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THE EXTENDED HAAGERUP FUSION CATEGORIES

by Pinhas GROSSMAN, Scott MORRISON, David PENNEYS,
Emily PETERS and Noah SNYDER

Abstract. – We show there are exactly four fusion categories in the Morita equivalence class of
the Extended Haagerup (EH) subfactor, and a unique Morita equivalence between each pair. The EH
subfactor corresponds to the Morita equivalence between EH1 and EH2. The new categories EH3 and
EH4 give new exotic subfactors. The EH categories are the only known fusion categories unrelated to
(quantum) groups or Izumi quadratic categories.

To construct EH3 and EH4, we give a general computational recipe to construct fusion categories
in the Morita equivalence class of a subfactor. We show that subfactor planar algebra embeddings
from P✏ into graph planar algebras are equivalent to pivotal module C⇤ categories over P✏. We
construct EH3 and EH4 by embedding the EH planar algebra inside the graph planar algebras of two
new graphs. This technique answers a long-standing question of Jones: which graph planar algebras
contain a given subfactor planar algebra?

RÈsumÈ. – Nous montrons qu’il existe exactement quatre catégories de fusion dans la classe
d’équivalence au sens de Morita du sous-facteur « Extended Haagerup » (EH), et unicité de l’équi-
valence entre chaque paire. Le sous-facteur EH correspond à l’équivalence de Morita entre EH1 et
EH2. Les nouvelles catégories EH3 et EH4 donnent de nouveaux exemples de sous-facteurs exotiques.
Les catégories EH sont les seules catégories de fusion connues qui ne sont pas reliées à un groupe
(quantique) ou à une catégorie quadratique d’Izumi.

Pour construire EH3 et EH4, nous élaborons une construction générale de catégories de fusion au
sein d’une classe d’équivalence de Morita d’un sous-facteur. Nous montrons que les plongements de
l’algèbre planaire de sous-facteurs P✏ dans les algèbres planaires de graphe sont en équivalence avec
les catégories de modules de pivot C⇤ sur P✏. Nous construisons EH3 et EH4 en plongeant l’algèbre
planaire EH dans les algèbres planaires de deux nouveaux graphes. Cette technique répond à une
question de Jones de longue date : quelle algèbre planaire de graphe contient une algèbre planaire de
sous-facteur donnée?
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590 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

1. Introduction

Group theory provides a unifying language for symmetries across classical mathematics,
but in many settings related to quantum mechanics, a more general notion of quantum
symmetry is required. One of the first appearances of this new kind of symmetry was in
the theory of subfactors, i.e., inclusions of von Neumann factors, developed by Jones,
Ocneanu, Popa, and others [56, 35, 78, 89, 90]. Here, the appropriate notion of ‘Galois
theory’ requires considering structures more general than groups. But such symmetries have
since appeared in many other places, most notably the representation theory of groups of Lie
type, polynomial link invariants, topological quantum field theory, conformal field theory,
and topological phases of matter. Tensor categories [24, 21] provide the modern language
to describe these more general quantum symmetries. Roughly speaking, a tensor category is
a category that looks like the category of representations of a group—namely, the category
has tensor products and duals. But critically, this tensor product can be noncommutative,
so that X ˝ Y and Y ˝X are not identified, and need not even be isomorphic. The simplest
and most widely studied tensor categories are fusion categories, which have strong finiteness
and semisimplicity properties analogous to the category of representations of a finite group
over a field of characteristic prime to the size of the group.

The most well-known examples of tensor categories come from Lie theory. Following
Drinfeld and Jimbo [19, 52], one can deform the universal enveloping algebra of a Lie
group, and the category of representations of this quantized universal enveloping algebra
is a tensor category. These are not fusion categories, because they are too large. For SL2,
Reshetikhin and Turaev constructed fusion categories built from these quantum groups
specialized to roots of unity [92], and this construction was generalized to classical groups
by Turaev-Wenzl [100] and all semisimple Lie groups by Andersen and Gelfand-Kazhdan
[1, 31]. The big question which motivates this article is whether there are examples of ‘exotic’
fusion categories which do not ‘come from’ quantum groups at roots of unity [49]. This
is an inherently vague question, because there are many constructions (often of a group-
theoretical nature) that can be applied to a fusion category to get a new one. It is possible for
a fusion category to look exotic at first, but a later construction might provide a connection
to quantum groups. A version of this question was posed by Moore and Seiberg [70] in
1990. Even the simplest special case of this question, whether weakly integral fusion cate-
gories come from applying known constructions to the trivial fusion category Vec, remains
open [23].

The first ‘exotic’ examples which appeared to be unrelated to quantum groups came from
Haagerup’s small index subfactor classification program [44], namely the even parts of the
Haagerup and Asaeda-Haagerup subfactors constructed in [2] and the even part of the
Extended Haagerup subfactor constructed in [6] (after numerical evidence for existence was
given by [50]). However, with time, the first two of these three examples were shown to be
related to the more general story of Izumi quadratic fusion categories. (1) Izumi generalized
the Haagerup subfactor to a possibly infinite family of quadratic 3G subfactors [51, 26].
Recently in [38], Grossman-Izumi-Snyder found all fusion categories Morita equivalent

(1) It is a very interesting open question whether these quadratic categories can be constructed from quantum groups
via Evans-Gannon’s conjectural grafting process [26, 37].
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THE EXTENDED HAAGERUP FUSION CATEGORIES 591

to the Asaeda-Haagerup fusion categories, and discovered that one is an Izumi quadratic
category. Thus the only known examples of fusion categories which appear unrelated to
quantum groups at roots of unity or Izumi quadratic categories are the Extended Haagerup
fusion categories.

The Extended Haagerup subfactor gives a Morita equivalence between two unitary fusion
categories called EH1 and EH2. The goal of this paper is to find all fusion categories Morita
equivalent to these fusion categories. We find two new fusion categories, seven new subfactors
(along with their duals and reduced subfactors—see Section 2), and several interesting new
intermediate subfactor lattices. Unlike in the Asaeda-Haagerup case where one of the new
categories was a quadratic category, in the Extended Haagerup case neither new category
has nontrivial invertible objects and so neither can be a quadratic category. This means
the Extended Haagerup fusion categories appear to be more exotic than the Haagerup and
Asaeda-Haagerup fusion categories.

Theorem 1.1. – There are exactly two further fusion categories in the Morita equivalence
class of EH1 and EH2, which we call EH3 and EH4. Between any two of these four fusion
categories, there is exactly one Morita equivalence.

For every choice of simple object in each of these Morita equivalences, we get a subfactor.
In addition to the original 7-supertransitive Extended Haagerup subfactor, we get two new
3-supertransitive subfactors: one is self-dual and comes from the Morita auto-equivalence
of EH3 and the other comes from the Morita equivalence between EH3 and EH4. Their
principal graphs are:

⇤

and

0
B@ ⇤

;
⇤

1
CA :

The structures of EH3 and EH4 are explained in more detail in Section 2. Neither appears
to be easily understood using any general techniques, but we encourage the reader to look
for a new way to construct them which could give a better understanding of the Extended
Haagerup subfactor.

The proof of the main theorem has two parts. On the one hand we need to limit the
possible fusion categories and Morita equivalences, and on the other hand we need to
construct the remaining possibilities. The former is an application of the techniques intro-
duced in [43], using combinatorial restrictions for compatible fusion rules for the hypothet-
ical fusion categories and bimodule categories.

We construct EH3 and EH4 using a general graph planar algebra [57] technique for finding
module categories over any fusion category where we have a good skein theoretic description.
This technique can be viewed as a generalization of the Ocneanu cell technique for SU.n/
([79], [27], [87]) to arbitrary tensor categories with good skein theoretic descriptions. From
our combinatorial calculation we know that there is at most one module category over each

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



592 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

of EH1 and EH2 whose dual can be EH3 (or EH4). So if we can construct a module category
with the correct fusion rules, we will have a construction of EH3 (or EH4) as the commutant
category.

We can package EH1 and EH2 together with their Morita equivalence into a single
multifusion category which is the Extended Haagerup planar algebra. The fusion rules
for tensoring simple objects in a module with the single strand in Extended Haagerup
give a bipartite graph Ä. We prove a graph planar algebra embedding theorem for module
categories, which shows such module categories for this planar algebra correspond (up to
gauging and graph automorphism) to embeddings of the Extended Haagerup subfactor
planar algebra inside the graph planar algebra of Ä. This generalizes the original graph
planar algebra embedding theorem [62] which only applied to the principal graphs.

Theorem 1.2. – Suppose P✏ is a finite depth subfactor planar algebra. Let C denote
the unitary pivotal multifusion category of projections in P✏ with distinguished object
X D id1;C 2 P1;C. There is an equivalence between:

1. Planar é-algebra embeddings P✏ ! GPA.Ä/✏, where Ä is a finite connected bipartite
graph, and

2. indecomposable finitely semisimple pivotal left C -module C⇤ categoriesM whose fusion
graph with respect to X is Ä.

This theorem answers a long-standing problem of Vaughan Jones: given a finite depth
subfactor planar algebra P✏, determine all bipartite graphs Ä for which P✏ embeds
in GPA.Ä/✏.

By the skein theoretic description of Extended Haagerup in [6], in order to construct a
map from Extended Haagerup into a graph planar algebra, we need only to specify a number
for each loop of length 16 and check a large number of linear and quadratic equations in these
numbers.

Theorem 1.3. – The Extended Haagerup planar algebra can be embedded into the graph
planar algebras of each of the following bipartite graphs:

Ä3 D and Ä4 D :

Thus, the existence of EH3 and EH4 is now a corollary to Theorems 1.2 and 1.3.
From our complete classification of module categories, we see that there are exactly four

graphs whose graph planar algebras take maps from the Extended Haagerup planar algebra:
the principal and dual principal graphs for the original subfactor, and the two graphs in
the previous theorem. (One may think of these embeddings as giving four independent
constructions of the Extended Haagerup subfactor planar algebra.)

Theorem 1.2 also connects the results of [86] and [42] to complete the classification of
graph planar algebra embeddings for the Haagerup planar algebra. In the last section of [86],
three embeddings of the Haagerup planar algebra into graph planar algebras were found,
corresponding to the two principal graphs and the ‘broom’ graph. However, it was not proven
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there could not be others. The main result of [42] shows there are exactly three module
categories over the Haagerup subfactor planar algebra. Thus we have:

Corollary 1.4. – The Haagerup subfactor planar algebra embeds into GPA.Ä/✏ if and
only if Ä is one of the following:

(Haagerup principal graph)

(dual principal graph)

(‘broom’ graph)

Here, the two unshaded vertices of the ‘broom’ graph correspond to the third H2-module from
[42, Cor. 3.16].

Section 2 summarizes the combinatorial structure of the four Extended Haagerup fusion
categories and the Morita equivalences between them. In particular, we describe the fusion
rules for each fusion category, and give the principal and dual principal graphs for all the
subfactors coming from small objects in the bimodule categories. This section concludes with
a table of all lattices of intermediate subfactors coming from these fusion categories, which
can be read oV from the fusion rules of the bimodule categories following [106, Cor. 2.4].
There are several particularly interesting examples: a (3,3)-supertransitive non-commuting
but cocommuting quadrilateral with indices .7:0283 : : : ; 8:0283 : : :/, a (2,2)-supertransitive
non-commuting but cocommuting quadrilateral with indices .13:3305 : : : ; 14:3305 : : :/,
and a hexagonal intermediate subfactor lattice whose lower and upper inclusions are the
7-supertransitive index 4:3772 : : : extended Haagerup subfactor, and whose middle inclu-
sions are 2-supertransitive with index 13:3305 : : : The first of these quadrilaterals is the
smallest known example of index above 4 in Class II of the Grossman-Izumi classification
[36] of highly supertransitive non-commuting quadrilaterals. It is striking that the smallest
examples in Class III and Class IV are respectively the Asaeda-Haagerup and Haagerup
subfactors.

The main goal of Section 3 is to prove Theorem 1.2. We begin by recalling some key
background about module categories, bimodule categories, Brauer-Picard groupoids,
and the Maximal Atlas. This background is used throughout the paper. We also recall
the relationship between module categories and functors C ! End.M/. We then relate
End.M/ to a version of graph planar algebra. We hope this exposition will make graph
planar algebra techniques accessible to readers with a background in tensor categories. In
particular, we prove a purely algebraic analogue of Theorem 1.2 directly from the action
map C ! End.M/. In order to adapt this simple algebraic argument to prove Theorem 1.2,
we recall some technical background on the definition and classification of unitary pivotal
structures from [83], and the correct unitary pivotal analogues of module categories (anal-
ogous to [16] in the unitary non-pivotal case and [96] in the non-unitary pivotal case).
Note that the unitary pivotal version of this result is essential to our main results, because
the characterization of maps out of the Extended Haagerup planar algebra in [6] relies on
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594 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

positive definiteness in order to check more complicated skein relations based on only a few
simple skein relations.

In Section 4 we show that there are at most four fusion categories in the Extended
Haagerup Morita equivalence class and exactly one Morita equivalence between each pair
of categories in this class. Furthermore we determine all the fusion rules between objects
in each of these potential fusion categories and bimodule categories. This closely follows
the techniques introduced in [43] by computing compatible fusion rules for the hypothetical
fusion categories and bimodule categories.

In Section 5 we recall and slightly modify the characterization of maps out of the Extended
Haagerup planar algebra proved in [6]. We then prove Theorem 1.3, again following the
outline of [6].

The version of this paper on the ArXiv [41] also contains two appendices, not intended
for publication. The first online appendix gives an alternate construction of EH3 by directly
constructing a Q-system on 1 ˚ f .6/ in the Extended Haagerup planar algebra using its
explicit embedding into the graph planar algebra of its principal graph. This approach does
not work for EH4 because the smallest Q-system yielding EH4 lives in too large a box space
for computer calculations to be feasible. The second online appendix outlines one promising
skein theoretic approach which could give a more natural description of EH3 and EH4.

Throughout the paper we will use the notation C .X ! Y / to denote the morphisms
between objects X and Y in the category C .

1.1. Acknowledgements

This work was completed at the 2016 and 2017 AIM SQuaRE “Classifying fusion
categories.” The authors would like to thank AIM for their hospitality, and the referee for
suggesting many improvements. NS and DP would like to thank André Henriques and Corey
Jones for helpful conversations. In particular, André had an immense impact on the ideas
and results in Section 3. PG was supported by ARC grants DP140100732 and DP170103265.
SM was supported by Discovery Projects ‘Subfactors and symmetries’ DP140100732 and
‘Low dimensional categories’ DP160103479, and a Future Fellowship ‘Quantum symme-
tries’ FT170100019 from the Australian Research Council. DP was supported by NSF DMS
grants 1500387/1655912 and 1654159. EP was supported by NSF DMS grant 1501116. NS
was supported by NSF DMS grants 1454767 and 2000093.

2. Facts about the Extended Haagerup fusion categories

In this section, we describe the Extended Haagerup fusion categories from Theorem 1.1.
The logic here is somewhat convoluted; the statements of this section logically depend on the
later sections (and we’re careful not to use the statements here in those sections!). We have
decided to put this summary first in order to make the structure of these new fusion categories
as accessible as possible.

Recall that by the main results of this paper, there are exactly four unitary fusion categories
EH1, EH2, EH3, and EH4 in the Extended Haagerup Morita equivalence class, and between
any two of these four, there is exactly one Morita equivalence.
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THE EXTENDED HAAGERUP FUSION CATEGORIES 595

Given any two invertible bimodule categories AKB and BLC the composition AKB ⇥B BLC

is again invertible. But if we fix one invertible bimodule category in each equivalence class,
there may be several equivalences AKB ⇥B BLC ! AMC . More specifically, they form
a torsor for the group of invertible objects in the center of A. The center of the Extended
Haagerup fusion category has no nontrivial invertible objects [73]; indeed, EH1 has no non-
trivial invertible objects, and the induction matrices computed in [73] show that only the
identity object forgets to 1EH1

. Thus there’s a unique composition functor for each compos-
able pair of invertible bimodules between fusion categories in the Extended Haagerup
Morita equivalence class.

Notation 2.1. – For 1  i; j  4, we denote by EHij the unique invertible EHi � EHj

bimodule category, and notice that EHi i D EHi . One may view EH D .EHij /
4

i;jD1 as a
single 4 ⇥ 4 unitary multifusion category.

We interpret the fusion ring EH WD K0.EH/ for EH as a single ring whose basis consists
of the disjoint union of a set of representatives of simple objects Irr.EHij / for each EHij .
We denote by EHij the span of the set of representatives of simple objects in Irr.EHij /, and
notice that EHi i D K0.EHi /. Of course the products of objects which are not composable
are declared to be zero; that is,EH is faithfully graded by the standard system of matrix units
for M4.C/.

Within each EHij we order simple objects by increasing dimension, soOk
ij

denotes the kth
smallest simple object in EHij (or, abusing notation, the corresponding basis element in the
Grothendieck ring). When there are duplicate dimensions the ties are broken arbitrarily.

We describe the fusion ring EH in the Mathematica notebook EHmult.nb, which is a
wrapper for the data file EHmult.txt, both of which are bundled with the arXiv sources
of this article. Therein, we supply a 6-dimensional tensor T whose .i; j; k; x; y; z/-entry is
the coeYcient of the z-th basis element of EHik in the product of the x-th basis element
ofEHij and the y-th basis element ofEHjk . On the level of categories, these coeYcients are
the dimensions of Hom spaces between simple objects and tensor products of pairs of simple
objects. That is,

Ox
ij

˝O
y

jk
ä

M
z

T .i; j; k; x; y; z/Oz
ik
:

In this section, we gather information on all the Extended Haagerup fusion categories,
including fusion rules, the simplest Q-systems, and intermediate subfactor lattices.

We begin by recalling the well-known dictionary between finite index overfactors M of a
II1 factor N and simple Q-systems (EndQ�Q.Q/ D C) in Bim.N /. Given such a subfactor
N ⇢ M ,L2.M/ 2 Bim.N / is a simple Q-system. Conversely, given a Q-systemQ 2 Bim.N /,
one can recover M directly as the bounded vectors in Q. This folklore result is certainly
known to experts (see, e.g., [68, 45], [54, 55], or [8, §4] for more details).

Remark 2.2. – The relationship between unitary fusion categories and finite index,
finite depth subfactors has a diYcult analytic part, and a well-understood algebraic part.
The diYcult analytic part is, given a particular factor N , to understand all the ways a given
unitary fusion category C can be realized as a category of N -N bimodules. This analytic
part clearly depends on which factor you look at. For the hyperfinite II1 factor, this question
was completely answered by Ocneanu and Popa [78, 89] (see [46] for a complete proof in
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596 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

the language of unitary fusion categories based on the classification results of [98]), while
there are many interesting results for other factors [101, 102, 17, 28]. In this paper we only
address the algebraic part, i.e., understanding Q-systems in unitary fusion categories. Once
you realize C as a category of bimodules over a factor N , then one can apply the above
well-known dictionary to recover the associated subfactors.

Let us quickly recall how one can read oV the Q-systems (or, in the algebraic setting,
separable algebra objects) from a tensor category and the module categories over it following
[67, 69, 75, 80]. Namely, if C is a unitary fusion category, M is a module category over
it, and m is a simple object in M, then the internal Hom m ˝ m gives a Q-system [77,
Thm. A.1]. Moreover, all irreducible Q-systems appear this way. (2) See [38, §2] for a more
detailed summary. Since a finite index, finite depth subfactor N ⇢ M gives a unitary fusion
category with a Q-system, these are algebraic analogues of subfactors.

There are two key constructions which construct a new subfactor from an old one. First,
given a subfactor coming from a simple object m in a module category, one can keep the
same module category but change the choice of simple object. Provided m0 appears inside
a tensor power of m, this is called the reduced subfactor construction. Second, M gives a
Morita equivalence between C and the dual category EndC .M/, so there is a dual subfactor
coming from m as an object in M thought of as module over the dual category. Thus for
each bimodule category, choosing a favorite simple (typically the smallest one), all the other
subfactors coming from that bimodule arise as reduced subfactors after possibly taking the
dual subfactor. In our case there are 4C

�
4

2

�
bimodule categories, three of which only involve

EH1 and EH2 and so were already known. This is why there are 7 genuinely new subfactors
in this article, plus their duals and their many reduced subfactors.

Notation 2.3. – Our convention for principal graphs of subfactors and fusion graphs
of fusion categories is that we always tensor on the right. In particular, the fusion graph
forX has dim.EH.A˝X ! B// oriented edges between simples A and B. Later, in §4.4, we
will discuss fusion graphs for left module categories, which use the opposite convention.

Finally, we recall that a subfactor is k-supertransitive if there are no branches in the prin-
cipal graph before depth k; in particular a subfactor is 2-supertransitive if the corresponding
algebra object is of the form 1˚X with X simple.

2.1. Structure of EH1

The fusion rules for EH1 (which is the dual even half of the Extended Haagerup subfactor)
are given by

(2) More precisely, the 2-groupoid of algebra objects in C , algebra isomorphisms, and equalities is equivalent to
the 2-groupoid whose objects are pairs .M;m/, 1-morphisms are pairs .F ; f / where F W M ! N is a module
equivalence and f W F.m/ ! n is an isomorphism, and 2-morphisms natural isomorphisms compatible with the
pointing isomorphismsf . In particular, for any invertible objectg in the dual category, the internal endomorphisms
of the objects m and mg in M give isomorphic algebras. Since none of our fusion categories have non-trivial
invertible objects, this over-counting will not be relevant.
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˝ f .2/ f .4/ f .6/

f .2/ 1˚ f .2/ ˚ f .4/ f .2/ ˚ f .4/ ˚ f .6/ f .4/ ˚ f .6/ ˚ P 0
˚Q0

f .4/ f .2/ ˚ f .4/ ˚ f .6/
1˚ f .2/ ˚ f .4/

˚f .6/ ˚ P 0
˚Q0

f .2/ ˚ f .4/ ˚ 2f .6/

˚ 3P 0
˚Q0

f .6/ f .4/ ˚ f .6/ ˚ P 0
˚Q0 f .2/ ˚ f .4/ ˚ 2f .6/

˚ 3P 0
˚Q0

1˚ f .2/ ˚ 2f .4/

˚ 4f .6/ ˚ 5P 0
˚ 3Q0

P 0 f .6/ ˚ 2P 0
˚Q0 f .4/ ˚ 3f .6/

˚ 3P 0
˚ 2Q0

f .2/ ˚ 3f .4/ ˚ 5f .6/

˚ 6P 0
˚ 3Q0

Q0 f .6/ ˚ P 0 f .4/ ˚ f .6/

˚ 2P 0
˚Q0

f .2/ ˚ f .4/ ˚ 3f .6/

˚ 3P 0
˚ 2Q0

˝ P 0 Q0

f .2/ f .6/ ˚ 2P 0
˚Q0 f .6/ ˚ P 0

f .4/
f .4/ ˚ 3f .6/

˚ 3P 0
˚ 2Q0

f .4/ ˚ f .6/

˚ 2P 0
˚Q0

f .6/
f .2/ ˚ 3f .4/ ˚ 5f .6/

˚ 6P 0
˚ 3Q0

f .2/ ˚ f .4/ ˚ 3f .6/

˚ 3P 0
˚ 2Q0

P 0 1˚ 2f .2/ ˚ 3f .4/

˚ 6f .6/ ˚ 7P 0
˚ 4Q0

f .2/ ˚ 2f .4/ ˚ 3f .6/

˚ 4P 0
˚ 2Q0

Q0 f .2/ ˚ 2f .4/ ˚ 3f .6/

˚ 4P 0
˚ 2Q0

1˚ f .4/ ˚ 2f .6/

˚ 2P 0
˚Q0

Here we have given more informative names to the objects, corresponding to those used
in [6] rather than merely naming them Ox

11
.

The dimensions of the objects .f .2/; f .4/; f .6/; P 0;Q0/ are roughly .3:4; 7:0; 13:3; 16:0; 8:7/,
and this determines the ordering used in the Ox

11
notation. In particular O1

11
D 1,

O2
11

D f .2/, O3
11

D f .4/, O4
11

D Q0 (as it has the next smallest dimension), O5
11

D f .6/,
and O6

11
D P 0.

A Morita equivalence between C and D gives a braided equivalence Z.C / ä Z.D/. Any
suchD is of the formA-mod forA a Lagrangian algebra inZ.C / [95, 22, 13]. In general there
might be several Lagrangian algebras yielding a given D, but in our case since the Brauer-
Picard group is trivial there is a unique Lagrangian algebra for eachD. Using the notation of
[30] for the objects in the center Z.EH/, the Lagrangian algebra giving EH1 has underlying
object:

!0 ˚ !1 ˚ !2 ˚ ˛1 ˚ ˛2 ˚ ˛3:
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2.2. Structure of EH2

The fusion rules for EH2 (which is the principal even half of the Extended Haagerup
subfactor) are given by

˝ f .2/ f .4/ f .6/

f .2/ 1˚ f .2/ ˚ f .4/ f .2/ ˚ f .4/ ˚ f .6/ f .4/ ˚W

f .4/ f .2/ ˚ f .4/ ˚ f .6/
1˚ f .2/˚

f .4/ ˚W

f .2/ ˚ f .4/˚

A˚ B ˚ 2W

f .6/ f .4/ ˚W
f .2/ ˚ f .4/˚

A˚ B ˚ 2W
1˚W ˚Z

P A˚W f .4/ ˚ B ˚ 2W f .6/ ˚Q˚Z

Q B ˚W f .4/ ˚ A˚ 2W f .6/ ˚ P ˚Z

A P f .6/ ˚Q f .4/ ˚ B ˚W

B Q f .6/ ˚ P f .4/ ˚ A˚W

˝ P Q A B

f .2/ B ˚W A˚W Q P

f .4/ f .4/ ˚ A˚ 2W f .4/ ˚ B ˚ 2W f .6/ ˚ P f .6/ ˚Q

f .6/ f .6/ ˚Q˚Z f .6/ ˚ P ˚Z f .4/ ˚ B ˚W f .4/ ˚ A˚W

P 1˚ P ˚Z f .6/ ˚Z f .2/ ˚ A˚W f .4/ ˚W

Q f .6/ ˚Z 1˚Q˚Z f .4/ ˚W f .2/ ˚ B ˚W

A f .4/ ˚W f .2/ ˚ A˚W f .6/ 1˚ P

B f .2/ ˚ B ˚W f .4/ ˚W 1˚Q f .6/

using the abbreviationsW D f .6/CPCQ andZ D ACBCf .2/C2f .4/C3f .6/C3PC3Q.

Remark 2.4. – In the arXiv sources of this article [41, Appendix A], we give an alternate
construction of EH3 by constructing aQ-system on 1C f .6/ in EH2 whose dual category is
EH3. This construction is viable because

dim.Hom.f .6/ ˝ f .6/ ! f .6/// D 4

is not too large.
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The dimensions of .f .2/; f .4/; f .6/; P;Q;A;B/ are roughly .3:4; 7:0; 13:3; 12:3; 12:3; 3:7; 3:7/,
which again determines the ordering in the Ox

22
naming.

Since A and B D A have small dimension we also record the fusion graph for tensoring
with A and the principal graph for the corresponding subfactor. The fusion graph is:

1

A

B

f
.6/

f
.4/

f
.2/

Q

P

:

The corresponding subfactor 1 ⇢ AA has index roughly 13:3. It has the following
principal and dual principal graph. Notice that every simple appears twice—once as an even
vertex and once as an odd vertex.

(2.1)
⇤

1 A

A

P

f .2/

Q

f .2/

B

B

1

P f .6/ f .6/ Q

f .4/ f .4/

The Extended Haagerup subfactor planar algebra constructed in [6] (see §5) provides a
Morita equivalence between EH1 and EH2. The generating object X in the Morita equiva-
lence is the smallest objectO1

12
in the unique invertible bimodule category between these two

fusion categories. The principal graphs are

(2.2)

0
BBB@
1 f .2/ f .4/ f .6/

P A

Q B

;
1 f .2/ f .4/ f .6/

P 0

Q0

1
CCCA :

Notice all even vertices are self dual except for A ä B.

The Lagrangian algebra giving EH2 has underlying object:

!0 ˚ !1 ˚ !2 ˚ 2˛1 ˚ ˛2:
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2.3. Structure of EH3

The fusion rules for EH3 are as follows.

˝ X X Y1 Y2

X U 1˚Y2 V˚X W

X 1˚Y1 U W X˚V

Y1 W X˚V 1˚V˚W˚Y1 U˚V˚W

Y2 V˚X W U˚V˚W 1˚V˚W˚Y2

U X˚W W˚X U˚V˚W˚Y2 U˚V˚W˚Y1

V V˚W˚Y1 V˚W˚Y2
U˚2V˚2W˚

X˚Y1˚Y2

X˚U˚2V˚

2W˚Y1˚Y2

W U˚V˚W˚Y2 U˚V˚W˚Y1
X˚U˚2V˚

3W˚Y1˚Y2

U˚2V˚3W˚

X˚Y1˚Y2

˝ U V W

X X˚W V˚W˚Y2 U˚V˚W˚Y1

X W˚X V˚W˚Y1 U˚V˚W˚Y2

Y1 U˚V˚W˚Y2
X˚U˚2V˚

2W˚Y1˚Y2

U˚2V˚3W˚

X˚Y1˚Y2

Y2 U˚V˚W˚Y1
U˚2V˚2W˚

X˚Y1˚Y2

X˚U˚2V˚

3W˚Y1˚Y2

U
1˚U˚V˚

W˚Y1˚Y2
U˚2V˚3W˚Y1˚Y2

X˚U˚3V˚

3W˚X˚Y1˚Y2

V U˚2V˚3W˚Y1˚Y2
1˚X˚2U˚4V˚

5W˚X˚2Y1˚2Y2

X˚3U˚5V˚

6W˚X˚2Y1˚2Y2

W
X˚U˚3V˚

3W˚X˚Y1˚Y2

X˚3U˚5V˚

6W˚X˚2Y1˚2Y2

1˚X˚3U˚6V˚

7W˚X˚3Y1˚3Y2

The dimensions of .X;X; Y1; Y2; U; V;W / are approximately .2:6; 2:6; 6:0; 6:0; 7:0; 13:3; 15:9/.
They are listed in the order O2

33
, O3

33
, etc.

4 e SÉRIE – TOME 56 – 2023 – No 2



THE EXTENDED HAAGERUP FUSION CATEGORIES 601

The fusion graph for X 2 EH3 is given by

1

X

X

U W V

Y1

Y2

The principal graph of the subfactor corresponding to the algebra object X ˝ X 2 EH3 is
given below. It has index roughly 7:0. Notice that each simple of EH3 appears twice—once
as an even vertex and once as an odd vertex.

(2.3)
⇤

1 X Y2 V V Y1 X 1

Y2
W W

Y1

U U

X X

:

This paper establishes that EH3 is a categorification of the above ring, but we do not know
that this is the only such categorification. Thus in order to construct the Extended Haagerup
subfactor from an alternative proposed construction of EH3 one would need to do additional
work. Since the even parts of the Extended Haagerup subfactor are the only categorifications
of their fusion rings, it would be enough to construct a categorification of the EH3 fusion ring
plus an algebra structure on 1˚U , and check that the fusion ring of the commutant category
corresponding to the algebra 1˚ U is the fusion ring of EH2.

We are able to list all Q-systems in EH3. The Q-system corresponding toO1
23

has relatively
small dimension and its underlying object is 1˚U . The dual algebra in this case is 1˚ f .6/

in EH2. The index of this subfactor is approximately 14:3, and the principal graphs are:
(2.4)

⇤

1 f .6/

P

Q

f .2/

f .4/

A

B

⇤

1 V

X

X

Y2

Y1

U

W

:

The Lagrangian algebra in Z.EH/ giving EH3 has underlying object:

!0 ˚ !1 ˚ !2 ˚ 2˛1 ˚ ˛2:

Note that this is the same underlying object as the Lagrangian algebra corresponding to EH2;
the algebra structures must be diVerent.
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2.4. Structure of EH4

We now turn to describing some of the combinatorial structure of EH4. The fusion rules
for EH4 are as follows.

˝ Z Z G H

Z G˚K1˚K2˚L
1˚G˚

H˚K2˚L

H˚K2˚

L˚Z˚Z

G˚H˚K1˚

K2˚L˚Z

Z
1˚G˚

H˚K1˚L
G˚K1˚K2˚L

H˚K1˚

L˚Z˚Z

G˚H˚K1˚

K2˚L˚Z

G
H˚K1˚

L˚Z˚Z

H˚K2˚

L˚Z˚Z

1˚G˚H˚

K1˚K2˚L

G˚H˚K1˚

K2˚L˚Z˚Z

H
G˚H˚K1˚

K2˚L˚Z

G˚H˚K1˚

K2˚L˚Z

G˚H˚K1˚

K2˚L˚Z˚Z

1˚G˚H˚K1˚

K2˚2L˚Z˚Z

K1
H˚K1˚

K2˚2L˚Z

G˚H˚K1˚

K2˚L˚Z˚Z

G˚H˚K1˚

K2˚2L˚Z

G˚H˚2K1˚

K2˚2L˚Z˚Z

K2
G˚H˚K1˚

K2˚L˚Z˚Z

H˚K1˚

K2˚2L˚Z

G˚H˚K1˚

K2˚2L˚Z

G˚H˚K1˚

2K2˚2L˚Z˚Z

L
G˚H˚K1˚

2K2˚2L˚Z˚Z

G˚H˚2K1˚

K2˚2L˚Z˚Z

G˚H˚2K1˚

2K2˚2L˚Z˚Z

G˚2H˚2K1˚

2K2˚3L˚Z˚Z

˝ K1 K2 L

Z
G˚H˚K1˚

K2˚L˚Z˚Z

H˚K1˚

K2˚2L˚Z

G˚H˚2K1˚

K2˚2L˚Z˚Z

Z
H˚K1˚

K2˚2L˚Z

G˚H˚K1˚

K2˚L˚Z˚Z

G˚H˚K1˚

2K2˚2L˚Z˚Z

G
G˚H˚K1˚

K2˚2L˚Z

G˚H˚K1˚

K2˚2L˚Z

G˚H˚2K1˚

2K2˚2L˚Z˚Z

H
G˚H˚2K1˚

K2˚2L˚Z˚Z

G˚H˚K1˚

2K2˚2L˚Z˚Z

G˚2H˚2K1˚

2K2˚3L˚Z˚Z

K1
1˚G˚2H˚K1˚

2K2˚2L˚Z˚Z

G˚H˚2K1˚

2K2˚2L˚Z˚Z

2G˚2H˚2K1˚

2K2˚3L˚Z˚2Z

K2
G˚H˚2K1˚

2K2˚2L˚Z˚Z

1˚G˚2H˚2K1˚

K2˚2L˚Z˚Z

2G˚2H˚2K1˚

2K2˚3L˚2Z˚Z

L
2G˚2H˚2K1˚

2K2˚3L˚2Z˚Z

2G˚2H˚2K1˚

2K2˚3L˚Z˚2Z

1˚2G˚3H˚3K1˚

3K2˚4L˚2Z˚2Z
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The dimensions of the objects .Z;Z;G;H;K1; K2; L/ are approximately .6:3; 6:3; 7:0; 8:6,
9:6; 9:6; 13:3/. These are already in increasing order, so the objects Ox

44
appear in this order.

None of the objects in EH4 is small enough to have a nice fusion graph. The Q-system
corresponding to O1

34
does give a 3-supertransitive subfactor. The underlying object of this

Q-system is 1˚G and the dual Q-system is 1˚U in EH3, and the index is roughly 8:0. The
principal graphs for this subfactor are given by:
(2.5)0
BBBB@

⇤

1 U

Y1

Y2

W

V

X

X

⇤

1 G

H

K1

L

K2

Z

Z

1
CCCCA
:

As with EH2 and EH3, the Lagrangian algebra giving EH4 has underlying object:

!0 ˚ !1 ˚ !2 ˚ 2˛1 ˚ ˛2:

We thus see that this object must have three distinct algebra structures on it.

2.5. Intermediate subfactors

In this section we describe all the lattices of intermediate subfactors for subfactors coming
from the simple objects in the Extended Haagerup bimodule categories.

For a subfactor N ✓ M , an intermediate subfactor is a factor P between N and M , i.e.,
N ✓ P ✓ M . One of the original motivations for subfactor theory was an analogy with
Galois theory. Nakamura and Takeda showed that for a fixed-point subfactor of an outer
action of a finite group on a factor, the intermediate subfactors are precisely the fixed-point
algebras of the subgroups [76]. In the 1990s, Watatani proposed studying more generally a
lattice of intermediate subfactors as a noncommutative analogue of the subgroup lattice of
a group [103]. Of particular interest are quadrilaterals, consisting of a pair of intermediate
subfactors P and Q such that P ^Q D N and P _Q D M .

Following [106], we can read the intermediate subfactor lattices directly from the
bimodule fusion rules in the Brauer-Picard groupoid (see Section 3.2). For an intermediate
subfactor N ✓ P ✓ M , we have NL2.P /P ˝P PL

2.M/M ä NL
2.M/M . Conversely, if an

object CZD in a bimodule category over unitary fusion categories factors as CXE ˝E EY D,
then CXE˝E EXC is a subalgebra of the algebra object CZD˝DDZC in C , and determines
an intermediate subfactor of the corresponding subfactor (see Remark 2.2 and the adja-
cent discussion and references for the relationship between subfactors, algebra objects, and
objects in (bi)module categories). So to determine the intermediate subfactors of a subfactor
corresponding to a given object in a bimodule category, we only need to know when diVerent
factorizations of the object correspond to the same subalgebra/intermediate subfactor. Note
that it is rare to have a pair of simple objects X; Y such that the product X ˝ Y is simple,
and this explains why irreducible subfactors typically have few intermediates.

In full generality, understanding when two factorizations correspond to the same subal-
gebra is somewhat delicate, but for Extended Haagerup these complications do not arise.
For this reason, we plan to fully address this question in a subsequent paper considering
intermediate subfactors related to the Asaeda-Haagerup subfactor where more complicated
phenomena occur. Here is a very terse sketch of why there is no over-counting in the case
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of Extended Haagerup. Recall as in Footnote 2 that a similar phenomenon happened for
algebras themselves, where pairs .M; m/ classify algebra objects, but naively they over-count
algebra objects, as pairs .M; m/ and .M; m0/ can be equivalent as pairs via .F ; f /whereF is
a nontrivial autoequivalence of M. Here, we can classify subalgebras of the algebra corre-
sponding to .M; m/ in terms of a tuple .D;N ;L;F ; n; `; f / where D is a tensor category,
N is a Morita equivalence between C and D, L is a module category over D, n is an object
inN , ` is an object inL,F is a module equivalenceN ⇥DL ! M, and f is an isomorphism
F.n˝`/ ! m. A Type III subfactor version of this result was proved by Xu in [106, Cor 2.4].
In particular, we get over-counting from tensor autoequivalences ofD, bimodule autoequiv-
alences ofN (which are a torsor for invertible objects in the center of C ), and module autoe-
quivalences of M (which correspond to invertible objects in the dual category). However, if
none of the tensor categories Morita equivalent to C have nontrivial autoequivalences, nor
nontrivial invertible objects, nor nontrivial invertible objects in the center (which is the case
for the Extended Haagerup fusion categories), then there is no over-counting, and interme-
diate subalgebras correspond precisely to factorizations of objects in bimodule categories as
products of objects in other bimodule categories.

Each row of the following table lists triples of simple objects X D Ox
ij

, Y D O
y

jk
, and

their simple product X ˝ Y D Oz
ik

. The columns labeled ‘ST’ and ‘Index’ indicate the
supertransitivity and index of the corresponding subfactors. We only list one representative
of each dual pair, so in the tables we always have i < j . We have grouped rows together
according to the identity of the large object Z, as these rows are all intermediate subfactors
of the same large subfactor.

We recall that:

— O1
21

and O1
12

correspond to the Extended Haagerup subfactor and its dual shown in
Equation (2.2),

— O2
33

corresponds to the subfactor with principal graph shown in Equation (2.3),

— O1
34

andO1
43

correspond to the subfactor with principal graph shown in Equation (2.5),

— O3
22

and O4
22

both correspond to the subfactor with principal graph shown in Equa-
tion (2.1), and

— O1
23

andO1
32

correspond to the subfactor with principal graph shown in Equation (2.4).

Z Index.Z/ X ST.X/ Index.X/ Y ST.Y / Index.Y /

O6
11

255:411 O4
12

1 58:3502 O1
21

7 4:3772

O3
12

1 58:3502 O1
21

7 4:3772

O1
12

7 4:3772 O3
21

1 58:3502

O1
12

7 4:3772 O4
21

1 58:3502

O3
12

58:3502 O1
12

7 4:3772 O4
22

2 13:3305

O4
12

58:3502 O1
12

7 4:3772 O3
22

2 13:3305
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O6
12

329:743 O1
13

1 23:0099 O1
32

2 14:3305

O2
13

1 23:0099 O1
32

2 14:3305

O2
12

1 24:736 O3
22

2 13:3305

O2
12

1 24:736 O4
22

2 13:3305

O4
11

1 75:3318 O1
12

7 4:3772

O4
13

62:7274 O1
12

7 4:3772 O1
23

2 14:3305

O5
13

161:72 O1
13

1 23:0099 O2
33

3 7:0283

O2
13

1 23:0099 O3
33

3 7:0283

O6
13

262:439 O1
14

1 32:6893 O1
43

3 8:0283

O2
14

1 32:6893 O1
43

3 8:0283

O3
13

1 37:3404 O2
33

3 7:0283

O3
13

1 37:3404 O3
33

3 7:0283

O2
11

1 11:4055 O1
13

1 23:0099

O2
11

1 11:4055 O2
13

1 23:0099

O6
22

152:041 O2
22

1 11:4055 O4
22

2 13:3305

O3
22

2 13:3305 O2
22

1 11:4055

O7
22

152:041 O2
22

1 11:4055 O3
22

2 13:3305

O4
22

2 13:3305 O2
22

1 11:4055

O8
22

177:702 O3
22

2 13:3305 O3
22

2 13:3305

O4
22

2 13:3305 O4
22

2 13:3305

O2
23

100:719 O1
23

2 14:3305 O3
33

3 7:0283

O1
21

7 4:3772 O2
13

1 23:0099

O3
23

100:719 O1
23

2 14:3305 O2
33

3 7:0283

O1
21

7 4:3772 O1
13

1 23:0099

O4
23

163:446 O1
24

1 20:3588 O1
43

3 8:0283

O2
24

1 20:3588 O1
43

3 8:0283

O2
22

1 11:4055 O1
23

2 14:3305

O1
21

7 4:3772 O3
13

1 37:3404

O5
23

191:032 O3
22

2 13:3305 O1
23

2 14:3305

O4
22

2 13:3305 O1
23

2 14:3305

O3
24

115:049 O1
23

2 14:3305 O1
34

3 8:0283

O4
24

143:088 O1
21

7 4:3772 O1
14

1 32:6893

O1
21

7 4:3772 O2
14

1 32:6893
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O5
24

271:392 O4
22

2 13:3305 O1
24

1 20:3588

O3
22

2 13:3305 O2
24

1 20:3588

O1
21

7 4:3772 O3
14

1 62:0013

O6
33

49:3969 O2
33

3 7:0283 O2
33

3 7:0283

O3
33

3 7:0283 O3
33

3 7:0283

O8
33

255:411 O5
33

1 36:3404 O3
33

3 7:0283

O4
33

1 36:3404 O2
33

3 7:0283

O3
33

3 7:0283 O4
33

1 36:3404

O2
33

3 7:0283 O5
33

1 36:3404

O2
34

56:4252 O2
33

3 7:0283 O1
34

3 8:0283

O3
33

3 7:0283 O1
34

3 8:0283

O5
34

291:751 O4
33

1 36:3404 O1
34

3 8:0283

O5
33

1 36:3404 O1
34

3 8:0283

O1
32

2 14:3305 O1
24

1 20:3588

O1
32

2 14:3305 O2
24

1 20:3588

Let us briefly summarize the interesting subfactor lattices encoded in the above table.
There are four lines with Z D O6

11
, so there are four intermediate subfactors of the

index 255:411 : : : subfactor corresponding to O6
11

. Note that O6
11

denotes the 6th smallest
object in EH1, which is P 0, so this subfactor is the reduced subfactor corresponding to P 0.
For two of these intermediates the lower inclusion is Extended Haagerup while the upper
inclusions have index 58:3502 : : : and come from the reduced subfactor construction forO3

12

orO4
12

(these are the odd vertices near the ends of the Extended Haagerup principal graph).
For the other two, the lower and upper parts are switched. We next want to see how these fit
together into a lattice. From the next two lines in the table we see that the index 58:3502 : : :
subfactors themselves each have a single intermediate, with one inclusion being Extended
Haagerup and the other being the 2-supertransitive subfactor of index 13:3305 : : : with
principal graph shown in Equation (2.1). It follows that the lattice is a hexagon, where the
upper and lower edges are the Extended Haagerup subfactors and the middle edges are the
index 13:3305 : : : subfactors.

Note that since none of the other entries in the X or Y columns also occurs in the
Z column, other than the hexagon every lattice will just beMn, the lattice with one maximal
element, one minimal element, and n incomparable elements between them. The number of
such incomparable entries is simply the number of rows with that Z; for example, O6

13
has

intermediate subfactor lattice M6.
In addition to the hexagon there are a few notable examples of quadrilaterals where all

inclusions are at least 2-supertransitive (such quadrilaterals are called .2; 2/-supertransitive).
Sano and Watatani [94] introduced a notion of angle between two subfactors of the same

factor. For a quadrilateral, one can compute two such angles, one for P;Q ⇢ M and one for
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the dual subfactors to N ⇢ P;Q. When the first angle is ⇡=2, we say that the quadrilateral
commutes, and when the second angle is ⇡=2we say that the quadrilateral cocommutes. This
notion of commutativity coincides with the notion of commuting square in the subfactor
literature, which means that the two orders of taking conditional expectations around the
square commute [89, 90].

In [39, Theorem 3.21] it is shown that an irreducible quadrilateral of finite-index subfac-
tors N ✓ P;Q ✓ M commutes iV the N � N bimodule map from P ˝N Q to M given
by multiplication is injective, and cocommutes iV this map is surjective. In particular, for a
commuting and cocommuting quadrilateral, we haveP˝NQ ä M asN�N -bimodules, and
the indices of all four sides of the quadrilateral are the same. For a non-commuting quadri-
lateral, the complements of N in the N � N bimodules P and Q must contain a common
subobject.

In [36, Theorem 4.3] it is shown that a noncommuting, cocommuting .3; 3/-supertransi-
tive quadrilateral necessarily satisfies ŒM W P ç D ŒM W Qç D ŒP W N ç � 1 D ŒQ W N ç � 1 (in
fact a slightly weaker assumption is suYcient). Moreover, the Galois group of the inclusion
N ✓ M is necessarily a subgroup of the symmetric group S3 (with equality only realized for
the fixed point subfactor of an outer S3 action). Therefore, such quadrilaterals were divided
into three cases (called Classes II, III, and IV, while Class I referred to non-cocommuting)
based on whether the Galois group is trivial, cyclic of order 2, or cyclic of order 3.

Here we have:

— A quadrilateral from O6
33

D U which follows from X ˝ X ä U ä X ˝ X . This
quadrilateral is commuting (since X ˝

NX D ::: © ::: D
NX ˝ X ) and cocommuting

(since it is self-dual).

— A quadrilateral from O8
22

D f .6/ which follows from A˝ A ä f .6/ ä f .6/ ä B ˝ B

in EH2. This quadrilateral is also commuting and cocommuting, for the same reason
as above.

— A quadrilateral fromO5
23

. This is a .2; 2/-supertransitive quadrilateral where the upper
subfactors are the index 14:3305 : : : ones from Equation (2.4) and the lower subfactors
are the index 13:3305 : : : from Equation (2.1). This quadrilateral again commutes, but
does not cocommute since the indices are not equal.

— A quadrilateral from O2
34

. This is a .3; 3/-supertransitive commuting but noncocom-
muting quadrilateral where the upper subfactors are the index 8:0283 : : : ones from
Equation (2.5) and the lower subfactors are the index 7:0283 : : : from Equation (2.3).

The (dual quadrilateral of) fourth example fits into Class II (the Galois group is trivial
since there are no nontrivial invertible objects), and the third example is similar, although
only .2; 2/-supertransitive. We expect that the fourth example is the smallest quadrilateral in
Class II with indices above 4. Note that the smallest example with indices above 4 in Class III
comes from the Asaeda-Haagerup subfactor, while the smallest example with indices above
4 in Class IV comes from the Haagerup subfactor. It is striking that Extended Haagerup
appears to be the smallest example in the remaining case.
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3. Module categories and graph planar algebra embeddings

The graph planar algebra embedding theorem from [62] states that any subfactor planar
algebra embeds in the graph planar algebra [57] of either of its principal graphs. Peters
observed in [86] that it is possible for a subfactor planar algebra to embed in the graph planar
algebra of other graphs; in particular she found that the Haagerup planar algebra embeds in
the graph planar algebra of a third graph, called the “broom.” In this section we strengthen
the graph planar algebra embedding theorem, to obtain a classification of embeddings in
graph planar algebras. In particular, we show that a subfactor planar algebra embeds into
the graph planar algebra of a bipartite graph if and only if the graph is the fusion graph of a
unitary module category with a compatible trace.

We begin with the simple observation that a module category M for a tensor category C
is exactly the data of a tensor functor C ! End.M/. As we proceed through this section,
we elaborate this observation in various directions, eventually obtaining our theorem. This
involves four adjustments:

— describing endofunctors in End.M/ as graphs,

— adapting to the shaded setting required for subfactor planar algebras,

— working in the unitary setting, and

— understanding the additional data corresponding to pivotal structures.

Note that in order to be able to characterize maps out of the Extended Haagerup subfactor
planar algebra (and hence characterize modules for these fusion categories), we will rely on
the unitary pivotal structure (see Remark 5.6). Thus even if the reader is only interested in
the algebraic classification of modules over the Extended Haagerup fusion categories, he/she
still needs to understand the unitary pivotal version of the graph planar algebra embedding
theorem!

We will assume that the reader is familiar with tensor categories following [21], but we
will not assume previous familiarity with graph planar algebras. We take this pedagogical
approach for several reasons. First, it was this algebraic perspective that allowed us to
see that one should expect a GPA embedding theorem for modules. Thus this approach
unifies (unitary) module category classification results like [25, 16] and GPA embedding
constructions like [58, 86, 6], which will hopefully make GPA embeddings more accessible
to algebraists. Second, an independent purely subfactor theoretic proof of our classification
of embeddings recently appeared in [10], using towers of algebras. Subfactor experts may
prefer to read that paper as a replacement for this section.

Here is a more detailed breakdown of this section. In §3.1 we discuss Cauchy complete-
ness, especially in the context of C⇤-categories. In §3.2 we recall some background on module
categories, Morita equivalences, and the endofunctor embedding theorem (that giving a
module categoryM over C is the same as giving a functor C ! End.M/). In §3.3 we intro-
duce an “unbiased" definition of monoidal categories which we call monoidal algebras in
the spirit of [99, 105] (see Remark 3.25). Monoidal algebras are an analogue of planar alge-
bras without rotational symmetry. In Section 3.4 we introduce the graph monoidal algebra
(which is an analogue of the graph planar algebra), explain its relationship to End.M/, and
see that the endomorphism embedding theorem yields a graph monoidal algebra embedding
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theorem for module categories. This is the simplest non-technical version of our main result,
and contains the major idea of this section.

The rest of the section is dedicated to adapting the graph monoidal algebra embedding
theorem for module categories to the pivotal and unitary pivotal settings where it becomes
the graph planar algebra embedding theorem for appropriate pivotal and unitary pivotal
analogues of module categories. These analogues of module categories involve both struc-
ture on M and compatibility of that structure with the module action. In the semisimple
pivotal setting Schaumann [96] showed that the appropriate structure is a choice of trace
onM. In §3.5, we recall the definitions of planar algebra, unitary dual functors, and unitary
pivotal structure, and we explain the relationship between planar algebras and unitary
pivotal fusion categories. In §3.6, we recall Schaumann’s notion of trace and modify this
notion to the unitary setting, we then define (unitary) pivotal modules, prove a (unitary)
pivotal analogue of endofunctor embedding, and translate that into the desired graph planar
algebra embedding theorem.

3.1. Cauchy complete categories

In this paper we focus on C-linear Cauchy complete categories. Here C-linear means the
hom spaces are finite dimensional C-vector spaces and composition is bilinear. A C-linear
category C is Cauchy complete if it has direct sums of objects and all idempotents split (i.e.,
if e W c ! c is idempotent, i.e., e2 D e, then c has a corresponding direct sum decomposition).
Equivalently, C has all absolute colimits.

Cauchy completeness is a mild condition to impose on a category, because every C-linear
category C has a Cauchy completion Cauchy.C /. This completion is built in two stages: first,
take the additive completion (where objects are formal direct sums of objects and morphisms
are formal matrices of morphisms), and then take the idempotent (also called Karoubi)
completion (where objects are pairs of an object and an idempotent, and morphisms make
the obvious square commute). A category C is Cauchy complete if and only if the obvious
inclusion C ,! Cauchy.C / is an equivalence. The Cauchy completion satisfies the universal
property that every linear functor F W C ! D where D is Cauchy complete factors
uniquely through the Cauchy completion Cauchy.C /. Furthermore, the Cauchy completion
of a monoidal category inherits a natural monoidal structure. See [11, §2.5-2.6] for more
details.

A Cauchy complete category is semisimple if every object’s endomorphism algebra is
semisimple. This is equivalent to the definition in [75, §2.1]. A semisimple category has a
collection of simple objects with the properties that

— the simple objects satisfy Schur’s lemma, i.e., for two simple objects a; b 2 C , either a
and b are isomorphic, or C .a ! b/ D .0/ D C .b ! a/, and

— every object is isomorphic to a direct sum of simple objects.

Definition 3.1. – A multitensor category overC is aC-linear Cauchy complete category
together with a linear tensor product functor ˝ W C ⇥ C ! C , a unit object 1C , and unitors
and associators satisfying natural axioms, where every objectX has both left and right duals
_X andX_. We call C a tensor category if 1C is simple. A multifusion category is a semisimple
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multitensor category with finitely many isomorphism classes of simples, and a fusion category
is a multifusion category with 1C simple.

Warning 3.2. – Note that our definition of multitensor category does not agree with
that of [21], because we work in the Cauchy complete setting rather than the locally-finite
abelian setting. Our definition agrees with the notion of multi-pseudo-tensor category
in [12]. However, our main results are in the semisimple setting, and semisimple Cauchy
complete categories are automatically abelian and thus tensor in the usual sense. Working
in the Cauchy complete setting allows for a cleaner exposition without adding extra adjec-
tives, like semisimple, to theorems which do not require extra assumptions in the Cauchy
complete setting. One should take care adapting these techniques to the non-semisimple
abelian setting.

Definition 3.3. – Suppose C is a multitensor category. We say a set of objects
S WD fXsgs2S ⇢ C tensor generates C if every object of C is isomorphic to a direct summand
of a direct sum of tensor products of objects in S .

In this case, we define CS as the full monoidal subcategory of C whose objects are tensor
products of objects in S . Observe that the Cauchy completion of CS is equivalent to our
original multitensor category C .

3.1.1. Cauchy complete C⇤-categories

Definition 3.4. – A dagger structure on a C-linear category C consists of an antilinear
map é W C .a ! b/ ! C .b ! a/ for all a; b 2 C satisfying .f ı g/é D gé ı f é for all
composable morphisms f; g, and f éé D f for all morphisms f . The pair .C ; é/ is called a
dagger category.

Following [74, Prop. 2.1], a dagger category (with finite dimensional hom spaces) is called
a C⇤-category if

— (positive definite) for every f 2 C .a ! b/, f é ı f D 0 implies f D 0.

By Roberts’ 2 ⇥ 2 trick [32, Lem. 2.6], the positive definite condition above is equivalent to

— (2 ⇥ 2 linking C⇤-algebras) for all a; b 2 C , the linking algebra

L.a; b/ WD

 
C .a ! a/ C .b ! a/

C .a ! b/ C .b ! b/

!

with the obvious matrix multiplication and é-transpose operation is a finite dimen-
sional C⇤-algebra. (3)

Remark 3.5. – Since finite dimensional C⇤-algebras are semisimple, Cauchy complete
C⇤-categories (which we assume here have finite dimensional hom spaces) are automatically
semisimple.

Starting with a C⇤-category C , its Cauchy completion Cauchy.C / is not a C⇤-category,
as not all idempotents are orthogonal projections. However, we may take the unitary Cauchy
completion Cauchy

é.C / of C . Again, this completion is built in two stages.

(3) Being a C⇤ algebra is a property of a complex ⇤-algebra and not extra structure. Indeed, every C⇤ algebra has
a unique C⇤ norm, which can be recovered from the spectral radius, which is defined purely algebraically.
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1. First, we take the orthogonal additive completion, which has objects formal orthog-
onal direct sums of objects and morphisms formal matrices of morphisms. Here, an
object

L
n

iD1 ci with isometries vj W cj !

L
n

iD1 ci is called the orthogonal direct sum
of c1; : : : ; cn if

P
n

iD1 viv
é

i
D idLn

iD1 ci
and vé

j
vj D idcj for all j .

2. Second, we take the orthogonal idempotent completion, where objects are pairs of an
object c 2 C and an orthogonal projection p 2 C .c ! c/ (satisfying p2 D p D pé),
and morphisms make the obvious square commute.

Observe that Cauchy
é.C / has the structure of a C⇤-category where é is given by the é-trans-

pose operation. We say that a C⇤-category C is unitarily Cauchy complete if the obvious inclu-
sion dagger functor C ,! Cauchy

é.C / is a dagger equivalence. The unitary Cauchy comple-
tion satisfies the universal property that every linear dagger functor F W C ! D where D is
unitarily Cauchy complete factors uniquely throught Cauchy

é.C /.

Remark 3.6. – It is natural to ask whether given a C⇤-category C , if we take the Cauchy
completion of the underlying linear category C \, is this equivalent to the underlying category
of the unitary Karoubi completion Cauchy

é.C /\? This is indeed the case, but we leave the
verification to a future article. The interested reader can prove this fact using the polar
decomposition for invertible morphisms in C .

3.2. Module categories, Morita equivalences, and endofunctor embedding

Tensor categories can be thought of as categorical analogues of ordinary algebras.
Many ordinary algebraic notions have analogues for tensor categories, and in particular
the analogues of modules, bimodules, and Morita equivalences play a key role in studying
tensor categories, as pioneered by Ocneanu, Müger, Ostrik, and others [79, 75, 80]. For
example, a left C -module categoryM is a C-linear Cauchy complete category together with
a left action functor B and unitor and associators satisfying natural axioms. Similarly, a
right C -module category has a right action functor C, and a C � C bimodule category has
two actions and an associator commuting both actions. Again see [21, §7] for further details
(changing abelian to Cauchy complete throughout).

In particular, we have the following two important problems about the “representation
theory” of fusion categories.

Problem 3.7 (Classification of Modules). – Classify all indecomposable semisimple
module categories over a given fusion category C .

Problem 3.8 (Morita Equivalence). – Classify all fusion categories D (up to tensor
equivalence) which are Morita equivalent to C , and all the Morita equivalences between
them (up to bimodule equivalence). Furthermore, understand the Brauer-Picard groupoid,
which describes the compositions of these Morita equivalences under balanced tensor
product CM⇥D NE .

From a higher categorical perspective it is somewhat unnatural to only study equiva-
lence classes, and it is more natural to consider Etingof-Nikshych-Ostrik’s Brauer-Picard
3-groupoid [22] which consists of fusion categories Morita equivalent to C , Morita equiv-
alences between them, bimodule equivalences between these Morita equivalences, and
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bimodule natural isomorphisms. The higher structure of this 3-groupoid is essential for clas-
sifying G-graded extensions of fusion categories. The Morita equivalence problem asks for
the fundamental 1-groupoid of this 3-groupoid. As it turns out, for the examples considered
in this paper, the higher structure of the 3-groupoid is trivial (see Corollary 4.7).

The following theorem shows that the two problems above are closely related. Recall that
if X is an invertible object, then conjugation by X is an inner autoequivalence.

Theorem 3.9 ([22, Prop. 4.2 and §4.3], [21, §7.12]). – If C is a fusion category andM is a
semisimple C -module category, then C �D bimodule category structures onMwhich extend the
C -module structure correspond exactly to functors F W D ! EndC .M/, and such a bimodule
is a Morita equivalence if and only if F is an equivalence of multitensor categories. Two such
bimodule categories are equivalent if and only if the functors differ by an inner autoequivalence.
Furthermore, EndC .M/ is a tensor category (with simple unit object) if and only if M is
indecomposable.

In particular, in order to solve Problem 3.8 about Morita equivalence, it is enough to solve
Problem 3.7 about modules, and further solve the following.

Problem 3.10 (Outer Automorphisms). – For each D in the Morita equivalence class
of C , find the outer automorphism group of D.

None of the fusion categories we study in this article have outer automorphisms. Thus
classifying modules and Morita equivalences are essentially the same. However, the reader
should note that given C and M, actually calculating the structure of the dual category
EndC .M/ may be quite diYcult. The dual categories EndC .M/ are essentially the same
thing as the dual parts of GHJ subfactors [35]. We refer the reader to [64] for a notable
concrete example where understanding the detailed structure of the dual category is diYcult.

All of the above problems are “external” problems, relating C to other tensor categories
and module categories. However, they are closely related by a theorem of Ostrik [80] to
“internal” problems about algebra objects or Q-systems inside C . Two such algebras are
internally Morita equivalent if there is an invertible bimodule object between them.

Theorem 3.11 ([80]). – Given A 2 C , a connected semisimple algebra, ModC .A/ is an
indecomposable module category. Moreover every indecomposable C -module category M is
equivalent to one of this form, by taking A D EndC .m/ for any simple m 2 M.

The collection of connected semisimple algebras fB j ModC .B/ ä ModC .A/g is exactly the
internal Morita equivalence class of A.

The dual category EndC .ModC .A// is canonically identified with the category of A � A

bimodules in C .

This theorem shows that the above problems are closely related to Ocneanu’s “maximal
atlas” [79].
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Definition 3.12. – Let C be a fusion category. A maximal atlas for C is a choice of
a semisimple connected algebra A in each internal Morita equivalence class. From such a
maximal atlas, one gets a collection of fusion categories BimC .A;A/ and Morita equiva-
lences BimC .A;B/. (4)

In general, a maximal atlas will contain less information than the Brauer-Picard groupoid,
because it does not remember the tensor equivalences between the fusion categories
BimC .A;A/

Example 3.13. – For C D Vec.Z=3Z/, a maximal atlas is given by 1 and the group
algebraA D CŒZ=3Zç (with each group element in its own grade). The category of bimodules
BimC .A;A/ is Rep.Z=3Z/, which is (non-canonically!) equivalent to Vec.Z=3Z/. The outer
automorphism group of Vec.Z=3Z/ is the group of units .Z=3Z/⇥ acting by permuting
simple objects, so we get two distinct equivalences Rep.Z=3Z/ ä Vec.Z=3Z/. Thus the
aforementioned maximal atlas of C consists of two tensor categories (which happen to be
tensor equivalent) and a single bimodule between the two, while the Brauer-Picard groupoid
consists of one tensor category and four Morita autoequivalences.

One can then determine the group structure of this set of four autoequivalences. By a
result of Etingof-Nikshych-Ostrik [22, Cor. 1.2], this Brauer-Picard group must be the split
orthogonal groupO2.F3˚F⇤

3
/, which is the Klein four group. Note that in the maximal atlas

formalism one cannot even ask about the structure of this group. In a sense the maximal
atlas is a “universal cover” of the Brauer-Picard groupoid, and has lost all the interesting
topological information about the latter (while still retaining the combinatorial informa-
tion). However, for all examples in this article, the Brauer-Picard group is trivial, and so
these subtleties between the Brauer-Picard groupoid and the maximal atlas do not play an
important role. (In contrast, this distinction was critical in the study of the Asaeda-Haagerup
subfactor [43], which has Brauer-Picard group the Klein four group.)

Just as a module M over an algebra A is equivalent to a homomorphism A ! End.M/,
module categories M over C are equivalent to tensor functors C ! End.M/ [21, Prop.
7.1.3.]. Thus the module classification problem is equivalent to the following.

Problem 3.14 (Endofunctor embedding). – Classify all semisimple categories M and
all tensor functors C ! End.M/, up to conjugation by an autoequivalence of M.

The following omnibus theorem summarizes much of the above.

Theorem 3.15. – Suppose that C is a fusion category.

Module category structures on a semisimple category M correspond exactly to tensor
functors C ! End.M/.

A fusion category D is Morita equivalent to C if and only if there is an indecomposable
semisimple C -module categoryM such thatD is tensor equivalent to EndC .M/. Further-
more the Morita equivalences CND such that CN is equivalent to CM are a torsor for
the group of outer automorphisms Out.D/.

(4) The distinction between thinking of the maximal atlas as a collection of algebras and bimodules or as a collection
of tensor categories and Morita equivalences is often elided.
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Pairs .M; m/, where M is a semisimple indecomposable C -module category and m 2

M is a simple object, correspond exactly to connected semisimple algebras A in C ,
via A 7! .ModC .A/; A/ and .M; m/ 7! EndC .m/. The dual category EndC .M/

corresponding to A is the category of A-A bimodules in C .

3.2.1. Modules for multifusion categories. – Recall that a multifusion category C is like a
fusion category, except 1C is no longer simple. Since C is semisimple and C .1C ! 1C / is a
commutative algebra, 1C breaks up as a sum of r distinct simple objects 1C D

L
r

iD1 1i . We
call such a multifusion category r-shaded. We denote by Cij the summand 1i ˝ C ˝ 1j .

Proposition 3.16. – If C is an r-shaded multifusion category, then each Ci i is a fusion
category. When C is indecomposable as a multifusion category each Cij is a Morita equivalence
between Ci i and Cjj . Furthermore, the tensor product map Cij ⇥Cjj

Cjk ! Cik is an
equivalence.

Conversely, given fusion categoriesD11; : : : ;Drr and a Morita equivalenceD1j betweenD11
and Djj for each 1 < j  r , we define Dik WD D

�1
1i
⇥D11

D1k for each i; k 2 f1; : : : ; rg to get
an indecomposable multifusion category D D

L
r

i;kD1.Dik/. These constructions are mutually
inverse. (5)

Proof. – The forward direction is [22, Thm. 6.1] where instead of a grading group we have
a grading by the groupoid of standard matrix units Eij . The proof for groupoids is parallel
to the proof for groups. (See also [21, Prop. 7.17.5] which shows the first two parts.)

(5) One can avoid the relative tensor product to obtain a multifusion category equivalent to D as follows.
First, choose a simple object di 2 D1i for all i D 1; : : : ; r , and consider the connected algebra objects
Ai D EndD11

.di /. ThenD is equivalent to the category ofA�A bimodules internal toD11 whereA D Lr
iD1Ai .
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For the converse direction
L
r

i;kD1D
�1
1i
⇥D11

D1k has a monoidal structure given by
�
D

�1
1i
⇥D11

D1k

�
⇥

�
D

�1
1k
⇥D11

D1`

�
! D

�1
1i
⇥D11

D1k ⇥Dkk
D

�1
1k
⇥D11

D1`

! D
�1
1i
⇥D11

D11 ⇥D11
D1` ! D

�1
1i
⇥D11

D1`

That this category is rigid follows from the proof of [14, Thm. 8.5], namely letting
Djk D D

�1
1j
⇥D11

D1k we have that tensoring with an object x 2 Djk thought of as
a functor Djj ! Djk has both a left and a right adjoint module functor which lives
in HomDjj

.Djk ;Djj / ä Dkj using invertibility. Thus tensoring with x is adjoint to tensoring
with some other object y 2 Dkj which is thus its dual object. (See [18, Cor. 2.11] for an
alternate proof, though some care needs to be taken to adapt the notion of weak rigidity to
the multifusion setting.)

Remark 3.17. – The right way to think about Proposition 3.16 is that the main results
of [21] classifying group extensions using obstruction theory also work for “groupoid exten-
sions.” Here we’re looking at extensions by a trivial groupoid, so the obstructions automati-
cally vanish and the extension must exist. The proofs in that paper go through for groupoids
with minimal changes.

Remark 3.18. – To each multifusion category C there is a corresponding rigid 2-cate-
gory whose objects are the indices, whose 1-morphisms are the objects in the Cij , and whose
2-morphisms are the morphisms in Cij . There is not an important diVerence between this
2-category and the multifusion category, but in this paper, we use the multifusion language
to align with the results of [21, 83].

The non-pivotal algebraic analogue of an irreducible finite depth subfactor N ⇢ M is
a pair .C ; A/ where C is a fusion category (which corresponds to the N � N bimodules
generated by M ) and A 2 C is a semisimple connected algebra object (which corresponds
to M ). Given such an A 2 C , we get a Morita equivalence ModC .A/ D BimC .1C ; A/

between C and BimC .A/, and we get a 2-shaded indecomposable multifusion category as
in Footnote 5 by

BimC .1C ˚ A; 1C ˚ A/ D

 
BimC .1C ; 1C / BimC .1C ; A/

BimC .A; 1C / BimC .A;A/

!

with tensor product given by ˝C , ˝A, or zero as appropriate.

Notice that BimC .1C ; 1C / D C .

There’s an analogue of Prop. 3.16 for module categories.

Proposition 3.19. – Suppose that D is an r-shaded multifusion category with compo-
nentsDij . Suppose thatM is an indecomposable module category overD. ThenM D

L
r

jD1Mj

where Mi D 1i BM. Furthermore, the action maps Dij ⇥Djj
Mj ! Mi are equivalences.

Conversely, given an indecomposable module category M1 over D11, we define

F.M1/ WD

rM
iD1

Di1 ⇥D11
M1:
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We can endow F.M1/ with the structure of a D-module category via

Dkj ⇥ F.M1/ ä

rM
iD1

Dkj ⇥Di1 ⇥D11
M1 ! Dkj ⇥Djj

Dj1 ⇥D11
M1 ä Dk1 ⇥D11

M1 ✓ F.M1/:

These constructions are mutually inverse with the isomorphism F.M1/ ! M being the direct
sum of the action maps Di1 ⇥D11

M1 ä Mi .

Proof. – The only nontrivial step is that Dij ⇥Djj
Mj ! Mi is an equivalence. This

follows either by the techniques of [22, Thm. 6.1] or of [21, Prop. 7.17.5]. Choose a simple
object mj in Mj , and let Bj D End

Djj
.mj / be the internal endomorphisms of mj in Djj .

Similarly, choose a simple object xij inDij and let Aij D
_xij ˝ xij be its internal endomor-

phism algebra in Djj . We have an equivalence:

M ! BimD.Aij ; Bj /

via m 7!
_xij ˝ Hom

D
.m;mj /. The restriction of this functor to Mi then gives an inverse

to the map Dij ⇥Djj
Mj ! Mi .

Thus classifying modules for D11 (answering Problem 3.7) is equivalent to classifying
modules for D. In particular, given an algebraic analogue of a subfactor A 2 C , we
can instead solve the module problem over the corresponding indecomposable 2-shaded
multifusion category BimC .1C ˚ A; 1C ˚ A/ which is the purely algebraic, non-pivotal
analogue of the subfactor planar algebra. That is, we construct module categories for EH1
by constructing module categories over the indecomposable 2-shaded multifusion category
which combines EH1 and EH2. This strategy is successful because the extended Haagerup
subfactor planar algebra has a better skein theoretic description than either of the fusion
categories EH1 and EH2 individually.

3.2.2. Module C⇤ categories for unitary multitensor categories. – In the nomenclature of
[83], a unitary multitensor category C is a Cauchy complete rigid tensor C⇤ category, which
is semisimple by [69]. We call C a unitary tensor category if 1C is simple. Similar to the above
characterization of module categories, given a (Cauchy complete) C⇤ categoryM, endowing
M with the structure of a C -module C⇤ category is equivalent to supplying a dagger tensor
functor C ! Endé.M/, the C⇤ category of dagger endofunctors of M. (6) We provide a
proof for those less familiar with C⇤ categories, which also appears as [15, Lem. A.4.1]. This
is the C⇤ version of the first bullet point in Theorem 3.15.

Lemma 3.20. – Suppose C is a unitary multitensor category and M is a C⇤ category.
EquippingM with the structure of a C -module C⇤ category is equivalent to supplying a dagger
tensor functor .‰;�/ W C ! Endé.M/.

Proof. – We show how each structure induces the other, and we leave it to the reader to
check these two processes are mutually inverse (up to dagger equivalence).

Suppose M is a C -module dagger category. Note that c B � is a dagger functor
in Endé.M/ for each c 2 C . Moreover, if f 2 C .a ! b/, then .f B �/é D f é B �.

(6) In order for Endé
.M/ to be C⇤, we only work with bounded natural transformations, i.e., those ✓ W F ) G

such that supc2C k✓ck < 1. One then defines ✓é component-wise: .✓é
/c WD .✓c/

é.
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Hence ‰ W C ! Endé.M/ given by ‰.c/ D c B � and ‰.f / D f B � defines a dagger
functor. Now defining

�a;b W ‰.a/ ı‰.b/ D a B b B � ) a˝ b B � D ‰.a˝ b/

by �a;bm WD ˛a;b;m W a B b B m ! a ˝ b B m defines a unitary natural isomorphism,
equipping ‰ with the structure of a dagger tensor functor.

Conversely, suppose .‰;�/ W C ! Endé.M/ is a dagger tensor functor. For c 2 C
and m 2 M, define c B m WD ‰.c/.m/. For c 2 C and g 2 M.m ! n/, define
idc B g WD ‰.c/.f /. For f 2 C .a ! b/ and m 2 M, define f B idm WD ‰.f /m. To
show that BW C ⇥ M ! M defines a bifunctor, it suYces to prove the exchange relation,
which follows immediately from naturality. That is, for f 2 C .a ! b/ and g 2 M.m ! n/,
the following diagrams commute:

‰.a/.m/ ‰.b/.m/

‰.a/.n/ ‰.b/.n/

‰.f /m

‰.a/.g/ ‰.b/.g/

‰.f /n

D

a B m b B m

a B m b B n.

fBidm

idaBg idbBg
fBidn

We define the natural unitary associator isomorphism ˛a;b;m 2 M.a B b B m ! a˝b B m/
by ˛a;b;m WD �a:b

m
W Œ‰.a/ ı‰.b/ç.m/ ! ‰.a˝ b/.m/.

Notice that �a;b W ‰.a/ ı‰.b/ ) ‰.a˝ b/ is unitary if and only if �a;bm is unitary for all
m 2 M. Now one calculates .f B idm/é D ‰.f /

é

m WD .‰.f /é/m D ‰.f é/m D f é B idm
and .idc B g/é D ‰.c/.g/é D ‰.c/.gé/ D idc B gé. Thus M is a C -module dagger
category.

Warning 3.21. – We do not state a C⇤ version of the other bullet points of Theorem 3.15,
which implicitly use rigidity for the statements on Morita equivalence and algebras. When
C is C⇤, it is natural to impose compatibility conditions between the duality functor (imple-
menting rigidity) and the dagger structure. We will explain this in detail in §3.5.1 below.

3.3. Monoidal algebras

Most algebraic structures have both a biased definition, like the usual definition of an
algebra which emphasizes multiplying exactly two elements together, and an unbiased
definition, like the definition of an algebra in which you can multiply arbitrary strings. (7)

The usual definition of monoidal category is biased as it emphasizes tensoring two objects
and composing two morphisms. In Definition 3.23 below, we give an unbiased definition
of monoidal category using the graphical calculus; we will see in §3.6.3 below that planar
algebras are the analogous unbiased definition of a pivotal monoidal category.

Definition 3.22. – A monoidal tangle with label set S is a rectangle, with several smaller
rectangles (with edges parallel to those of the big one) removed, and some non-crossing
smooth strings labeled by elements of S which are oriented upward, have no local minima
nor local maxima, and begin and end on the tops or bottoms of the rectangles. We say a
monoidal tangle T has type ..s0; t0/I .s1; t1/; : : : ; .sk ; tk//where s0; : : : ; sk ; t0; : : : ; tk are finite
words on S if the tangle T has k input rectangles, and there are jsi j; jti j strings attached to the

(7) See [88] for a delightful elementary discussion of the unbiased definition of an algebra.
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bottom and top respectively of the i -th rectangle (the zeroth rectangle is the output rectangle
and 1  i  k corresponds to the i -th input rectangle), which are labeled by the characters
in the words si ; ti respectively. Here is an example of a tangle with S D f ; ; g, where
we color the strings instead of labeling them:

1

2

3 has type

..„ ƒ‚ …
s0

; „ƒ‚…
t0

/I .„ƒ‚…
s1

; „ƒ‚…
t1

/; .„ƒ‚…
s2

; „ƒ‚…
t2

/; .„ƒ‚…
s3

; ;„ƒ‚…
t3

//:

Monoidal tangles are considered up to isotopy (through diagrams that again have no minima
or maxima). Monoidal tangles form a colored operad, because you can insert monoidal
tangles into the rectangles of a large monoidal tangle to get a new monoidal tangle.

Definition 3.23. – A monoidal algebra with label set S is an algebra in finite dimen-
sional vector spaces for the operad of monoidal tangles with label set S . Unpacking this
definition, a monoidal algebra P✏!✏ consists of a family of finite dimensional vector
spaces Ps!t where s; t are finite words in S , together with an action of monoidal tangles.
To each monoidal tangle T of type ..s0; t0/I .s1; t1/; : : : ; .sk ; tk///, we associate a multilinear
map Z.T / W

Q
k

jD1 Psj !tj
! Ps0!t0

, and composition of monoidal tangles corresponds to
composition of multilinear maps. Here is an example:

Z

0
BBBBB@

1

2

3

1
CCCCCA

W P ! ⇥ P ! ⇥ P ! ; ! P !

Example 3.24. – Suppose C is a Cauchy complete linear monoidal category with a
set of objects S WD fXsgs2S which tensor generates C , i.e., every object in C is a direct
summand of a direct sum of tensor products of objects in S . We define a monoidal algebra
P.C ;S /✏!✏ with label set S as follows. For s1; : : : ; sk ; t1; : : : ; t` 2 S , we define

P.C ;S /s1���sk!t1���t` WD C .Xs1 ˝ � � � ˝Xsk ! Xt1 ˝ � � � ˝Xt`/:

We use the convention that if ; is the empty word on S , then the empty tensor product of
objects is 1C . The action of tangles is just the graphical calculus for tensor categories. See
[85, 93, 63] for a summary of many versions of the graphical calculus; additional resources
include [97] and [47, §2.1 and 2.3].

Remark 3.25. – The monoidal algebra P.C ; X/✏!✏ is similar in spirit to the way the
term ‘monoidal algebra’ is used in the work of Wenzl on constructing and classifying subfac-
tors and fusion categories from quantum groups [99, 105] which is based on the original
towers of algebras approach to subfactor theory [56, 104, 35, 91].
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Conversely, from a monoidal algebra we can construct a Cauchy complete linear
monoidal category following [72, 33]. This takes place in two steps, first we construct a
linear monoidal category, and then we take its Cauchy completion as discussed in §3.1. The
objects in this category are the words s in the label set S , and the morphism spaces are Ps!t .
Composition is given by vertical stacking, and the monoidal structure given by horizontal
juxtaposition. Here are examples of composition and monoidal product respectively:

g ı f WD

f

g

g ˝ f WD g f

This construction is inverse to the construction in Example 3.24. We thus have the following
theorem.

Theorem 3.26. – There is an equivalence of categories (8)

f Monoidal algebras P✏!✏ with label set S g ä

8<
:

Pairs .C ; fXsgs2S / with C a Cauchy
complete linear monoidal category with
generators Xs 2 C for s 2 S

9=
; :

3.3.1. Shaded monoidal algebras and monoidal categories. – We next extend the discussion
of monoidal algebras to r-shaded multifusion categories. Suppose C is a Cauchy complete
linear monoidal category. A decomposition 1C D

L
i2R 1i where each 1i is non-zero, but

not necessarily simple, is called an R-shading on C . We write Cij D 1i ˝ C ˝ 1j , and we
note that C D

L
r

i;jD1 Cij . We also have distinguished idempotents pi 2 C .1C ! 1C /

corresponding to the summand 1i for 1  i  r . In the graphical calculus, we represent
these projections, which freely float about in their regions, as a single shading. For example,
we could denote

D pi D pj

Then for objects a; b 2 Cij , we would denote a morphism f 2 C .a ! b/ by

f

This motivates the following definition.

Definition 3.27. – An R-shaded monoidal tangle with label set S is a monoidal tangle
with label set S whose regions are shaded by the elements of R such that each element
x 2 S has a left source shading sx 2 R and a right target shading ty 2 R. For example,

(8) Pairs .C ; fXsgs2S / form a 2-category where between any two 1-morphisms, there is at most one 2-morphism,
which is necessarily invertible when it exists [48, Lem. 3.5]. Hence this 2-category is equivalent to its truncation to
a 1-category.
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for the shading set R D f ; ; g, and the label set S D f ; ; ; g, we have
the following R-shaded monoidal tangle with label set S :

1

2

3

Definition 3.28. – An R-shaded monoidal algebra with label set S is an algebra over
the operad of R-shaded monoidal tangles with label set S . Notice this means that the
spaces Px!y are only well-defined when consecutive characters in the words x and y have
compatible target and source shadings, and the source and target shadings of the words x
and y agree.

We have the following shaded version of Theorem 3.26 which is proved in an analogous
way.

Proposition 3.29. – There is an equivalence of categories (see footnote 8, p. 619)

⇢
R-shaded monoidal algebras
P✏!✏ with label set S

�
ä

8̂
<̂
ˆ̂:

Pairs .C ; fXygy2S / with C a Cauchy
complete linear monoidal category with
R-shading 1 D

L
i2R 1i and tensor genera-

tors Xy 2 Csy ;ty for y 2 S

9>>=
>>;
:

3.3.2. Unitary monoidal algebras

Definition 3.30. – A dagger monoidal algebra with label set S is a monoidal
algebra P✏!✏ with label set S equipped with antilinear maps é W Ps!t ! Pt!s for all
words s; t on S such that

— é ı é D id and

— for every monoidal tangle T , T é.xé
1
; : : : ; x

é

k
/ D T .x1; : : : ; xk/

é where T é denotes the
vertical reflection of T about the x-axis.

A dagger monoidal algebra is called a C⇤ monoidal algebra or a unitary monoidal algebra if
in addition

— (positive definite) for all f 2 Ps!t , f é ı f D 0 implies f D 0.

Here, it is important to note that every Ps!t was assumed to be finite dimensional. As in
Definition 3.4 above, the positive definite condition above is equivalent to

— (2 ⇥ 2 linking C⇤-algebra) for all words s; t on S , the linking algebra

L.s; t/ WD

 
Ps!s Pt!s

Ps!t Pt!t

!

with the obvious matrix multiplication and é-transpose operation is a finite dimen-
sional C⇤-algebra (see Footnote 3).
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When C is a C⇤ monoidal category, we say a set of objects S WD fXsgs2S unitarily tensor
generates C if every object in C is unitarily isomorphic to an orthogonal direct summand of
an orthogonal direct sum of tensor products of objects in S .

Similar to the previous section, we can define an R-shading as an orthogonal decompo-
sition 1C D

L
i2R 1i . We have the following unitary version Theorem 3.26 and Proposi-

tion 3.29.

Proposition 3.31. – There is an equivalence of categories (see footnote 8, p. 619)

⇢
R-shaded C⇤ monoidal alge-
bras P✏!✏ with label set S

�
ä

8̂
<̂
ˆ̂:

Pairs .C ; fXygy2S / with C a Cauchy
complete monoidal C⇤ category with
R-shading 1 D

L
i2R 1i and unitary tensor

generators Xy 2 Csy ;ty for y 2 S

9>>=
>>;
:

3.4. Graph monoidal algebra embedding

In this section we relate endofunctor embeddings C ! End.M/ to embeddings of
monoidal algebras into graph monoidal algebras, which is the non-pivotal analog of embed-
ding planar algebras into graph planar algebras. We give a 2-shaded multifusion version
which applies to an algebraic analog of a finite depth subfactor standard invariant.

Definition 3.32. – Let J be a finite set. The tensor category Vec.J ⇥J / of bi-J -graded
vector spaces has objects finite dimensional vector spaces which decompose as direct sums
V D

L
i;j2J Vij , morphisms linear maps which preserve the bi-grading, i.e., f W V ! W is

a sum f D

P
ij
fij W Vij ! Wij , and composition the composition of linear maps. The

tensor product of two bi-graded vector spaces is given by convolution

.V ˝W /ik WD

M
j2J

Vij ˝Wjk ;

as is the tensor product of morphisms, i.e., if f W V 1 ! V 2 and g W W 1
! W 2, then

.f ˝ g/ik WD

M
j2J

fij ˝ gjk W

M
j2J

V 1
ij

˝W 1

jk
�!

M
j2J

V 2
ij

˝W 2

jk
:

It is straightforward to see that Vec.J ⇥J / is a finitely semisimple rigid tensor category. A set
of representatives of the simple objects is given by fEij gi;j2J , where Eij has a copy of C in
the ij -graded component and the zero vector space everywhere else. The dual of V is given
by .V _/ij WD .Vj i /

_, the space of linear functionals Vj i ! C, with obvious evaluation and
coevaluation maps. Indeed, it is straightforward to verify that Vec.J⇥J / is monoidally equiv-
alent to the tensor category VecŒGr ç of Gr -graded vector spaces, where Gr is the groupoid with
r WD jJ j objects and a unique isomorphism between any two objects. In turn, VecŒGr ç is easily
seen to be monoidally equivalent to End.M/whereM is a finitely semisimple category such
that a set of representatives of the simple objects Irr.M/ is in bijection with J .

Definition 3.33. – Given a bi-graded vector space V 2 Vec.J ⇥ J /, we may think of
it as a Vec-enriched graph EÄ D .J; V /, whose vertices are the set J , and whose edges are
the finite dimensional vector spaces Vij . We call a bi-graded vector space connected if given
any two vertices i; k 2 J , there is a sequence of vertices .i D j0; j1; : : : ; jn D k/ such
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that Vj`�1j`
¤ .0/ for all ` D 1; : : : ; n. Observe that Ä is connected if and only if Ä Cauchy

tensor generates Vec.J ⇥ J /.
Given a (connected) Vec-graph EÄ D .J; V /, we get an honest (connected) graph Ä with

vertex set J and whose edges from i to j are some choice of basis for the space Vij . Clearly
picking diVerent bases yields isomorphic graphs.

Remark 3.34. – This approach is very similar to that in the classification of Temperley-
Lieb module categories using weighted graphs from [25]. In [16], the authors classify unitary
Temperley-Lieb module categories using bi-graded Hilbert spaces, which we discuss briefly
(with a warning) in §3.4.2 below.

Definition 3.35. – Suppose Ä is a connected directed graph with vertex set J . For an
edge " in Ä, we write s."/ and t ."/ for the source and target of ".

We define the graph monoidal algebra GMA.Ä/✏!✏ as follows. For m; n � 0, we define
GMA.Ä/m!n to be the C-vector space with distinguished basis the set of pairs .p; q/ where
p; q are paths on Ä of length m; n respectively whose sources and targets agree.

The action of tangles is given by a state-sum model similar to a graph planar algebra:

(3.1) T ..p1; q1/; : : : ; .pk ; qk// WD

X
states � on T

Y
1ik

ı� ji D.pi ;qi /
� � j0

Here, T is a monoidal tangle with k input disks, and the .pi ; qi / are basis elements (pairs
of paths) in GMA.Ä/mi !ni

. A state � on a monoidal tangle T is an assignment of vertices
and edges of Ä to the regions and strings of T respectively such that if a string labeled by "
separates the left region R` from the right region Rr , then R` is labeled by s."/ and Rr is
labeled by t ."/. Now � ji denotes the pair of paths in GMA.Ä/mi !ni

obtained from reading
the top and bottom boundaries of the i -th input disk from left to right. In other words, we
only sum over states which are ‘compatible’ with the paths we input.

Example 3.36. – Consider the following directed graph:

a b c d

"

"
⇤

⇠

⇠
⇤




⇤

For the monoidal tangle displayed below on the left, there are exactly two compatible states
for the input .x1 D ."⇠; "⇠/; x2 D .⇠⇠⇤; "⇤"/; x3 D .;; ⇠⇤⇠//, which are displayed below on
the right.

1

2

3

 

x1

x2

x3

" ⇠

⇠
⇤" ⇠ ⇠⇠

⇤

"
⇤ "

;

x1

x2

x3

" ⇠

" ⇠ ⇠⇠
⇤

"
⇤ "

Hence the output of the tangle on the left applied to the input .x1; x2; x3/ is

."⇠⇠⇤; ""⇤"⇠⇠⇤/C ."⇠; ""⇤"⇠/:
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The graph monoidal algebra of Ä is the non-pivotal analog of the graph planar algebra
of Ä. The reader is encouraged to compare the above definition with that of the graph planar
algebra of a bipartite graph in Definition 3.75 below.

Theorem 3.37. – Given a connected Vec-graph EÄ D .J; V / 2 Vec.J ⇥ J /, the monoidal
algebra P.Vec.J ⇥J /; EÄ/✏!✏ from Example 3.24 is isomorphic to the graph monoidal algebra
GMA.Ä/✏!✏.

Proof. – Denoting EÄ˝n
D .J; V ˝n/, we have a canonical isomorphism

V ˝n
ik

ä

M
j1;:::;jn�12J

Vij1
˝ Vj1;j2

˝ � � � ˝ Vjn�1k
:

Observe that an f 2 HomVec.J⇥J/.EÄ˝m
!

EÄ˝n/ is completely determined by its component
maps
8<
:fi` W

M
j1;:::;jm�12J

Vij1
˝ Vj1j2

˝ � � � ˝ Vjm�1`
!

M
k1;:::;kn�12J

Vik1
˝ Vk1k2

˝ � � � ˝ Vkn�1`
:

9=
;
i;`2J

:

Now fix a basis f"k
i`

g for each Vi`, and for each pair of paths on Ä from i to `

p D "
p1

ij1
˝ � � � ˝ "

pm

jm�1`
q D "

q1

ik1
˝ � � � ˝ "

qn

kn�1`
;

of lengths m and n respectively, we let F i`
p!q

2 HomVec.J⇥J/.EÄ˝m
!

EÄ˝n/ be the unique
i`-component map sending p to q and all other paths p0 from i to ` of lengthm to zero. We
see then that
(3.2)
P.Vec.J ⇥ J /; EÄ/m!n WD HomVec.J⇥J/.EÄ˝m

!
EÄ˝n/ D

M
i;`2J

spanC
n
F i`
p!q

o
p; q paths i to `

:

Now it is straightforward to verify that the linear extension

ˆm!n W P.Vec.J ⇥ J /; EÄ/m!n ! GMA.Ä/m!n

of F i`
p!q

7! .p; q/ is a linear isomorphism for all m; n � 0.

It remains to see that this isomorphism is compatible with the action of monoidal tangles.
It suYces to show thatˆ intertwines the actions of a single vertical strand with no input disk,
vertical stacking tangles, and horizontal concatenation tangles, as these tangles generate the
monoidal operad. The vertical strand in P.Vec.J ⇥ J /; EÄ/1!1 is given by

M
i;j2J

idVij
D

M
i;j2J

X
k

F
ij

"
k
ij

!"
k
ij

ˆ1!1
7�!

M
i;j2J

X
k

."k
ij
; "k
ij
/ D idGMA.Ä/1!1

D :

Hence ˆ1!1 preserves the strand.

To see that ˆ✏!✏ preserves composition, we check on our basis (3.2). Suppressing
subscripts on edges for simplicity, suppose

p D "p1
˝ � � � ˝ "pk q D "q1

˝ � � � ˝ "q` r D "r1 ˝ � � � ˝ "r` s D "s1 ˝ � � � ˝ "sm
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are paths on Ä from i to j . Then

ˆk!`.F
ij

r!s
/ ıˆ`!m.F

ij

p!q
/ D

.r; s/

.p; q/

"
r1

"
q1

"
r2

"
q2

� � � "
r`

"
q`

"
s1 "

s2 � � � "sm

"
p1"

p2 � � � "pk

D ˆk!m.F
ij

r!s ı F
ij

p!q/:

D ıqDr .p; s/ D ıqDrˆk!m.F
ij

p!s
/

As composition is multi-linear, the general case follows by taking linear combinations.
Finally, to showˆ✏!✏ preserves tensor product, we again work with our basis (3.2). Again

suppressing subscripts for simplicity, suppose

pgh D "p1
˝ � � � ˝ "pk qgh D "q1

˝ � � � ˝ "q`

r ij D "r1 ˝ � � � ˝ "rm sij D "s1 ˝ � � � ˝ "sn

are paths on Ä, where pgh; qgh go from g to h, and r ij ; sij go from i to j . We calculate

ˆk!`.F
gh

p!q
/˝ˆm!n.F

ij

r!s
/ D .p; q/

"
q1"

q2 � � � "q`

"
p1"

p2 � � �"pk

.r; s/

"
s1"

s2 � � � "sn

"
r1"

r2 � � �"rm

D ıhDi .pr; qs/

"
q1"

q2 � � � "q`

"
p1"

p2 � � �"pk

"
s1"

s2 � � � "sn

"
r1"

r2 � � �"rm

D ıhDiˆkCm!`Cn.F gjpr!qs
/ D ˆkCm!`Cn.F ghp!q

˝ F ij
r!s

/:

Again, the general case follows by taking linear combinations.
Since the actions of the generating tangles agree, we are finished.

Definition 3.38. – Suppose C is a semisimple monoidal category Cauchy tensor gener-
ated by X , and M is a finitely semisimple module category. Let Irr.M/ D fm1; : : : ; mrg be
a set of representatives of simple objects of M, and define J WD f1; : : : ; rg. The fusion
Vec-graph EÄ of M with respect to X is the Vec-graph whose vertices are J and whose edge
spaces are given by

(3.3) Vij WD M.X B mi ! mj /:

Proposition 3.39 (Graph monoidal algebra embedding). – Suppose C is a semisimple
monoidal category Cauchy tensor generated by X , M is a finitely semisimple category with
J a set of representatives of the isomorphism classes of simple objects, and EÄ is a connected
Vec-graph whose vertices are J . Equipping M with the structure of an indecomposable left
C -module category whose connected fusion Vec-graph with respect to X is EÄ is equivalent to
embedding the monoidal algebra P.C ; X/✏!✏ into GMA.Ä/✏!✏. More precisely, the category
of C -module structures onM and module functor structures on the identity functor is equivalent
to the category of monoidal algebra embeddings and gaugings. (9)

(9) By gauging we mean ‘conjugating’ the embedding by placing a fixed invertible element (or its inverse) on each
strand as in [71]. In all our examples, gauging does not change the embedding, which is easily seen from our
calculations. Indeed, we always get a discrete set of embeddings, as all our fusion graphs are trees (cf. [25]). This
means gauging is not important in this article.
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Proof. – As we discussed previously, C -module structures onM are equivalent to tensor
functors C ! End.M/. By semisimplicity, End.M/ ä Vec.J ⇥ J /. Notice that every
linear tensor functor CX ! Vec.J ⇥ J / uniquely extends to its Cauchy completion C ,
and every linear tensor functor CX ! Vec.J ⇥ J / has essential image in Vec.J ⇥ J /EÄ .
The result now follows from Theorem 3.37 together with the equivalence of categories from
Theorem 3.26.

Remark 3.40. – When C is fusion, the Frobenius-Perron dimension of X is the norm
of the underlying graph Ä.

3.4.1. Embedding multifusion categories into multishaded graph monoidal algebras. – We
now adapt Proposition 3.39 to more closely approximate subfactor planar algebras, which
have two shadings. On the Vec-graph side, we will see this translates into our Vec-graphs
EÄ D .J; V / being bipartite, i.e., J D JC q J�, and Vij D .0/ whenever i 2 J˙ and j 2 J˙.

All the results and definitions in the beginning of this section about the graph tensor cate-
gory and the (graph) monoidal algebra have straightforward 2-shaded/bipartite generaliza-
tions to multifusion categories.

Definition 3.41. – Suppose D is a 2-shaded multifusion category with Cauchy tensor
generator X in D12 and M is a finitely semisimple module category. As in Definition 3.38,
we define the fusion Vec-graph EÄ of M with respect to X to have vertices corresponding to
simple objects in M and edge spaces

Vij WD M.X B mi ! mj /:

Observe that since D is 2-shaded and X 2 D12, EÄ is bipartite.

Proposition 3.42 (2-shaded graph monoidal algebra embedding).

Suppose D;M; EÄ are as in Definition 3.41. Indecomposable left D-module category struc-
tures onMwhose fusion graph isÄ correspond to embeddings of the 2-shaded monoidal algebra
P.D; X/✏!✏ into GMA.Ä/✏!✏

This is the purely algebraic version of our graph planar algebra embedding theorem.

Remark 3.43. – In §3.6.3 below, we will define the notion of graph planar algebra by
beginning with GMA.Ä/✏!✏ and extending the action of monoidal tangles to all planar
tangles. In particular, it follows just from the results of this section that a graph planar algebra
embedding yields a module category. This result alone is enough to show the existence
of EH3 and EH4 as tensor categories from the GPA embeddings constructed in §5, but not
to determine whether these tensor categories are unitary.
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3.4.2. Embedding unitary multifusion categories. – Recall that a finitely semisimple C⇤ cate-
gory M is é-equivalent to Hilb

j Irr.M/j. Similar to the algebraic and multishaded settings,
one can adapt to the unitary setting by first considering the unitary multifusion cate-
gory Hilb.J ⇥ J / of bi-J -graded Hilbert spaces, which is é-equivalent to Endé.M/ for
any C⇤ category M where j Irr.M/j D jJ j. (This is the approach to classifying unitary
Temperley-Lieb modules in [16].) Analogous to Definition 3.33, we may identify the objects
of Hilb.J ⇥ J / with Hilb-enriched graphs EÄ D .J;H/, and we obtain honest graphs by
choosing orthonormal bases for the edge Hilbert spaces.

Now the graph monoidal algebra GMA.Ä/✏!✏ carries an obvious é-structure by the anti-
linear extension of .p; q/ 7! .q; p/wherep; q are paths onÄ whose sources and targets agree.
It is straightforward to show that this é-structure is compatible with the vertical reflection
of tangles about the x-axis, and that it satisfies the positivity axioms, making GMA.Ä/✏!✏
a unitary monoidal algebra. Similar to Theorem 3.37, we have a é-isomorphism of unitary
monoidal algebras GMA.Ä/✏!✏ ä P.Hilb.J ⇥ J /; EÄ/✏!✏.

We may pass to the unitary 2-shaded setting by working with bipartite Hilb-graphs. There
is an “obvious” unitary version of Propositions 3.39 and 3.42.

Warning 3.44. – One should be careful not to use the Formula (3.3) to define the corre-
sponding bi-Irr.M/-graded Hilbert space from a é-functor in Endé.M/, as it would require
choosing Hilbert space structures on the hom spaces ofM. We will see in Remark 3.61 below
that this extra structure corresponds to a unitary trace on M, which gives a distinguished
choice of unitary pivotal structure on Endé.M/ by Proposition 3.67 below. Instead, one
should simply use the é-equivalence between Hilb.Irr.M/ ⇥ Irr.M// and Endé.M/.

Observe that when M is C⇤, M.m ! m/;M.n ! n/ are C⇤ algebras for all m; n 2 M,
and M.m ! n/ has the canonical structure of a Hilbert C⇤

M.m ! m/ � M.n ! n/

bimodule. We will not discuss this further as it would take us too far afield.

The remaining sections of this chapter are dedicated to adapting Proposition 3.42 to the
pivotal and unitary pivotal settings. We will see this adaptation naturally becomes the module
embedding theorem for graph planar algebras.

3.5. Planar algebras

In §3.3, we defined the notion of a (shaded) monoidal algebra. As alluded to earlier, the
pivotal analog of a monoidal algebra is a planar algebra. To simplify the exposition, we will
only define (2-)shaded planar algebras with a single strand type following [60]; we refer the
reader to [61, 59] (see also [9]) for a host of other notions of planar algebra.

Definition 3.45. – A (2-)shaded planar tangle consists of a disk with smaller internal
input disks, together with non-intersecting strings between the disks, a checkerboard
shading, and a distinguished interval marked by ? for each disk. We consider shaded planar
tangles up to isotopy. We say a shaded planar tangle has type ..n0;˙0/I .n1;˙1/; : : : ; .nk ;˙k//,
where each ˙i 2 fC;�g, if the i -th disk has 2ni strings connected to it, and its distinguished
interval is in an unshaded/shaded region corresponding to ˙i . The collection of shaded
planar tangles forms a colored operad by inserting tangles into the input disks to get a new
shaded planar tangle, making sure the distinguished intervals align. We include below an
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example of a composite of a tangle of type ..4;�/I .2;�/; .1;C/; .3;�// with a tangle of
type ..3;�/I .1;C// resulting in a tangle of type ..4;�/I .2;�/; .1;C/; .1;C//:

?

3?

2?

1

?

ı3 ? 1? D ?

3?

2?

1

?

Definition 3.46. – A (2-)shaded planar algebra is an algebra in finite dimensional vector
spaces for the shaded planar operad. Unpacking this definition, we have a vector space Pn;˙
for each color .n;˙/, and for each tangle T of type ..n0;˙0/I .n1;˙1/; : : : ; .nk ;˙k//, we
have a multi-linear map Z.T / W

Q
k

iD1 Pni ;˙i
! Pn0;˙0

. Composition of tangles then
corresponds to the composition of multi-linear maps.

Notice that any shaded planar algebra gives us a canonical R-shaded monoidal algebra
with region shadings R D f ; g and label set S D f ; g as follows. Whenever n1 ⌘

n2 mod 2 and ˙1 D ˙2, we set

(3.4) P.n1;˙1/!.n2;˙2/
WD P.n1Cn2/=2;˙1

;

and the action of monoidal tangles is given by adding a ? to the left of every input rectangle.
(Notice that for this R and S , every monoidal tangle must have a checkerboard shading.)
Here is an explicit example:

Z

0
BBBBB@

1

2

3

1
CCCCCA

„ ƒ‚ …
P.2;C/!.2;C/⇥P.2;�/!.2;�/⇥P.2;C/!.0;C/!P.5;C/!.3;C/

WD ZP✏

0
BBBBB@

1

2

3

?

? ?

?

1
CCCCCA
:

„ ƒ‚ …
P2;C⇥P2;�⇥P1;C!P4;C

The article [33] provides a dictionary between shaded planar algebras and triples .C ; X; '/
where C is a Cauchy complete category, 1C D 1C ˚ 1� is a decomposition (not necessarily
into simples!), X D 1C ˝ X ˝ 1� Cauchy tensor generates C , and ' W id ) _ ı _ is a
trivialization of the double dual functor known as a pivotal structure (see Section 3.5.1 below
for the precise definition). This dictionary actually gives an equivalence of categories similar
to [48].
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Theorem 3.47. – There is an equivalence of categories (10)

8<
:

2-shaded planar
algebras P✏

9=
; ä

8<
:

Triples .C ; '; X/ with .C ; '/ a pivotal multitensor cate-
gory, andX 2 C a Cauchy tensor generator with a decom-
position 1C D 1C ˚ 1� such that X D 1C ˝X ˝ 1�

9=
; :

This theorem is exactly the pivotal analog of Proposition 3.31, which provides the equiv-
alence of the underlying 2-shaded monoidal algebras and linear Cauchy complete monoidal
categories. Indeed, given such a planar algebra, we see that its category of idempotents C is
rigid. Indeed, given an idempotent p 2 C , its dual is given by its ⇡-rotation, and the evalua-
tion and coevaluation are given by the ordinary cap and cup in the planar algebra cut down
by p and p_:

p_
nn

? WD pn n? evp WD p_ p

n n

n n

? ? coevp WD p_p

n n

n n

? ? :

Choosing 'p WD p 2 Hom.p ! p/ endows C with a pivotal structure. Conversely,
one passes from triples .C ; '; X/ to planar algebras via the graphical calculus to produce
a monoidal algebra, and one then gets cups and caps by defining

WD evX WD coevX

WD evX_ ı.'X ˝ idX_/ WD .idX_ ˝'�1
X
/ ı coevX_ :

3.5.1. Unitary dual functors for unitary multifusion categories. – In order to discuss the
unitary version of Theorem 3.47, we rapidly recall the relevant notions for unitary dual
functors and unitary pivotal structures from [97, 83]. We do so only for unitary multifusion
categories, which are finitely semisimple multitensor C⇤ categories, which substantially
simplifies the presentation. For C a unitary multifusion category, we have that 1C decom-
poses into an orthogonal direct sum of simples as

L
r

iD1 1i , and we let pi 2 C .1C ! 1C / be
the minimal projection corresponding to the summand 1i for i D 1; : : : ; r . In the exposi-
tion below, we assume C is indecomposable, i.e., C is not equivalent to the direct sum of
two non-zero unitary multifusion categories. We write Cij D 1i ˝ C ˝ 1j , and we note
C D

L
i;j

Ci;j is a faithful grading of C by the groupoid Gr with r objects and a unique
isomorphism between any two objects, which can also be viewed as the standard system of
matrix units fEij g for Mr .C/.

A dual functor _ W C ! C consists of a choice of dual object c_ for each c 2 C together
with morphisms evc ; coevc which satisfy the zig-zag axioms. On morphisms f 2 C .a ! b/,
we define _ by

f _
D .evb ˝ ida_/ ı .idb_ ˝f ˝ ida_/ ı .idb_ ˝ coeva/:

A dual functor has a canonical anti-tensorator ⌫a;b W a_
˝ b_

! .b ˝ a/_ built from
evaluations and coevaluations. Any two dual functors are uniquely monoidally naturally
isomorphic.

(10) Similar to footnote 8, triples .C; ';X/ form a 2-category where between any two 1-morphisms, there is at most
one 2-morphism, which is necessarily invertible when it exists [48, Lem. 3.5]. Hence this 2-category is equivalent to
its truncation to a 1-category.
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A pivotal structure is a pair ._; '/ consisting of a dual functor _ and a monoidal natural
isomorphism ' W idC ) _ ı _. If a pivotal structure exists for a multitensor category, the
equivalence classes of pivotal structures form a torsor over the group Hom.U ! C⇥/ with
group law given by pointwise multiplication, where U is the universal grading groupoid of C
(see [21, §4.14] and [83, §3.3] for more details).

A dual functor is called unitary if it is a dagger tensor functor, i.e., ⌫a;b is unitary for all
a; b 2 C , and f _é

D f é_ for all f 2 C .a ! b/. Each unitary dual functor induces a
canonical unitary pivotal structure by 'c WD .coevéc ˝ idc__/ı.idc ˝ coevc_/, which is unitary.
As in [97, §7.3], the term ‘unitary pivotal structure’ should be viewed as a synonym for ‘the
canonical unitary pivotal structure induced from a unitary dual functor.’

Remark 3.48. – Equivalently, we can say that a pivotal structure 'c W c ! c__ is
compatible with the dagger structure if coevéc D evc_ ı.'c ˝ idc_/ W c ˝ c_

! 1C , and
define a unitary pivotal structure as a pivotal structure which is compatible with the dagger
structure. It is easy to see that the only compatible pivotal structure is the canonical one. Note
that this compatibility condition is needed in order for unitary pivotal categories to have the
correct diagram calculus where dagger corresponds to reflection of diagrams, since coevéc and
evc_ ı.'c ˝ idc_/ both are represented graphically by the same oriented cap.

Remark 3.49. – We found the relationship between pivotal structures and unitary
pivotal structures very confusing, and so we’d like to pause to explain why it’s so confusing.
In both the algebraic and unitary settings a pivotal structure consists of two parts: a choice
of dual functor and a choice of trivialization of the double dual functor subject to a compat-
ibility condition. In the algebraic setting, the dual functor is essentially unique (i.e., any two
choices are canonically naturally isomorphic) and the compatibility condition is vacuous,
so the only interesting part is the trivialization of the double dual functor. By contrast, in
the unitary setting, once you’ve chosen a unitary dual functor, the compatibility condition
guarantees that there’s a unique compatible trivialization of the double dual, so the only
interesting part is the choice of unitary dual functor. This means even though the two
definitions can be made parallel, the interesting parts of the two definitions are disjoint!

Note that a unitary pivotal structure ' is pseudounitary, i.e., all dimensions of simple
objects are strictly positive. Here, the left and right dimensions of a non-simple object c 2 C
are the matrices in Mr .C/ determined by

Dim'

L
.c/ij id1j

D tr'
L
.pi ˝ idc ˝pj / Dim'

R
.c/ij id1i

D tr'
R
.pi ˝ idc ˝pj /:

When c 2 C is simple, Dim'

L
.c/;Dim'

R
.c/ have exactly one non-zero entry, which we call

dim'

L
.c/; dim'

R
.c/ respectively.

For our indecomposable unitary multifusion category C , there exists a canonical spherical
structure [69, 107, 5, 83] which satisfies for all simples c 2 C , dim'

L
.c/ D dim'

R
.c/. By picking

this basepoint, we identify the torsor of pivotal structures with the group Hom.U ! C⇥/.
Polar decomposition gives us a group isomorphism C⇥

ä U.1/⇥R>0, which gives us a group
isomorphism

Hom.U ! C⇥/ ä Hom.U ! U.1// ⇥ Hom.U ! R>0/:
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It follows that the unitary pivotal structures correspond to the subgroup 1⇥Hom.U ! R>0/
as all dimensions must be strictly positive.

Now in the case of a unitary multifusion category, the universal grading groupoid U is
finite. If G ✓ U is a subgroup (with only one object), then given a ⇡ 2 Hom.U ! R>0/, we
must have ⇡.G/ D f1g. Hence for our indecomposable unitary multifusion category C such
that 1C D

L
r

iD1 1i is a decomposition into simples, the relevant grading groupoid to see all
unitary pivotal structures is exactly Gr .

Summarizing, we have:

Theorem 3.50. – Let C be a unitary multifusion category. There is a bijective correspon-
dence between

1. unitary equivalence classes of unitary dual functors and their induced unitary pivotal
structures

2. Hom.Gr ! R>0/.

See [83] for more details.

Remark 3.51. – Notice that a homomorphism ⇡ 2 Hom.Gr ! R>0/ is uniquely
determined by its image on EiC1;i for 1  i  r � 1.

Explicitly, starting with a unitary dual functor _ with its induced unitary pivotal structure
', we get our ⇡ 2 Hom.Gr ! R>0/ by taking the ratio of left to right quantum dimensions
of simple objects:

⇡.Eij / WD

dim'

L
.c/

dim'

R
.c/

for all simple c 2 Cij .

Conversely, we can choose for each c 2 C a unique balanced dual .c; evc ; coevc/ up to
unique isomorphism. One then obtains all other unitary dual functors from homomor-
phisms ⇡ 2 Hom.Gr ! R>0/ by rescaling the evaluations and coevaluations on simple
objects c 2 Cij by

ev⇡
c

WD ⇡.Eij /
1=4 evc : coev⇡

c
WD ⇡.Eij /

�1=4 coevc :

3.5.2. Unitary planar algebras. –

Definition 3.52. – A planar é-algebra is a planar algebra equipped with antilinear
maps é W Pn;˙ ! Pn;˙ such that

— é ı é D id, and

— for every planar tangle T , T é.xé
1
; : : : ; x

é

k
/ D T .x1; : : : ; xk/

é where T é denotes the
reflection of T about any axis.

A planar é-algebra is called a C⇤ planar algebra or a unitary planar algebra if its underlying
dagger monoidal algebra from (3.4) is C⇤. (11)

Remark 3.53. – Observe that the planar algebra of a bipartite graph from [57] (see also
Definition 3.75 below) is unitary.

(11) Our definition of unitary planar é-algebra from [84, Def. 2.3] was vague about what positive definite means
for P0;˙. The above definition clarifies this omission.
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We now show the above definition of C⇤ planar algebra is equivalent to [61, Def. 1.37].

Lemma 3.54. – A planar é-algebra P✏ is unitary if and only if there exists a faithful tracial
state  ˙ on P0;˙ such that for every n � 0, the sesquilinear form

(3.5) hx; yi

 

n;˙ WD  ˙

0
BBBBB@

yé

x

?

?

n

n

n

1
CCCCCA

is a positive definite inner product.

Proof. – Suppose P✏ is unitary, so P0;˙ is a finite dimensional C⇤ algebra as a corner of
a 2 ⇥ 2 linking C⇤-algebra. Choose a faithful tracial state  ˙ on P0;˙. Suppose x 2 Pn;˙.
Since the 2 ⇥ 2 linking algebra L.0; 2n/ is C⇤, the P0;˙-valued pairing inside  ˙ in (3.5) is
positive definite, i.e.,

xé

x

?

?

n

n

n

� 0 and

0
BBBBB@

xé

x

?

?

n

n

n

D 0 H) x D 0

1
CCCCCA
:

Hence the sesquilinear form (3.5) above is positive definite by positivity and faithfulness of .
Conversely, suppose we have  ˙ on P0;˙ such that (3.5) is positive definite for all n � 0.

Suppose x 2 Pn;˙ and 0  k  n such that

xé

x

?

?

nC k

n� k

n� k

D 0:

Then capping oV the remaining strings in the diagram on the left hand side and applying ˙,
we see that hx; xi

 

n;˙ D 0, and thus x D 0. Hence the underlying dagger monoidal algebra
is C⇤, and we are finished.

Definition 3.55. – A subfactor planar algebra is a 2-shaded planar é-algebra satisfying
the following axioms:

— (connected) P0;˙ ä C via the map which sends the empty diagram to 1C,

— (finite dimensional) dim.Pn;˙/ < 1 for all n � 0.

— (positive) For every n � 0, the sesquilinear form on Pn;˙ given by

hx; yin WD

yé

x

?

?

n

n

n
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is a positive definite inner product, and

— (spherical) For every x 2 P1;˙, x? D x? .

By Lemma 3.54, a subfactor planar algebra is a 2-shaded unitary planar algebra.

The following result, which appears in [83, §4], is the unitary analog of Theorem 3.47,
which uses unitary dual functors instead of a pivotal structure.

Theorem 3.56 ([83, §4]). – There is an equivalence of categories (see Footnote 10)8̂
<̂
ˆ̂:

2-shaded unitary
planar algebras P✏

9>>=
>>;

ä

8̂
<̂
ˆ̂:

Triples .C ;_; X/ with C a unitary multitensor
category, _ a unitary dual functor, and a gener-
ator X 2 C with an orthogonal decomposition
1C D 1C ˚ 1� such that X D 1C ˝X ˝ 1�

9>>=
>>;
:

Moreover, under this equivalence,

finite depth planar algebras correspond to triples .C ;_; X/where C is unitary multifusion,
and

subfactor planar algebras correspond to triples .C ;_; X/ where 1˙ are simple and _ is
the canonical spherical dual functor.

Remark 3.57. – In the unitary setting, Proposition 3.31 gives us an equivalence between
the underlying 2-shaded unitary monoidal algebras and unitary multitensor categories.
Starting with a 2-shaded unitary planar algebra P✏, we get a unitary dual functor on the
projection category C by taking the ⇡-rotation in P✏. Conversely, given a tuple .C ;_; X/,
by Remark 3.48, coevéc D evX_ ı.'X ˝ idX_/ and evéc D .idX_ ˝'�1

X
/ ı coevX_ . This means

the cups and caps are alternately described by

WD evX WD coevX WD coevé
X

WD evé
X
:

Now in order for a 2-shaded unitary planar algebra P✏ to have scalar loop modulus, we
choose the standard unitary dual functor _standard on C with respect to X following [34],
which is clarified in [83]. First, define n˙ WD dim.EndC .1˙//, and denote the summands
of 1C and 1� by VC and V� respectively. Let DX be the nC ⇥ n� matrix whose uv-th
entry is dim.u ˝ X ˝ v/, using the canonical spherical structure. Let dX > 0 such
that d2

X
D kDXD

T

X
k D kDT

X
DXk, and let � and ⌫ be the Frobenius-Perron eigenvectors

of DXDT

X
and DT

X
DX respectively normalized so that

X
u2VC

�.u/2 D 1 D

X
v2V�

⌫.v/2:

We denote by � the vector in RnCCn�
>0

obtained by concatenating � and ⌫.

Definition 3.58. – The standard unitary dual functor with respect toX corresponds to
the standard groupoid homormorphism Gr ! R>0 given by

(3.6) ⇡standard.Eu;v/ WD

✓
�.u/

�.v/

◆2
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under Theorem 3.50. It is straightforward to verify that the shaded planar algebra corre-
sponding to .C ;_standard; X/ under Theorem 3.56 has scalar loop moduli given by

(3.7) D dX idP0;C D dX idP0;� :

3.6. The graph planar algebra module embedding theorem

In this section, we finally prove the unitary pivotal module embedding theorem. We begin
by defining the notion of a trace on a semisimple category in §3.6.1, and then discussing
Schaumann’s notion of a pivotal module for a pivotal category from [96] in §3.6.2. As both
of these concepts have unitary versions, we treat both the algebraic and unitary setting in
parallel; the reader should include the parenthetical statements for the unitary setting, and
may omit these statements in the non-unitary setting. Finally, in §3.6.3, we see how our Main
Theorem 3.80 in this section is a natural generalization of the embedding theorems from §3.4.

3.6.1. Traces on semisimple categories. – In this section we now discuss (unitary) traces
on finitely semisimple (C⇤) categories. Throughout we denote the semisimple category with
trace by M because in our applications we will be looking at traces on module categories,
but nothing in this section uses a module structure.

Definition 3.59. – A trace on a semisimple categoryM is a family of linear functionals
Trm W EndM.m/ ! C for m 2 M such that Trm.g ı f / D Trn.f ı g/ for all
f 2 M.m ! n/ and g 2 M.n ! m/. We call a trace nondegenerate if the bilinear
forms HomM.m; n/ ⇥ HomM.n;m/ ! C via .f; g/ 7! Trm.g ı f / are non-degenerate
(Trm.g ı f / D 0 for all g 2 Hom.n;m/ implies f D 0). For convenience, all traces that
follow are assumed to be nondegenerate unless stated otherwise.

When M is a semisimple C⇤ category, we call a trace unitary if in addition for every
m; n 2 M, the sesquilinear form hf; gi WD Trm.gé ıf / on HomM.m; n/ is a positive definite
inner product.

Remark 3.60. – We do not require TrM
m

to be normalized; that is TrM
m
.idm/ is typically

not 1. Instead we think of TrM
m
.idm/ as specifiying a notion of the dimension of m 2 M.

For example, any trace on the n ⇥ n matrices Mn.C/ is a scalar multiple of the standard
matrix trace. A trace on Vec is a collection of traces on Mn.C/ for all n; however the
condition TrM.f ı g/ D TrM.g ı f / applied to maps between vector spaces of diVerent
dimensions restricts the normalizations of the diVerent traces. In particular, the standard
trace (TrV .idV / D dimV ) on each End.V / gives a trace on Vec, but the normalized trace
(trV .idV / D 1) on each End.V / does not give a trace on Vec.

Remark 3.61. – Similar to [96], in the non-unitary setting, traces onM are in bijection
with families of natural isomorphisms M.m ! n/ ä M.n ! m/⇤ for all m; n 2 M.

Unitary traces onM are in bijection with 2-Hilbert space structures onM [3] (see also [4,
§3 and 5.6]), i.e., for every m; n 2 M, a Hilbert space structure on M.m ! n/ such that for
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all f 2 M.m ! n/, g 2 M.n ! p/, and h 2 M.m ! p/,

(3.8) hg ı f; hiM.m!p/ D hf; gé ı hiM.m!n/ D hg; h ı f éiM.n!p/: (12)

For the remainder of this section, we simultaneously develop the theory of traces on
semisimple categories and on C⇤ categories; the extra adjectives and conditions required in
the latter case appear parenthetically. We denote by G the multiplicative group C⇥ in the
algebraic setting or R>0 in the unitary setting.

Notation 3.62. – Suppose M is finitely semisimple and Irr.M/ WD fx1; : : : ; xrg is
a choice of representatives of the isomorphism classes of simple objects in M. Let E.M/

denote End.M/ in the algebraic setting, and Endé.M/ in the unitary setting. If N is a (C⇤)
category and y1; : : : ; yr are objects inN , then there is a (dagger) functorFy1;:::;yr W M ! N

that is unique up to unique (unitary) isomorphism such that F.xi / D yi . Furthermore, any
(dagger) functor out of M is of this form. In particular, we let Eij 2 E.M/ denote the
(dagger) functor which sends xi to xj and sends xk to the zero object for all k ¤ i . Then˚
Eij j 1  i; j  r

 
is a choice of representatives of isomorphism classes of simple objects

in E.M/. Thus in the algebraic setting, E.M/ is equivalent to the category of Gr -graded
vector spaces VecŒGr ç, and in the unitary setting, E.M/ is dagger equivalent to HilbŒGr ç. In
either case, the universal grading groupoid of E.M/ is Gr .

Lemma 3.63. – Let V be Vec (respectively Hilb). The function from (unitary) traces on V
to G given by TrV 7�! TrVC.idC/ is a bijection.

Proof. – For surjectivity, we note that if � 2 G, then .�Tr/.V / WD � dim.V / is a trace
on V which satisfies .�Tr/C.idC/ D �.

For injectivity, we prove that TrV is determined by TrVC.idC/. Let V 2 V and choose a(n)
(orthonormal) basis v1; : : : vn for V . Let ⇡j W V ! C be the projection

P
i
aivi 7! aj , and

let ◆k W C ! V be the inclusion � 7! �vj . The composites ◆k⇡j span End.V /, and

TrV
V
.◆k⇡j / D TrVC.⇡j ◆k/ D ıjDk TrVC.idC/:

Hence TrV is completely determined by TrVC.idC/, which proves injectivity.

Proposition 3.64. – The function from (unitary) traces onM toGr , where r is the rank
of M, given by

TrM 7�! .TrM
x1
.idx1

/; : : : ;TrM
xr
.idxr //

is a bijection.

Proof. – IfM has r distinct isomorphism classes of simple objects,M is (dagger) equiv-
alent to a(n orthogonal) direct sum

L
r

iD1 Vec (respectively
L
r

iD1 Hilb). Since there are no
maps between objects in the diVerent summands, a (unitary) trace on

L
r

iD1 Vec (respectivelyL
r

iD1 Hilb) is equivalent to independently giving a (unitary) trace on each of the r copies
of Vec (respectively Hilb). The result now follows from Lemma 3.63.

(12) We note that the second equality in (3.8) holds if and only if for each m 2 M, the linear functor
M.� ! m/ W Mop ! Hilb is a dagger functor. In this case, the first equality in (3.8) holds if and only if the Yoneda
embeddingm 7! M.� ! m/ is a (fully faithful) dagger functorM ,! Fun

é
.Mop ! Hilb/.
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Proposition 3.65. – The function from (unitary) pivotal structures on E.M/ to Gr�1

given by
' 7�!

�
dim'

L
.EiC1;i /

�r�1
iD1

is a bijection.

Proof. – There exists a canonical (unitary) spherical structure on E.M/where all objects
have left and right dimension 1. Thus the (unitary) pivotal structures on E.M/ form a torsor
over Hom.Gr ! G/. Such a homomorphism is uniquely determined by its image on EiC1;i
for 1  i  r � 1 as in Remark 3.51.

Given a pivotal structure ' on E.M/, the left pivotal trace tr'
L

takes values in
E.M/.id ) id/ ä Cr . Choosing a simple object xi induces a C-valued trace on E.M/

by projecting to the xi -component of 1E.M/ WD idM. That is, if F 2 E.M/ and ⌘ W F ) F is
a natural transformation, we define TrE.M/;xi

F
.⌘/ by the formula

(3.9) TrE.M/;xi

F
.⌘/ � idxi

WD

0
BBBBBB@

⌘

'�1
F

F
_ F

F

F
__

1
CCCCCCA
xi

D tr'
L
.⌘/xi

:

We define the j -th column functor Fj W M ! E.M/ by letting Fj .m/ be the (dagger)
functor which sends xj tom and all other simples to the zero object. We denote by E.M/j the
essential image ofM under Fj , which consists of (orthogonal) direct sums of the objectsEij
for i D 1; : : : ; r . Notice thatFi is a (dagger) equivalenceM ä E.M/j . This is the categorical
analogue of identifying a vector space with matrices supported on the j -th column.

We now choose the simple object x1 2 M giving us our scalar-valued trace TrE.M/;x1

on E.M/. By restriction, we get a (unitary) trace on E.M/1 ä M, which we denote
by TrE.M/1 . Notice that taking the x1-component of tr'

L
can be viewed as cutting down

E.M/.id ) id/ by the (orthogonal) projection onto the summand E11 ⇢ idE.M/. Denoting
this projection by a shading, we get the following diagrammatic formula for TrE.M/1

Ei1
.⌘/

for ⌘ W Ei1 ) Ei1:
(3.10)

TrE.M/1

Ei1
.⌘/ WD

⌘

'�1
E

_
i;1 Ei;1

Ei;1

E
__
i;1

2 E.E1;1 ! E1;1/ ä C WD projE1;1
:

We have thus proved:

Proposition 3.66. – The function ' 7! tr'
L

jE.M/1
together with the (dagger) equiva-

lence E.M/1 ä M, induces a functionÅ from the set of (unitary) equivalence classes of pivotal
structures on E.M/ to the set of (unitary) equivalence classes of (unitary) traces on M.
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We now construct a left inverse to the function Å.

Proposition 3.67. – The function ƒ defined by
˚
Traces TrM

 
ä

Prop. 3.64
Gr 3 .a1; : : : ; ar / 7!

✓
a2

a1
; : : : ;

ar

ar�1

◆
2 Gr�1

ä

Prop. 3.65

˚
Pivotal structures 'E

 

is surjective and provides a left inverse to Å from Proposition 3.66. Moreover, under ƒ, two
(unitary) traces map to the same (unitary) pivotal structure if and only if they are proportional.

Proof. – Surjectivity ofƒ is obvious. Notice that aiC1=ai D biC1=bi for all 1  i  r�1

if and only if ai=bi D aiC1=biC1 for 1  i  r � 1 if and only if .a1; : : : ; ar / is proportional
to .b1; : : : ; br /.

Finally, we show ƒ ı Å D id. Let TrM be the (unitary) trace on M corresponding
to .a1; : : : ; ar / 2 Gr under Proposition 3.64, and let ' be the corresponding (unitary) pivotal
structure on E corresponding to .a2=a1; : : : ; ar=ar�1/. It suYces to prove that tr' jN is
proportional to TrM under the equivalence N ä M, since proportional traces give rise
to (unitarily) equivalent pivotal structures under ƒ. Indeed, for a fixed 1  j  r , by
monoidality of ', we have

tr'
L
.idEj;1

/ D dimE

L
.Ej;1/ D

j�1Y
iD1

dim'

L
.idEiC1;i

/ D

j�1Y
iD1

aiC1
ai

D

aj

a1
D

1

a1
TrM
xj
.idxj

/

as in the proof of Proposition 3.64. Hence tr'
L

D a�1
1

TrM under the (dagger) equivalence
N ä M.

In particular, if we change our choice of simple object x1 this only rescales the trace onM.

3.6.2. Pivotal module categories for pivotal categories. – We now expand on the previous
section to the scenario whereM is equipped with the structure of a C -module (C⇤) category,
where C is a (unitary) multitensor category. Some other interesting results related to the non-
unitary multifusion case were recently obtained in [20, §2.6].

Definition 3.68 ([96]). – If .C ; '/ is a semisimple (unitary) pivotal multifusion cate-
gory and M is a semisimple left C -module (C⇤) category with a (unitary) trace TrM, then
.M;TrM/ is called a pivotal C -module (C⇤) category if we have the following compatibility
of TrM with the left partial trace in C : for all c 2 C ,m 2 M, and f 2 M.c B m ! c B m/,

TrM
cBm.f / D TrM

m
Œ.evc B idm/ ı .idc_ ˝f / ı .idc_ ˝.'c/

�1 B idm/ ı .coevc_ B idm/ç

D TrM
m

0
BBBBBBB@ '�1

c

f

m

mc

c

c
_

c
__

1
CCCCCCCA
:

(3.11)
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Here, we use the diagrammatic convention of [5] for left C -module categories, where the
coupons inM are drawn cut open on the right hand side to indicate the absence of any right
action.

Remark 3.69. – In [96, §4.1], it is shown that when .C ; '/ is pivotal fusion and M is
indecomposable, traces on M which satisfy (3.11) are unique up to scaling. Moreover, by
[96, §5], when C is pseudo-unitary equipped with its canonical spherical structure, every
indecomposable module category M admits a trace TrM which satisfies (3.11).

When C is unitary, every indecomposable unitary module category M is of the form
ModC .A/ for A an irreducible Q-system (normalized C⇤ Frobenius algebra) in C by [77,
Thm. A.1]. This is enough to get a unique unitary trace TrM which satisfies (3.11).

Remark 3.70. – In fact, pivotal structures on the 2-shaded multifusion category built
from C , M, and its dual category correspond exactly to module traces on M not up to
rescaling. That is rescaling the choice of trace changes the pivotal structure on the odd part
of the 2-shaded multifusion category, but in the even parts this rescaling cancels out.

Definition 3.71. – Given a tensor functor between pivotal categories
.‰;�/ W .C ; 'C / ! .D; 'D/, where our convention for the tensorator natural isomor-
phism is �a;b W ‰.a/ ˝ ‰.b/ ! ‰.a ˝ b/, we get a canonical anti-monoidal natural
isomorphism ıc W ‰.c_/ ! ‰.c/_ given by

(3.12) ıc WD .Œ‰.evc/ ı �c_;c ç˝ id‰.c/_/ ı .idˆ.c_/ ˝ coev‰.c//:

We call .‰;�/ pivotal if ı_
c

ı '‰.c/ D ıc_ ı‰.'c/ for all c 2 C .

Theorem 3.72. – Suppose M is a finitely semisimple left C -module (C⇤) category, and
let .‰;�/ W C ! E.M/ be the corresponding (dagger) tensor functor from Lemma 3.20.
The following are equivalent for a (unitary) trace TrM onM and its induced (unitary) pivotal
structure ' on E.M/ from Proposition 3.67.

1. Compatibility condition (3.11) holds.

2. The corresponding (dagger) tensor functor .‰;�/ is pivotal.

(Note that (2) implies (1) is relatively straightforward since one can use the graphical
calculi for pivotal categories and module categories with trace. But for (1) implies (2) since we
do not know that the functor is pivotal we cannot use a standard graphical calculus and need
to keep track of all of the structure maps. This explains why the formulas in the following
proof have a lot of explicit structure maps .)

Proof. – As in the discussion right before Proposition 3.66, there is a (dagger) equivalence

F1 W M
⇠
�! E.M/1 WD span fEi;1 j 1  i  rg ⇢ E.M/ xj 7! Ej;1:

In fact, using the tensorator of ‰, we can equip the (dagger) equivalence F1 with a (unitary)
modulator

⌫a;b;m W ‰.a/˝ F1.b B xj / D ‰.a/˝ .‰.b/˝Ej;1/ D .‰.a/˝‰.b//˝Ej;1

ä ‰.a˝ b/˝Ej;1 ä F1.a˝ b B xj /;
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extending it to a (dagger) equivalence of C -module (C⇤) categories. As in the proof of
Proposition 3.67, there is a non-zero scalar ˛ 2 G such that for every f 2 M.m ! m/,
TrM.f / D ˛ tr'

L
.F.f //. Thus for 1  j  r and f 2 M.c B xj ! c B xj / ä

E.M/.‰.c/˝Ej;1 ! ‰.c/˝Ej;1/, we always have

˛�1 TrM
xj

0
BBBBBBB@ '�1

c

f

xj

xjc

c

c
__

1
CCCCCCCA

D tr'
L

0
BBBBBBBBBBBBBBBBBBBBBB@

‰.evc/

�

F1.f /

‰.'�1
c
/

��1

‰.coevc_/

Ej;1

Ej;1

‰.c/

‰.c/‰.c
_
/

‰.c
__
/

1
CCCCCCCCCCCCCCCCCCCCCCA

(3.13)

D tr'
L

0
BBBBBBBBBBBBB@

ıc F1.f /

‰.'�1
c
/

ı�1
c_

Ej;1

Ej;1

‰.c/

‰.c/

‰.c
__
/

‰.c
_
/

_

1
CCCCCCCCCCCCCA

D tr'
L

0
BBBBBBBBBBBBBBBBBBBBBBBB@

ı_
c

F1.f /

‰.'�1
c
/

ı�1
c_

Ej;1

Ej;1

‰.c/

‰.c/

‰.c
__
/

‰.c
_
/

_

‰.c/
__

'‰.c/

‰.c/

1
CCCCCCCCCCCCCCCCCCCCCCCCA

;

where ıc 2 E.M/.‰.c_/ ! ‰.c/_/ is the canonical isomorphism from (3.12).

.1/ ) .2/: Suppose (3.11) holds. Then for all 1  j  r and

f 2 M.c B xj ! c B xj / ä E.‰.c/˝Ej;1 ! ‰.c/˝Ej;1/; tr'
L
.F1.f // D ˛�1 TrM

cBxj
.f /;

which is equal to the right hand side of (3.13). Hence

tr'
L
.f ı Œ.id‰.c/ �‰.'�1

c
/ ı ı�1

c_ ı ı_
c

ı '‰.c//˝ idEj;1
ç/ D 0:

Since tr'
L

is nondegenerate (e.g., see [83, Lem. 2.6]), we must have

.id‰.c/ �‰.'�1
c
/ ı ı�1

c_ ı ı_
c

ı '‰.c//˝ idEj;1
D 0

for all 1  j  r . Now taking right partial traces in E.M/, we must have id‰.c/ D

‰.'�1
c
/ ı ı�1

c_ ı ı_
c

ı '‰.c/, so .‰;�/ is pivotal.
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.2/ ) .1/: Suppose that .‰;�/ is pivotal, so that ı_
c

ı '‰.c/ D ıc_ ı ‰.'c/. Then
for any f 2 M.c B m ! c B m/, the right hand side of (3.13) is equal to tr'

L
.F1.f // D

˛�1 TrM
cBxj

.f /, and thus (3.11) holds.

We have an analogous omnibus theorem in the pivotal and unitary pivotal settings.

Theorem 3.73. – Suppose that C is a (unitary) pivotal fusion category then

Module category structures with a (unitary) trace on a (C⇤) category M correspond
exactly to (unitary) pivotal tensor functors C ! E.M/.

A (unitary) pivotal fusion category D is (unitary) pivotal Morita equivalent to C if and
only if there is an indecomposable semisimple pivotal (C⇤) module category .M;TrM/
such that D is (unitary) pivotal tensor equivalent to EndC .M/, the C -linear (dagger)
endofunctors of M. Furthermore, the pivotal left C -module (C⇤) categories .M;TrM/
which realize a (unitary) pivotal Morita equivalence between C and D are a torsor for
the group of (unitary) pivotal outer automorphisms Out.D/.

Tuples .M;TrM; m/where .M;TrM/ is an indecomposable semisimple pivotal C -module
(C⇤) category and m 2 M is a chosen simple object correspond exactly to connected
normalized Frobenius algebras (irreducible Q-systems [7]) A in C . The dual category
corresponding to A is the category of A-A bimodules in C [75].

Remark 3.74. – This theorem is analogous to the purely algebraic Theorem 3.15. We
warn the reader that if C is a (unitary) pivotal fusion category, the answers to our main
problems might in principle be different in the algebraic and pivotal (and unitary pivotal)
settings.

For example, there might be several pivotal C -module (C⇤) categories which are equiv-
alent just as algebraic C -module categories, or there may be an algebraic module category
which cannot be endowed with a (unitary) compatible trace (or even a dagger structure!).
These phenomena do not happen for Extended Haagerup, but it is interesting to ask whether
they ever occur.

3.6.3. The embedding theorem for pivotal module categories. – In this section, we finally
prove the embedding theorem for pivotal module categories. We begin with a discussion of
the planar algebra of a bipartite graph [57]. Our definition will simply use a Frobenius-Perron
vertex weighting on our finite graph to extend the action of 2-shaded monoidal tangles for a
bipartite graph monoidal algebra to an action of shaded planar tangles. We then show how
to recover the usual definition of the graph planar algebra from [57].

Definition 3.75. – Let Ä D .VC; V�; E/ be a finite connected bipartite graph with
even/C vertices VC, odd/� vertices V�, and edges E. We consider an edge " 2 E as directed
from C to � with source s."/ 2 VC and target t ."/ 2 V�. We write "⇤ for the same edge
with the opposite direction. Let � denote any Frobenius-Perron eigenvector of the adjacency
matrix of Ä. (13)

(13) The definition of the graph planar algebra G✏ does not depend on the normalization of the Frobenius-Perron
eigenvector �. In Remark 3.76 below, we will define a spherical faithful state on G✏ using a particular normalization
of �.
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The 2-shaded graph monoidal algebra G✏!✏ D GMA.Ä/✏!✏ is defined analogously to
the unshaded version in Definition 3.35. The C-vector spaces GMA.Ä/.m!n/;˙ are spanned
by pairs of paths .p; q/ of lengthm; n respectively which start at the same ˙ vertex and end at
the same vertex. Note that GMA.Ä/.m!n/;˙ is defined only whenm ⌘ n mod 2. The action
of shaded monoidal tangles is given by the state-sum Formula (3.1). Note thatG✏!✏ is unitary
with é-structure given by the conjugate-linear extension of .p; q/é D .q; p/.

Now given a shaded planar tangle T of type ..t0;˙0/I .t1;˙1/; : : : ; .tk ;˙k// whose input
and output disks are rectangles with the star on the left, where the i -th disk has ni strings
emanating from the top and mi from the bottom with mi C ni D 2ti , we describe its action
on tuples of basis elements .pi ; qi / 2 Gmi !ni ;˙ by the weighted state-sum formula

(3.14) T ..p1; q1/; : : : ; .pk ; qk// WD

X
states � on T

c.T I �/

0
@ Y
1ik

ı� ji ;.pi ;qi /

1
A � j0:

A state � on the tangle T is an assignment of even vertices to unshaded regions, odd vertices
to shaded regions, and edges to strings such that if a string labeled by ✏ separates two regions,
then s.✏/ is assigned to that unshaded region, and t .✏/ is assigned to that shaded region.
Now � ji denotes the pair of paths in GMA.Ä/mi !ni

obtained from reading the bottom and
top boundaries of the i -th input disk from left to right. In other words, we sum only over
states that are ‘compatible’ with the loops we start with. To define the constant c.T I �/, we
first isotope T so that strings are suYciently smooth. Now consider the set E.T / of all local
maxima and minima of strings of T . Then

c.T I �/ D

Y
e2E.T /

✓
�.�.econvex//

�.�.econcave//

◆1=2
;

where econvex is the convex region of the extremum e, and econcave is the concave region of e.
This definition appears to be highly dependent on the choice of numbers of strings

mi ; ni emanating from the bottom and top of each input and output disk. However, every
space Gm!n;˙ is canonically isomorphic to GmCn;˙ WD GmCn!0;˙ by

(3.15) .p; q/ 7!

✓
�.t.p//

�.s.p//

◆1=2
pq⇤:

Here, instead of writing the pair of paths .pq⇤;;/ where the second has length zero, we only
write the first path pq⇤, which is actually a loop of length 2t D m C n. Indeed, by post-
composing with instances of the above isomorphism and precomposing with instances of
its inverse as appropriate, we see that the action of planar tangles does not depend on the
decomposition 2ti D mi C ni . As in [57, Th. 3.1], changing a tangle by a Morse cancelation
or rotating a single input out output disk by 2⇡ does not change the action of the tangle.
Hence the isomorphisms (3.15) endow the spaces Gn;˙ with the structure of a shaded planar
algebra called the graph planar algebra, denoted G✏. We recover the definition from [57] by
always choosing mi D ni D ti for every input and output disk of T .

The é-structure of G✏ is inherited from the graph monoidal algebra G✏!✏. Since
é W Gm!n;˙ ! Gn!m;˙, the identification of both spaces with GmCn;˙ means that
.pq⇤/é D qp⇤, i.e., é is the conjugate-linear extension of reversing a loop. It is straight-
forward to see that the é structure on G✏ is compatible with (3.15), and is thus compatible
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with the reflection of planar tangles. As the underlying monoidal algebra is unitary, so is the
graph planar algebra.

Remark 3.76. – The graph planar algebra, and hence its projection category, is in
general not spherical. For example, taking any edge "which connects two vertices of distinct
weights, the projection ""⇤

2 G1;C has distinct left and right traces. However, if we normalize
the Frobenius-Perron eigenvector � so that

P
u2VC �

2

u
D 1 D

P
v2V� �

2

v
, then  .pv/ WD �2

v

defines a spherical faithful state on G✏ [57, Prop. 3.4].

Notation 3.77. – To state the main theorems of this section, we fix the following nota-
tion.

— Ä D .VC; V�; E/ is a connected bipartite graph

— � is any Frobenius-Perron eigenvector of Ä.

— G✏ is the bipartite graph planar algebra of Ä

— M D Hilb
VC

˚ Hilb
V� is one copy of Hilb for each vertex of Ä.

— TrM is the unitary trace onM corresponding to � 2 GVCqV� under Proposition 3.64.

— Endé.M/ is the unitary multifusion category of dagger endofunctors of M.

— U is the universal grading groupoid of Endé.M/, which is the groupoid with nC C n�
objects, and a unique isomorphism between any two objects.

— F D

L
"2E Et."/;s."/ 2 Endé.M/.

— _standard is the standard unitary dual functor with respect to F from [83, 34], which is
induced by the standard groupoid homomorphism defined from � as in (3.6).

— H✏ is the planar algebra corresponding to .Endé.M/;_standard; F / under Theorem 3.56.

Theorem 3.78. – With the above notation, the é-isomorphism of the underlying monoidal
algebras H✏ ä G✏ from Theorem 3.37 gives a é-isomorphism of unitary planar algebras.

Proof. – As the isomorphism from Theorem 3.37 identifies the underlying unitary
monoidal algebras, we only need to check that the actions of cup and cap agree. Since cup
is always the é of cap in a unitary planar algebra as discussed in Remark 3.48, we only need
to check each shading of cap agrees.

First, the standard evaluation and coevaluation with respect to F are given by

evstandard
Eu;v

WD

✓
�.u/

�.v/

◆1=2
coevstandard

Eu;v
WD

✓
�.v/

�.u/

◆1=2
:

Indeed, it is straightforward to check that the ratio ⇡standard.Eu;v/ of the left to right stan-
dard pivotal dimension of Eu;v is given exactly by (3.6). Thus we see from the graphical
calculus for Endé.M/ that under the isomorphism of underlying monoidal algebras from
Theorem 3.37, the formula for each shading of cap is given by (14)

D

X
"2E

✓
�.t."//

�.s."//

◆1=2
""⇤

D

X
"2E

✓
�.s."//

�.t."//

◆1=2
"⇤":

(14) Turning all strings down via (3.15) turns .p; q/ into .pq⇤
;;/, and we suppress this second empty loop.
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These are exactly the same formulas for each shading of cap given by the state-sum
Formula (3.14).

The following corollary follows immediately from Theorem 3.56.

Corollary 3.79. – Let Ä D .VC; V�; E/ be a finite connected bipartite graph, and let
G✏ be its graph planar algebra. Let M D Hilb

nC
˚ Hilb

n� where n˙ D jV˙j.

The idempotent category of G✏ is equivalent to End.M/, as multifusion categories.

The projection C⇤ category ofG✏ is dagger equivalent to Endé.M/, as unitary multifusion
categories.

We now prove a version of the graph planar algebra embedding theorem [62] for module
categories. Below, we fix a finite depth subfactor planar algebraP✏, and we denote by .C ; X/
the unitary multifusion category of projections of P✏ with distinguished object X corre-
sponding to the unshaded-shaded strand of P✏. We endow C with the canonical spherical
structure from [69, 107, 5, 83].

Theorem 3.80. – The following are equivalent:

1. An embedding of shaded planar é-algebras P✏ ,! G✏

2. A pivotal dagger tensor functor .‰;�/ W .C ;_spherical/ ! .Endé.M/;_standard/ such
that ‰.X/ D F and ‰.idX / D idF , and

3. an indecomposable left C -module structure onM, compatible with the dagger structures
of C and M, together with a unitary trace TrM defined up to scalar satisfying the
compatibility condition (3.11), whose fusion graph with respect toX is Ä. More precisely,
the category of C -module structures onM and module-functor structures on the identity
is equivalent to the category of embeddings and guagings.

Proof. – The equivalence of (1) and (2) follows from Theorem 3.56 together with Corol-
lary 3.79. The equivalence of (2) and (3) follows from Lemma 3.20 together with Proposi-
tion 3.67 and Theorem 3.72.

Warning 3.81. – Since Theorem 3.80 is about module structures on a fixedM, it “over-
counts” module categories in the following sense. If the graph Ä has a graph automorphism,
then two diVerent module structures onMwill be equivalent to each other via a non-identity
functor built from the graph automorphism.

4. Combinatorics of potential (bi)module categories for Extended Haagerup

4.1. Summary of the combinatorial techniques for classifying module and bimodule cate-

gories

In this section we prove a partial classification of all fusion categories Morita equivalent
to the Extended Haagerup fusion categories and all Morita equivalences between them.
Specifically, we show that there are at most four fusion categories in the Morita equivalence
class, that there is exactly one Morita equivalence between any two that actually exist, and
determine the fusion rules for all possible fusion categories and bimodule categories. This
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argument closely follows the outline of [42, 43], so we begin by briefly summarizing the
techniques of these articles.

Given a fusion category C , one gets a fusion ring C WD K0.C / with basis consisting of
the isomorphism classes of simple objects in C and non-negative structure constants N k

ij

for multiplication coming from the fusion rules Xi ˝ Xj ä

L
N k

ij
Xk . This fusion ring

has an involution corresponding to taking duals. It is natural to wonder: given a candidate
fusion ring, is it categorifiable into a fusion category, and if so, how many fusion categories
categorify our fusion ring? Typically, each of these questions is quite diYcult [82, 81, 66];
combinatorics alone tells you very little about a single fusion category.

Given several fusion categories Ci and some Morita equivalences Mk

ij
between Ci and

Cj , one gets several fusion rings Ci D K0.Ci /, several fusion bimodules M k

ij
D K0.M

k

ij
/,

and many “composition rules"M k

ij
˝Cj

M k
0

j`
! M k

00
i`

. This collection of data satisfies many
combinatorial constraints. It is again natural to wonder: given a collection of fusion rings,
fusion bimodules, and composition rules, are they categorifiable, and if so, in how many
diVerent ways? In general, this question is again quite diYcult. However, in a small handful
of examples coming from the small index subfactor classification program, we have seen that
candidates which satisfy the many combinatorial constraints have been uniquely categorified.
In contrast to the situation for a single fusion category, combinatorics often tells you quite
a lot about the full Morita equivalence class of a known fusion category with a few known
Morita equivalences.

Here is the outline in more detail. We start with some fusion categories Ci with fusion
algebras Ci , and some Morita equivalences between them which we understand well. We
first use a computer to list the fusion modules over the fusion rings Ci . (By ‘fusion modules’
we mean based modules satisfying some additional properties—see [43]. Sometimes the
term ‘NIMrep’ is used in the literature; this is an abbreviation for non-negative integer
matrix representations [29].) We identify a few of these fusion modules as coming from the
known Morita equivalences, and we use some additional arguments to see that the known
categorification is the only possible realization of these modules. (In our case, this step uses
the uniqueness of the Extended Haagerup subfactor [6], which is much easier than existence.)

Second, we try to determine the possible fusion rings of the dual categories for each (real
or hypothetical) module category. Using a computer, we can sometimes uniquely determine
the dual fusion ring from a fusion module combinatorially, or at least produce a relatively
small list. We then compute the fusion modules over each of these new fusion rings, as well
as the fusion bimodules between each pair of rings in our collection.

At this point, we have a collection of rings, bimodules between them, and some informa-
tion about categorification of some of the bimodules (coming from known algebra objects).
We now use the following key fact: given a triple of fusion categories A;B; C, invertible
bimodule categories AKB; BLC ;AMC , and a tensor equivalence

AKB ⇥B BLC ä AMC ;

we get an induced map on the decategorified bimodules over the fusion rings:

AKB ˝B BLC ! AMC :
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This induced map preserves positivity of coeYcients and Frobenius-Perron dimensions.
Moreover, the existence of such a map can be checked with a computer. If such a map
does not exist, we say that the triple of fusion bimodules is not multiplicatively compatible.
Thus categorification of many fusion modules or bimodules can be ruled out due to not
being multiplicatively compatible with those fusion bimodules which have known categori-
fications. A similar argument can be used to compare the number of categorifications of
diVerent bimodules. This stage of the argument is a bit similar to playing Sudoku, since each
time you rule out one possible bimodule, then the composites which were only compatible
with the eliminated one are now themselves incompatible.

Following this outline, we can often deduce a lot of information about the Brauer-Picard
groupoid from a relatively small amount of input data (such as existence of a few small
objects which are known to have unique algebra structures). In particular, for the Extended
Haagerup fusion categories, we start with our two fusion categories EH1 and EH2, the
existence and uniqueness of the Extended Haagerup Morita equivalence between them, and
the lack of automorphisms of the Extended Haagerup planar algebra. This data is suYcient
to successfully run the above procedure to obtain the entire Morita equivalence class, as
evidenced by Theorem 4.13 below.

4.2. The Brauer-Picard groupoid of Extended Haagerup

The Extended Haagerup subfactor gives a Morita equivalence between two fusion cate-
gories which are not tensor equivalent. The fusion rules for these two categories are given in
§2.1 and 2.2; one of the categories has commuting fusion rules and the other one does not.
We will call the category with commuting fusion rules EH1 and the other category EH2.

We refer the reader to [43] for precise definitions of fusion modules and bimodules and
multiplicative compatibility of triples of modules/bimodules. Detailed descriptions of the
computer algorithms used to search for fusion (bi)modules and to check for multiplicative
compatibility are also described there.

Lemma 4.1. – There are exactly 7 fusion modules over EH1 and exactly 5 fusion modules
over EH2.

Proof. – Checked with computer.

The data of the (right) fusion modules are presented in accompanying text files
EH1modules.txt and EH2modules.txt. Each fusion module of rank r over the fusion
ring of rank s is described by a list of r non-negative integer matrices of size s ⇥ r . The
.i; j /-th entry of the k-th matrix is the coeYcient of the module basis element mj in the
product ximk (where xi is a ring basis element). The bases for the fusion rings and modules
are ordered with increasing Frobenius-Perron dimension.

From the list of matrices for a given fusion module, one can read oV a corresponding list
of objects in the fusion category which are of the form End

EHi
.m/, the internal endomor-

phism object associated to a simple objectm in a module category categorification. Such an
internal endomorphism object necessarily admits an algebra structure if the module can be
categorified. The multiplicity vector of the simple objects in EHi in each such (hypothetical)
algebra object is given by the j -th column of the j -th matrix. In particular, the first column
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of the first matrix in the data of the fusion module gives the multiplicity vector of the internal
endomorphism algebra object with the smallest Frobenius-Perron dimension for any module
category realization. Therefore if we can classify algebra objects with the given multiplicity
vector, we can classify module category realizations of the fusion module.

We refer to the five fusion modules over EH2 as EH2-Modules 1-5, using the same order
as in the text file. In the notation of Section §2.2, the corresponding (hypothetical) smallest
algebra objects are given by 1C 2f2 C 2f4 Cf6, 1Cf6, 1Cf4 CP (or 1Cf4 CQ/, 1Cf2,
and 1.

Lemma 4.2. – EH2-Modules 4 and 5 are each realized by a unique right EH2-module
category.

Proof. – In any fusion category, the object 1 has a unique algebra structure. The object
1 C f2 has a (necessarily unique by 3-supertransitivity [42, Lemma 3.13]) algebra structure
by the existence of the Extended Haagerup subfactor [6].

Remark 4.3. – The argument in [42, Lemma 3.13] shows that 3-supertransitivity implies
uniqueness (but not existence) of an algebra/Q-system structure on 1Cf2 in the pivotal and
unitary pivotal settings as well.

To go further, we consider fusion bimodules, which we again enumerate with a computer.
The full data is in the accompanying text file EHBimodules.txt. There are two EH1-EH1
fusion bimodules. There are three EH1-EH2 fusion bimodules, exactly one of which corre-
sponds to the algebra 1 C f2 in EH2 (i.e., the Extended Haagerup subfactor). There are
threeEH2-EH2 fusion bimodules, one of which has rank 3, and the other two of which each
contain basis elements with Frobenius-Perron dimension 1.

Lemma 4.4. – The rank 3 EH2-EH2 fusion bimodule is not realized by an EH2-EH2
bimodule category.

Proof. – Looking at the (computer-generated) lists of multiplicatively compatible
modules and bimodules in the accompanying text file EHbimodulecomposition.txt,
we find that there is no possible way to tensor a realization of the rank 3 EH2-EH2 fusion
bimodule (which is the first one on the list of EH2-EH2 bimodules) with any invertible
EH1-EH2 bimodule category.

Lemma 4.5. – The automorphism group of EH2 is trivial.

Proof. – This argument is the same as the corresponding ones for Haagerup and Asaeda-
Haagerup [42, 43]. There is a unique algebra object in EH2 giving the Extended Haagerup
planar algebra and this algebra tensor generates EH2. Thus automorphisms of EH2 corre-
spond to automorphisms of the Extended Haagerup planar algebra (see [48, Thm A] for
details). Any automorphism of the Extended Haagerup planar algebra must send the gener-
ator to a multiple of itself (because it is uncappable) and the quadratic relation says that this
scalar must be one. Thus the Extended Haagerup planar algebra does not admit non-trivial
automorphisms.
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Theorem 4.6. – The Brauer-Picard group of the Extended Haagerup fusion categories is
trivial.

Proof. – Since by Lemma 4.4 the only realizable EH2-EH2-bimodules each contain a
basis element of Frobenius-Perron dimension 1, any bimodule category realization of one of
these bimodules is equivalent to the trivial module category as either a left or right module
category. Since EH2 has no outer automorphisms, any such bimodule category is in fact
the trivial bimodule category. Thus EH2 does not admit any non-trivial invertible bimodule
categories, and the Brauer-Picard group is trivial.

Corollary 4.7. – The Brauer-Picard 3-groupoid has the homotopy type of K.C⇥; 3/.
AnyG-graded extension of an Extended Haagerup fusion category is of the form C⇥Vec.G; !/

for ! 2 H 3.G;C⇥/.

Proof. – The Brauer-Picard 3-groupoid is connected, has trivial ⇡1 (since the Brauer-
Picard group is trivial), has trivial ⇡2 (by [40, Cor. 3.7] since EH1 has no invertible objects
and no non-trivial gradings), and has ⇡3 D C⇥ (by [22, Prop. 7.1]). Hence it is a K.C⇥; 3/.

The classification of obstructions follows from the main result of [22]. Since the Brauer-
Picard group is trivial, the obstructions O3 and O4 vanish. Since ⇡2 is trivial, extensions are
classified byH 3.G;C⇥/ and it is easy to see that C ⇥Vec.G; !/ realizes these extensions.

Corollary 4.8. – Exactly one of the three EH1-EH2 fusion bimodules is realized by a
bimodule category (the one corresponding to the Extended Haagerup subfactor).

Lemma 4.9. – EH2-Module 1 is not realized by any module category.

Proof. – Again looking at the lists of multiplicatively compatible modules and bimodules
in the file EHbimodulecomposition.txt, we find that there is no possible way to tensor
a right EH2-module category realizing EH2-Module 1 with the known existing EH2-EH1
bimodule category (which corresponds to the third EH2 � EH1 bimodule on the list in the
text files). This implies that EH2-Module 1 is not realized by a module category.

We are now left to classify categorifications of EH2-Modules 2 and 3. For each of
EH2-Module 2/3, we can use multiplicative compatibility with the realizedEH1-EH2-bimo-
dule to uniquely identify a corresponding fusion module over EH1 which would have to be
realized as well for any realization of EH2-Module 2/3.

From the lists in EHbimodulecomposition.txt, we see thatEH2-Module 2 corresponds
to EH1-Module 6 and EH2-Module 3 corresponds to EH1-Module 7.

We now introduce fusion ringsEH3 andEH4 (whose multiplication tables were described
in the preceding section). We compute the lists of fusion modules overEH3 andEH4; fusion
bimodules overEHi -EHj , 1  i; j; 4; and multiplicative compatibility between all of these
modules and bimodules. This data is all included in the accompanying text files.

The reason for introducing these rings is the following:

Lemma 4.10. – If EH2-Module 2 is realized by a right EH2-module category, then the
fusion ring of the dual category is EH3. If EH2-Module 3 is realized by a right EH2-module
category, then the fusion ring of the dual category is EH4.
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Proof. – We use a computer to find the fusion rings of the dual categories of realizations
of these fusion modules. It turns out that it is easier to compute the dual rings for the corre-
spondingEH1-Modules 6 and 7. Since any module categoryKEH2

realizingEH2-Module 2
can be tensored with the EH2-EH1 Morita equivalence to give a module categoryLEH1

real-
izingEH1-Module 6 and having the same dual category asK (and similarly forEH2-Module
3), this is suYcient.

Lemma 4.11. – EH2-Module 2 and EH2-Module 3 are each realized by at most one
module category.

Proof. – Let KEH2
and LEH2

be realizations of EH2-Module 2 with dual categories C
and D. Then by the previous lemma C and D each have fusion ring EH3. Then

M D KEH2
⇥EH2 EH2

L
op

is an invertible C-D bimodule category with realizes some EH3-EH3 fusion bimodule.
Looking at the list of EH3-EH3-fusion bimodules, we see that every such bimodule has a
basis element with Frobenius-Perron dimension 1. Therefore M is trivial as a left C module
category. This means that C ä D. Since the Brauer-Picard group is trivial, this implies
that KEH2

ä LEH2
.

The proof for EH2-Module 3 is similar.

Since AMB is a Morita equivalence if and only if B is isomorphic to the dual category
EndA.M/, we have the following corollary.

Corollary 4.12. – There is at most one fusion category Morita equivalent to EH2 with
fusion ring EH3 and at most one fusion category Morita equivalent to EH2 with fusion ring
EH4.

Putting this all together, we obtain the following result.

Theorem 4.13. – In addition to EH1 and EH2, the Morita equivalence class of the
Extended Haagerup fusion categories contains:

at most one fusion category with fusion ring EH3;

at most one fusion category with fusion ring EH4;

and no other fusion categories.

The main result of this paper, Theorem 1.1 asserts the existence of fusion categories EH3
and EH4 in the Extended Haagerup Morita equivalence class with fusion rings EH3 and
EH4, respectively.

Remark 4.14. – There are analogous versions of Theorem 4.13 for the pivotal and
unitary pivotal settings with the analogous conclusion as Theorem 4.13.

— In the pivotal setting, the pivotal Morita equivalence class of the Extended Haagerup
pivotal fusion categories contains at most one pivotal fusion category with each of the
fusion rings EH3 and EH4 and no other pivotal fusion categories.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



648 P. GROSSMAN, S. MORRISON, D. PENNEYS, E. PETERS AND N. SNYDER

— In the unitary pivotal setting, the unitary pivotal Morita equivalence class of the
Extended Haagerup unitary fusion categories contains at most one unitary fusion
category with each of the fusion rings EH3 and EH4 and no other unitary fusion
categories.

The proofs of these theorems are completely analogous to the above argument inserting
adjectives as necessary. It is important to note that there is no obvious way to derive these
theorems from each other; rather we must use the same argument separately in each setting.
The key point is that we already know that the Extended Haagerup subfactor is unique in
all contexts (algebraically, pivotally, and unitary pivotally) by Remark 4.3. That is, we need
to know that not only is there a unique algebra structure on 1 C f .2/ in EH3, but we also
have a unique C⇤ algebra structure [53, 55], a unique normalized Frobenius structure [75,
Defn. 3.13], and a unique Q-system structure.

In principle, we might still have that EH3 or EH4 exists as say a fusion category, but not
as a unitary pivotal fusion category. However, note that existence of EH3 and EH4 in the
unitary pivotal setting (which is what we actually prove!) implies existence in all settings.

4.3. The fusion ring of the groupoid

Suppose A, B, and C are fusion categories and AKB, BLC , and AMC are Morita equiva-
lences such that there is a bimodule equivalence

ˆ W AKB ⇥B BLC ä AMC :

In general there may be multiple such equivalences ˆ, which are parametrized by invertible
objects in the (common) Drinfeld center Z.A/. If the Drinfeld center has no non-trivial
invertible objects then the equivalence ˆ is uniquely determined by K, L, andM. There are
no invertible central objects for the Extended Haagerup categories, as can be read oV from
the complete description ofZ.EH/ in [73] or can be seen from [40, Corollary 4.2]. Therefore
it makes sense to define the tensor product of simple objects in K and L as a direct sum
of simple objects of M. Thus for Extended Haagerup, we can define the fusion ring of the
Brauer-Picard groupoid, with basis consisting of isomorphism classes of simple objects in
each invertible bimodule category.

Notation 4.15. – For 1  i; j  4, we denote by Cij the unique EHi � EHj fusion
bimodule which was calculated using a computer and discussed in the last section. The rank
of Cij is the ij -th entry of the following matrix:

(4.1) R WD

0
BBBB@

6 6 6 6

6 8 5 5

6 5 8 5

6 5 5 8

1
CCCCA
:

We may view .Cij /
4

i;jD1 as one fusion ring whose basis consists of the union of the distin-
guished bases of each Cij . Multiplication of basis elements is determined by the relative
tensor product of the ambient bimodules (and defined to be zero when the ambient bimod-
ules don’t compose).
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We describe the fusion ring in the Mathematica notebook EHmult.nb, which is a wrapper
for the data file EHmult.txt, both of which are bundled with the arXiv sources of this article.
Therein, we supply a 6-dimensional tensor T whose .i; j; k; x; y; z/-entry is the coeYcient
of z-th basis element of Ci;k in the product of the x-th basis element of Cij and the y-th
basis element of Cjk . That is,

iXj ˝ jYk D

X
Z

T .i; j; k; x; y; z/iZk hiXj ˝ jYk ; iZki WD T .i; j; k; x; y; z/

where iXj is the x-th basis of EHij , and similarly for jYk and iZk .

Notation 4.16. – We denote by .EHij /2i;jD1 and .EHij /2i;jD1 the projection unitary
multifusion category of the Extended Haagerup subfactor planar algebra and its fusion ring,
where the 2 corresponds to an unshaded region and a 1 corresponds to a shaded region.

Remark 4.17. – By Theorem 4.13, there is at most one way to extend the unitary multi-
fusion category .EHij /2i;jD1 to a unitary multifusion category .EHij /4i;jD1 such that EHij
categorifies EHij for all 1  i; j  4.

4.4. Fusion graphs from EH2-Modules

We continue using Notations 4.15 and 4.16 from the previous section. Notice that for
1  k  4, we get a left C -module Mk given by

Mk WD

 
EH1k

EH2k

!
:

Definition 4.18. – For 1  k  4, the fusion graph Äk for Mk with respect to X is the
bipartite graph consisting of

— odd, shaded vertices given by the basis elements of EH1k ,

— even, unshaded vertices given by the basis elements of EH2k , and

— h2X1˝1Yk ; 2Zki D T .2; 1; k; 1; y; z/ edges between they-th basis element 1Yk 2 EH1k
and the z-th basis element 2Zk 2 EH2k .

Note this convention is opposite to the one used for principal graphs of subfactors and fusion
graphs for fusion categories in §2 (see Notation 2.3).

Proposition 4.19. – The fusion graphs Äk for 1  k  4 are given by

Ä1 D

Ä2 D
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Ä3 D

2

1

2

3
6 5 5 4

4

3

1

Ä4 D

1

2
4 3 5 5

3

6 4

1

2

Remark 4.20. – The labelings onÄ3 andÄ4 match the indexing of objects in EHmult.nb.
As we only need labelings on Ä3 and Ä4 in the following section, we have not labeled Ä1
and Ä2.

Our convention for shading the above vertices is that all vertices in EH1k are shaded,
whereas all vertices in EH2k are unshaded. This corresponds to the fact that the unshaded
region of the Extended Haagerup planar algebra EH✏ corresponds to EH2, and the shaded
region corresponds to EH1.

Proof of Proposition 4.19. – The first two are exactly the definition of the dual principal
graph and the principal graph of the extended Haagerup subfactor. The second two are
obtained via computer in the Mathematica notebook EHmult.nb included with the arXiv
sources of this article.

Remark 4.21. – By the complete classification of possible module categories for EH1
and EH2 in Theorem 4.13 together with Corollary 1.2, the graphs in Proposition 4.19 are the
only bipartite graphs which could accept a planar algebra embedding map from the Extended
Haagerup subfactor planar algebra.

Corollary 4.22. – If the extended Haagerup subfactor planar algebra embeds into the
graph planar algebra of Äk for k D 3; 4, then Mk is categorifiable as a .EHij /2i;jD1-module
C⇤-category, and EHk exists.

Proof. – Fix 3  k  4. By Corollary 1.2, the embedding of shaded planar algebras gives
us a .EHij /2i;jD1-module C⇤-category Mk which categorifies Mk and whose fusion graph
with respect to the unshaded-shaded strand is given by Äk . We see that Mk is equivalent
to a direct sum EH1k ˚ EH2k where EHjk is a left module category over EHjj WD EHj

for j D 1; 2. By analyzing the fusion rules with X , by Theorem 4.13, we may conclude
that EHjk categorifies the fusion bimodule EHjk for j D 1; 2. Specializing to j D 2,
since EH2k is a EH22 � EHkk bimodule, by Theorem 4.13, the dual category EHkk of
the EH22-module EH2k must categorify EHkk . Again by Theorem 4.13, EHkk is equivalent
to EHk .

Remark 4.23. – We can perform a similar (simpler) calculation for the Haagerup fusion
categories. It was shown in [42] that there are exactly three fusion categories in the Morita
equivalence class of the Haagerup subfactor, which we will denote by Hk ; k D 1; 2; 3; and
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a unique Morita equivalence between each pair. The category H2 has six simple objects,
labeled 1, g, g2, X , gX , and g2X , which satisfy the fusion rules

g3 D 1; X2 D 1CX C gX C g2X; gX D Xg2:

(Here we have used decategorified notation, and suppressed tensor product, direct sum, and
isomorphism symbols).

The category H3 is the category of bimodules in H2 over the algebra 1 C g C g2; it has
the same fusion ring as H2, and we will label its simple objects by 1, h, h2, Y , gY , and g2Y .
The category H1 can described as the category of bimodules over the algebra 1C X in H2,
or as the category of bimodules over 1CY C hY inH3. The Haagerup planar algebra is the
planar algebra corresponding to the generator K of the H1-H2 Morita equivalence whose
right internal endKK is 1CX . Let L be the object in theH2-H3 Morita equivalence whose
left internal end LL is 1CgCg2 (and whose right internal end LL is 1ChCh2). LetM be
the object in the H1-H3 Morita equivalence whose right internal end MM is 1C Y C hY .

The H2-H3 Morita equivalence has rank two, with simple objects L D gL D Lh and
XL D LY . TheH1-H3 Morita equivalence has rank four, with simple objects KL, M , Mh,
and Mh2. The fusion graph for the module corresponding to EH3 is then determined by
tensoring each of the two simple 1-2 objects on the left by K and decomposing into simple
2-3 objects. Clearly there is a single edge from L to KL and no other edges out of L. We
now want to find the vertices adjacent to XL, i.e., the summands of KXL. By Frobenius
reciprocity, using .�; �/ to denote the dimension of the hom space,

.KXL;KXL/ D .KK;XLLX/ D .1CX;X.1C g C g2/X/

D .1CX; 1C g C g2 C 3X C 3gX C 3g2X/ D 4:

So KXL has either four distinct simple summands or a single simple summand with multi-
plicity two. But

.KXL;KL/ D .KKX;LL/ D ..1CX/X; 1CgCg2/ D .1C2XCgXCg2X; 1CgCg2/ D 1;

so KL appears with multiplicity one in KXL. Thus KXL has four distinct summands and
there is a single edge from XL to each of the four simple 2-3 objects. This gives the broom
graph of Corollary 1.4.

5. Graph planar algebra embeddings for Extended Haagerup

To specify a map out of a planar algebra presented by generators and relations, we need
only to assign values to the generators and check the relations. In particular, once we have
a nice presentation of a planar algebra, we can easily calculate all pivotal (C⇤) module
categories over it. For example, if we want to calculate all pivotal (C⇤) module categories
over the Termperley-Lieb-Jones planar algebra, we have no generators, and the only relation
is the loop modulus, so we get a unique module category for every planar graph with the
correct Frobenius-Perron eigenvector [25, 16]. The SU.3/q planar algebra is presented by
two trivalent vertices satisfying certain relations using Kuperberg’s spider description [65],
and finding elements in a graph planar algebra corresponding to these two trivalent vertices
is exactly solving Ocneanu’s cell conditions [79, 27, 87].
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One of the main results of [6] is to give a similar characterization of maps out of the
Extended Haagerup planar algebra denoted EH✏, which we recall in Proposition 5.7. Using
this result, we give the embeddings of the extended Haagerup subfactor planar into the
graph planar algebras of Ä3 and Ä4, by solving the equations specified in Proposition 5.7 in
the appropriate graph planar algebras. This is closely analogous to the original construction
of EH✏ by embedding it in the graph planar algebra of its principal graph, and we are able to
reuse the same code. There are associated Mathematica notebooks (module-GPAs-EH3.nb
and module-GPAs-EH4.nb) which demonstrate the messy process of solving these equa-
tions. Here we simply exhibit particular solutions. Thus by Corollary 4.22, M3 and M4 are
categorifiable as .EHij /2i;jD1-module C⇤-categories, and EH3 and EH4 exist.

5.1. The lopsided graph planar algebra convention

Suppose P✏ is a semisimple shaded planar algebra with pivotal projection multitensor
category .C ; X; '/ where X 2 P1;C is the shaded-unshaded strand. By just rescaling cups
and caps in C for X as in [71, §1.1],

(5.1) 7! x 7! x�1
7! y 7! y�1

we obtain another semisimple shaded planar algebra P
\x;y
✏ with the same underlying

projection multitensor category. To describe the action of tangles, we first write the tangles
in standard form, where each box has the same number of strings emanating from the top
and bottom. The action of tangles is obtained from the action of tangles for P✏, where in
addition, we multiply by factors of x; y; x�1; y�1 corresponding to appearances of cups and
caps as in (5.1) in the standard form for the tangle.

It is straightforward to verify that this is a well-defined action of planar tangles which
is independent of the choice of standard form of a tangle. One first verifies that the zig-
zag relations hold and 2⇡-rotation is still the identity. One then appeals to the folklore
theorem ([61, Proof of Thm. 4.2.1], similar to [48, Prop. 4.5]) that any two standard forms of
a tangle are related by a finite number of moves including Morse cancelation, 2⇡-rotation,
and exchanging the heights of two input boxes. Thus P\x;y

✏ is a shaded planar algebra.

While the underlying projection multitensor category C has not changed, the pivotal
structure '\x;y on C corresponding to P\x;y

✏ has changed! Indeed, pivotal structures on
a semisimple multitensor category are completely determined by the left and right pivotal
dimensions [83, Lem. 2.12]. The left and right '\x;y pivotal dimensions on C , denoted
dim\x;y

L=R
, are related to the left and right ' pivotal dimensions, denoted dim'

L=R
, as follows:

(5.2) .dim\x;y
L

.c/; dim\x;y
R

.c// D

8̂
ˆ̂̂<
ˆ̂̂̂
:

.dim'

L
.c/; dim'

R
.c// if c 2 C00

.xy�1 dim'

L
.c/; yx�1 dim'

R
.c// if c 2 C01

.yx�1 dim'

L
.c/; xy�1 dim'

R
.c// if c 2 C10

.dim'

L
.c/; dim'

R
.c// if c 2 C11

Notice that we may write (5.2) as simply one equation:

.dim\x;y
L

.c/; dim\x;y
R

.c// D .xjx�iyiy�j dim'

L
.c/; xix�jyjy�i dim'

R
.c// 8c 2 Cij :

4 e SÉRIE – TOME 56 – 2023 – No 2



THE EXTENDED HAAGERUP FUSION CATEGORIES 653

Definition 5.1. – Suppose P✏ is a semisimple shaded planar algebra in which the
shaded/unshaded closed loops are multiplicative scalars ı˙ 2 P0;˙ respectively. We call P✏
lopsided if ıC D 1.

Given a semisimple shaded planar algebra P✏ with scalar loop moduli ı˙ as in Defini-
tion 5.1, we can always obtain a lopsided planar algebra P lopsided

✏ WD P
\ıC;1
✏ . Notice that

the shaded/unshaded loop moduli in P lopsided
✏ are now 1 and ıCı� respectively.

Example 5.2 ([71, §1.1]). – Let G✏ be the graph planar algebra of a finite bipartite
graph Ä D .VC; V�; E/, whose shaded and unshaded loop moduli are both ı D kÄk. The
lopsided graph planar algebra is Glopsided

✏ WD G
\ı;1
✏ . Notice that the lopsided pivotal structure

is obtained from the standard pivotal structure by only rescaling cups and caps which are
shaded above by a multiplicative factor of ı˙1, where the sign is the sign of the critical point
(C1 for caps and �1 for cups).

Warning 5.3. – The corresponding projection unitary multifusion category of G✏ is
Endé.Hilb

jVCjCjV�j/, which is equipped with the standard unitary dual functor _standard with
respect to the object X representing Ä.

The lopsided pivotal structure on Endé.Hilb
jVCjCjV�j/ induced by Glopsided

✏ is not unitary
as noted in the first paragraph of [71, §1.1], as y�1

D 1 ¤ ı D x. However, it is computa-
tionally easier to work with the non-unitary lopsided pivotal structure as introducing square
roots increases the degree of the number fields involved. Moreover, by [71], one can pass back
and forth between the non-unitary lopsided convention and the unitary standard convention,
so we do not lose any examples.

5.2. The Extended Haagerup subfactor planar algebra

The Extended Haagerup subfactor planar algebra EH✏ is a shaded planar é-algebra,
generated by an 8-box called S which satisfies the relations given below.

The presentation given in [6] uses the spherical pivotal structure, and here we also give a
presentation with the lopsided pivotal structure, as this is necessary for computations later.
The translation follows the discussion on p. 3 of [71].

— Modulus: With Œ2ç the largest root of x6�8x4C17x2�5 D 0, approximately 2.09218,
in the lopsided pivotal structure we have the shaded loop equal to 1 and the unshaded
loop equal to Œ2ç2, while in the spherical pivotal structure both loops are equal to Œ2ç.

(In the remainder of these formulas, coeYcients are given using quantum numbers
defined in the usual way, Œnç D

q
n�q�n

q�q�1 .)

— Self-adjoint: S D S⇤.

— Rotational eigenvector: S?

?

�

�

�

D �S .
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— Uncappable: S?? �

�

�

D 0 and S?? �

�

�

D 0

(and in combination with rotation, all placements of a cap on a generator S are zero).

— Multiplication relation: S2 D S S

? ?
8 8 8

D f .8/.

— One strand jellyfish relation:

15

S

?

18

f .18/ D ˛

9 9

7

S

?

S

?

18

f .18/ ;

with ˛ D i

p
Œ8çŒ10ç

Œ2ç4Œ9ç
in the lopsided case, or ˛ D i

p
Œ8çŒ10ç

Œ9ç
in the spherical case.

— Two strand jellyfish relation:

16

S?

20

f .20/ D ˇ

9 2 9

7 7

S

?

S

?

S

?

20

f .20/ ;

with ˇ D
Œ20ç

Œ2ç6Œ9çŒ10ç
in the lopsided case, or ˇ D

Œ2çŒ20ç

Œ9çŒ10ç
in the spherical case.

These relations are suYcient to evaluate all closed diagrams in S , via the ‘jellyfish algo-
rithm’ which pulls copies of S to the exterior and then cancels them in pairs. Note that in
addition to the above relations, to give a complete description of the Extended Haagerup
subfactor planar algebra we also quotient by the negligible elements. Moreover, there is a
non-zero representation of this abstract planar é-algebra in the graph planar algebra of the
principal graph, which proves the existence of the Extended Haagerup subfactor planar
algebra. We refer the reader to [6] for more details.

Below we use the constant � for the largest purely imaginary root of �6C2�4�3�2�5 D 0,
approximately 1:54i .

Lemma 5.4 (Variation of [6, Prop. 3.12]). – Let Ä be a finite bipartite graph with norm Œ2ç

as above. Suppose S 2 GPA.Ä/8;C is a self-adjoint, uncappable, rotational eigenvector with
eigenvalue �1, and has the Extended Haagerup moments

(5.3) tr.S2/ D Œ9ç tr.S3/ D 0 tr.S4/ D Œ9ç tr.⇢1=2.S/3/ D i
Œ18çp
Œ8çŒ10ç

:

4 e SÉRIE – TOME 56 – 2023 – No 2



THE EXTENDED HAAGERUP FUSION CATEGORIES 655

Let PA.S/✏ be the planar é-subalgebra of GPA.Ä/✏ generated by S . Then PA.S/✏ ä EH✏.

Proof. – The proof thatPA.S/✏ is an irreducible subfactor planar algebra with principal
graph Ä2 from Proposition 4.19 is identical to the proof of [6, Prop. 3.12], which never used
that Ä D Ä2. The final claim that PA.S/✏ ä EH✏ follows by uniqueness of the Extended
Haagerup subfactor planar algebra [44].

Remark 5.5. – In fact, Lemma 5.4 holds if we replace GPA.Ä/✏ with any unitary
shaded planar algebra P✏ with a spherical faithful tracial state  ˙ on P0;˙ (see Remark 3.76
or [83, §5]) whose shaded and unshaded loop values are both Œ2ç as above.

Remark 5.6. – We want to emphasize that the proof [6, Prop. 3.12] uses unitarity in an
essential way. The key step, following [86], is that using only the moments you can prove the
Jellyfish relations by checking that the inner product of each relation with itself is 0.

Proposition 5.7. – Suppose P✏ is any unitary shaded planar algebra with a spherical
faithful tracial state  ˙ on P0;˙ whose shaded and unshaded loop values are both Œ2ç as above.
Planar é-algebra morphisms EH✏ ! P✏ are in bijection with choices of self-adjoint uncappable
elements S 0

2 P8;C with rotational eigenvalue �1, satisfying

S 02
D f .8/(5.4)

⇢�1=2.S 0/2 D
2

5

�
��5 � 2�3 C 3�

�
Œ2ç�1⇢�1=2.S 0/C

�
�2 � 2

�
Œ2ç�2f .8/(5.5)

D i. Lr1=2 � Lr�1=2/⇢�1=2.S/ � f .8/;

where Lr D
Œ10ç

Œ8ç
.

Proof. – By Lemma 5.4 and Remark 5.5, we only need to show that S 0 satisfies the
Extended Haagerup moments (5.3) if and only if (5.4) and (5.5) hold. Clearly if (5.4) and (5.5)
hold, thenS 0 satisfies the Extended Haagerup moments (5.3). Conversely, supposeS 0 satisfies
the Extended Haagerup moments (5.3). By [6, Prop. 3.7], S 0 so (5.4) holds, together with the
one and two strand jellyfish relations. As the principal graphs must be those of Extended
Haagerup, again by Lemma 5.4, we can apply [6, Eq. (3.3)] (essentially from [60]), which gives
(5.5) above for S 0.

Corollary 5.8. – Planar algebra homomorphisms EH\ı;1
✏ ! P

\ı;1
✏ between the

lopsided planar algebras are in bijection with choices of uncappable elements S 0
2 P8;C with

rotational eigenvalue �1 satisfying (5.4) and

(5.6) ⇢�1=2.S/2 D

2

5

�
��5 � 2�3 C 3�

�
⇢�1=2.S/C

�
�2 � 2

�
f .8/;

rather than (5.5).
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5.3. EH3

In this section, we use Corollary 5.8 to find EH✏ in the graph planar algebra of the
bipartite graph

Ä3 D

2

1

2

3
6 5 5 4

4

3

1

The eigenspace of uncappable elements with 16 boundary points, and rotational eigen-
value �1, is 18-dimensional. An element in this eigenspace is determined by its values ci on
the following loops `i based at unshaded/even vertices:

`1 D 5655434556554345 `2 D 5543455622263626 `3 D 4556265626365543

`4 D 5636265626554345 `5 D 2636265626362636 `6 D 4556263626265543

`7 D 4556222655554345 `8 D 2636263626263622 `9 D 4345562626313655

`10 D 4345563626363655 `11 D 4556313655454345 `12 D 5631365636554345

`13 D 2636265626263136 `14 D 2226362631362636 `15 D 2631362636362636

`16 D 5631362626554345 `17 D 2631362626362636 `18 D 2226313622263136

There are exactly two solutions to the equations, and these are related by S 0
D �S , or by

applying the unique graph automorphism (and hence corresponds to an equivalent module
category as in Warning 3.81). The element S has coeYcients in Q.�/, where � is the root
of �12 C 718�10 C 679145�8 C 43340550�6 C 43588750�4 � 625000�2 C 390625 D 0

which is approximately �0:229025�0:202916i . The values of ci written as polynomials in �
are quite horrific (coeYcients rational numbers with numerators and denominators having
up to 30 digits), so we instead express them directly in terms of their minimal polynomials.
(The associated Mathematica notebook contains their values in the number field.) We use
the notation �x

a0;:::;ak
to denote the root of a0 C a1� C � � � C ak�

k
D 0 which is closest to

the approximate number x (and we’re careful to write x with enough precision that this is
unambiguous).

c1 D �
.0:0080256i/

1;0;112942;0;�1940695;0;�125

c2 D �
.0:1672�0:0995i/
625;0;58550;0;1877265;0;24363782;0;119192086;0;�4303080;0;172225

c3 D �
.0:03538C0:16258i/
9765625;0;822187500;0;5692096250;0;704926450;0;34457185;0;774362;0;6889

c4 D �
.0:03272�0:15038i/
15625;0;47736250;0;11814953125;0;1219921150;0;49538050;0;927928;0;6889

c5 D �
.0:0061335/

25;0;4235;0;26582;0;�1

c6 D �
.0:10306C0:06133i/
9765625;0;100312500;0;287121250;0;166019450;0;31036785;0;�421822;0;6889

c7 D �
.�0:048654i/
5;0;183;0;�422;0;�1

c8 D �
.�0:1672/
125;0;1490;0;137;0;�5

c9 D �
.0:24287�0:03754i/
625;0;30300;0;164710;0;6266122;0;18530421;0;�2194130;0;70225
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c10 D �
.0:049520�0:029468i/
15625;0;1045000;0;25515750;0;222706550;0;624079625;0;�1976682;0;6889

c11 D �
.0:05260i/

125;0;�205;0;�362;0;�1

c12 D �
.�0:09532�0:05673i/
15625;0;5448750;0;470120625;0;259808550;0;42457870;0;�493928;0;6889

c13 D �
.�0:045805C0:040583i/
625;0;17950;0;679145;0;1733622;0;69742;0;�40;0;1

c14 D �
.0:09647i/

25;0;�622;0;�543;0;�5

c15 D �
.�0:049520/
625;0;17450;0;365;0;�1

c16 D �
.�0:138433�0:021397i/
15625;0;3842500;0;55831750;0;�4013550;0;7389525;0;�273698;0;2809

c17 D �
.0:013563C0:012017i/
390625;0;24156250;0;2220203125;0;1165172950;0;9182770;0;�608;0;1

c18 D �
.�0:3117i/
5;0;�222;0;�279;0;�25:

It is then a simple matter to directly verify the equations (this takes less than a minute on
a modern CPU); this verification can be found in module-GPAs-EH3.nb.

5.4. EH4

In this section, we use Corollary 5.8 to find EH✏ in the graph planar algebra of the
bipartite graph

Ä4 D

1

2
4 3 5 5

3

6 4

1

2

The eigenspace of uncappable elements with 16 boundary points, and rotational eigenvalue
-1, is 20 dimensional. An element in this eigenspace is determined by its values ci on the
following loops `i based at unshaded/even vertices:

`1 D 3553565355553424 `2 D 5653555356535653 `3 D 3555535646553414

`4 D 5646535653564653 `5 D 4146535534243556 `6 D 5553564146535653

`7 D 4146535641465356 `8 D 4246553424355356 `9 D 4246535534243556

`10 D 5553564246535653 `11 D 5646535646424653 `12 D 4146535642465356

`13 D 4246535642465356 `14 D 3556424146553424 `15 D 5646535653564146

`16 D 5356424146535646 `17 D 5642414646535653 `18 D 5641424646414653

`19 D 5642414246424653 `20 D 4142414641424142

There are four solutions to these equations, and the graph automorphism group acts
freely and transitively on them (and hence they all give equivalent module categories as in
Warning 3.81). The solutions have coeYcients in Q.�/, where � is the root of

�12 � 74510�10 C 1753550625�8 � 8889717968750�6

C 23050129394531250�4 C 42850952148437500�2 C 95367431640625 D 0;

which is approximately �0:0472042i . One of the four solutions has coeYcients:

c1 D �
.0:04828C0:07374i/
3125;49250;56580;53520;1597;�200;53
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c2 D �
.�0:038842i/
125;0;�1285982;0;�1789244179;0;�2699449

c3 D �
.�0:02632�0:06233i/
3125;�18750;31575;�20540;4443;186;25

c4 D �
.0:05003i/

5;0;2882;0;�249683;0;�625

c5 D �
.�0:063152�0:039778i/
48828125;�195312500;386718750;�344687500;126334375;�3725000;�6388300;43560;201947;23420;1230;36;1

c6 D �
.0:0086287i/

125;0;150048;0;92084512;0;8056764288;0;285286080768;0;296306688;0;20480

c7 D �
.0:40535i/

125;0;197208;0;81755664;0;�661557632;0;3025487360;0;515469312;0;20480

c8 D �
.�0:30264C0:07970i/
125;3750;27250;�64700;141035;�2100;103848;105108;29242;2034;�122;�10;1

c9 D �
.0:38771C0:10211i/
48828125;�195312500;386718750;�344687500;126334375;�3725000;�6388300;43560;201947;23420;1230;36;1

c10 D �
.�0:031052i/
125;0;150048;0;92084512;0;8056764288;0;285286080768;0;296306688;0;20480

c11 D �
.0:032477i/

5;0;1282;0;�4739;0;�5

c12 D �
.�0:2194i/
1;0;�293;0;�118;0;�5

c13 D �
.0:0063040i/

125;0;197208;0;81755664;0;�661557632;0;3025487360;0;515469312;0;20480

c14 D �
.�0:1850�0:1190i/
15625;�37500;2375;�850;�832;�156;13

c15 D �
.�0:069636i/
125;0;�9582;0;821981;0;�28226758;0;2200643514;0;16166708;0;26645

c16 D �
.0:0099201i/

125;0;�2047;0;�50809;0;�5

c17 D �
.�0:026344i/
125;0;455738;0;13472487051;0;�26481195508;0;28428109059;0;58134938;0;26645

c18 D �
.�0:00188817i/
625;0;�74510;0;2805681;0;�22757678;0;94413330;0;280828;0;1

c19 D �
.0:0544863i/

625;0;�74510;0;2805681;0;�22757678;0;94413330;0;280828;0;1

c20 D �
.0:1063i/

1;0;4982;0;�2155;0;�25:

Again, it is easy to verify this gives a solution, shown in module-GPAs-EH4.nb.
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