicate the
supertransitivity and index of the corresponding subfactors. We only list one representative
of each dual pair, so in the tables we always have i < j. We have grouped rows together
according to the identity of the large object Z, as these rows are all intermediate subfactors
of the same large subfactor.

We recall that:

— 03, and 0}, correspond to the Extended Haagerup subfactor and its dual shown in
Equation (2.2),

— 0%, corresponds to the subfactor with principal graph shown in Equation (2.3),
— 01, and 0}, correspond to the subfactor with principal graph shown in Equation (2.5),

— 03, and 04, both correspond to the subfactor with principal graph shown in Equa-
tion (2.1), and

— 0l and 0}, correspond to the subfactor with principal graph shown in Equation (2.4).

Z Index(Z) | X ST(X) Index(X)| Y ST(Y) Index(Y)

08, 255411 | 0% 1 583502 |0), 7 43772
03 1 583502 |0} 7 437172
oL, 7 43772 | 03, 1 58.3502
oL, 7 43772 | 0% 1 583502
0}, 583502 |of, 7 43772 |03, 2 133305
of, 583502 |0}, 7 43772 |03, 2 133305
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0%, 329743 | 0L, 1 23.0099 | 01, 2 14.3305
0% 1 23.0099 | 03, 2 14.3305
0%, 1 24736 | 03, 2 13.3305
0%, 1 24.736 | 03, 2 13.3305
04, 1 753318 |0}, 7 4.3772
O}, 627274 | 01, 17 43772 |0, 2 14.3305
03, 161.72 | 0L, 1 23.0099 | 02, 3 7.0283
0% 1 23.0099 | 03, 3 7.0283
0%, 262439 | 0, 1 32,6893 | 0}y 3 8.0283
0%, 1 32,6893 | 0}y 3 8.0283
03, 1 37.3404 | 02, 3 7.0283
03, 1 37.3404 | 03, 3 7.0283
0% 1 11.4055 | OL, 1 23.0099
0%, 1 11.4055 | 0%, 1 23.0099
05, 152.041 | 0%, 1 11.4055 | 0%, 2 13.3305
03, 2 13.3305 | 02, 1 11.4055
0}, 152041 | 0%, 1 11.4055 | 03, 2 13.3305
03, 2 13.3305 | 0%, 1 11.4055
0%, 177702 | 03, 2 13.3305 |03, 2 13.3305
03, 2 13.3305 | 03, 2 13.3305
0%, 100719 | 0L 2 14.3305 | 03, 3 7.0283
o}, 7 43772 | 03, 1 23.0099
03, 100719 | 0L, 2 14.3305 | 0%, 3 7.0283
ol 7 43772 | OL 1 23.0099
O3, 163446 |0}, 1 20.3588 | 0}, 3 8.0283
0%, 1 203588 | 0}, 3 8.0283
0%, 1 11.4055 | 0L, 2 14.3305
0} 7 43772 | 0}, 1 37.3404
03, 191.032 | 03, 2 13.3305 | 0L, 2 14.3305
03, 2 13.3305 | 0L, 2 14.3305
03, 115049 | 0L, 2 14.3305 |0}, 3 8.0283
O3, 143.088 |0} 7 43772 |0}, 1 32.6893
o}, 7 43772 |03, 1 32.6893
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03, 271392 | 0%, 2 13.3305 |0, 1 20.3588
03, 2 13.3305 | 03, 1 20.3588
o}, 7 43772 |03, 1 62.0013
0%, 493969 |03, 3 7.0283 | 0%, 3 7.0283
03 3 7.0283 | 03, 3 7.0283
0%, 255411 | 03, 1 36.3404 | 03, 3 7.0283
0%, 1 36.3404 | 02, 3 7.0283
03 3 7.0283 | 03, 1 36.3404
0%, 3 7.0283 | 03, 1 36.3404
02, 564252 | 0%, 3 7.0283 | 0}, 3 8.0283
03 3 7.0283 | 0}, 3 8.0283
03, 291751 | 0%, 1 36.3404 |04, 3 8.0283
03, 1 36.3404 | 01, 3 8.0283
o, 2 14.3305 | 0), 1 20.3588
oL, 2 14.3305 | 0%, 1 20.3588

Let us briefly summarize the interesting subfactor lattices encoded in the above table.

There are four lines with Z = 09, so there are four intermediate subfactors of the
index 255.411 ... subfactor corresponding to O,. Note that Of, denotes the 6th smallest
object in EH, which is P’, so this subfactor is the reduced subfactor corresponding to P’.
For two of these intermediates the lower inclusion is Extended Haagerup while the upper
inclusions have index 58.3502 . .. and come from the reduced subfactor construction for O3,
or O}, (these are the odd vertices near the ends of the Extended Haagerup principal graph).
For the other two, the lower and upper parts are switched. We next want to see how these fit
together into a lattice. From the next two lines in the table we see that the index 58.3502. ..
subfactors themselves each have a single intermediate, with one inclusion being Extended
Haagerup and the other being the 2-supertransitive subfactor of index 13.3305... with
principal graph shown in Equation (2.1). It follows that the lattice is a hexagon, where the
upper and lower edges are the Extended Haagerup subfactors and the middle edges are the
index 13.3305. .. subfactors.

Note that since none of the other entries in the X or Y columns also occurs in the
Z column, other than the hexagon every lattice will just be M,,, the lattice with one maximal
element, one minimal element, and » incomparable elements between them. The number of
such incomparable entries is simply the number of rows with that Z; for example, O%; has
intermediate subfactor lattice M.

In addition to the hexagon there are a few notable examples of quadrilaterals where all
inclusions are at least 2-supertransitive (such quadrilaterals are called (2, 2)-supertransitive).

Sano and Watatani [94] introduced a notion of angle between two subfactors of the same
factor. For a quadrilateral, one can compute two such angles, one for P, 9 C M and one for
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the dual subfactors to N C P, Q. When the first angle is /2, we say that the quadrilateral
commutes, and when the second angle is 77 /2 we say that the quadrilateral cocommutes. This
notion of commutativity coincides with the notion of commuting square in the subfactor
literature, which means that the two orders of taking conditional expectations around the
square commute [89, 90].

In [39, Theorem 3.21] it is shown that an irreducible quadrilateral of finite-index subfac-
tors N € P,Q € M commutes iff the N — N bimodule map from P ® y Q to M given
by multiplication is injective, and cocommutes iff this map is surjective. In particular, for a
commuting and cocommuting quadrilateral, we have P@y Q = M as N —N-bimodules, and
the indices of all four sides of the quadrilateral are the same. For a non-commuting quadri-
lateral, the complements of N in the N — N bimodules P and Q must contain a common
subobject.

In [36, Theorem 4.3] it is shown that a noncommuting, cocommuting (3, 3)-supertransi-
tive quadrilateral necessarily satisfies [M : P] =[M : Q] =[P : N]—-1=[Q : N]—-1(in
fact a slightly weaker assumption is sufficient). Moreover, the Galois group of the inclusion
N C M is necessarily a subgroup of the symmetric group S3 (with equality only realized for
the fixed point subfactor of an outer S3 action). Therefore, such quadrilaterals were divided
into three cases (called Classes I, III, and IV, while Class I referred to non-cocommuting)
based on whether the Galois group is trivial, cyclic of order 2, or cyclic of order 3.

Here we have:

— A quadrilateral from 0%, = U which follows from X ® X =~ U =~ X ® X. This
quadrilateral is commuting (since X ® X = ... 2 ... = X ® X ) and cocommuting
(since it is self-dual).

— A quadrilateral from 0§, = f(© which follows from A® A =~ f© ~ f© ~ Bg B
in EH,. This quadrilateral is also commuting and cocommuting, for the same reason
as above.

— A quadrilateral from O3;. Thisis a (2, 2)-supertransitive quadrilateral where the upper
subfactors are the index 14.3305.. . . ones from Equation (2.4) and the lower subfactors
are the index 13.3305. .. from Equation (2.1). This quadrilateral again commutes, but
does not cocommute since the indices are not equal.

— A quadrilateral from O%,. This is a (3, 3)-supertransitive commuting but noncocom-
muting quadrilateral where the upper subfactors are the index 8.0283... ones from
Equation (2.5) and the lower subfactors are the index 7.0283 ... from Equation (2.3).

The (dual quadrilateral of) fourth example fits into Class II (the Galois group is trivial
since there are no nontrivial invertible objects), and the third example is similar, although
only (2, 2)-supertransitive. We expect that the fourth example is the smallest quadrilateral in
Class II with indices above 4. Note that the smallest example with indices above 4 in Class 111
comes from the Asaeda-Haagerup subfactor, while the smallest example with indices above
4 in Class IV comes from the Haagerup subfactor. It is striking that Extended Haagerup
appears to be the smallest example in the remaining case.
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3. Module categories and graph planar algebra embeddings

The graph planar algebra embedding theorem from [62] states that any subfactor planar
algebra embeds in the graph planar algebra [57] of either of its principal graphs. Peters
observed in [86] that it is possible for a subfactor planar algebra to embed in the graph planar
algebra of other graphs; in particular she found that the Haagerup planar algebra embeds in
the graph planar algebra of a third graph, called the “broom.” In this section we strengthen
the graph planar algebra embedding theorem, to obtain a classification of embeddings in
graph planar algebras. In particular, we show that a subfactor planar algebra embeds into
the graph planar algebra of a bipartite graph if and only if the graph is the fusion graph of a
unitary module category with a compatible trace.

We begin with the simple observation that a module category M for a tensor category ¢
is exactly the data of a tensor functor ¥ — End(M). As we proceed through this section,
we elaborate this observation in various directions, eventually obtaining our theorem. This
involves four adjustments:

— describing endofunctors in End(M) as graphs,

— adapting to the shaded setting required for subfactor planar algebras,
— working in the unitary setting, and

— understanding the additional data corresponding to pivotal structures.

Note that in order to be able to characterize maps out of the Extended Haagerup subfactor
planar algebra (and hence characterize modules for these fusion categories), we will rely on
the unitary pivotal structure (see Remark 5.6). Thus even if the reader is only interested in
the algebraic classification of modules over the Extended Haagerup fusion categories, he/she
still needs to understand the unitary pivotal version of the graph planar algebra embedding
theorem!

We will assume that the reader is familiar with tensor categories following [21], but we
will not assume previous familiarity with graph planar algebras. We take this pedagogical
approach for several reasons. First, it was this algebraic perspective that allowed us to
see that one should expect a GPA embedding theorem for modules. Thus this approach
unifies (unitary) module category classification results like [25, 16] and GPA embedding
constructions like [58, 86, 6], which will hopefully make GPA embeddings more accessible
to algebraists. Second, an independent purely subfactor theoretic proof of our classification
of embeddings recently appeared in [10], using towers of algebras. Subfactor experts may
prefer to read that paper as a replacement for this section.

Here is a more detailed breakdown of this section. In §3.1 we discuss Cauchy complete-
ness, especially in the context of C*-categories. In §3.2 we recall some background on module
categories, Morita equivalences, and the endofunctor embedding theorem (that giving a
module category M over ¥ is the same as giving a functor ¥ — End(M)). In §3.3 we intro-
duce an “unbiased" definition of monoidal categories which we call monoidal algebras in
the spirit of [99, 105] (see Remark 3.25). Monoidal algebras are an analogue of planar alge-
bras without rotational symmetry. In Section 3.4 we introduce the graph monoidal algebra
(which is an analogue of the graph planar algebra), explain its relationship to End(M), and
see that the endomorphism embedding theorem yields a graph monoidal algebra embedding
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theorem for module categories. This is the simplest non-technical version of our main result,
and contains the major idea of this section.

The rest of the section is dedicated to adapting the graph monoidal algebra embedding
theorem for module categories to the pivotal and unitary pivotal settings where it becomes
the graph planar algebra embedding theorem for appropriate pivotal and unitary pivotal
analogues of module categories. These analogues of module categories involve both struc-
ture on M and compatibility of that structure with the module action. In the semisimple
pivotal setting Schaumann [96] showed that the appropriate structure is a choice of trace
on M. In §3.5, we recall the definitions of planar algebra, unitary dual functors, and unitary
pivotal structure, and we explain the relationship between planar algebras and unitary
pivotal fusion categories. In §3.6, we recall Schaumann’s notion of trace and modify this
notion to the unitary setting, we then define (unitary) pivotal modules, prove a (unitary)
pivotal analogue of endofunctor embedding, and translate that into the desired graph planar
algebra embedding theorem.

3.1. Cauchy complete categories

In this paper we focus on C-linear Cauchy complete categories. Here C-/inear means the
hom spaces are finite dimensional C-vector spaces and composition is bilinear. A C-linear
category € is Cauchy complete if it has direct sums of objects and all idempotents split (i.e.,
ife : ¢ — cisidempotent,i.e.,e? = e, then ¢ has a corresponding direct sum decomposition).
Equivalently, ¢ has all absolute colimits.

Cauchy completeness is a mild condition to impose on a category, because every C-linear
category € has a Cauchy completion Cauchy(%). This completion is built in two stages: first,
take the additive completion (where objects are formal direct sums of objects and morphisms
are formal matrices of morphisms), and then take the idempotent (also called Karoubi)
completion (where objects are pairs of an object and an idempotent, and morphisms make
the obvious square commute). A category % is Cauchy complete if and only if the obvious
inclusion ¢ < Cauchy(%) is an equivalence. The Cauchy completion satisfies the universal
property that every linear functor F : ¥ — D where D is Cauchy complete factors
uniquely through the Cauchy completion Cauchy(%). Furthermore, the Cauchy completion
of a monoidal category inherits a natural monoidal structure. See [11, §2.5-2.6] for more
details.

A Cauchy complete category is semisimple if every object’s endomorphism algebra is
semisimple. This is equivalent to the definition in [75, §2.1]. A semisimple category has a
collection of simple objects with the properties that

— the simple objects satisfy Schur’s lemma, i.e., for two simple objects a, b € ¥, either a
and b are isomorphic, or € (a — b) = (0) = €(b — a), and

— every object is isomorphic to a direct sum of simple objects.
DEFINITION 3.1. — A multitensor category over C is a C-linear Cauchy complete category
together with a linear tensor product functor ® : ¢ x € — %, a unit object 14, and unitors

and associators satisfying natural axioms, where every object X has both left and right duals
VX and XV. We call € a tensor category if 1 is simple. A multifusion category is a semisimple
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multitensor category with finitely many isomorphism classes of simples, and a fusion category
is a multifusion category with 1¢ simple.

WARNING 3.2. — Note that our definition of multitensor category does not agree with
that of [21], because we work in the Cauchy complete setting rather than the locally-finite
abelian setting. Our definition agrees with the notion of multi-pseudo-tensor category
in [12]. However, our main results are in the semisimple setting, and semisimple Cauchy
complete categories are automatically abelian and thus tensor in the usual sense. Working
in the Cauchy complete setting allows for a cleaner exposition without adding extra adjec-
tives, like semisimple, to theorems which do not require extra assumptions in the Cauchy
complete setting. One should take care adapting these techniques to the non-semisimple
abelian setting.

DEFINITION 3.3. — Suppose % is a multitensor category. We say a set of objects
= {Xs}ses C € tensor generates € if every object of ¢ is isomorphic to a direct summand
of a direct sum of tensor products of objects in ..

In this case, we define €'« as the full monoidal subcategory of € whose objects are tensor
products of objects in .. Observe that the Cauchy completion of %~ is equivalent to our
original multitensor category €.

3.1.1. Cauchy complete C*-categories

DEFINITION 3.4. — A dagger structure on a C-linear category % consists of an antilinear
mapt : €(a — b) — €(b — a)foralla,b € € satistying (f o g)t = g7 o 7 for all
composable morphisms £, g, and f1T = £ for all morphisms f. The pair (¢, 1) is called a
dagger category.

Following [74, Prop. 2.1], a dagger category (with finite dimensional hom spaces) is called
a C*-category if

— (positive definite) for every f € €(a — b), fT o f = 0implies f = 0.
By Roberts’ 2 x 2 trick [32, Lem. 2.6], the positive definite condition above is equivalent to

— (2 x 2 linking C*-algebras) for all a, b € €, the linking algebra

C(a—a)€b—a)

€(a—b)€(b —b)
with the obvious matrix multiplication and f-transpose operation is a finite dimen-
sional C*-algebra. ®

L(a,b) = (

REMARK 3.5. — Since finite dimensional C*-algebras are semisimple, Cauchy complete
C*-categories (Which we assume here have finite dimensional hom spaces) are automatically
semisimple.

Starting with a C*-category ¥, its Cauchy completion Cauchy(%’) is not a C*-category,
as not all idempotents are orthogonal projections. However, we may take the unitary Cauchy
completion Cauchy (%) of €. Again, this completion is built in two stages.

® Being a C* algebra is a property of a complex *-algebra and not extra structure. Indeed, every C* algebra has
a unique C* norm, which can be recovered from the spectral radius, which is defined purely algebraically.
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1. First, we take the orthogonal additive completion, which has objects formal orthog-
onal direct sums of objects and morphisms formal matrices of morphisms. Here, an
object @}_, ¢; with isometries v; : ¢; — @/_, ¢; is called the orthogonal direct sum
of cr.....cn if Yy viv] =idgy ., andvlv; =id, forall ;.

2. Second, we take the orthogonal idempotent completion, where objects are pairs of an
object ¢ € € and an orthogonal projection p € €(c — c¢) (satisfying p> = p = p"),
and morphisms make the obvious square commute.

Observe that Cauchy'(€) has the structure of a C*-category where T is given by the -trans-
pose operation. We say that a C*-category % is unitarily Cauchy complete if the obvious inclu-
sion dagger functor ¢ <> Cauchy’ (%) is a dagger equivalence. The unitary Cauchy comple-
tion satisfies the universal property that every linear dagger functor F : 6 — D where D is
unitarily Cauchy complete factors uniquely throught Cauchy® (%).

REMARK 3.6. — Itisnatural to ask whether given a C*-category ¥, if we take the Cauchy
completion of the underlying linear category ¢, is this equivalent to the underlying category
of the unitary Karoubi completion CauchyJr (%)™ This is indeed the case, but we leave the
verification to a future article. The interested reader can prove this fact using the polar
decomposition for invertible morphisms in % .

3.2. Module categories, Morita equivalences, and endofunctor embedding

Tensor categories can be thought of as categorical analogues of ordinary algebras.
Many ordinary algebraic notions have analogues for tensor categories, and in particular
the analogues of modules, bimodules, and Morita equivalences play a key role in studying
tensor categories, as pioneered by Ocneanu, Miiger, Ostrik, and others [79, 75, 80]. For
example, a left ¥-module category M is a C-linear Cauchy complete category together with
a left action functor > and unitor and associators satisfying natural axioms. Similarly, a
right ¥-module category has a right action functor <1, and a ¥ — ¢ bimodule category has
two actions and an associator commuting both actions. Again see [21, §7] for further details
(changing abelian to Cauchy complete throughout).

In particular, we have the following two important problems about the “representation
theory” of fusion categories.

ProBLEM 3.7 (Classification of Modules). — Classify all indecomposable semisimple
module categories over a given fusion category %

ProBLEM 3.8 (Morita Equivalence). — Classify all fusion categories D (up to tensor
equivalence) which are Morita equivalent to 4, and all the Morita equivalences between
them (up to bimodule equivalence). Furthermore, understand the Brauer-Picard groupoid,
which describes the compositions of these Morita equivalences under balanced tensor
product ¢ M Xp Ne.

From a higher categorical perspective it is somewhat unnatural to only study equiva-
lence classes, and it is more natural to consider Etingof-Nikshych-Ostrik’s Brauer-Picard
3-groupoid [22] which consists of fusion categories Morita equivalent to %, Morita equiv-
alences between them, bimodule equivalences between these Morita equivalences, and
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bimodule natural isomorphisms. The higher structure of this 3-groupoid is essential for clas-
sifying G-graded extensions of fusion categories. The Morita equivalence problem asks for
the fundamental 1-groupoid of this 3-groupoid. As it turns out, for the examples considered
in this paper, the higher structure of the 3-groupoid is trivial (see Corollary 4.7).

The following theorem shows that the two problems above are closely related. Recall that
if X is an invertible object, then conjugation by X is an inner autoequivalence.

THEOREM 3.9 ([22, Prop. 4.2 and §4.3], [21, §7.12]). — If'€ is a fusion category and M is a
semisimple €-module category, then € —D bimodule category structures on M which extend the
€ -module structure correspond exactly to functors F : D — Endy (M), and such a bimodule
is a Morita equivalence if and only if F is an equivalence of multitensor categories. Two such
bimodule categories are equivalent if and only if the functors differ by an inner autoequivalence.
Furthermore, Endy (M) is a tensor category (with simple unit object) if and only if M is
indecomposable.

In particular, in order to solve Problem 3.8 about Morita equivalence, it is enough to solve
Problem 3.7 about modules, and further solve the following.

PRrROBLEM 3.10 (Outer Automorphisms). — For each D in the Morita equivalence class
of €, find the outer automorphism group of D.

None of the fusion categories we study in this article have outer automorphisms. Thus
classifying modules and Morita equivalences are essentially the same. However, the reader
should note that given ¥’ and M, actually calculating the structure of the dual category
End¢ (M) may be quite difficult. The dual categories End4 (M) are essentially the same
thing as the dual parts of GHJ subfactors [35]. We refer the reader to [64] for a notable
concrete example where understanding the detailed structure of the dual category is difficult.

All of the above problems are “external” problems, relating € to other tensor categories
and module categories. However, they are closely related by a theorem of Ostrik [80] to
“internal” problems about algebra objects or Q-systems inside 4". Two such algebras are
internally Morita equivalent if there is an invertible bimodule object between them.

THEOREM 3.11 ([80]). — Given A € €, a connected semisimple algebra, Mod (A) is an
indecomposable module category. Moreover every indecomposable €-module category M is
equivalent to one of this form, by taking A = End..(m) for any simple m € M.

The collection of connected semisimple algebras { B | Mod4 (B) = Mod« (A)} is exactly the
internal Morita equivalence class of A.

The dual category Endy(Mody (A)) is canonically identified with the category of A — A
bimodules in €.

This theorem shows that the above problems are closely related to Ocneanu’s “maximal
atlas” [79].
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DEerFINITION 3.12. — Let ¥ be a fusion category. A maximal atlas for € is a choice of
a semisimple connected algebra A in each internal Morita equivalence class. From such a
maximal atlas, one gets a collection of fusion categories Bim« (A, A) and Morita equiva-
lences Bimg (4, B). @

In general, a maximal atlas will contain less information than the Brauer-Picard groupoid,
because it does not remember the tensor equivalences between the fusion categories
Bime (4, A)

ExamPLE 3.13. — For ¥ = Vec(Z/37Z), a maximal atlas is given by 1 and the group
algebra A = C[Z/37Z] (with each group element in its own grade). The category of bimodules
Bim¢ (A, A) is Rep(Z/37Z), which is (non-canonically!) equivalent to Vec(Z/37Z). The outer
automorphism group of Vec(Z/37Z) is the group of units (Z/3Z)* acting by permuting
simple objects, so we get two distinct equivalences Rep(Z/3Z) =~ Vec(Z/37Z). Thus the
aforementioned maximal atlas of € consists of two tensor categories (which happen to be
tensor equivalent) and a single bimodule between the two, while the Brauer-Picard groupoid
consists of one tensor category and four Morita autoequivalences.

One can then determine the group structure of this set of four autoequivalences. By a
result of Etingof-Nikshych-Ostrik [22, Cor. 1.2], this Brauer-Picard group must be the split
orthogonal group O (F3 @F3), which is the Klein four group. Note that in the maximal atlas
formalism one cannot even ask about the structure of this group. In a sense the maximal
atlas is a “universal cover” of the Brauer-Picard groupoid, and has lost all the interesting
topological information about the latter (while still retaining the combinatorial informa-
tion). However, for all examples in this article, the Brauer-Picard group is trivial, and so
these subtleties between the Brauer-Picard groupoid and the maximal atlas do not play an
important role. (In contrast, this distinction was critical in the study of the Asaeda-Haagerup
subfactor [43], which has Brauer-Picard group the Klein four group.)

Just as a module M over an algebra A is equivalent to a homomorphism A — End(M),
module categories M over ¢ are equivalent to tensor functors ¥ — End(M) [21, Prop.
7.1.3.]. Thus the module classification problem is equivalent to the following.

ProBLEM 3.14 (Endofunctor embedding). — Classify all semisimple categories M and
all tensor functors ¥ — End(M), up to conjugation by an autoequivalence of M.

The following omnibus theorem summarizes much of the above.

THEOREM 3.15. — Suppose that € is a fusion category.

— Module category structures on a semisimple category M correspond exactly to tensor
functors € — End(M).

— A fusion category D is Morita equivalent to € if and only if there is an indecomposable
semisimple € -module category M such that D is tensor equivalent to End (M). Further-
more the Morita equivalences «Np such that <N is equivalent to <M are a torsor for
the group of outer automorphisms Out(D).

® The distinction between thinking of the maximal atlas as a collection of algebras and bimodules or as a collection
of tensor categories and Morita equivalences is often elided.
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— Pairs (M, m), where M is a semisimple indecomposable €-module category and m €
M is a simple object, correspond exactly to connected semisimple algebras A in €,
via A — (Mod¢(A4), A) and (M, m) — End.,(m). The dual category Ende (M)
corresponding to A is the category of A-A bimodules in €.

3.2.1. Modules for multifusion categories. — Recall that a multifusion category ¥ is like a
fusion category, except 1 is no longer simple. Since ¢ is semisimple and €' (14 — l¢) isa
commutative algebra, 14 breaks up as a sum of r distinct simple objects 14 = @ _, 1;. We
call such a multifusion category r-shaded. We denote by ¢;; the summand 1; ® € ® 1;.

PROPOSITION 3.16. — If € is an r-shaded multifusion category, then each %;; is a fusion
category. When € is indecomposable as a multifusion category each €;; is a Morita equivalence
between ;i and €j;. Furthermore, the tensor product map 6ij W¢,, Cjx — i is an
equivalence.

Conversely, given fusion categories D11, . .., Dy, and a Morita equivalence D between Dy
and Dj; for each 1 < j < r, we define Dy := D! Kp,, Dk for each i,k € {1,....r} to get
an indecomposable multifusion category D = @;,k=1 (Dix). These constructions are mutually
inverse.

Proof. — The forward direction is [22, Thm. 6.1] where instead of a grading group we have
a grading by the groupoid of standard matrix units E;;. The proof for groupoids is parallel
to the proof for groups. (See also [21, Prop. 7.17.5] which shows the first two parts.)

()  One can avoid the relative tensor product to obtain a multifusion category equivalent to D as follows.
First, choose a simple object d; € Dy; foralli = 1,...,r, and consider the connected algebra objects
A; = Endp | (d;). Then Disequivalent to the category of A—A bimodules internal to D11 where A = Di_; A;.
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For the converse direction @@} ,_; Dj;' Mp,, Dix has a monoidal structure given by
(Dl_i1 Mp,, le) - (Dl_k1 Xp,, DM) g Dl_i1 M) Dik Moy, Dl_kl Mp,, D
— Dy ®p,, D11 Kp,, Di¢ — D' Kp,, Dy

That this category is rigid follows from the proof of [14, Thm. 8.5], namely letting
Dik = D;jl Xp,, Dix we have that tensoring with an object x € Dj; thought of as
a functor D;; — Djr has both a left and a right adjoint module functor which lives
inHomp;; (Djx, Djj) = Dy; using invertibility. Thus tensoring with x is adjoint to tensoring
with some other object y € Dy; which is thus its dual object. (See [18, Cor. 2.11] for an
alternate proof, though some care needs to be taken to adapt the notion of weak rigidity to
the multifusion setting.) O

REMARK 3.17. — The right way to think about Proposition 3.16 is that the main results
of [21] classifying group extensions using obstruction theory also work for “groupoid exten-
sions.” Here we're looking at extensions by a trivial groupoid, so the obstructions automati-
cally vanish and the extension must exist. The proofs in that paper go through for groupoids
with minimal changes.

REMARK 3.18. — To each multifusion category ¢ there is a corresponding rigid 2-cate-
gory whose objects are the indices, whose 1-morphisms are the objects in the %;;, and whose
2-morphisms are the morphisms in %;;. There is not an important difference between this
2-category and the multifusion category, but in this paper, we use the multifusion language
to align with the results of [21, 83].

The non-pivotal algebraic analogue of an irreducible finite depth subfactor N C M is
a pair (¢, A) where % is a fusion category (which corresponds to the N — N bimodules
generated by M) and A € ¥ is a semisimple connected algebra object (which corresponds
to M). Given such an A € ¥, we get a Morita equivalence Mod4(A4A) = Bimg(lg, A)
between ¢ and Bim¢(A), and we get a 2-shaded indecomposable multifusion category as
in Footnote 5 by

Bi l¢, 1) Bi 1y, A
Bim%(l%@A,lg@A)z( img(lg, l¢) Bimg(ly ))

Bimg(A, 1%) Bimcg(A, A)
with tensor product given by ® ¢, ®4, or zero as appropriate.
Notice that Bimg (14, 1) = F.

There’s an analogue of Prop. 3.16 for module categories.

PROPOSITION 3.19. — Suppose that D is an r-shaded multifusion category with compo-
nents D;;. Suppose that M is an indecomposable module category over D. Then M = GB;=1 M;
where M; = 1; > M. Furthermore, the action maps Djj Rp,, M; — M; are equivalences.

Conversely, given an indecomposable module category My over D1, we define

F(My) := P Di Rp,, M;.

i=1
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We can endow F (M) with the structure of a D-module category via

P

Dy B F(My) = @) Di; B Diy Rp,, My — Di; Bp,; Djy Kp,, My = Dy Bp,, My S F(My).
i=1

These constructions are mutually inverse with the isomorphism F (M) — M being the direct

sum of the action maps Dij; Xp,, M| = M;.

Proof. — The only nontrivial step is that D;; Kp,, M; — M, is an equivalence. This
follows either by the techniques of [22, Thm. 6.1] or of [21, Prop. 7.17.5]. Choose a simple
object m; in M;, and let B; = Endy, (m;) be the internal endomorphisms of m; in Dj;.
Similarly, choose a simple object x;; in D;; and let 4;; = Vx;; ® x;; be its internal endomor-
phism algebra in D;;. We have an equivalence:

M — BimD(Aij, Bj)

via m — Yx;; ® Homg, (m, m;). The restriction of this functor to M, then gives an inverse
to the map D;; Kp,, M; — M,. O

Thus classifying modules for D;; (answering Problem 3.7) is equivalent to classifying
modules for D. In particular, given an algebraic analogue of a subfactor A € %, we
can instead solve the module problem over the corresponding indecomposable 2-shaded
multifusion category Bimgx(l¢ & A, 1l @ A) which is the purely algebraic, non-pivotal
analogue of the subfactor planar algebra. That is, we construct module categories for EH;
by constructing module categories over the indecomposable 2-shaded multifusion category
which combines £H; and £H,. This strategy is successful because the extended Haagerup
subfactor planar algebra has a better skein theoretic description than either of the fusion
categories EH; and EH, individually.

3.2.2. Module C* categories for unitary multitensor categories. — In the nomenclature of
[83], a unitary multitensor category € is a Cauchy complete rigid tensor C* category, which
is semisimple by [69]. We call € a unitary tensor category if 14 is simple. Similar to the above
characterization of module categories, given a (Cauchy complete) C* category M, endowing
M with the structure of a ¥-module C* category is equivalent to supplying a dagger tensor
functor ¥ — End'(M), the C* category of dagger endofunctors of M. ©® We provide a
proof for those less familiar with C* categories, which also appears as [15, Lem. A.4.1]. This
is the C* version of the first bullet point in Theorem 3.15.

LEmMaA 3.20. — Suppose € is a unitary multitensor category and M is a C* category.
Equipping M with the structure of a €-module C* category is equivalent to supplying a dagger
tensor functor (W, u) : € — End"(M).

Proof. — We show how each structure induces the other, and we leave it to the reader to
check these two processes are mutually inverse (up to dagger equivalence).

Suppose M is a €-module dagger category. Note that ¢ > — is a dagger functor
in End®(M) for each ¢ € €. Moreover, if f € €(a — b), then (f > —)f = ff > —

© In order for EndT (M) to be C*, we only work with bounded natural transformations, i.e., those 8 : F = G
such that sup.c [|6¢ | < 00. One then defines 81 component-wise: (87), := (8.)7.
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Hence ¥ : ¥ — End’(M) given by W(c) = ¢ > —and W(f) = f > — defines a dagger
functor. Now defining

p W@y oU(b)y=arb>—-—=a@br>—=Va®b)

by /Lf,,’b ‘= Ogpm . a > b>m— a®b > mdefines a unitary natural isomorphism,
equipping W with the structure of a dagger tensor functor.

Conversely, suppose (W, ) : ¢ — Endf(M) is a dagger tensor functor. For ¢ € ¥
and m € M, definec > m := Y(c)(m). Forc € € and g € M(m — n), define
ide > g := VY(c)(f). For f € €@ — b)and m € M, define f > id,, = V(f),. To
show that >: ¥ x M — M defines a bifunctor, it suffices to prove the exchange relation,
which follows immediately from naturality. That is, for f € ¥ (¢ — b) and g € M(m — n),
the following diagrams commute:

(S id,
W(a)(m) —=% W(b)(m) am 2% pem
W(a)(g) W) (2) = lidgbg idy>g
W(a)(n) M W(b)(n) ar>m && b n.

We define the natural unitary associator isomorphism o, p , € M(a > b > m — a®b > m)
by tapm = pigl 1 [¥(a) o W(b)](m) — W(a ® b)(m).

Notice that u%? : U(a) o ¥(b) = ¥(a ® b) is unitary if and only if p,f,,’b is unitary for all
m € M. Now one calculates (f > id,,)" = lIl(f);r,, =W = (N = T > idy
and (id. > 2)T = ¥(e)(g) = ¥(e)(gh) = id. > gT. Thus M is a ¥-module dagger
category. O

WARNING 3.21. — Wedo not state a C* version of the other bullet points of Theorem 3.15,
which implicitly use rigidity for the statements on Morita equivalence and algebras. When
% is C*, it is natural to impose compatibility conditions between the duality functor (imple-
menting rigidity) and the dagger structure. We will explain this in detail in §3.5.1 below.

3.3. Monoidal algebras

Most algebraic structures have both a biased definition, like the usual definition of an
algebra which emphasizes multiplying exactly two elements together, and an unbiased
definition, like the definition of an algebra in which you can multiply arbitrary strings. ?
The usual definition of monoidal category is biased as it emphasizes tensoring two objects
and composing two morphisms. In Definition 3.23 below, we give an unbiased definition
of monoidal category using the graphical calculus; we will see in §3.6.3 below that planar
algebras are the analogous unbiased definition of a pivotal monoidal category.

DEFINITION 3.22. — A monoidal tangle with label set S is a rectangle, with several smaller
rectangles (with edges parallel to those of the big one) removed, and some non-crossing
smooth strings labeled by elements of S which are oriented upward, have no local minima
nor local maxima, and begin and end on the tops or bottoms of the rectangles. We say a
monoidal tangle T has type ((so, to); (S1,%1), - . ., (Sk, tx)) where s, ..., Sk, to, . . . , I are finite
words on S if the tangle 7" has k input rectangles, and there are |s; |, |#;| strings attached to the

(M See [88] for a delightful elementary discussion of the unbiased definition of an algebra.
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bottom and top respectively of the i -th rectangle (the zeroth rectangle is the output rectangle
and 1 <i < k corresponds to the i-th input rectangle), which are labeled by the characters
in the words s;,1; respectively. Here is an example of a tangle with S = {®, @, }, where
we color the strings instead of labeling them:

has type
((g—w——'.’ \,—e); (\.,-/’ \,—J)’ &,-/’ \,—9)’ (\./—/’ w—-/g ).
50 to 51 131 52 1%) 83 13

Monoidal tangles are considered up to isotopy (through diagrams that again have no minima
or maxima). Monoidal tangles form a colored operad, because you can insert monoidal
tangles into the rectangles of a large monoidal tangle to get a new monoidal tangle.

DEFINITION 3.23. — A monoidal algebra with label set S is an algebra in finite dimen-
sional vector spaces for the operad of monoidal tangles with label set S. Unpacking this
definition, a monoidal algebra P, .. consists of a family of finite dimensional vector
spaces Ps_,; where s, ¢ are finite words in S, together with an action of monoidal tangles.
To each monoidal tangle T of type ((so, t0); (51, 1), - - . » (S, x))), We associate a multilinear
map Z(T) : I—[f —1 Ps;—>t; = Psy—1,, and composition of monoidal tangles corresponds to
composition of multilinear maps. Here is an example:

ExaMPLE 3.24. — Suppose % is a Cauchy complete linear monoidal category with a
set of objects .7 := {X;}ses Which tensor generates €, i.e., every object in € is a direct
summand of a direct sum of tensor products of objects in .. We define a monoidal algebra
P(¥,.")e—e With label set S as follows. For sq,...,s¢,t1,...,t € S, we define

P((g9y)slmsk—>t1“-t[ = %(Xsl K Q® Xsk - Xll ®--® Xl‘g)-

We use the convention that if @ is the empty word on S, then the empty tensor product of
objects is 1. The action of tangles is just the graphical calculus for tensor categories. See
[85, 93, 63] for a summary of many versions of the graphical calculus; additional resources
include [97] and [47, §2.1 and 2.3].

REMARK 3.25. — The monoidal algebra P(%’, X )e—e is similar in spirit to the way the
term ‘monoidal algebra’ is used in the work of Wenzl on constructing and classifying subfac-
tors and fusion categories from quantum groups [99, 105] which is based on the original
towers of algebras approach to subfactor theory [56, 104, 35, 91].
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Conversely, from a monoidal algebra we can construct a Cauchy complete linear
monoidal category following [72, 33]. This takes place in two steps, first we construct a
linear monoidal category, and then we take its Cauchy completion as discussed in §3.1. The
objects in this category are the words s in the label set S, and the morphism spaces are P_,;.
Composition is given by vertical stacking, and the monoidal structure given by horizontal
juxtaposition. Here are examples of composition and monoidal product respectively:

(¢
gofim g@f::

This construction is inverse to the construction in Example 3.24. We thus have the following
theorem.

THEOREM 3.26. — There is an equivalence of categories®

Pairs (%, {Xs}ses) with ¥ a Cauchy
{ Monoidal algebras Pe—e with label set S } = { complete linear monoidal category with
generators Xy € ¥ fors € S

3.3.1. Shaded monoidal algebras and monoidal categories. — We next extend the discussion
of monoidal algebras to r-shaded multifusion categories. Suppose % is a Cauchy complete
linear monoidal category. A decomposition 14 = P,z 1; where each 1; is non-zero, but
not necessarily simple, is called an R-shading on €. We write ¢;; = 1; ® € ® 1;, and we
note that 4 = @lr j=1 %i;. We also have distinguished idempotents p; € €(l¢ — lg)
corresponding to the summand 1; for 1 < i < r. In the graphical calculus, we represent
these projections, which freely float about in their regions, as a single shading. For example,
we could denote

=pi o= p
Then for objects a, b € %;;, we would denote a morphism f € € (a — b) by

This motivates the following definition.

DEFINITION 3.27. — An R-shaded monoidal tangle with label set S is a monoidal tangle
with label set S whose regions are shaded by the elements of R such that each element
x € § has a left source shading sy € R and a right target shading ¢, € R. For example,

® Pairs (¢, {Xs}ses) form a 2-category where between any two 1-morphisms, there is at most one 2-morphism,
which is necessarily invertible when it exists [48, Lem. 3.5]. Hence this 2-category is equivalent to its truncation to
a l-category.
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o

for the shading set R = {  , ©, '}, and the label set S = { [, -] , "z, <] }, we have
the following R-shaded monoidal tangle with label set S:

DEFINITION 3.28. — An R-shaded monoidal algebra with label set S is an algebra over
the operad of R-shaded monoidal tangles with label set S. Notice this means that the
spaces Py, are only well-defined when consecutive characters in the words x and y have
compatible target and source shadings, and the source and target shadings of the words x
and y agree.

We have the following shaded version of Theorem 3.26 which is proved in an analogous
way.

PROPOSITION 3.29. — There is an equivalence of categories (see footnote 8, p. 619)

Pairs (¢,{X,}yes) with ¢ a Cauchy
R-shaded monoidal algebras complete linear monoidal category with
Pe—>e with label set S R-shading 1 = @, 1; and tensor genera-
tors Xy, € €5, 1, fory € S

Il

3.3.2. Unitary monoidal algebras

DEFINITION 3.30. — A dagger monoidal algebra with label set S is a monoidal
algebra P._,. with label set S equipped with antilinear maps T : Ps—; — P, for all
words s, ¢ on S such that

— tot=1idand

— for every monoidal tangle T, TT(x;r, .. .,x};) = T(x1,...,xx)" where TT denotes the
vertical reflection of 7" about the x-axis.

A dagger monoidal algebra is called a C* monoidal algebra or a unitary monoidal algebra if
in addition

— (positive definite) for all f € Ps_,, fTo f = 0implies f = 0.

Here, it is important to note that every Ps_,, was assumed to be finite dimensional. As in
Definition 3.4 above, the positive definite condition above is equivalent to

— (2 x 2 linking C*-algebra) for all words s, ¢ on S, the linking algebra
ﬁ(s’ [) - PS*)S Pl‘)S
PS—)I pl‘—>t

with the obvious matrix multiplication and f-transpose operation is a finite dimen-
sional C*-algebra (see Footnote 3).

4¢ SERIE - TOME 56 — 2023 — N° 2



THE EXTENDED HAAGERUP FUSION CATEGORIES 621

When % is a C* monoidal category, we say a set of objects .7 := {X;}ses unitarily tensor
generates € if every object in € is unitarily isomorphic to an orthogonal direct summand of
an orthogonal direct sum of tensor products of objects in .7

Similar to the previous section, we can define an R-shading as an orthogonal decompo-
sition 14 = @D;cx 1. We have the following unitary version Theorem 3.26 and Proposi-
tion 3.29.

PROPOSITION 3.31. — There is an equivalence of categories (see footnote 8, p. 619)
Pairs (¢,{X,}yes) with € a Cauchy

R-shaded C* monoidal alge-| _ | complete monoidal C* category with
bras Pe—_.e with label set S ~ | R-shading 1 = €, 1; and unitary tensor
generators X, € €, ,, fory € §

3.4. Graph monoidal algebra embedding

In this section we relate endofunctor embeddings ¥ — End(M) to embeddings of
monoidal algebras into graph monoidal algebras, which is the non-pivotal analog of embed-
ding planar algebras into graph planar algebras. We give a 2-shaded multifusion version
which applies to an algebraic analog of a finite depth subfactor standard invariant.

DEerINITION 3.32. — Let J be a finite set. The tensor category Vec(J x J) of bi-J -graded
vector spaces has objects finite dimensional vector spaces which decompose as direct sums
V=, jes Vij, morphisms linear maps which preserve the bi-grading, i.e., f : V — W is
asum f = ) .. fij : Vij — Wi, and composition the composition of linear maps. The
tensor product of two bi-graded vector spaces is given by convolution

V& Wik == Viy ® W,
jeJ
as is the tensor product of morphisms, i.e.,if f : V! — V2 and g : W! — W2, then
(f ® Q=D fiy ® gix : DV ® Wy — D Vi © W
jeJ jeJ jeJ

It is straightforward to see that Vec(J x J) is a finitely semisimple rigid tensor category. A set
of representatives of the simple objects is given by {E;; };, jes, where E;; has a copy of C in
the ij-graded component and the zero vector space everywhere else. The dual of V' is given
by (VV)i; := (V;;)V, the space of linear functionals Vj; — C, with obvious evaluation and
coevaluation maps. Indeed, it is straightforward to verify that Vec(J xJ ) is monoidally equiv-
alent to the tensor category Vec[G,] of G,-graded vector spaces, where G, is the groupoid with

= |J| objects and a unique isomorphism between any two objects. In turn, Vec[G,] is easily
seen to be monoidally equivalent to End(M) where M is a finitely semisimple category such
that a set of representatives of the simple objects Irr(M) is in bijection with J.

DerINITION 3.33. — Given a bi-graded vector space V' € Vec(J x J), we may think of
it as a Vec-enriched graph T = (J,V), whose vertices are the set J, and whose edges are
the finite dimensional vector spaces V;;. We call a bi-graded vector space connected if given
any two vertices i,k € J, there is a sequence of vertices (i = jo, j1,...,Jn = k) such

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



622 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

that Vj,_,;, # (0) forall £ = 1,...,n. Observe that I is connected if and only if I" Cauchy
tensor generates Vec(J x J).

Given a (connected) Vec-graph [ = (J,V), we get an honest (connected) graph " with
vertex set J and whose edges from i to j are some choice of basis for the space V;;. Clearly
picking different bases yields isomorphic graphs.

REMARK 3.34. — This approach is very similar to that in the classification of Temperley-
Lieb module categories using weighted graphs from [25]. In [16], the authors classify unitary
Temperley-Lieb module categories using bi-graded Hilbert spaces, which we discuss briefly
(with a warning) in §3.4.2 below.

DEerINITION 3.35. — Suppose I' is a connected directed graph with vertex set J. For an
edge ¢ in T", we write s(¢) and ¢ (g) for the source and rarget of .

We define the graph monoidal algebra GMA(T)e—e as follows. For m,n > 0, we define
GMA(T)m—n to be the C-vector space with distinguished basis the set of pairs (p, g) where
p,q are paths on I' of length m, n respectively whose sources and targets agree.

The action of tangles is given by a state-sum model similar to a graph planar algebra:

(3.1) T((p1-91);---» (Px>qx)) := Z ]_[ 81;=(pi.ai) - Olo
statesoon T 1<i<k

Here, T is a monoidal tangle with k input disks, and the (p;, ¢;) are basis elements (pairs
of paths) in GMA(I ), n; . A state 0 on a monoidal tangle T is an assignment of vertices
and edges of I" to the regions and strings of T respectively such that if a string labeled by ¢
separates the left region Ry from the right region R,, then Ry is labeled by s(¢) and R, is
labeled by ¢ (g). Now o|; denotes the pair of paths in GMA(I");, -, obtained from reading
the top and bottom boundaries of the i-th input disk from left to right. In other words, we
only sum over states which are ‘compatible’ with the paths we input.

ExamPpLE 3.36. — Consider the following directed graph:

& ‘S K
ORI W OIS ©

For the monoidal tangle displayed below on the left, there are exactly two compatible states
for the input (x; = (g€, €€), x, = (£€%,e%¢), x3 = (0, £%€)), which are displayed below on
the right.

£,

J \.

Hence the output of the tangle on the left applied to the input (xy, x5, x3) is
(6™, 6™ cEE™) + (K, ee™ k).
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The graph monoidal algebra of I' is the non-pivotal analog of the graph planar algebra
of I'. The reader is encouraged to compare the above definition with that of the graph planar
algebra of a bipartite graph in Definition 3.75 below.

THEOREM 3.37. — Given a connected Vec-graph T = (J,V) € Vec(J x J), the monoidal
algebra P(Nec(J x J), ") e—se from Example 3.24 is isomorphic to the graph monoidal algebra
GMAT ) esse.

Proof. — Denoting ['®" = (J, V®"), we have a canonical isomorphism

Vi%n = @ Vi.il ® V.ils.iz X ® an_lk-

Observe thatan f € Homyec(sx) (f‘®m — f®”) is completely determined by its component
maps

fie: @ Vijy ®@ Vigjp ® - ® V0 = @ Viky ® Vi, ® -+ @ Vi, _y0-
J1seeesJm—1€J kiseskn—1€J ileJ

Now fix a basis {a’.‘ } for each V4, and for each pair of paths on I' from i to £

p=el'®-.. ®8mlg 61_8,1q® ®8k,, A

1

of lengths m and n respectively, we let Flﬁé_)q € Homyec(sx J)(f‘®’” — T'®") be the unique

i£-component map sending p to ¢ and all other paths p’ from i to £ of length m to zero. We

see then that

(3.2)

P(Vec(J X J). D)msn = Homyee(gxs) (8" — T&") = P spanc{
iteJ

ol
r=q p,q pathsi to £ '

Now it is straightforward to verify that the linear extension
®pp—n : P(Vec(J x J), 1ﬂ)m—)n — GMA ) m—sn

of Flﬁﬂq (p, q) is a linear isomorphism for all m,n > 0.

It remains to see that this isomorphism is compatible with the action of monoidal tangles.
It suffices to show that & intertwines the actions of a single vertical strand with no input disk,
vertical stacking tangles, and horizontal concatenation tangles, as these tangles generate the
monoidal operad. The vertical strand in P(Vec(J x J), 1:)1_>1 is given by

. ‘1’1—>1
Dty = B YF_y P D Yk =idoran = (D)
i,jeJ i,jeJ k i,jeJ k
Hence ®,_,; preserves the strand.

To see that ®,_,, preserves composition, we check on our basis (3.2). Suppressing
subscripts on edges for simplicity, suppose

p=e1® ek g=eN1® -l r=1®--Q  s=1Q-Qm
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are paths on I" from i to j. Then

£51g52 -+ gSm

( o )

. g o 0 g
e (FiLg) 0 (I)(_,m(F];J_,q) - ;1;2 zqz = 8g=r(p.s) = Squ(Dk_’m(FI;j—ﬂ)

( .o ) = Dpsm(FrLos 0 Fyly).

gP1ghP2 -+ gPk

As composition is multi-linear, the general case follows by taking linear combinations.

Finally, to show ®,_,, preserves tensor product, we again work with our basis (3.2). Again
suppressing subscripts for simplicity, suppose

pEh =Pl @ ... @ Pk ¢¥ =1 Q... @ el
rij:gr1®...®grm sij :gs1®...®85"

are paths on T', where p&”, ¢&" go from g to h, and r"/, s"/ go from i to j. We calculate

g2 g9¢  gS1g52+ - g5n 9192 g9¢  gS1g52+ - g5n
[ | [ | | | | |
h ij
Ot (FEA ) @ Omon(FL) = ((.0) ) (o) ) =6z (progs) )
L I L I L I L I
ePEP2 - gPk  gllgh2-+-glm gPEP2 Pk gllgh2-+-glm

= Shmi Pkpmostn(FE o ge) = Pramostin(FEL, @ F ).
Again, the general case follows by taking linear combinations.
Since the actions of the generating tangles agree, we are finished. O

DEerINITION 3.38. — Suppose % is a semisimple monoidal category Cauchy tensor gener-
ated by X, and M is a finitely semisimple module category. Let Irr(M) = {m,...,m,} be
a set of representatives of simple objects of M, and define J := {1,...,r}. The fusion
Vec-graph [ of M with respect to X is the Vec-graph whose vertices are J and whose edge
spaces are given by

(3.3) Vij = M(X > m; — myj).

ProposITION 3.39 (Graph monoidal algebra embedding). — Suppose € is a semisimple
monoidal category Cauchy tensor generated by X, M is a finitely semisimple category with
J a set of representatives of the isomorphism classes of simple objects, and T is a connected
Vec-graph whose vertices are J. Equipping M with the structure of an indecomposable left
E-module category whose connected fusion \lec-graph with respect to X is T is equivalent to
embedding the monoidal algebra P(€, X )e—se into GMA(T)e—e. More precisely, the category
of €-module structures on M and module functor structures on the identity functor is equivalent
to the category of monoidal algebra embeddings and gaugings. ©

) By gauging we mean ‘conjugating’ the embedding by placing a fixed invertible element (or its inverse) on each
strand as in [71]. In all our examples, gauging does not change the embedding, which is easily seen from our
calculations. Indeed, we always get a discrete set of embeddings, as all our fusion graphs are trees (cf. [25]). This
means gauging is not important in this article.
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Proof. — As we discussed previously, ¥-module structures on M are equivalent to tensor
functors ¥ — End(M). By semisimplicity, End(M) =~ Vec(J x J). Notice that every
linear tensor functor ¥y — Vec(J x J) uniquely extends to its Cauchy completion %,
and every linear tensor functor ¢x — Vec(J x J) has essential image in Vec(J x J)g.
The result now follows from Theorem 3.37 together with the equivalence of categories from
Theorem 3.26. O

REMARK 3.40. — When ¥ is fusion, the Frobenius-Perron dimension of X is the norm
of the underlying graph I'.

3.4.1. Embedding multifusion categories into multishaded graph monoidal algebras. — We
now adapt Proposition 3.39 to more closely approximate subfactor planar algebras, which
have two shadings. On the Vec-graph side, we will see this translates into our Vec-graphs
I= (J, V) being bipartite,ie., J = Jy I J_,and V;; = (0) wheneveri € Jx and j € J4.

All the results and definitions in the beginning of this section about the graph tensor cate-
gory and the (graph) monoidal algebra have straightforward 2-shaded/bipartite generaliza-
tions to multifusion categories.

DEerFINITION 3.41. — Suppose D is a 2-shaded multifusion category with Cauchy tensor
generator X in Dy, and M is a finitely semisimple module category. As in Definition 3.38,
we define the fusion Vec-graph T of M with respect to X to have vertices corresponding to
simple objects in M and edge spaces

Vij = M(X >m; — mj).

Observe that since D is 2-shaded and X € Dy, Tis bipartite.

PRrOPOSITION 3.42 (2-shaded graph monoidal algebra embedding).

Suppose D, M, T are as in Definition 3.41. Indecomposable left D-module category struc-
tures on M whose fusion graph is T correspond to embeddings of the 2-shaded monoidal algebra
P(D, X)e—e into GMAT )e—e

This is the purely algebraic version of our graph planar algebra embedding theorem.

REMARK 3.43. — In §3.6.3 below, we will define the notion of graph planar algebra by
beginning with GMA(T")e—e and extending the action of monoidal tangles to all planar
tangles. In particular, it follows just from the results of this section that a graph planar algebra
embedding yields a module category. This result alone is enough to show the existence
of EH3 and EH4 as tensor categories from the GPA embeddings constructed in §5, but not
to determine whether these tensor categories are unitary.
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3.4.2. Embedding unitary multifusion categories. — Recall that a finitely semisimple C* cate-
gory M is f-equivalent to Hilb!"™™ ™! Similar to the algebraic and multishaded settings,
one can adapt to the unitary setting by first considering the unitary multifusion cate-
gory Hilb(J x J) of bi-J-graded Hilbert spaces, which is T-equivalent to End'(M) for
any C* category M where |Irr(M)| = |J|. (This is the approach to classifying unitary
Temperley-Lieb modules in [16].) Analogous to Definition 3.33, we may identify the objects
of Hilb(J x J) with Hilb-enriched graphs I = (J, H), and we obtain honest graphs by
choosing orthonormal bases for the edge Hilbert spaces.

Now the graph monoidal algebra GM.A(I")e—se carries an obvious f-structure by the anti-
linear extension of (p, g) — (g, p) where p, g are paths on I" whose sources and targets agree.
It is straightforward to show that this f-structure is compatible with the vertical reflection
of tangles about the x-axis, and that it satisfies the positivity axioms, making GMA(T)e—se
a unitary monoidal algebra. Similar to Theorem 3.37, we have a f-isomorphism of unitary
monoidal algebras GMA(I)e e 2 P(Hilb(J x J), T)e_se.

We may pass to the unitary 2-shaded setting by working with bipartite Hilb-graphs. There
is an “obvious” unitary version of Propositions 3.39 and 3.42.

WARNING 3.44. — One should be careful not to use the Formula (3.3) to define the corre-
sponding bi-Irr(M)-graded Hilbert space from a {-functor in End’ (M), as it would require
choosing Hilbert space structures on the hom spaces of M. We will see in Remark 3.61 below
that this extra structure corresponds to a unitary trace on M, which gives a distinguished
choice of unitary pivotal structure on End(M) by Proposition 3.67 below. Instead, one
should simply use the f-equivalence between Hilb(Irr(M) x Irr(M)) and End’(M).

Observe that when M is C*, M(m — m), M(n — n) are C* algebras for all m,n € M,
and M(m — n) has the canonical structure of a Hilbert C* M(m — m) — M — n)
bimodule. We will not discuss this further as it would take us too far afield.

The remaining sections of this chapter are dedicated to adapting Proposition 3.42 to the
pivotal and unitary pivotal settings. We will see this adaptation naturally becomes the module
embedding theorem for graph planar algebras.

3.5. Planar algebras

In §3.3, we defined the notion of a (shaded) monoidal algebra. As alluded to earlier, the
pivotal analog of a monoidal algebra is a planar algebra. To simplify the exposition, we will
only define (2-)shaded planar algebras with a single strand type following [60]; we refer the
reader to [61, 59] (see also [9]) for a host of other notions of planar algebra.

DEFINITION 3.45. — A (2-)shaded planar tangle consists of a disk with smaller internal
input disks, together with non-intersecting strings between the disks, a checkerboard
shading, and a distinguished interval marked by * for each disk. We consider shaded planar
tangles up to isotopy. We say a shaded planar tangle has type ((ng, +o); (n1, *1), ..., (ng, 1)),
where each +; € {+, —}, if the i-th disk has 2n; strings connected to it, and its distinguished
interval is in an unshaded/shaded region corresponding to +;. The collection of shaded
planar tangles forms a colored operad by inserting tangles into the input disks to get a new
shaded planar tangle, making sure the distinguished intervals align. We include below an
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example of a composite of a tangle of type ((4,-);(2,—), (1, +), (3,—)) with a tangle of
type ((35 _)» (] ) +)) resulting in a tangle Of type ((47 _)s (2» _)7 (15 +)s (1 ’ +))

@

DEFINITION 3.46. — A (2-)shaded planar algebra is an algebra in finite dimensional vector
spaces for the shaded planar operad. Unpacking this definition, we have a vector space Py, +
for each color (n, ), and for each tangle T of type ((no, £o); (n1, £1), ..., (ng, £x)), we
have a multi-linear map Z(T) : ]_[',’-;l Pujt; —> Png,xo- Composition of tangles then
corresponds to the composition of multi-linear maps.

Notice that any shaded planar algebra gives us a canonical R-shaded monoidal algebra
with region shadings R = {O, O} and label set S = { | , || } as follows. Whenever n; =
nomod?2 and +; = +,, we set

(3.4) Pn1,41)—>(n2,%2) = Plny4n2)/2,%1 -

and the action of monoidal tangles is given by adding a x to the left of every input rectangle.
(Notice that for this R and S, every monoidal tangle must have a checkerboard shading.)
Here is an explicit example:

Pe. 4+ —e.+H*XPe.-)—2.-)XP2,+)—0.H>P5.4H—G.+) P2, +XP2 —XP1,+—>P4,+

The article [33] provides a dictionary between shaded planar algebras and triples (¢, X, ¢)
where % 1s a Cauchy complete category, 1o = 1+ @ 1_ is a decomposition (not necessarily
into simples!), X = 14+ ® X ® 1_- Cauchy tensor generates ¥, and ¢ : id = Vo Visa
trivialization of the double dual functor known as a pivotal structure (see Section 3.5.1 below
for the precise definition). This dictionary actually gives an equivalence of categories similar
to [48].
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THEOREM 3.47. — There is an equivalence of categories 19
Triples (%, ¢, X) with (¢, ¢) a pivotal multitensor cate-
>~ ¢ gory,and X € ¥ a Cauchy tensor generator with a decom-
position l¢ =14 d1_suchthat X =1, @ X ® 1_

2-shaded planar
algebras P,

This theorem is exactly the pivotal analog of Proposition 3.31, which provides the equiv-
alence of the underlying 2-shaded monoidal algebras and linear Cauchy complete monoidal
categories. Indeed, given such a planar algebra, we see that its category of idempotents % is
rigid. Indeed, given an idempotent p € %, its dual is given by its w-rotation, and the evalua-
tion and coevaluation are given by the ordinary cap and cup in the planar algebra cut down
by p and pV:

Choosing ¢, := p € Hom(p — p) endows ¥ with a pivotal structure. Conversely,
one passes from triples (¢, ¢, X) to planar algebras via the graphical calculus to produce
a monoidal algebra, and one then gets cups and caps by defining

M i=evy U = coevy
M = evyv o(px ®idyv) \_/ = (idyv ®¢x ') o coevy .

3.5.1. Unitary dual functors for unitary multifusion categories. — In order to discuss the
unitary version of Theorem 3.47, we rapidly recall the relevant notions for unitary dual
functors and unitary pivotal structures from [97, 83]. We do so only for unitary multifusion
categories, which are finitely semisimple multitensor C* categories, which substantially
simplifies the presentation. For ¢ a unitary multifusion category, we have that 1 decom-
poses into an orthogonal direct sum of simples as @;_; 1;, and we let p; € €(1¢ — 1) be
the minimal projection corresponding to the summand 1; fori = 1,...,r. In the exposi-
tion below, we assume % is indecomposable, i.e., € is not equivalent to the direct sum of
two non-zero unitary multifusion categories. We write 4;; = 1; ® € ® 1;, and we note
¢ =@, ; ©i,j 1s a faithful grading of ¢’ by the groupoid G, with r objects and a unique
isomorphism between any two objects, which can also be viewed as the standard system of
matrix units {E;; } for M, (C).

A dual functor v : ¥ — % consists of a choice of dual object ¢V for each ¢ € ¥ together
with morphisms ev,, coev, which satisfy the zig-zag axioms. On morphisms f € ¢ (a — b),
we define Vv by

Y = (evp ®idyv) o (idpv ® f ® id,yv) o (idpv ® coevy).

A dual functor has a canonical anti-tensorator v, : a¥ ® b¥ — (b ® a)¥ built from
evaluations and coevaluations. Any two dual functors are uniquely monoidally naturally
isomorphic.

(10) Similar to footnote 8, triples (C, ¢, X) form a 2-category where between any two 1-morphisms, there is at most
one 2-morphism, which is necessarily invertible when it exists [48, Lem. 3.5]. Hence this 2-category is equivalent to
its truncation to a 1-category.
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A pivotal structure is a pair (V, ¢) consisting of a dual functor v and a monoidal natural
isomorphism ¢ : ide = V o V. If a pivotal structure exists for a multitensor category, the
equivalence classes of pivotal structures form a torsor over the group Hom(@ — C*) with
group law given by pointwise multiplication, where U/ is the universal grading groupoid of ¥
(see [21, §4.14] and [83, §3.3] for more details).

A dual functor is called unitary if it is a dagger tensor functor, i.e., v, 5 is unitary for all
a,b € €,and f¥T = f™V forall f € ¥(@a — b). Each unitary dual functor induces a
canonical unitary pivotal structure by ¢, := (coevz ®idevv)o(id, ® coevev), which is unitary.
As in [97, §7.3], the term “unitary pivotal structure’ should be viewed as a synonym for ‘the
canonical unitary pivotal structure induced from a unitary dual functor.’

REMARK 3.48. — Equivalently, we can say that a pivotal structure ¢, : ¢ — ¢¥V is
compatible with the dagger structure if coevz = evevo(pe ®idev) 1 ¢ ® ¢¥ — g, and
define a unitary pivotal structure as a pivotal structure which is compatible with the dagger
structure. It is easy to see that the only compatible pivotal structure is the canonical one. Note
that this compatibility condition is needed in order for unitary pivotal categories to have the
correct diagram calculus where dagger corresponds to reflection of diagrams, since COGVI and

evev o(p. ® id.v) both are represented graphically by the same oriented cap.

REMARK 3.49. — We found the relationship between pivotal structures and unitary
pivotal structures very confusing, and so we’d like to pause to explain why it’s so confusing.
In both the algebraic and unitary settings a pivotal structure consists of two parts: a choice
of dual functor and a choice of trivialization of the double dual functor subject to a compat-
ibility condition. In the algebraic setting, the dual functor is essentially unique (i.e., any two
choices are canonically naturally isomorphic) and the compatibility condition is vacuous,
so the only interesting part is the trivialization of the double dual functor. By contrast, in
the unitary setting, once you’ve chosen a unitary dual functor, the compatibility condition
guarantees that there’s a unique compatible trivialization of the double dual, so the only
interesting part is the choice of unitary dual functor. This means even though the two
definitions can be made parallel, the interesting parts of the two definitions are disjoint!

Note that a unitary pivotal structure ¢ is pseudounitary, i.e., all dimensions of simple
objects are strictly positive. Here, the left and right dimensions of a non-simple object ¢ € ¥
are the matrices in M, (C) determined by

Dim](f(c),-j idlj = UZ(Pi ® id, ®pj) Dim%(c),-j idli = tl'(;;(pi ® id, ®p]‘).
When ¢ € € is simple, Dim{ (c), Dim%(c) have exactly one non-zero entry, which we call
dim} (¢). dim%(c) respectively.

For our indecomposable unitary multifusion category %, there exists a canonical spherical
structure [69, 107, 5, 83] which satisfies for all simples ¢ € ¢, dim{ (c) = dim%(c). By picking
this basepoint, we identify the torsor of pivotal structures with the group Hom@ — C*).
Polar decomposition gives us a group isomorphism C* == U(1) xR~ ¢, which gives us a group
isomorphism

Hom(@U — C*) = Hom(@/ — U(1)) x Hom@ — Rxy).
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It follows that the unitary pivotal structures correspond to the subgroup 1 x Hom(U — R)
as all dimensions must be strictly positive.

Now in the case of a unitary multifusion category, the universal grading groupoid U is
finite. If G C U is a subgroup (with only one object), then given a 7 € Hom(U — R.), we
must have 7(G) = {1}. Hence for our indecomposable unitary multifusion category % such
that 14 = @;_, 1; is a decomposition into simples, the relevant grading groupoid to see all
unitary pivotal structures is exactly G,.

Summarizing, we have:

THEOREM 3.50. — Let € be a unitary multifusion category. There is a bijective correspon-
dence between

1. unitary equivalence classes of unitary dual functors and their induced unitary pivotal
structures

2. Hom(G, — Rsy).
See [83] for more details.

REMARK 3.51. — Notice that a homomorphism # € Hom(G, — R.g) is uniquely
determined by its image on E;;,; for1 <i <r —1.

Explicitly, starting with a unitary dual functor v with its induced unitary pivotal structure
@, we get our 1 € Hom(G, — R.) by taking the ratio of left to right quantum dimensions
of simple objects:

for all simple ¢ € €j;.

Conversely, we can choose for each ¢ € % a unique balanced dual (c, ev., coev,) up to
unique isomorphism. One then obtains all other unitary dual functors from homomor-
phisms 7 € Hom(G, — R~¢) by rescaling the evaluations and coevaluations on simple
objects ¢ € ¢;; by

ev’?

= T[(E,'j)l/4 eve . coevy = T[(Eij)_l/4 Coeve .

3.5.2. Unitary planar algebras. —

DEFINITION 3.52. — A planar f-algebra is a planar algebra equipped with antilinear
maps 1 : Py, + — Py + such that
— tot=1id, and
— for every planar tangle T, TT(xI, ... ,x};) = T(xy,.. .,xk)Jr where TT denotes the
reflection of T about any axis.
A planar f-algebra is called a C* planar algebra or a unitary planar algebra if its underlying
dagger monoidal algebra from (3.4) is C*. (1D

REMARK 3.53. — Observe that the planar algebra of a bipartite graph from [57] (see also
Definition 3.75 below) is unitary.

(1D Qur definition of unitary planar f-algebra from [84, Def. 2.3] was vague about what positive definite means
for Py 4. The above definition clarifies this omission.
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We now show the above definition of C* planar algebra is equivalent to [61, Def. 1.37].

LemMA 3.54. — A planar t-algebra P, is unitary if and only if there exists a faithful tracial
state W4 on Po + such that for every n > 0, the sesquilinear form

(3.5) (X9 =Y

is a positive definite inner product.

Proof. — Suppose P, is unitary, so Py, + is a finite dimensional C* algebra as a corner of
a 2 x 2 linking C*-algebra. Choose a faithful tracial state ¥+ on Py +. Suppose x € Py +.
Since the 2 x 2 linking algebra £(0,2n) is C*, the Py, +-valued pairing inside ¥+ in (3.5) is
positive definite, i.e.,

Hence the sesquilinear form (3.5) above is positive definite by positivity and faithfulness of yr.
Conversely, suppose we have ¥+ on Py + such that (3.5) is positive definite for alln > 0.
Suppose x € P, + and 0 < k < n such that

n—k

Then capping off the remaining strings in the diagram on the left hand side and applying ¥4,

we see that (x, x):,”’ 4 = 0, and thus x = 0. Hence the underlying dagger monoidal algebra

is C*, and we are finished. O

DEFINITION 3.55. — A subfactor planar algebra is a 2-shaded planar f-algebra satisfying
the following axioms:

— (connected) Py,+ = C via the map which sends the empty diagram to Ic,
— (finite dimensional) dim(P,,+) < oo for alln > 0.

— (positive) For every n > 0, the sesquilinear form on P, + given by
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is a positive definite inner product, and

— (spherical) For every x € Py 4, * = '

By Lemma 3.54, a subfactor planar algebra is a 2-shaded unitary planar algebra.

The following result, which appears in [83, §4], is the unitary analog of Theorem 3.47,
which uses unitary dual functors instead of a pivotal structure.

THEOREM 3.56 ([83, §4]). — There is an equivalence of categories (see Footnote 10)

Triples (%,V, X) with € a unitary multitensor

2-shaded wunitary | | category, V a unitary dual functor, and a gener-

planar algebras P, ~ Jator X € % with an orthogonal decomposition
ly=1@1l_suchthat X =1, X ® 1_

Moreover, under this equivalence,

— finite depth planar algebras correspond to triples (€, v, X) where € is unitary multifusion,
and

— subfactor planar algebras correspond to triples (¢, Vv, X) where 11 are simple and V is
the canonical spherical dual functor.

REMARK 3.57. — Inthe unitary setting, Proposition 3.31 gives us an equivalence between
the underlying 2-shaded unitary monoidal algebras and unitary multitensor categories.
Starting with a 2-shaded unitary planar algebra P., we get a unitary dual functor on the
projection category ¢ by taking the m-rotation in P,. Conversely, given a tuple (¢, v, X),
by Remark 3.48, coev;r = evyv o(py ®idyv) and ev:;r = (idyv ®<p;1) o coevyv. This means
the cups and caps are alternately described by

M 1= evy U i= coevy A= coev}} = ev;r( .

Now in order for a 2-shaded unitary planar algebra P, to have scalar loop modulus, we
choose the standard unitary dual functor Vggndarg 0n € with respect to X following [34],
which is clarified in [83]. First, define n+ := dim(End(14)), and denote the summands
of 14 and 1_ by Vi and V_ respectively. Let Dy be the ny x n_ matrix whose uv-th
entry is dim(y ® X ® v), using the canonical spherical structure. Let dy > 0 such
that d2 = ||DXD§|| = ||D§DX||, and let u and v be the Frobenius-Perron eigenvectors
of Dy DI and DI D respectively normalized so that

Z ww)?=1= Z v(v)2.

uevVy veV_
We denote by A the vector in R':(;er obtained by concatenating u and v.

DEeFINITION 3.58. — The standard unitary dual functor with respect to X corresponds to
the standard groupoid homormorphism G, — R given by

A(u))z

standard — | 277
(3.6) ot (g, ) (M
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under Theorem 3.50. It is straightforward to verify that the shaded planar algebra corre-
sponding to (%, Vstandard, X ) under Theorem 3.56 has scalar loop moduli given by

3.7) Q = dyidp, , Q = dy idp, _ .

3.6. The graph planar algebra module embedding theorem

In this section, we finally prove the unitary pivotal module embedding theorem. We begin
by defining the notion of a trace on a semisimple category in §3.6.1, and then discussing
Schaumann’s notion of a pivotal module for a pivotal category from [96] in §3.6.2. As both
of these concepts have unitary versions, we treat both the algebraic and unitary setting in
parallel; the reader should include the parenthetical statements for the unitary setting, and
may omit these statements in the non-unitary setting. Finally, in §3.6.3, we see how our Main
Theorem 3.80 in this section is a natural generalization of the embedding theorems from §3.4.

3.6.1. Traces on semisimple categories. — In this section we now discuss (unitary) traces
on finitely semisimple (C*) categories. Throughout we denote the semisimple category with
trace by M because in our applications we will be looking at traces on module categories,
but nothing in this section uses a module structure.

DEFINITION 3.59. — A trace on a semisimple category M is a family of linear functionals
Tr, : Endp(m) — C form € M such that Tr, (g o f) = Tr,(f o g) for all
feM@m—n)and g € Mm — m). We call a trace nondegenerate if the bilinear
forms Homp(m,n) x Hompq(n,m) — C via (f,g) + Tr,(g o f) are non-degenerate
(Tr(g o f) = O forall g € Hom(n,m) implies f = 0). For convenience, all traces that
follow are assumed to be nondegenerate unless stated otherwise.

When M is a semisimple C* category, we call a trace unitary if in addition for every
m,n € M, the sesquilinear form (£, g) := Tr,, (g7 o f) on Hom (m, n) is a positive definite
inner product.

REMARK 3.60. — We do not require Tlrf‘,{1 to be normalized; that is Trf‘n" (id,,) is typically
not 1. Instead we think of Tra’1 (id,,) as specifiying a notion of the dimension of m € M.

For example, any trace on the n x n matrices M, (C) is a scalar multiple of the standard
matrix trace. A trace on Vec is a collection of traces on M, (C) for all n; however the
condition TrM(f o g) = Tr'™(g o f) applied to maps between vector spaces of different
dimensions restricts the normalizations of the different traces. In particular, the standard
trace (Try (idy) = dim V) on each End(V') gives a trace on Vec, but the normalized trace
(tryy(idy) = 1) on each End(V') does not give a trace on Vec.

REMARK 3.61. — Similar to [96], in the non-unitary setting, traces on M are in bijection
with families of natural isomorphisms M(m — n) =~ M(n — m)* for allm,n € M.

Unitary traces on M are in bijection with 2-Hilbert space structures on M [3] (see also [4,
§3 and 5.6)), i.e., for every m,n € M, a Hilbert space structure on M(m — n) such that for
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all f e M(m —n),g e M — p),and h € M(m — p),
(3.8) (g0 i) min—p) = (/.87 0 h) mm—smy = (&1 0 1) pans py- 12

For the remainder of this section, we simultaneously develop the theory of traces on
semisimple categories and on C* categories; the extra adjectives and conditions required in
the latter case appear parenthetically. We denote by G the multiplicative group C* in the
algebraic setting or R~ in the unitary setting.

NOTATION 3.62. — Suppose M is finitely semisimple and Irr(M) = {xq,...,x,} is
a choice of representatives of the isomorphism classes of simple objects in M. Let £(M)
denote End(M) in the algebraic setting, and End’ (M) in the unitary setting. If A is a (C*)
category and yq,. .., y, are objects in AV, then there is a (dagger) functor Fy, _ ,, : M - N
that is unique up to unique (unitary) isomorphism such that F(x;) = y;. Furthermore, any
(dagger) functor out of M is of this form. In particular, we let E;; € &£(M) denote the
(dagger) functor which sends x; to x; and sends xj to the zero object for all k # i. Then
{Eij | 1 <i,j <r}isachoice of representatives of isomorphism classes of simple objects
in £(M). Thus in the algebraic setting, £(M) is equivalent to the category of G,-graded
vector spaces Vec[G,], and in the unitary setting, £(M) is dagger equivalent to Hilb[G,]. In
either case, the universal grading groupoid of £(M) is G,.

LeEmMA 3.63. — Let V be Vec (respectively Hilb). The function from (unitary) traces on'V
to G given by Tr¥ +—> Trg (idc) is a bijection.

Proof. — For surjectivity, we note that if A € G, then (A Tr)(V) := Adim(V) is a trace
on V which satisfies (A Tr)c(idc) = A.

For injectivity, we prove that Tr" is determined by Trg (id¢). Let V' € V and choose a(n)
(orthonormal) basis vy, ... v, for V. Let w; : V — C be the projection ) ; a;v; — a;, and
let i : C — V be the inclusion A +— Av;. The composites ¢ 7r; span End(}'), and

Try (ey) = Trg () = 8=k Tri (ide).
Hence TrY is completely determined by Tr?cj (id¢), which proves injectivity. O

PRrOPOSITION 3.64. — The function from (unitary) traces on M to G”, where r is the rank
of M, given by
T — (Tr}!(idy, ). ... Trp(id, )

is a bijection.

Proof. — If M has r distinct isomorphism classes of simple objects, M is (dagger) equiv-
alent to a(n orthogonal) direct sum @;_; Vec (respectively @;_, Hilb). Since there are no
maps between objects in the different summands, a (unitary) trace on @;_, Vec (respectively
@;_, Hilb) is equivalent to independently giving a (unitary) trace on each of the r copies
of Vec (respectively Hilb). The result now follows from Lemma 3.63. O

(12) We note that the second equality in (3.8) holds if and only if for each m € M, the linear functor

M(— — m) : M°P — Hilbisadagger functor. In this case, the first equality in (3.8) holds if and only if the Yoneda
embedding m — M(— — m) is a (fully faithful) dagger functor M <> Fun’(M®°P — Hilb).
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PROPOSITION 3.65. — The function from (unitary) pivotal structures on E(M) to G
given by
s (dimz(Ei-H,i));;i
is a bijection.

Proof. — There exists a canonical (unitary) spherical structure on £(M) where all objects
have left and right dimension 1. Thus the (unitary) pivotal structures on £(M) form a torsor
over Hom(G, — G). Such a homomorphism is uniquely determined by its image on E; 41 ;
for1 <i <r —1asinRemark 3.51. O

Given a pivotal structure ¢ on &£(M), the left pivotal trace tri takes values in
EM)(@{d = id) = C’". Choosing a simple object x; induces a C-valued trace on £(M)
by projecting to the x;-component of 1g(aqy := idaq. Thatis,if F € E(M)andn: F = Fis

a natural transformation, we define Trfp(M)’x" (n) by the formula

(3.9) TeE M () - id,, = =t (1),

Xi

We define the j-th column functor F; : M — £(M) by letting F;j(m) be the (dagger)
functor which sends x; to m and all other simples to the zero object. We denote by £(M); the
essential image of M under F;, which consists of (orthogonal) direct sums of the objects E;;
fori =1,...,r. Notice that F; is a (dagger) equivalence M = £(M);. This is the categorical
analogue of identifying a vector space with matrices supported on the j-th column.

We now choose the simple object x; € M giving us our scalar-valued trace Tr® M3
on £(M). By restriction, we get a (unitary) trace on £(M); =~ M, which we denote
by Trf 1 Notice that taking the xj-component of tr¥ can be viewed as cutting down
E(M)(id = id) by the (orthogonal) projection onto the summand Eq; C idg(uq). Denoting
this projection by a shading, we get the following diagrammatic formula for Tr%i?’[)‘ (n)
forn: Ei1 = Eir:

(3.10)

= Pprojg, , -

We have thus proved:

PRrROPOSITION 3.66. — The function ¢ +— trl“j le(m), together with the (dagger) equiva-
lence E(M)1 = M, induces a function A from the set of (unitary ) equivalence classes of pivotal
structures on E(M) to the set of (unitary) equivalence classes of (unitary) traces on M.
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We now construct a left inverse to the function A.

ProOPOSITION 3.67. — The function A defined by

an a _
{Traces '™} =~ G"3(ar,....ar) > |—,....,.— ) € G"!
Prop. 3.64 ay dr—1

=~ {Pivotal structures ¢* }
Prop. 3.65

is surjective and provides a left inverse to A from Proposition 3.66. Moreover, under A, two
(unitary) traces map to the same (unitary) pivotal structure if and only if they are proportional.

Proof. — Surjectivity of A is obvious. Notice that a;+1/a; = bj4+1/b; foralll <i <r—1
ifand only if a; /b; = aj41/biy1 for1 <i <r —1ifand only if (ay,...,a,) is proportional
to (b1,...,by).

Finally, we show A o A = id. Let Tr™ be the (unitary) trace on M corresponding
to(ai,...,ar) € G" under Proposition 3.64, and let ¢ be the corresponding (unitary) pivotal
structure on £ corresponding to (as/ai,...,ar/ar,—1). It suffices to prove that tr® |,  is
proportional to Tr™ under the equivalence N' 2 M, since proportional traces give rise
to (unitarily) equivalent pivotal structures under A. Indeed, for a fixed 1 < j < r, by
monoidality of ¢, we have

j—1 j—1
. . . . aj
uf (g, ) = dimf (£;1) = [[dimf Gdg, ., )= [ =+ =
1

i=1 i=1

a = a Tl'xj (ldxj)

as in the proof of Proposition 3.64. Hence tri = aj! Tr™ under the (dagger) equivalence

N =M. O

In particular, if we change our choice of simple object x; this only rescales the trace on M.

3.6.2. Pivotal module categories for pivotal categories. — We now expand on the previous
section to the scenario where M is equipped with the structure of a -module (C*) category,
where % is a (unitary) multitensor category. Some other interesting results related to the non-
unitary multifusion case were recently obtained in [20, §2.6].

DEFINITION 3.68 ([96]). — If (%, ¢) is a semisimple (unitary) pivotal multifusion cate-
gory and M is a semisimple left ¥-module (C*) category with a (unitary) trace Tr™*!, then
(M, Tr™M) is called a pivotal €-module (C*) category if we have the following compatibility
of Tr™ with the left partial trace in ¢ forallc € €,m € M,and f € M(c >m — ¢ > m),

(3.11)
T}, (f) = Ty [(eve > idp) o (idev ® f) o (idev ®(pe) ™" B idp) © (coevey > idy)]
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Here, we use the diagrammatic convention of [5] for left ¥-module categories, where the
coupons in M are drawn cut open on the right hand side to indicate the absence of any right
action.

REMARK 3.69. — In [96, §4.1], it is shown that when (€, ¢) is pivotal fusion and M is
indecomposable, traces on M which satisfy (3.11) are unique up to scaling. Moreover, by
[96, §5], when ¥ is pseudo-unitary equipped with its canonical spherical structure, every
indecomposable module category M admits a trace Tr'™ which satisfies (3.11).

When ¥ is unitary, every indecomposable unitary module category M is of the form
Mod« (A) for A an irreducible Q-system (normalized C* Frobenius algebra) in € by [77,
Thm. A.1]. This is enough to get a unique unitary trace Tr’*! which satisfies (3.11).

REMARK 3.70. — In fact, pivotal structures on the 2-shaded multifusion category built
from ¢, M, and its dual category correspond exactly to module traces on M not up to
rescaling. That is rescaling the choice of trace changes the pivotal structure on the odd part
of the 2-shaded multifusion category, but in the even parts this rescaling cancels out.

DEerINITION 3.71. — Given a tensor functor between pivotal categories
(W, 1) : (%,9%) — (D,¢P), where our convention for the tensorator natural isomor-
phism is ugp @ W(a) ® Y(b) — WY(a ® b), we get a canonical anti-monoidal natural
isomorphism 8. : ¥(cY) — ¥(c)Y given by
(3.12) e = ([W(eve) o pev,e] ® idy(e)v) o (Idg(ev) ® coevc))-

We call (W, ) pivotal if 8} o py(c) = Scv o W(gp,) forall c € 4.

THEOREM 3.72. — Suppose M is a finitely semisimple left €-module (C*) category, and

let (W, 1) : € — E(M) be the corresponding (dagger) tensor functor from Lemma 3.20.

The following are equivalent for a (unitary) trace Te'™ on M and its induced (unitary) pivotal
structure ¢ on E(M) from Proposition 3.67.

1. Compatibility condition (3.11) holds.

2. The corresponding (dagger) tensor functor (¥, ) is pivotal.

(Note that (2) implies (1) is relatively straightforward since one can use the graphical
calculi for pivotal categories and module categories with trace. But for (1) implies (2) since we
do not know that the functor is pivotal we cannot use a standard graphical calculus and need

to keep track of all of the structure maps. This explains why the formulas in the following
proof have a lot of explicit structure maps .)

Proof. — Asin the discussion right before Proposition 3.66, there is a (dagger) equivalence
Fi: M5 EM); :=span{E;; |1 <i <r}CEWM) xj — Ej 1.

In fact, using the tensorator of W, we can equip the (dagger) equivalence F; with a (unitary)
modulator

Vabm + V(@) @ Fi(b > xj) = ¥(a) @ (V(b) ® Ej,1) = (V(a) @ ¥(D)) ® Ej,
=2Va@®b)®Ej = Fi(a®br>x)),
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extending it to a (dagger) equivalence of @-module (C*) categories. As in the proof of
Proposition 3.67, there is a non-zero scalar « € G such that for every f € M(m — m),
TM(f) = atrtf(F(f)). Thusfor1 < j < rand f € M(c > x; —> ¢ > x;) =
EM)(P(c) ® Ej,1 — Y(c)® Ej,1), we always have

(3.13) o 'TeM

xXj

Ej,

E;

where 8. € E(M)(P(cY) — P(c)Y) is the canonical isomorphism from (3.12).
(1) = (2): Suppose (3.11) holds. Then forall 1 < j <r and

feEM(crxj = e x)) = EW()REj1 — Y(ORE)1), t(Fi(f)=a Tl (f)
which is equal to the right hand side of (3.13). Hence
trr,(f © [(idwie) =¥(p: ") 0 8.7 0 8 0 pue)) ®idg; 1) = 0.
Since try is nondegenerate (e.g., see [83, Lem. 2.6]), we must have
(idye)y —W(p; ") 0 870 08 0 o) ®idE;, =0
forall1 < j < r.Now taking right partial traces in £(M), we must have idg) =

W(ps!) 08} 08y o pu(e), so (P, p) is pivotal.
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(2) = (1): Suppose that (¥, ) is pivotal, so that §) o ¢ye) = v o W(g:). Then
for any f € M(c > m — ¢ > m), the right hand side of (3.13) is equal to trz(Fl (f) =
a M j(f), and thus (3.11) holds. O

c>x

We have an analogous omnibus theorem in the pivotal and unitary pivotal settings.

THEOREM 3.73. — Suppose that € is a (unitary) pivotal fusion category then

— Module category structures with a (unitary) trace on a (C*) category M correspond
exactly to (unitary) pivotal tensor functors € — E(M).

— A (unitary) pivotal fusion category D is (unitary) pivotal Morita equivalent to € if and
only if there is an indecomposable semisimple pivotal (C* ) module category (M, Tr'M)
such that D is (unitary) pivotal tensor equivalent to Ends (M), the €-linear (dagger)
endofunctors of M. Furthermore, the pivotal left €-module (C* ) categories (M, Tr'™)
which realize a (unitary) pivotal Morita equivalence between € and D are a torsor for
the group of (unitary) pivotal outer automorphisms Out(D).

— Tuples (M, Tr™M, m) where (M, Tr'™M) is an indecomposable semisimple pivotal € -module
(C*) category and m € M is a chosen simple object correspond exactly to connected
normalized Frobenius algebras (irreducible Q-systems [7]) A in €. The dual category
corresponding to A is the category of A-A bimodules in € [75].

REMARK 3.74. — This theorem is analogous to the purely algebraic Theorem 3.15. We
warn the reader that if € is a (unitary) pivotal fusion category, the answers to our main
problems might in principle be different in the algebraic and pivotal (and unitary pivotal)
settings.

For example, there might be several pivotal ¥-module (C*) categories which are equiv-
alent just as algebraic ¥-module categories, or there may be an algebraic module category
which cannot be endowed with a (unitary) compatible trace (or even a dagger structure!).
These phenomena do not happen for Extended Haagerup, but it is interesting to ask whether
they ever occur.

3.6.3. The embedding theorem for pivotal module categories. — In this section, we finally
prove the embedding theorem for pivotal module categories. We begin with a discussion of
the planar algebra of a bipartite graph [57]. Our definition will simply use a Frobenius-Perron
vertex weighting on our finite graph to extend the action of 2-shaded monoidal tangles for a
bipartite graph monoidal algebra to an action of shaded planar tangles. We then show how
to recover the usual definition of the graph planar algebra from [57].

DEerINITION 3.75. — Let ' = (V4,V_, E) be a finite connected bipartite graph with
even/+ vertices V4, odd/— vertices V_, and edges E. We consider an edge ¢ € E as directed
from + to — with source s(¢) € Vi and target 1(¢) € V_. We write ¢* for the same edge
with the opposite direction. Let A denote any Frobenius-Perron eigenvector of the adjacency
matrix of ', (13

(13) The definition of the graph planar algebra Ge does not depend on the normalization of the Frobenius-Perron

eigenvector A. In Remark 3.76 below, we will define a spherical faithful state on Ge using a particular normalization
of A.
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The 2-shaded graph monoidal algebra Ge—se = GMA(I')e. is defined analogously to
the unshaded version in Definition 3.35. The C-vector spaces GMA(T") gn—n),+ are spanned
by pairs of paths (p, g) of length m, n respectively which start at the same + vertex and end at
the same vertex. Note that GMA(T") 4—sn),+ is defined only when m = n mod 2. The action
of shaded monoidal tangles is given by the state-sum Formula (3.1). Note that G._, . is unitary
with t-structure given by the conjugate-linear extension of (p,¢)" = (¢. p).

Now given a shaded planar tangle T of type ((¢9, £0); (1, £1), ..., (tx, =)) whose input
and output disks are rectangles with the star on the left, where the i-th disk has n; strings
emanating from the top and m; from the bottom with m; + n; = 2¢;, we describe its action
on tuples of basis elements (p;,q;) € Gm, >n,;,+ by the weighted state-sum formula

(3.14) T((P1.qD)- - (Peoa) == Y c(T:0) | [] Solipran | olo-
statesocon T 1<i<k

A state o on the tangle T is an assignment of even vertices to unshaded regions, odd vertices
to shaded regions, and edges to strings such that if a string labeled by € separates two regions,
then s(¢) is assigned to that unshaded region, and 7(¢) is assigned to that shaded region.
Now o|; denotes the pair of paths in GMA(I"); n; obtained from reading the bottom and
top boundaries of the i-th input disk from left to right. In other words, we sum only over
states that are ‘compatible’ with the loops we start with. To define the constant c(7'; o), we
first isotope T so that strings are sufficiently smooth. Now consider the set £(7") of all local
maxima and minima of strings of 7. Then

1/2
C(T;G) — 1_[ (A(O-(econvex)) ) ,

e E(T) Ao (econcave))

where econvex 1S the convex region of the extremum e, and econcave 18 the concave region of e.

This definition appears to be highly dependent on the choice of numbers of strings
m;,n; emanating from the bottom and top of each input and output disk. However, every
space Gp—n,+ 1s canonically isomorphic to Gpin,+ = Gm4n—o,+ bY

A(z@»)”z .
1 .
(3.15) (p,q)H(MS(p)) Pq

Here, instead of writing the pair of paths (pg*, @) where the second has length zero, we only
write the first path pg*, which is actually a loop of length 2¢ = m + n. Indeed, by post-
composing with instances of the above isomorphism and precomposing with instances of
its inverse as appropriate, we see that the action of planar tangles does not depend on the
decomposition 2t; = m; + n;. Asin [57, Th. 3.1], changing a tangle by a Morse cancelation
or rotating a single input out output disk by 27 does not change the action of the tangle.
Hence the isomorphisms (3.15) endow the spaces G, + with the structure of a shaded planar
algebra called the graph planar algebra, denoted G,. We recover the definition from [57] by
always choosing m; = n; = t; for every input and output disk of 7.

The f-structure of G, is inherited from the graph monoidal algebra Ge_... Since
t: Gmon,+ = Gnom,+, the identification of both spaces with G, + means that
(pg*)t = gp*, ie., tis the conjugate-linear extension of reversing a loop. It is straight-
forward to see that the T structure on G, is compatible with (3.15), and is thus compatible
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with the reflection of planar tangles. As the underlying monoidal algebra is unitary, so is the
graph planar algebra.

REMARK 3.76. — The graph planar algebra, and hence its projection category, is in
general not spherical. For example, taking any edge ¢ which connects two vertices of distinct
weights, the projection eg* € G; 4 has distinct left and right traces. However, if we normalize
the Frobenius-Perron eigenvector A so that -y, Aj = 1 = 3,y A, then ¥/(py) = A3
defines a spherical faithful state on G, [57, Prop. 3.4].

NortatioN 3.77. — To state the main theorems of this section, we fix the following nota-
tion.
— I' = (V4, V_, E) is a connected bipartite graph
— A is any Frobenius-Perron eigenvector of T'.
— G, is the bipartite graph planar algebra of I'
— M = Hilb"* & Hilb"~ is one copy of Hilb for each vertex of I'.
— TrM is the unitary trace on M corresponding to A € GY+1V~ under Proposition 3.64.
— End®(M) is the unitary multifusion category of dagger endofunctors of M.

— U is the universal grading groupoid of End' (M), which is the groupoid with n4 + n_
objects, and a unique isomorphism between any two objects.

— F = @sEE Et(g),s(s) (S EndT(M)

— Vstandard 18 the standard unitary dual functor with respect to F from [83, 34], which is
induced by the standard groupoid homomorphism defined from A as in (3.6).

— M. is the planar algebra corresponding to (End’ (M), Vandara, F) under Theorem 3.56.

THEOREM 3.78. — With the above notation, the t-isomorphism of the underlying monoidal
algebras He = Go from Theorem 3.37 gives a T-isomorphism of unitary planar algebras.

Proof. — As the isomorphism from Theorem 3.37 identifies the underlying unitary
monoidal algebras, we only need to check that the actions of cup and cap agree. Since cup
is always the § of cap in a unitary planar algebra as discussed in Remark 3.48, we only need
to check each shading of cap agrees.

First, the standard evaluation and coevaluation with respect to F are given by

1/2 1/2
eVstandard — A(u) / COevstandard o— A(v) /
Euv : A(U) Ey v ' A(L{) :
Indeed, it is straightforward to check that the ratio 7534314 ( £, ) of the left to right stan-
dard pivotal dimension of E, , is given exactly by (3.6). Thus we see from the graphical
calculus for End®(M) that under the isomorphism of underlying monoidal algebras from
Theorem 3.37, the formula for each shading of cap is given by (4
x(z(e)))”z . (A(s(s»)“z .
M = ce N = egre.
EEZE (MS(E)) 2 At (e))

ecE

(4 Turning all strings down via (3.15) turns (p, g) into (pg™, @), and we suppress this second empty loop.
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These are exactly the same formulas for each shading of cap given by the state-sum
Formula (3.14). O

The following corollary follows immediately from Theorem 3.56.

COROLLARY 3.79. — Let ' = (V4,V_, E) be a finite connected bipartite graph, and let
Ge be its graph planar algebra. Let M = Hilb"+ @& Hilb"~ where ny = |Vy|.

— The idempotent category of Ge is equivalent to End(M), as multifusion categories.

— The projection C* category of G is dagger equivalent to End' (M), as unitary multifusion
categories.

We now prove a version of the graph planar algebra embedding theorem [62] for module
categories. Below, we fix a finite depth subfactor planar algebra P,, and we denote by (¢, X)
the unitary multifusion category of projections of P, with distinguished object X corre-
sponding to the unshaded-shaded strand of P.. We endow % with the canonical spherical
structure from [69, 107, 5, 83].

THEOREM 3.80. — The following are equivalent:
1. An embedding of shaded planar -algebras Pe — Geo

2. A pivotal dagger tensor functor (W, u) : (€, Vspherical) —> (End™ (M), Vtandara) such
that W(X) = F and VY (idy) = idp, and

3. an indecomposable left € -module structure on M, compatible with the dagger structures
of € and M, together with a unitary trace Tr™ defined up to scalar satisfying the
compatibility condition (3.11), whose fusion graph with respect to X is T'. More precisely,
the category of € -module structures on M and module-functor structures on the identity
is equivalent to the category of embeddings and guagings.

Proof. — The equivalence of (1) and (2) follows from Theorem 3.56 together with Corol-
lary 3.79. The equivalence of (2) and (3) follows from Lemma 3.20 together with Proposi-
tion 3.67 and Theorem 3.72. O

WARNING 3.81. — Since Theorem 3.80 is about module structures on a fixed M, it “over-
counts” module categories in the following sense. If the graph I has a graph automorphism,
then two different module structures on M will be equivalent to each other via a non-identity
functor built from the graph automorphism.

4. Combinatorics of potential (bi)module categories for Extended Haagerup

4.1. Summary of the combinatorial techniques for classifying module and bimodule cate-
gories

In this section we prove a partial classification of all fusion categories Morita equivalent
to the Extended Haagerup fusion categories and all Morita equivalences between them.
Specifically, we show that there are at most four fusion categories in the Morita equivalence
class, that there is exactly one Morita equivalence between any two that actually exist, and
determine the fusion rules for all possible fusion categories and bimodule categories. This
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argument closely follows the outline of [42, 43], so we begin by briefly summarizing the
techniques of these articles.

Given a fusion category ¢, one gets a fusion ring C := Ky(%) with basis consisting of
the isomorphism classes of simple objects in ¥ and non-negative structure constants Ni’;
for multiplication coming from the fusion rules X; ® X; =~ @ Nl.’; X . This fusion ring
has an involution corresponding to taking duals. It is natural to wonder: given a candidate
fusion ring, is it categorifiable into a fusion category, and if so, how many fusion categories
categorify our fusion ring? Typically, each of these questions is quite difficult [82, 81, 66];
combinatorics alone tells you very little about a single fusion category.

Given several fusion categories 4; and some Morita equivalences Mf‘] between %; and
;. one gets several fusion rings C; = Ko(%;), several fusion bimodules M;; = KO(M{.‘].),
and many “composition rules" Mf ®c; M}‘e/ — M. This collection of data satisfies many
combinatorial constraints. It is again natural to wonder: given a collection of fusion rings,
fusion bimodules, and composition rules, are they categorifiable, and if so, in how many
different ways? In general, this question is again quite difficult. However, in a small handful
of examples coming from the small index subfactor classification program, we have seen that
candidates which satisfy the many combinatorial constraints have been uniquely categorified.
In contrast to the situation for a single fusion category, combinatorics often tells you quite
a lot about the full Morita equivalence class of a known fusion category with a few known
Morita equivalences.

Here is the outline in more detail. We start with some fusion categories %; with fusion
algebras C;, and some Morita equivalences between them which we understand well. We
first use a computer to list the fusion modules over the fusion rings C;. (By ‘fusion modules’
we mean based modules satisfying some additional properties—see [43]. Sometimes the
term ‘NIMrep’ is used in the literature; this is an abbreviation for non-negative integer
matrix representations [29].) We identify a few of these fusion modules as coming from the
known Morita equivalences, and we use some additional arguments to see that the known
categorification is the only possible realization of these modules. (In our case, this step uses
the uniqueness of the Extended Haagerup subfactor [6], which is much easier than existence.)

Second, we try to determine the possible fusion rings of the dual categories for each (real
or hypothetical) module category. Using a computer, we can sometimes uniquely determine
the dual fusion ring from a fusion module combinatorially, or at least produce a relatively
small list. We then compute the fusion modules over each of these new fusion rings, as well
as the fusion bimodules between each pair of rings in our collection.

At this point, we have a collection of rings, bimodules between them, and some informa-
tion about categorification of some of the bimodules (coming from known algebra objects).
We now use the following key fact: given a triple of fusion categories A4, B, C, invertible
bimodule categories 4Kg, sLc, 4Mc, and a tensor equivalence

.A’CB &B BACC = AM&
we get an induced map on the decategorified bimodules over the fusion rings:

AKp ®ppLc — aMc.
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This induced map preserves positivity of coefficients and Frobenius-Perron dimensions.
Moreover, the existence of such a map can be checked with a computer. If such a map
does not exist, we say that the triple of fusion bimodules is not multiplicatively compatible.
Thus categorification of many fusion modules or bimodules can be ruled out due to not
being multiplicatively compatible with those fusion bimodules which have known categori-
fications. A similar argument can be used to compare the number of categorifications of
different bimodules. This stage of the argument is a bit similar to playing Sudoku, since each
time you rule out one possible bimodule, then the composites which were only compatible
with the eliminated one are now themselves incompatible.

Following this outline, we can often deduce a lot of information about the Brauer-Picard
groupoid from a relatively small amount of input data (such as existence of a few small
objects which are known to have unique algebra structures). In particular, for the Extended
Haagerup fusion categories, we start with our two fusion categories EH; and EH,, the
existence and uniqueness of the Extended Haagerup Morita equivalence between them, and
the lack of automorphisms of the Extended Haagerup planar algebra. This data is sufficient
to successfully run the above procedure to obtain the entire Morita equivalence class, as
evidenced by Theorem 4.13 below.

4.2. The Brauer-Picard groupoid of Extended Haagerup

The Extended Haagerup subfactor gives a Morita equivalence between two fusion cate-
gories which are not tensor equivalent. The fusion rules for these two categories are given in
§2.1 and 2.2; one of the categories has commuting fusion rules and the other one does not.
We will call the category with commuting fusion rules £H; and the other category EH.

We refer the reader to [43] for precise definitions of fusion modules and bimodules and
multiplicative compatibility of triples of modules/bimodules. Detailed descriptions of the
computer algorithms used to search for fusion (bi)modules and to check for multiplicative
compatibility are also described there.

LeEMMA 4.1. — There are exactly 7 fusion modules over EHy and exactly 5 fusion modules
over EH,.

Proof. — Checked with computer. O

The data of the (right) fusion modules are presented in accompanying text files
EHlmodules.txt and EH2modules.txt. Each fusion module of rank r over the fusion
ring of rank s is described by a list of r non-negative integer matrices of size s x r. The
(i, j)-th entry of the k-th matrix is the coefficient of the module basis element m; in the
product x;my (where x; is a ring basis element). The bases for the fusion rings and modules
are ordered with increasing Frobenius-Perron dimension.

From the list of matrices for a given fusion module, one can read off a corresponding list
of objects in the fusion category which are of the form End,,, (m), the internal endomor-
phism object associated to a simple object m in a module category categorification. Such an
internal endomorphism object necessarily admits an algebra structure if the module can be
categorified. The multiplicity vector of the simple objects in £H; in each such (hypothetical)
algebra object is given by the j-th column of the j-th matrix. In particular, the first column
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of the first matrix in the data of the fusion module gives the multiplicity vector of the internal
endomorphism algebra object with the smallest Frobenius-Perron dimension for any module
category realization. Therefore if we can classify algebra objects with the given multiplicity
vector, we can classify module category realizations of the fusion module.

We refer to the five fusion modules over EH, as E H,-Modules 1-5, using the same order
as in the text file. In the notation of Section §2.2, the corresponding (hypothetical) smallest
algebra objects are given by 1 +2 /> +2fa + fo, 1 + f6, 1 + fa+ P (or 1+ f4+ Q), 1 + f>,
and 1.

LemMmA 4.2. — EHy-Modules 4 and 5 are each realized by a unique right EH,-module
category.

Proof. — In any fusion category, the object 1 has a unique algebra structure. The object
1 + f> has a (necessarily unique by 3-supertransitivity [42, Lemma 3.13]) algebra structure
by the existence of the Extended Haagerup subfactor [6]. O

REMARK 4.3. — Theargumentin [42, Lemma 3.13] shows that 3-supertransitivity implies
uniqueness (but not existence) of an algebra/Q-system structure on 1 4+ f; in the pivotal and
unitary pivotal settings as well.

To go further, we consider fusion bimodules, which we again enumerate with a computer.
The full data is in the accompanying text file EHBimodules.txt. There are two EH-EH,
fusion bimodules. There are three E H;-E H, fusion bimodules, exactly one of which corre-
sponds to the algebra 1 + f, in EH; (i.e., the Extended Haagerup subfactor). There are
three £ H,-FE H5 fusion bimodules, one of which has rank 3, and the other two of which each
contain basis elements with Frobenius-Perron dimension 1.

LEmMA 4.4, — The rank 3 EH,-EH, fusion bimodule is not realized by an EH,-EH,
bimodule category.

Proof. — Looking at the (computer-generated) lists of multiplicatively compatible
modules and bimodules in the accompanying text file EHbimodulecomposition.txt,
we find that there is no possible way to tensor a realization of the rank 3 E H,-E H, fusion
bimodule (which is the first one on the list of EH,-E H, bimodules) with any invertible
EH1-EH; bimodule category. O

LemMA 4.5. — The automorphism group of EH is trivial.

Proof. — This argument is the same as the corresponding ones for Haagerup and Asaeda-
Haagerup [42, 43]. There is a unique algebra object in EH, giving the Extended Haagerup
planar algebra and this algebra tensor generates £H,. Thus automorphisms of £H, corre-
spond to automorphisms of the Extended Haagerup planar algebra (see [48, Thm A] for
details). Any automorphism of the Extended Haagerup planar algebra must send the gener-
ator to a multiple of itself (because it is uncappable) and the quadratic relation says that this
scalar must be one. Thus the Extended Haagerup planar algebra does not admit non-trivial
automorphisms. O
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THEOREM 4.6. — The Brauer-Picard group of the Extended Haagerup fusion categories is
trivial.

Proof. — Since by Lemma 4.4 the only realizable £ H,-E H,-bimodules each contain a
basis element of Frobenius-Perron dimension 1, any bimodule category realization of one of
these bimodules is equivalent to the trivial module category as either a left or right module
category. Since £H, has no outer automorphisms, any such bimodule category is in fact
the trivial bimodule category. Thus £H, does not admit any non-trivial invertible bimodule
categories, and the Brauer-Picard group is trivial. O

COROLLARY 4.7. — The Brauer-Picard 3-groupoid has the homotopy type of K(C*,3).
Any G-graded extension of an Extended Haagerup fusion category is of the form € XVec(G, w)
for w € H3(G,C>).

Proof. — The Brauer-Picard 3-groupoid is connected, has trivial 7; (since the Brauer-
Picard group is trivial), has trivial 5 (by [40, Cor. 3.7] since £H; has no invertible objects
and no non-trivial gradings), and has 73 = C* (by [22, Prop. 7.1]). Hence it is a K(C*, 3).

The classification of obstructions follows from the main result of [22]. Since the Brauer-
Picard group is trivial, the obstructions O3 and O4 vanish. Since 7, is trivial, extensions are
classified by H3(G, C*) and it is easy to see that ' KX Vec(G, w) realizes these extensions. [

COROLLARY 4.8. — Exactly one of the three EHq-E H» fusion bimodules is realized by a
bimodule category (the one corresponding to the Extended Haagerup subfactor).

LEMMA 4.9. — EH,-Module 1 is not realized by any module category.

Proof. — Againlooking at the lists of multiplicatively compatible modules and bimodules
in the file EHbimodulecomposition.txt, we find that there is no possible way to tensor
a right £H,-module category realizing £ H,-Module 1 with the known existing EH,-EH
bimodule category (which corresponds to the third EH, — E H; bimodule on the list in the
text files). This implies that E H,-Module 1 is not realized by a module category. O

We are now left to classify categorifications of EH,-Modules 2 and 3. For each of
E Hy-Module 2/3, we can use multiplicative compatibility with the realized E H;-E H,-bimo-
dule to uniquely identify a corresponding fusion module over £ H; which would have to be
realized as well for any realization of £ H,-Module 2/3.

From the lists in EHbimodulecomposition.txt, we see that £ H,-Module 2 corresponds
to EH;-Module 6 and E H,-Module 3 corresponds to £ H;-Module 7.

We now introduce fusion rings £ H3 and E H, (whose multiplication tables were described
in the preceding section). We compute the lists of fusion modules over E H3 and E Hy; fusion
bimodulesover EH;-EH,;,1 < i, j, < 4;and multiplicative compatibility between all of these
modules and bimodules. This data is all included in the accompanying text files.

The reason for introducing these rings is the following:

LEmMA 4.10. — If EHy-Module 2 is realized by a right EHy-module category, then the
fusion ring of the dual category is EHs. If EHy-Module 3 is realized by a right EH,-module
category, then the fusion ring of the dual category is EHj.
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Proof. — We use a computer to find the fusion rings of the dual categories of realizations
of these fusion modules. It turns out that it is easier to compute the dual rings for the corre-
sponding E H{-Modules 6 and 7. Since any module category K¢y, realizing EH,-Module 2
can be tensored with the £H,-£H | Morita equivalence to give a module category Lgy, real-
izing E H;-Module 6 and having the same dual category as K (and similarly for E H>-Module
3), this is sufficient. O

LEmMMA 4.11. — EHy-Module 2 and EH,-Module 3 are each realized by at most one
module category.

Proof. — Let K¢y, and Lgy, be realizations of EH,-Module 2 with dual categories C
and D. Then by the previous lemma C and D each have fusion ring E Hz. Then

M = Ky Rer, e, L

is an invertible C-D bimodule category with realizes some EH3-E H; fusion bimodule.
Looking at the list of EH3-E Hs-fusion bimodules, we see that every such bimodule has a
basis element with Frobenius-Perron dimension 1. Therefore M is trivial as a left C module
category. This means that C =~ D. Since the Brauer-Picard group is trivial, this implies
that Ker, = Len,.

The proof for EH,-Module 3 is similar. O

Since 4 M is a Morita equivalence if and only if B is isomorphic to the dual category
End 4 (M), we have the following corollary.

COROLLARY 4.12. — There is at most one fusion category Morita equivalent to EH, with
fusion ring E H3 and at most one fusion category Morita equivalent to EH, with fusion ring
EH,.

Putting this all together, we obtain the following result.

THEOREM 4.13. — In addition to EHy and EH,, the Morita equivalence class of the
Extended Haagerup fusion categories contains:

— at most one fusion category with fusion ring EHs;

— at most one fusion category with fusion ring EHy,

— and no other fusion categories.

The main result of this paper, Theorem 1.1 asserts the existence of fusion categories EH3

and £H4 in the Extended Haagerup Morita equivalence class with fusion rings EH3 and
E Hy, respectively.

REMARK 4.14. — There are analogous versions of Theorem 4.13 for the pivotal and
unitary pivotal settings with the analogous conclusion as Theorem 4.13.

— In the pivotal setting, the pivotal Morita equivalence class of the Extended Haagerup
pivotal fusion categories contains at most one pivotal fusion category with each of the
fusion rings E H3 and E H,4 and no other pivotal fusion categories.
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— In the unitary pivotal setting, the unitary pivotal Morita equivalence class of the
Extended Haagerup unitary fusion categories contains at most one unitary fusion
category with each of the fusion rings £H3 and EH, and no other unitary fusion
categories.

The proofs of these theorems are completely analogous to the above argument inserting
adjectives as necessary. It is important to note that there is no obvious way to derive these
theorems from each other; rather we must use the same argument separately in each setting.
The key point is that we already know that the Extended Haagerup subfactor is unique in
all contexts (algebraically, pivotally, and unitary pivotally) by Remark 4.3. That is, we need
to know that not only is there a unique algebra structure on 1 + £ in £H;, but we also
have a unique C* algebra structure [53, 55], a unique normalized Frobenius structure [75,
Defn. 3.13], and a unique Q-system structure.

In principle, we might still have that EH3 or EH4 exists as say a fusion category, but not
as a unitary pivotal fusion category. However, note that existence of £H3 and EH4 in the
unitary pivotal setting (which is what we actually prove!) implies existence in all settings.

4.3. The fusion ring of the groupoid

Suppose A, B, and C are fusion categories and 4Kz, gL¢, and 4 M are Morita equiva-
lences such that there is a bimodule equivalence

(O} AICB |ZB B£C = AMC-

In general there may be multiple such equivalences @, which are parametrized by invertible
objects in the (common) Drinfeld center Z(A). If the Drinfeld center has no non-trivial
invertible objects then the equivalence ® is uniquely determined by &, £, and M. There are
no invertible central objects for the Extended Haagerup categories, as can be read off from
the complete description of Z(EH) in [73] or can be seen from [40, Corollary 4.2]. Therefore
it makes sense to define the tensor product of simple objects in K and £ as a direct sum
of simple objects of M. Thus for Extended Haagerup, we can define the fusion ring of the
Brauer-Picard groupoid, with basis consisting of isomorphism classes of simple objects in
each invertible bimodule category.

NoOTATION 4.15. — For 1 < i,j < 4, we denote by C;; the unique EH; — EH; fusion
bimodule which was calculated using a computer and discussed in the last section. The rank
of C;; is the ij -th entry of the following matrix:

6666
6855

6585
6558

@.1) R:=

We may view (C; j)?; j=1 asone fusion ring whose basis consists of the union of the distin-
guished bases of each C;;. Multiplication of basis elements is determined by the relative
tensor product of the ambient bimodules (and defined to be zero when the ambient bimod-
ules don’t compose).
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We describe the fusion ring in the Mathematica notebook EHmult . nb, which is a wrapper
for the data file EHmult . txt, both of which are bundled with the arXiv sources of this article.
Therein, we supply a 6-dimensional tensor 7" whose (i, j, k, x, y, z)-entry is the coefficient
of z-th basis element of C; in the product of the x-th basis element of C;; and the y-th
basis element of Cjx. That is,

X ® Ve =Y Tl j.k.x.y.2)i Z (X) ® Vi i Zi) 1= TG0, k., 7.2)
z

where ; X; is the x-th basis of EH;;, and similarly for ;Y and ; Z.

NOTATION 4.16. — We denote by (EH;;)7 ;_, and (EH;;)7 ;_, the projection unitary

multifusion category of the Extended Haagerup subfactor planar algebra and its fusion ring,
where the 2 corresponds to an unshaded region and a 1 corresponds to a shaded region.

REMARK 4.17. — By Theorem 4.13, there is at most one way to extend the unitary multi-

fusion category (EH,-j)i j=1 to a unitary multifusion category (EHU)?’ j=1 such that EH;;

categorifies EH;j forall1 <i,j < 4.
4.4. Fusion graphs from E H,-Modules

We continue using Notations 4.15 and 4.16 from the previous section. Notice that for
1 <k <4, we get a left C-module M} given by

EH
Mk = 1k .
EHyy
DEFINITION 4.18. — For 1 < k < 4, the fusion graph Ty, for M, with respect to X is the

bipartite graph consisting of

— odd, shaded vertices given by the basis elements of E H g,
— even, unshaded vertices given by the basis elements of £ H», and

— (X1®1Yk,2Z;) =T(2,1,k, 1, y, z) edges between the y-th basiselement 1Y, € EHq
and the z-th basis element ,Z; € EHyy.

Note this convention is opposite to the one used for principal graphs of subfactors and fusion
graphs for fusion categories in §2 (see Notation 2.3).

PROPOSITION 4.19. — The fusion graphs Ty for 1 < k < 4 are given by

r, =
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REMARK 4.20. — Thelabelings on I'; and I'y match the indexing of objects in EHmult . nb.
As we only need labelings on I'; and I'4 in the following section, we have not labeled I'y
and I,.

Our convention for shading the above vertices is that all vertices in £H1; are shaded,
whereas all vertices in £H,; are unshaded. This corresponds to the fact that the unshaded
region of the Extended Haagerup planar algebra £H, corresponds to £H»,, and the shaded
region corresponds to EH.

Proof of Proposition 4.19. — The first two are exactly the definition of the dual principal
graph and the principal graph of the extended Haagerup subfactor. The second two are
obtained via computer in the Mathematica notebook EHmult.nb included with the arXiv
sources of this article. O

REMARK 4.21. — By the complete classification of possible module categories for EH;
and £H; in Theorem 4.13 together with Corollary 1.2, the graphs in Proposition 4.19 are the
only bipartite graphs which could accept a planar algebra embedding map from the Extended
Haagerup subfactor planar algebra.

COROLLARY 4.22. — If the extended Haagerup subfactor planar algebra embeds into the
graph planar algebra of Ty, for k = 3,4, then My, is categorifiable as a (EH,-j)i j=1-m0dule
C*-category, and EHy, exists.

Proof. — Fix3 < k < 4. By Corollary 1.2, the embedding of shaded planar algebras gives
us a (SH,-j)i j=1-module C*-category M}, which categorifies Mj and whose fusion graph
with respect to the unshaded-shaded strand is given by I'y. We see that M, is equivalent
to a direct sum EHx ® EHyr where EHji is a left module category over EH;; = EH;
for j = 1,2. By analyzing the fusion rules with X, by Theorem 4.13, we may conclude
that £H;j categorifies the fusion bimodule EHj; for j = 1,2. Specializing to j = 2,
since EHyy is a EHyy; — EHyy bimodule, by Theorem 4.13, the dual category EHyy of
the EHyo-module EH,; must categorify E Hyy. Again by Theorem 4.13, EHyy 1s equivalent
to EHy. O]

REMARK 4.23. — We can perform a similar (simpler) calculation for the Haagerup fusion
categories. It was shown in [42] that there are exactly three fusion categories in the Morita
equivalence class of the Haagerup subfactor, which we will denote by Hi, k = 1,2, 3; and
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a unique Morita equivalence between each pair. The category H, has six simple objects,
labeled 1, g, g2, X, gX, and g2 X, which satisfy the fusion rules

=1 X?’=1+X+gX+g’X, gX=Xg%

(Here we have used decategorified notation, and suppressed tensor product, direct sum, and
isomorphism symbols).

The category H3 is the category of bimodules in H, over the algebra 1 + g + g2; it has
the same fusion ring as H,, and we will label its simple objects by 1, h, h2, Y, gY, and g2Y .
The category H; can described as the category of bimodules over the algebra 1 + X in H>,
or as the category of bimodules over 1 + Y + Y in H3. The Haagerup planar algebra is the
planar algebra corresponding to the generator K of the H;-H, Morita equivalence whose
right internal end KK is 1 + X . Let L be the object in the H,-H3 Morita equivalence whose
left internal end LL is 1 4+ g 4+ g2 (and whose right internal end LL is 1 + & + h?). Let M be
the object in the H-H3 Morita equivalence whose right internal end MM is 1 + Y + hY.

The H,-H3; Morita equivalence has rank two, with simple objects L = gL = Lh and
XL = LY. The H,-H3 Morita equivalence has rank four, with simple objects KL, M, M h,
and M h?. The fusion graph for the module corresponding to £Hj is then determined by
tensoring each of the two simple 1-2 objects on the left by K and decomposing into simple
2-3 objects. Clearly there is a single edge from L to KL and no other edges out of L. We
now want to find the vertices adjacent to XL, i.e., the summands of KXL. By Frobenius
reciprocity, using (-, -) to denote the dimension of the hom space,

(KXL,KXL) = (KK, XLLX) = (1+ X, X(1 + g + g*)X)
=(1+X,14+g+g>+3X +3gX +3¢g°X) =4.

So K XL has either four distinct simple summands or a single simple summand with multi-
plicity two. But

(KXL,KL) = (KKX,LL) = (1+ X)X, 1+g+g%) = (142X +gX +g°X, 1 +g+g*) =1,

so KL appears with multiplicity one in K XL. Thus K XL has four distinct summands and
there is a single edge from XL to each of the four simple 2-3 objects. This gives the broom
graph of Corollary 1.4.

5. Graph planar algebra embeddings for Extended Haagerup

To specify a map out of a planar algebra presented by generators and relations, we need
only to assign values to the generators and check the relations. In particular, once we have
a nice presentation of a planar algebra, we can easily calculate all pivotal (C*) module
categories over it. For example, if we want to calculate all pivotal (C*) module categories
over the Termperley-Lieb-Jones planar algebra, we have no generators, and the only relation
is the loop modulus, so we get a unique module category for every planar graph with the
correct Frobenius-Perron eigenvector [25, 16]. The SU(3), planar algebra is presented by
two trivalent vertices satisfying certain relations using Kuperberg’s spider description [65],
and finding elements in a graph planar algebra corresponding to these two trivalent vertices
is exactly solving Ocneanu’s cell conditions [79, 27, 87].
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One of the main results of [6] is to give a similar characterization of maps out of the
Extended Haagerup planar algebra denoted £H., which we recall in Proposition 5.7. Using
this result, we give the embeddings of the extended Haagerup subfactor planar into the
graph planar algebras of I'; and I'y, by solving the equations specified in Proposition 5.7 in
the appropriate graph planar algebras. This is closely analogous to the original construction
of £H,. by embedding it in the graph planar algebra of its principal graph, and we are able to
reuse the same code. There are associated Mathematica notebooks (module-GPAs-EH3.nb
and module-GPAs-EH4.nb) which demonstrate the messy process of solving these equa-
tions. Here we simply exhibit particular solutions. Thus by Corollary 4.22, M3 and M, are

categorifiable as (EH;; 12 jzl-module C*-categories, and EH3 and EH4 exist.

5.1. The lopsided graph planar algebra convention

Suppose P, is a semisimple shaded planar algebra with pivotal projection multitensor
category (¢, X, ¢) where X € P 4 is the shaded-unshaded strand. By just rescaling cups
and caps in ¢ for X asin[71, §1.1],

B M xim W xTlw M y M >y

we obtain another semisimple shaded planar algebra PL*Y with the same underlying

projection multitensor category. To describe the action of tangles, we first write the tangles
in standard form, where each box has the same number of strings emanating from the top
and bottom. The action of tangles is obtained from the action of tangles for P,, where in
addition, we multiply by factors of x, y, x ™1, y~! corresponding to appearances of cups and
caps as in (5.1) in the standard form for the tangle.

It is straightforward to verify that this is a well-defined action of planar tangles which
is independent of the choice of standard form of a tangle. One first verifies that the zig-
zag relations hold and 2mz-rotation is still the identity. One then appeals to the folklore
theorem ([61, Proof of Thm. 4.2.1], similar to [48, Prop. 4.5]) that any two standard forms of
a tangle are related by a finite number of moves including Morse cancelation, 27 -rotation,
and exchanging the heights of two input boxes. Thus P{™** is a shaded planar algebra.

While the underlying projection multitensor category 4 has not changed, the pivotal
structure Y on ¢ corresponding to PO has changed! Indeed, pivotal structures on
a semisimple multitensor category are completely determined by the left and right pivotal
dimensions [83, Lem. 2.12]. The left and right ¢™*¥ pivotal dimensions on ¢, denoted

dimZ;‘ 1 » are related to the left and right ¢ pivotal dimensions, denoted dimy 5, as follows:
(dim? (¢). dim%(c)) if ¢ € %oo
~1dim?(¢), yx~! dim? if ¢ € 6
(52) (dimzx,y (C), dimgx,y (C)) — (xy 1rnL (C) yx lmR (C)) e 01

(yx~'dim{ (c), xy~ ' dim%(c)) ifc € €0
(dim¢ (c). dim% (c)) ife e i

Notice that we may write (5.2) as simply one equation:

(dimzx’y(c), dimgx’y (€)= (x/x7Fyly™J dimf(c),xix_jy-jy_i dim‘;(c)) Ve € €.
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DEFINITION 5.1. — Suppose P, is a semisimple shaded planar algebra in which the
shaded/unshaded closed loops are multiplicative scalars 6+ € Po + respectively. We call P,
lopsided if 51 = 1.

Given a semisimple shaded planar algebra P, with scalar loop moduli 6+ as in Defini-
tion 5.1, we can always obtain a lopsided planar algebra PLP*4¢ .= P+ Notice that
the shaded/unshaded loop moduli in PP are now 1 and 86— respectively.

ExampPLE 5.2 ([71,§1.1]). — Let Go be the graph planar algebra of a finite bipartite
graph ' = (V4, V_, E), whose shaded and unshaded loop moduli are both § = ||T'||. The
lopsided graph planar algebra is G1°P9 .= g0¥:! Notice that the lopsided pivotal structure
is obtained from the standard pivotal structure by only rescaling cups and caps which are
shaded above by a multiplicative factor of %!, where the sign is the sign of the critical point
(+1 for caps and —1 for cups).

WARNING 5.3. — The corresponding projection unitary multifusion category of G, is
EndT(HiIbWJr |+|V"), which is equipped with the standard unitary dual functor Vgiandara With
respect to the object X representing I'.

The lopsided pivotal structure on End’ (Hilb!V+!T1"=1) induced by Gi°P*9*? is not unitary
as noted in the first paragraph of [71, §1.1], as y~! = 1 # § = x. However, it is computa-
tionally easier to work with the non-unitary lopsided pivotal structure as introducing square
roots increases the degree of the number fields involved. Moreover, by [71], one can pass back
and forth between the non-unitary lopsided convention and the unitary standard convention,
so we do not lose any examples.

5.2. The Extended Haagerup subfactor planar algebra
The Extended Haagerup subfactor planar algebra £H, is a shaded planar f-algebra,
generated by an 8-box called S which satisfies the relations given below.

The presentation given in [6] uses the spherical pivotal structure, and here we also give a
presentation with the lopsided pivotal structure, as this is necessary for computations later.
The translation follows the discussion on p. 3 of [71].

— Modulus: With [2] the largest root of x® —8x* + 17x2 —5 = 0, approximately 2.09218,
in the lopsided pivotal structure we have the shaded loop equal to 1 and the unshaded
loop equal to [2]2, while in the spherical pivotal structure both loops are equal to [2].

(In the remainder of these formulas coefficients are given using quantum numbers
_,—n
defined in the usual way, [n] = L= )

a—q~
— Self-adjoint: S = S*.

4' .
'A
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— Uncappable: ’e =0and =0
VA 2 A

(and in combination with rotation, all placements of a cap on a generator S are zero).

*

*
— Multiplication relation: S* = i @ 5 @ = f®.

— One strand jellyfish relation:

* *
7
*
15 9 9

f(18) =« f(18) s
‘ 18 ‘ 18
v [8][10 8][10
with o = iM in the lopsided case, or o = i% in the spherical case.

[2]*[9]
— Two strand jellyfish relation:

16

£©0) =p 70 ,
‘ 20 ‘ 20
with § = % in the lopsided case, or § = %g}ﬁg} in the spherical case.

These relations are sufficient to evaluate all closed diagrams in S, via the ‘jellyfish algo-
rithm’ which pulls copies of S to the exterior and then cancels them in pairs. Note that in
addition to the above relations, to give a complete description of the Extended Haagerup
subfactor planar algebra we also quotient by the negligible elements. Moreover, there is a
non-zero representation of this abstract planar f-algebra in the graph planar algebra of the
principal graph, which proves the existence of the Extended Haagerup subfactor planar
algebra. We refer the reader to [6] for more details.

Below we use the constant A for the largest purely imaginary root of 14214 —312—5 = 0,
approximately 1.54i.

LEMMA 5.4 (Variation of [6, Prop. 3.12]). — Let " be a finite bipartite graph with norm [2]
as above. Suppose S € GPA(I')s 4 is a self-adjoint, uncappable, rotational eigenvector with
eigenvalue —1, and has the Extended Haagerup moments
(18]

VI8IIo]

(53)  w(SH =09 wSH=0 t(SH=[9 tr(p"*(S)?) =i
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Let PA(S)e be the planar T-subalgebra of GPA(T)e generated by S. Then PA(S)e = EHe.

Proof. — The proof that P.A(S). is an irreducible subfactor planar algebra with principal
graph I'; from Proposition 4.19 is identical to the proof of [6, Prop. 3.12], which never used
that I' = I',. The final claim that PA(S). = £H. follows by uniqueness of the Extended
Haagerup subfactor planar algebra [44]. O

REMARK 5.5. — In fact, Lemma 5.4 holds if we replace GPA(I")s with any unitary
shaded planar algebra P, with a spherical faithful tracial state ¥+ on Py + (see Remark 3.76
or [83, §5]) whose shaded and unshaded loop values are both [2] as above.

REMARK 5.6. — We want to emphasize that the proof [6, Prop. 3.12] uses unitarity in an
essential way. The key step, following [86], is that using only the moments you can prove the
Jellyfish relations by checking that the inner product of each relation with itself is 0.

PROPOSITION 5.7. — Suppose P, is any unitary shaded planar algebra with a spherical
Saithful tracial state y+ on Py + whose shaded and unshaded loop values are both [2] as above.
Planar t-algebra morphisms EHe — Pa are in bijection with choices of self-adjoint uncappable
elements S’ € Pg 4 with rotational eigenvalue —1, satisfying

(5.4) 52 = f®
(5.5 eV =3 (A7 -2 4 30) 2T + (AP - 2) (272 4@
— l(fl/z _ ;71/2),071/2(5‘) _ f(g)7

where ¥ = O

[10]
]
Proof. — By Lemma 5.4 and Remark 5.5, we only need to show that S’ satisfies the
Extended Haagerup moments (5.3) if and only if (5.4) and (5.5) hold. Clearly if (5.4) and (5.5)
hold, then S’ satisfies the Extended Haagerup moments (5.3). Conversely, suppose S’ satisfies
the Extended Haagerup moments (5.3). By [6, Prop. 3.7], S’ so (5.4) holds, together with the
one and two strand jellyfish relations. As the principal graphs must be those of Extended
Haagerup, again by Lemma 5.4, we can apply [6, Eq. (3.3)] (essentially from [60]), which gives
(5.5) above for S’. O

COROLLARY 5.8. — Planar algebra homomorphisms EHDY PO between the

lopsided planar algebras are in bijection with choices of uncappable elements S’ € Pg  with
rotational eigenvalue —1 satisfying (5.4) and

2

(5.6) pVASY = 2 (<27 =207 4 30) p2(8) + (7 - 2) £,

rather than (5.5).
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5.3. EH3

In this section, we use Corollary 5.8 to find £H,. in the graph planar algebra of the
bipartite graph

The eigenspace of uncappable elements with 16 boundary points, and rotational eigen-
value —1, is 18-dimensional. An element in this eigenspace is determined by its values ¢; on
the following loops £; based at unshaded/even vertices:

€1 = 5655434556554345
£y = 5636265626554345
{7 = 4556222655554345
€10 = 4345563626363655
€13 = 2636265626263136
l16 = 5631362626554345

£y = 5543455622263626
{5 = 2636265626362636
l3 = 2636263626263622
€11 = 4556313655454345
£14 = 2226362631362636
€17 = 2631362626362636

{3 = 4556265626365543
le = 4556263626265543
Ly = 4345562626313655
£12 = 5631365636554345
£15 = 2631362636362636
l1g = 2226313622263136

There are exactly two solutions to the equations, and these are related by S’ = —S, or by
applying the unique graph automorphism (and hence corresponds to an equivalent module
category as in Warning 3.81). The element S has coefficients in Q(u), where p is the root
of u'2 + 718,10 + 6791458 + 4334055016 + 43588750u* — 625000142 + 390625 = 0
which is approximately —0.229025 —0.202916i . The values of ¢; written as polynomials in ©
are quite horrific (coefficients rational numbers with numerators and denominators having
up to 30 digits), so we instead express them directly in terms of their minimal polynomials.
(The associated Mathematica notebook contains their values in the number field.) We use
the notation A3, to denote the root of ag + a1A + -+ + ax Ak = 0 which is closest to
the approximate number x (and we'’re careful to write x with enough precision that this is
unambiguous).

_ 3 (0.00802561)
C1 = 21,0,112942,0,—1940695,0,—125

_ A(O. 1672—0.0995i)

€2 625,0,58550,0,1877265,0,24363782,0,119192086,0,—4303080,0,172225
_ (0.03538+0.162581)

€3 = A9765625,0,822187500,0,5692096250,0,704926450,0,34457185,0,774362,0,6889
_ (0.03272-0.150387)

C4 = A15625,0,47736250,0,11814953125,0,1219921150,0,49538050,0,927928,0,6889
_ ;(0.0061335)

€5 = A35,0,4235,0,26582,0,—1
_ (0.10306+0.06133i)

€6 = 19765625,0,100312500,0,287121250,0,166019450,0,31036785,0,—421822,0,6889
_ 5 (-0.048654i)

€7 = 45,0,183,0,—422,0,—1
_ 3 (-0.1672)

€8 = 4125,0,1490,0,137,0,—5
_ (0.24287-0.037547)

€9 = 4625,0,30300,0,164710,0,6266122,0,18530421,0,—2194130,0,70225
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_ A(O,O49520—0.029468i)
€10 = 15625,0,1045000,0,25515750,0,222706550,0,624079625,0,—1976682,0,6889

. A(o.oszeoi)
C11 = A125,0,—205,0,—362,0,—1

_ 3 (£0.09532-0.05673i)
C12 = A15625,0,5448750,0,470120625,0,259808550,0,42457870,0,—493928,0,6889

A(—O.045805+0.040583i)

C13 = 2A625,0,17950,0,679145,0,1733622,0,69742,0,—40,0,1
_ ,(0.09647i)
C14 = A350,-622,0,—543,0,—5

_ A(—o.o49szo)
€15 = A625,0,17450,0,365,0,—1

_ A(_0'138433_0'021397i)
C16 = 15625,0,3842500,0,55831750,0,—4013550,0,7389525,0,—273698,0,2809

1,(0.013563+0.0120171)

17 = 390625,0,24156250,0,2220203125,0,1165172950,0,9182770,0,—608,0,1

_ 5 (-03117)
€18 = A5,0,-222,0,-279,0,—25"

It is then a simple matter to directly verify the equations (this takes less than a minute on
a modern CPU); this verification can be found in module-GPAs-EH3.nb.

54. EH,

In this section, we use Corollary 5.8 to find £H, in the graph planar algebra of the
bipartite graph

r,= "4 3 5 5 6 4
1 1

The eigenspace of uncappable elements with 16 boundary points, and rotational eigenvalue
-1, is 20 dimensional. An element in this eigenspace is determined by its values ¢; on the
following loops ¢; based at unshaded/even vertices:

€1 = 3553565355553424
L4 = 5646535653564653
{7 = 4146535641465356
£10 = 5553564246535653
£13 = 4246535642465356
€16 = 5356424146535646
€10 = 5642414246424653

€5 = 5653555356535653
{5 = 4146535534243556
l3 = 4246553424355356
€11 = 5646535646424653
£14 = 3556424146553424
€17 = 5642414646535653
€0 = 4142414641424142

{3 = 3555535646553414
L6 = 5553564146535653
{9 = 4246535534243556
£12 = 4146535642465356
€15 = 5646535653564146
U1 = 5641424646414653

There are four solutions to these equations, and the graph automorphism group acts

freely and transitively on them (and hence they all give equivalent module categories as in
Warning 3.81). The solutions have coefficients in Q(u), where u is the root of

w'? — 7451001 + 175355062518 — 888971796875016
+ 23050129394531250p* + 42850952148437500112 + 95367431640625 = 0,

which is approximately —0.0472042i. One of the four solutions has coefficients:

1,(0.04828+0.073747)

‘1= 3125,49250,56580,53520,1597,—200,53
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_ 3 (£0.0388427)

2 125,0,—1285982,0,—1789244179,0,—2699449
_ 3 (-0.02632-0.06233i)
€3 = A3125,-18750,31575,-20540,4443,186,25
__ 1(0.05003i)
C4 = A50,2882,0,—249683,0,—625
_ (-0.063152-0.039778i)
€5 = A48828125,—195312500,386718750,—344687500,126334375,—3725000,—6388300,43560,201947,23420,1230,36,1

_ 1(0.0086287i)
C6 = 125,0,150048,0,92084512,0,8056764288,0,285286080768,0,296306688,0,20480

_ 3 (0-405351)

7 125,0,197208,0,81755664,0,—661557632,0,3025487360,0,515469312,0,20480
_ A(—0.30264+0.07970i)

€8 = 1125,3750,27250,—64700,141035,—2100,103848,105108,29242,2034,—122,—10,1
_ A(O.38771+0.10211i)

€9 = A48828125,—195312500,386718750,—344687500,126334375,—3725000,—6388300,43560,201947,23420,1230,36,1
_ A(—0.031052i)

€10 = 24125,0,150048,0,92084512,0,8056764288,0,285286080768,0,296306688,0,20480
_ 4(0.032477i)

C11 = 25,0,1282,0,—4739,0,—5
1 (=0.2194i)

€12 = A1,0,—293,0,—118,0,—5

_ (000630401
C13 = A125,0,197208,0,81755664,0,—661557632,0,3025487360,0,515469312,0,20480

_ 3(£0.1850-0.1190i)
C14 = A15625,-37500,2375,—850,—832,—156,13

_ 3 (£0.0696361)
C15 = A125,0,—9582,0,821981,0,—28226758,0,2200643514,0,16166708,0,26645

o 1(0.00992011')
€16 = 2125,0,—2047,0,—50809,0,—5

_ /-{(—0.0263441')
€17 = 125,0,455738,0,13472487051,0,—26481195508,0,28428109059,0,58134938,0,26645

— 2(£0.00188817)
€18 = A625,0,—74510,0,2805681,0,—22757678,0,94413330,0,280828,0,1

_ 3 (0.0544863i)
€19 = A625,0,—74510,0,2805681,0,—22757678,0,94413330,0,280828,0,1

o A(0.1063i)
€20 = Aq,0,4982,0,—2155,0,—25"

Again, it is easy to verify this gives a solution, shown in module-GPAs-EH4.nb.
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