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ARTICLE INFO ABSTRACT

Keywords: Worldwide, amphibians are threatened by several factors including climate change and pathogens. One emerging

Fl{“gus fungal pathogen, Batrachochytrium salamandrivorans (Bsal) has caused die-offs of European salamander pop-

gl_lmate change ulations, representing a conservation concern for hotspots of salamander diversity in the United States of
1sease

America (U.S.A). While Bsal has not been detected in the U.S.A., previous work has suggested high invasion
potential. As species susceptibility to Bsal is temperature dependent, we expect climate change to impact Bsal
risk, which has not been explored. Here, we used predicted changes in environmental conditions, species-specific
susceptibility estimates, and novel approaches assessing introduction risks to estimate current and future Bsal
invasion risk. To generate predictions, we used geospatial data representing introduction risks, species suscep-
tibility, and climatic suitability. Across climatic scenarios, our models predicted greatest overall risk of Bsal
emergence in the southeastern and northwestern U.S.A. Bsal climatic suitability was greatest in the northwest,
whereas the greatest number of susceptible species was predicted in the southeast. Under future scenarios, we
predicted that climatically suitable areas for Bsal will be reduced by 3-14 % under the most extreme climate

Emerging pathogens
Introduction risk
Landscape

model.

1. Introduction

Worldwide, amphibian populations are threatened by multiple
stressors including anthropogenic disturbance, climate change, and
emerging infectious diseases (Wake and Vredenburg, 2008). Of partic-
ular concern for amphibians are emerging fungal pathogens (e.g., DiR-
enzo and Grant, 2019), particularly those that cause chytridiomycosis.
One of the fungal agents of chytridiomycosis, Batrachochytrium den-
drobatidis (Bd), has been associated with the decline of many amphibian
species (Scheele et al., 2019), though disentangling the impacts of Bd
from other stressors is challenging (Lambert et al., 2020). The number of
susceptible species to this pathogen, as well as its capability to cause
extinctions, have led many to describe it as the worst vertebrate infec-
tious disease in recorded history (Gascon et al., 2007).

More recently, a second fungal agent of chytridiomycosis, Batra-
chochytrium salamandrivorans (Bsal) has been identified and associated
with localized and regional salamander die-offs in Europe (Martel et al.,
2013). In addition to causing salamander population collapses, Bsal has
been shown to retain virulence in the environment, reservoir species,
and salamanders that have survived previous infection (Stegen et al.,
2017), emphasizing its potential to have long-term effects on susceptible
host populations. Evidence suggests that Bsal is endemic to East Asia,
where the pathogen is documented in asymptomatic salamander pop-
ulations and is hypothesized to have spread to Europe through the
amphibian trade (Martel et al., 2014). With over 4 million amphibians
imported into the U.S.A. every year and no requirement for animal
health certificates (Grant et al., 2017), there is a considerable need to
understand locations at greatest risk of Bsal invasion and potential
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consequences on native amphibian species. To date, Bsal has not been
detected in North America (Waddle et al., 2020; Hill et al., 2021),
however the spread of Bsal into North America is of concern as 48 % of
described salamander species are endemic to North America (Amphib-
iaweb.com).

The total risk of disease outbreak can be summarized as a combi-
nation of two factors, specifically the introduction of a pathogen, and the
consequences of that introduction (Richgels et al., 2016). There have
been multiple hypothesized routes for the introduction of other fungal
pathogens into North America. The first is through spillover from the
wildlife trade, which is the current hypothesis for the origin of Bsal in
Europe (Martel et al., 2014). This hypothesis is supported by detection of
Bsal infection in commonly traded amphibians, as well as in European
pet collections (Martel et al., 2014; Fitzpatrick et al., 2018). Thus, the
greatest risk of Bsal introduction may be located near the greatest
density of pet stores, and therefore pet amphibian consumers (Richgels
et al., 2016). Alternatively, a second route is through fomite-mediated
dispersal. For example, Pseudogymnoascus destructans, the fungal agent
of white-nose syndrome, which is causing bat population die-offs across
North America, is hypothesized to have been introduced from Europe
through contaminated caving equipment (Leopardi et al., 2015). Hence,
locations with high tourist visitation may have the greatest likelihood of
Bsal invasion. To date, previous Bsal risk analyses (Moubarak et al.,
2022; Yap et al., 2015; Richgels et al., 2016) have not considered both of
these routes of human-mediated introduction to the U.S.A.

Once a pathogen has been introduced, the consequences of the
introduction are likely an interaction of pathogen traits, host suscepti-
bility, and environmental conditions — as emphasized in the epidemio-
logical triangle (McNew, 1960; Fig. 1). In terms of pathogen traits,
previous work has suggested that the Bd genotype has implications for
disease outcomes, with some isolates showing reduced virulence
(Refsnider et al., 2015). However, there is currently a lack of informa-
tion on variation in Bsal virulence. Species-specific susceptibility to Bsal
has been documented in salamander species worldwide, with responses
varying from 100 % mortality to full infection resistance (Martel et al.,
2014; Carter et al., 2020; Gray et al., 2023). This variability in species
responses indicates that Bsal invasion risk in the U.S.A. is likely not
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Fig. 1. Conceptual diagram of our modeling approach based on the epidemi-
ological triangle (McNew, 1960). To generate a prediction of Bsal emergence
risk, we incorporated the interactions among three factors, including host,
pathogen, and favorable environment. To model the interaction between hosts
and the environment (A), we used ecological niche modeling (ENM) to identify
areas of suitability for each host species. We then evaluated the influence of
climate change on the climatic suitability for hosts and the pathogen, which we
incorporated through ENMs. To model the interaction between host and
pathogen (B), we incorporated the variation in host susceptibility. Lastly the
interaction between pathogen and environment (C) was incorporated by iden-
tifying areas (under both current and predicted climate models) of climatic
suitability for Bsal.
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uniform; areas with salamander assemblages made up of highly sus-
ceptible species represent a greater conservation risk than areas with
resistant species.

Host environment, more specifically, climate can presumably impact
pathogen invasion and pathogen emergence by affecting environmental
suitability for the pathogen, as well as host tolerance, susceptibility, and
distribution (Carter et al., 2021; Gallana et al., 2013). While our un-
derstanding of Bsal thermal preference on the landscape is lacking,
previous work has shown that in vitro, Bsal has optimal growth between
10 and 15 °C, with a thermal maximum temperature of 25 °C (Martel
et al., 2013). For host amphibians, the environmental temperature af-
fects physiological processes such as immune function (Rollins-Smith,
2020). Additionally, previous work has suggested that temperature in-
fluences Bsal infection and mortality rates of Notophthalmus viridescens
(Carter et al., 2021), which supports the importance of host, pathogen,
and environmental interactions. Previous work has modeled the climatic
suitability of Bsal in the U.S.A. using multiple methods (Moubarak et al.,
2022; Yap et al., 2015), but these efforts have not considered future
climate change scenarios. Climate change models for Bd climatic suit-
ability suggest a northward shift in suitability for the pathogen in the
Northern Hemisphere (Xie et al., 2016). Therefore, it is important not
only to understand the interactions between pathogen and environment,
but also understand how environmental change will influence Bsal
emergence risks.

Our primary study objective was to evaluate Bsal invasion risk and
potential consequences on resident amphibian populations in the U.S.A.
at the ecoregion level, while taking into consideration: (1) possible
routes of Bsal invasion, (2) susceptibility of resident species, (3) envi-
ronmental suitability of Bsal, and (4) projected climate change. This
work is essential to understand locations of greatest likelihood of Bsal
invasion currently and in the future, which can be used to guide sur-
veillance plans and respond to outbreaks if Bsal is introduced to the U.S.
A.

2. Methods
2.1. Salamander species distribution modeling

To model the interactions between hosts and the environment
(Fig. 1a), we employed an ecological niche modeling (ENM) approach in
R 4.1.0 (R Core Team, 2021) to predict the climatic suitability for sal-
amander species in the U.S.A. based on species accounts described on
amphibiaweb.com. We obtained locality data for each salamander spe-
cies (n = 204 species) from the Global Biodiversity Information Facility
(GBIF; www.gbif.org/; citations in Supplemental File S1.1), VertNet
(www.vertnet.org), and Biodiversity Information Serving Our Nation
(BISON; www.bison.usgs.gov/#home) databases. To curate occurrence
data, we removed duplicate occurrences, potential outliers, and occur-
rence records that were collected prior to 1970. Specifically, outliers
were defined as occurrence points found outside a 50 km buffered In-
ternational Union for Conservation of Nature (IUCN) species range map
as completed in Sutton et al. (2015). Additionally, species with fewer
than 30 occurrences were not included in further analyses (Wisz et al.,
2008), resulting in the removal of 70 salamander species (Supplemental
File S2.1). To reduce bias caused by oversampling at well-known loca-
tions (e.g., biological research stations, national parks, and sites near
roads; Kramer-Schadt et al., 2013), we filtered samples within a 5 km
radius (Sutton et al., 2015). Our final dataset included 134 salamander
species, including 21 genera, and 8 families (Supplemental File S2.1).

For each salamander species evaluated, we used the Maximum En-
tropy algorithm (MaxEnt; Phillips et al., 2006; version 3.4.3) in the R
package ENMeval (version 2.0.3; Kass et al., 2023) and the Random
Forest (RF) algorithm within the R package randomForest (Liaw and
Wiener, 2002) to determine the current and projected climatic suit-
ability for the years 2050 and 2070. These machine learning algorithms
were selected as they have been shown to outperform other regression-
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based ENM methods (Elith et al., 2006). For MaxEnt models, previous
work has suggested that modification of two parameters within MaxEnt,
the regularization parameter and the feature class, increases model
predictability (e.g. Anderson and Gonzalez, 2011). Therefore, we tested
a combination of four feature classes (linear, linear quadratic, linear
quadratic hinge, and hinge) as well as four regularization parameters
(0.5, 1, 2, and 5). For some species, hinge feature classes were dropped
as a modeling option due to inadequate model convergence. We then
selected the model with the combination of regularization parameter
and feature classes that produced the lowest AICc value (Warren and
Seifert, 2011) for downstream analyses.

Both MaxEnt and RF approaches require background locations (i.e.,
pseudoabsences), therefore we used a bias file approach (e.g., Phillips
and Dudik, 2008) to model climatic suitability for each salamander
species. This approach helps to counteract bias that may be present
within occurrence data points, as is common with data acquired from
museum and other public databases (Phillips et al., 2009). We developed
the bias file using locations for all salamander species in the U.S.A. and
included geographic ranges for salamander species that extended into
both Canada and Mexico using locality data downloaded from the GBIF,
VertNet, and BISON databases. These occurrence points were then
transformed into a kernel density map using a combination of the ras-
terize (raster package; Hijmans et al., 2013) and kde2d command (MASS
package; Ripley et al., 2013) to generate a raster with an estimate of
salamander survey effort in each raster cell. This layer was clipped to the
50 km buffered range of each focal species to limit background locations
within the focal species range. The number of background points were
model algorithm-specific, as previous work has suggested that the ratio
of background points to occurrence points can influence model accuracy
(Barbet-Massin et al., 2012). Specifically, following Barbet-Massin et al.
(2012), we used 10,000 background points for MaxEnt models, and an
equal number of background points to occurrence points for RF models.
Background points were allocated following the kernel density distri-
bution, with areas of relatively greater occurrence points receiving a
greater allocation of background points.

Baseline (1970-2000) and projected climatic data were acquired
from the Worldclim database (www.worldclim.org; Fick and Hijmans,
2017; version 2.1) at a 30 s resolution. We selected CMIP5 models
despite the recent introduction of CMIP6 models due to the lack of
availability of CMIP6 models at the 30 s resolution. These data represent
19 geospatial layers of bioclimatic variables that represent temperature
and precipitation trends derived from global temperature and precipi-
tation grids (Hijmans et al., 2005). To prevent model over-
parameterization, we removed climate layers that were correlated
with a Pearson's correlation coefficient > 0.75, while maintaining the
variable of hypothesized importance (Sutton et al., 2015), which
resulted in the inclusion of nine bioclimatic variables (Bio 2, Bio 3, Bio 5,
Bio 7, Bio 8, Bio 9, Bio 15, Bio 17, Bio 19; Supplemental File S2.2). These
same nine bioclimatic variables were included in future climate suit-
ability predictions for all species.

We evaluated 12 projected Global Climatic Models (GCMs; Supple-
mental File §2.2) to model the projected climatic suitability for each
species and reduce between-model variability (Lyons and Kozak, 2020;
Wright et al., 2015). We selected 12 GCMs based on a clustering analysis
conducted by Knutti et al. (2013). Specifically, we identified 12 clusters
of similar models and randomly selected a single GCM within each
cluster (Lyons and Kozak, 2020). To account for additional uncertainty
in climatic projections, we used two Representative Concentration
Pathways (RCPs), which included the RCP 4.5 and RCP 8.5 greenhouse
gas scenarios. The RCPs are projected greenhouse gas emission scenarios
into the year 2100 and represent the radiative forcing of greenhouse
gases on future climate change (van Vuuren et al., 2011). The RCPs of
4.5 and 8.5 were selected as they represent a range of greenhouse gas
emissions from moderate (RCP 4.5) to extreme (RCP 8.5) scenarios,
similar to Sutton et al. (2015). This resulted in 97 climatic suitability
models per species (n = 12,998 total models). For each salamander
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species, we generated one current climatic suitability model, and four
projected climatic suitability models. The four projected climatic suit-
ability models were generated by averaging the 12 GCMs generated by
both MaxEnt and RF within year (either 2050 or 2070) and RCP (either
4.5 or 8.5), resulting in four projected suitability models (RCP 4.5 at
year 2050, RCP 4.5 at year 2070, RCP 8.5 at year 2050, and RCP 8.5 at
year 2070).

2.2. Batrachochytrium salamandrivorans climatic suitability prediction

To model the interactions between pathogen and the environment
(Fig. 1c), we predicted the climatic suitability for Bsal within the U.S.A.
by employing the same species distribution modeling framework as
described above for both current and predicted (12 GCMs) climatic
conditions (Section 2.1). We used 77 Bsal occurrence points from the
native range in Asia as well as the introduced locations in Europe as
published in Basanta et al. (2019) to estimate climatic suitability for
Bsal. We followed the same modeling approaches outlined above using
both the RF and MaxEnt algorithms. We selected background points at
random from within a 50 km buffer for each occurrence location, as the
overall native range of Bsal is unknown. As conducted with the sala-
mander climatic suitability analysis, we used 10,000 background points
for MaxEnt and the same number of background points as occurrence
points (n = 77) for the RF analysis (Barbet-Massin et al., 2012). Once the
model was generated for the climatic suitability in Asia and Europe, we
projected this model onto the same bioclimatic variables throughout the
U.S.A. to predict climatically suitable landscapes. To assess model fit, we
used Area Under the Curve (AUC) estimates based on cross-validation of
five subsampled replicates, as well as the true skill statistic (TSS) based
on the maximum sensitivity plus specificity threshold.

To identify climatic conditions within the U.S.A that are highly dis-
similar from conditions in the native and introduced range of Bsal, we
used the mobility-oriented parity (MOP) analysis via the kuenm R
package (Cobos et al., 2019). The MOP analysis creates multivariate
distances between climatic variables at points in the native and intro-
duced range (Asia and Europe) and climatic variables in the U.S.A.
(Owens et al., 2013) and identifies areas of high extrapolation risk.

To obtain a broader view of Bsal climatic suitability across the U.S.A.
and identify zones of concern, we used R to define quantiles of climatic
suitability for the current Bsal climate suitability model (defined as Low,
Medium Low, Medium High, and High). We then used these quantiles to
determine how these categories changed for Bsal suitability across
predicted climatic change scenarios, which was measured as relative
change in suitability.

2.3. Predicting mortality and infection

To model the interaction between hosts and pathogen (Fig. 1b), we
generated a raster layer that represented mortality and infection risk
within salamander assemblages using data from laboratory studies that
determined the percent mortality and infection of salamander species
exposed to Bsal (Carter et al., 2020; Gray et al., 2023). For species in
which we lacked laboratory infection and mortality data (n = 99), we
used a phylogenetic approach to predict mortality as conducted in Gray
et al. (2023). Briefly, we used the function phyEstimate in the picante R
package (Kembel et al., 2010), which uses known trait data to predict
the ancestral trait for a phylogeny. The phylogeny used for salamanders
was created from the Timetree database (timetree.org). When there
were insufficient data to predict susceptibility based on phylogenetic
relatedness (n = 7; Supplemental File S2.1), we averaged species mor-
tality and infection potential values from congenerics.

To determine how salamander susceptibility is distributed across the
landscape, we multiplied the suitability scores from the averaged Max-
Ent and RF models by the infection and mortality rates as described
above. We then summed these layers across species to generate two
separate models of accumulated infection and accumulated mortality for
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B Predicted RCP: 8.5 Year: 2070

E Predicted RCP: 8.5 Year: 2050 F Extrapolation Risk

Fig. 2. Climatic suitability models for Batrachochytrium salamandrivorans (Bsal). A) Climatic suitability for the Bsal pathogen within the U.S.A. based on current
climate data, B) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 8.5 and year 2070, C) predicted climatic suitability for
Bsal within the U.S.A. based on climate projection with RCP 4.5 and year 2050, D) predicted climatic suitability for Bsal within the U.S.A. based on climate projection
with RCP 4.5 and year 2070, and E) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 8.5 and year 2050. For climate
models, areas in red display greatest suitability. F) Mobility-oriented parity (MOP) analysis results for extrapolation risk within Bsal models. For the MOP analysis,
areas in red indicate areas of high dissimilarity from climates within the native and introduced range of Bsal. Map lines delineate study areas and do not necessarily
depict accepted national boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

both current and the four predicted climate change scenarios.

2.4. Estimating risk of Bsal introduction

We estimated Bsal introduction risk into the U.S.A. via human
mediated dispersal. To do this, we generated a kernel density map of
Flickr photographs within protected lands throughout the U.S.A. We
hypothesized that if humans were to unintentionally introduce Bsal into
the U.S.A., this would likely occur in a protected area due to the
comparably high visitation rates to these habitats and the abundance
and diversity of potentially suitable salamander hosts at these locations.
Previous work has demonstrated that the number of photographs taken
and posted to the social media site Flickr (www.flickr.com) within 38 US
national parks was highly correlated with the number of recorded visi-
tors to those parks (Sessions et al., 2016), and has been suggested to be a
metric with which to measure park visitation rates (Wood et al., 2013).
To generate a kernel density map of photos, we used the R package
photosearcher (Fox et al., 2020), which uses the Flickr Application Pro-
gramming Interface (API) to collect geographic coordinates from posted
photos, as well as user information. We used the photo_search command

to collect all photos that were taken within protected lands in the U.S.A.

Protected lands were identified using a shapefile of the Protected
Areas Dataset of the United States (PADUS; US Geological Survey, Gap
Analysis Program 2012), which contains data on the type and extent of
protection provided to a landscape. We placed the extent of protection
given to a landscape on the following scale of one to four, where one
represents landscapes with permanent protection and a management
plan that mimics natural disturbance events, two represents an area with
permanent protection, but receives management practices that might
degrade habitat, three represents permanent protection but has extrac-
tive uses, and four represents a landscape that is protected, but lacks
data on the protection type. Based on this PADUS database, we defined a
protected area as a landscape of one to three on this scale as these areas
are most likely to see greatest tourist visitation. Following the methods
in Sessions et al. (2016), we limited photos taken within these areas
between 01/01/2015 and 12/31/2019. To reduce bias driven by a
single user posting many photos from a single day, we subset this
database to photos that were unique to a user and a date, which resulted
in 32,701 total photos. We transformed these photo coordinates into a
kernel density using a combination of the rasterize (raster package;

Table 1

Mean Bsal climatic suitability scores (+standard deviation) for the three most suitable ecoregions in the U.S.A. based on the average of a MaxEnt and RF model.
Ecoregion Current RCP 4.5 year 2050 RCP 4.5 year 2070 RCP 8.5 year 2050 RCP 8.5 year 2070
Coast Range 74.4 + 20.9 74.4 + 20.9 74.6 + 20.4 74.3 £ 21.0 74.1 + 21.2
North Cascades 56.6 +29.2 56.8 = 30.4 56.2 + 30.4 55.8 + 30.5 55.1 = 30.8
Puget Lowlands 51.6 +£16.3 49.4 + 16.4 48.8 £16.3 48.1 £ 16.4 45.6 £17.1
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Fig. 3. Climatic suitability model for Batrachochytrium salamandrivorans (Bsal) divided into suitability quantiles defined based on the current climate suitability
model. A) Climatic suitability for the Bsal pathogen within the U.S.A. based on current climate data, B) predicted climatic suitability for Bsal within the U.S.A. based
on climate projection with RCP 8.5 and year 2070, C) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 4.5 and year 2050,
D) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 4.5 and year 2070, and E) predicted climatic suitability for Bsal
within the U.S.A. based on climate projection with RCP 8.5 and year 2050. Map lines delineate study areas and do not necessarily depict accepted na-
tional boundaries.
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Fig. 4. Risk of introduction of Batrachochytrium sala-
mandrivorans (Bsal) into the U.S.A. represented by, A)
overall US park visitation rates as determined by
Flickr photograph density, B) US park international
visitation rates as determined by Flickr photograph
density, and C) Euclidean distance to the wildlife
trade, including pet stores and reptile shows. Areas in
red represent areas with greater risk of Bsal intro-
duction either due to proximity to high park usage (A
and B) or close proximity to the wildlife trade (C).
Map lines delineate study areas and do not necessarily
depict accepted national boundaries. (For interpreta-
tion of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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Hijmans et al., 2013) and kde2d command (MASS package; Ripley et al.,
2013) to generate a raster showing protected area visitation rates. As
Bsal has not yet been detected in the U.S.A., we generated a second
kernel density map of photographs taken by international photogra-
phers to weight protected areas visited by international travelers more
heavily. We used the user info command (photosearcher package; Fox
et al., 2020) to identify unique photographers (5757) that took pictures
in protected areas between 01/01/2015 and 12/31/2019. Using a
combination of user provided home country and current city, we
removed all users that were from the U.S.A., resulting in 902 unique
individual international photographers. We then generated a second
kernel density map of photographs taken by these international pho-
tographers to represent international park visitation rates.

Current
A Infection Risk

Accumulated Susceptibility B
o High
B Low

A second hypothesized route of Bsal transmission into the U.S.A. is
through a spillover event from the wildlife/pet-trade (Richgels et al.,
2016). To determine landscape distance to pet trade vendors, we used
the 2019 U.S.A. census data to identify U.S.A. zip codes where pet stores
(code: North American Industry Classification System; 45391) were
located. Additionally, we conducted a Google search to identify the
location of major exotic pet shows across the U.S.A. In total, we gener-
ated a database of the locations of 94 exotic pet shows planned for 2022.
For the pet store location and reptile show location databases, we
generated a raster layer that represented the Euclidean distance of a
raster cell to the nearest pet store/reptile show. We assumed that if Bsal
was introduced into the U.S.A. through the wildlife trade, the risk will
have a negative relationship with the distance to a trade event. These

Predicted
B Infection Risk RCP: 8.5 Year: 2070

Fig. 5. Current and predicted accumulated Batrachochytrium salamandrivorans infection risk. (A) Current infection risk to salamander populations across the U.S.A.
based on current climate models, (B) predicted infection risk based on climate models with RCP 8.5 at year 2070, (C) predicted infection risk based on climate models
with RCP 4.5 at year 2050, (D) predicted infection risk based on climate models with RCP 4.5 at year 2070, and (E) predicted infection risk based on climate models
with RCP 8.5 at year 2050. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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Predicted
B Mortality Risk RCP: 8.5 Year: 2070
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Fig. 6. Current and predicted accumulated Batrachochytrium salamandrivorans mortality risk. (A) Current mortality risk to salamander populations across the U.S.A.
based on current climate models, (B) predicted mortality risk based on climate models with RCP 8.5 at year 2070, (C) predicted mortality risk based on climate
models with RCP 4.5 at year 2050, (D) predicted mortality risk based on climate models with RCP 4.5 at year 2070, and (E) predicted mortality risk based on climate
models with RCP 8.5 at year 2050. Map lines delineate study areas and do not necessarily depict accepted national boundaries.

two raster layers were averaged into a single raster of distance to wildlife
trade and represented the risk associated with potential Bsal spillover
from the wildlife trade (Richgels et al., 2016).

After formation of all rasters, we reclassified each to a scale of 0-100,
with 100 representing greatest risk. For distance to wildlife trade, after
rescaling the data on a 0-100 scale, we subtracted the layer from 100 to
allow a value of 100 to represent the greatest risk. The Flickr-generated
park visitation rasters were resampled using bilinear interpolation to
match the resolution and extent of other layers.

2.5. Overall invasion risk

To generate an overall risk prediction for the invasion of Bsal into the
U.S.A., we evaluated risk based on three components, including intro-
duction risk, consequences of Bsal introduction, and Bsal suitability. We
calculated the average value for the introduction of Bsal (raster layers:
distance to wildlife trade, international park visitation, and park visi-
tation) and the average for consequences of Bsal introduction (raster
layers: mortality and infection). We added these two mean values to the
current and projected Bsal climatic suitability, and then reclassified
these raster layers on a scale of 0-100, with 100 representing greatest
risk of Bsal emergence. We summarized all metrics by EPA Level III
ecoregions, which represent effective conservation units (Olson and
Dinerstein, 1998) and provide a framework for relating impacts of land-
use on biodiversity patterns (Gallant et al., 2004).

3. Results
3.1. Estimating Bsal climatic suitability and shifts due to climate change

Our models for Bsal climatic suitability had good fit (MaxEnt AUC:
0.81 + 0.07, TSS: 0.53 £ 0.1; RF AUC: 0.75 + 0.06, TSS: 0.44 + 0.08).
The MOP analysis identified areas in the Northeastern and Southeastern
coasts as well as areas in the Northwestern U.S.A. as areas of high
extrapolation risk (Fig. 2f), suggesting that the interpretation of climatic
suitability of Bsal within those areas should be done with caution. Model
selection via AICc identified the model that included the regularization
parameter set to 2 and hinge set as feature class as the model that best
explained the data. Under current climatic conditions, climatic suit-
ability (on a scale of 0-100, with 100 representing greatest suitability)
for Bsal was greatest on the west coast of the U.S.A., with the Coast

Range (mean: 74.4 + 21.1; Fig. 2a; Table 1), North Cascades (mean:
56.6 + 29.2; Fig. 2a; Table 1), and the Puget Lowland (mean: 51.6 +
16.3; Fig. 2a; Table 1) ecoregions having greatest suitability.

Under climatic conditions predicted by the most extreme model (RCP
8.5 at year 2070), average Bsal suitability was predicted as greatest in
the Coast Range (mean: 74.1 + 21.2; Fig. 2b; Table 1), North Cascades
(mean: 55.1 + 30.8; Fig. 2b; Table 1), and the Puget Lowland (mean:
45.6 + 17.1; Fig. 2b; Table 1) ecoregions. Across all models, 35 ecor-
egions (41 %) had at least one climate model predicting an increase in
average climatic suitability for Bsal. Of these 35 ecoregions, 29
increased in suitability for all models, two increased for all models
except for RCP 8.5 at year 2070, three increased for all models with RCP
4.5, and one ecoregion increased only for the RCP 4.5 at year 2070.

At a broader scale, the two greatest suitability quantiles, High and
Medium High, lost the greatest area across models due to predicted
climate change (Fig. 3). Both High and Medium High quantiles went
from 27 % and 26 % respectively of the total area, to 24 % (High) and 12
% (Medium High) of the total area (Fig. 3), representing a large loss of
potentially climatically suitable area for Bsal. All results are reported in
Supplemental File 2 tables $2.5-2.9.

3.2. Estimating human-mediated risk of Bsal introduction

Overall, protected area visitation as determined by Flickr photo-
graph density was greatest in the Northern Piedmont (mean: 89.4 +
12.0, on a scale of 0-100, with 100 representing highest visitation),
Atlantic Coastal Pine Barrens (mean: 79.7 + 11.3; Fig. 4a), and the
Northeastern Coastal Zone (mean: 65.4 + 12.6; Fig. 4a) ecoregions.
Secondary hotspots included the Ridge and Valley (54.6 + 24), Southern
Rockies (51.4 + 24.0), Sierra Nevada (51.5 + 16.3), and Blue Ridge
(50.3 + 13.5) ecoregions. International visitation rates as determined by
Flickr photograph density was greatest in the Mojave Basin and Range
(mean: 75.5 £+ 19.9; Fig. 4b), Colorado Plateaus (mean: 63.9 + 17.8;
Fig. 4b), and Arizona/New Mexico Plateau (mean: 59.3 + 20.3; Fig. 4b)
ecoregions. A secondary hotspot of international visitation rates was
found in the Atlantic Coastal Pine Barrens (56.0 + 5.6; Fig. 4b), and
Northern Piedmont (52.0 + 11; Fig. 4b). Distance to wildlife trade was
smallest (highest introduction risk) in the Northern Piedmont (mean: 7.3
=+ 3.9; Fig. 4c), Puget Lowland (mean: 7.8 + 3.7; Fig. 4c), and Southern
California/Northern Baja Coast (mean: 8.0 + 4.3; Fig. 4c) ecoregions.
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3.3. Estimating consequences of introduction
‘?‘:’ 287 T Under current climatic conditions, accumulated infection risk (on a
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E 2% @ ce B eastern coast (;f the U.S.A., with greatest risk in the Blue Ridge (mean:
E g = 60.7 + 11.5; Fig. 5a), Southwestern Appalachians (mean: 53.7 .j: 9.8;
g .::E 5 Fig. 5a), and Southern Coastal Plains (mean: 53.6 + 15.1; Fig. S.a)
g £ 3 E ecoregions. Under current climatic conditions, acct.lmulated mortality
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Fig. 7. Overall risk of Batrachochytrium salamandrivorans (Bsal) emergence in the U.S.A based on A) current climatic conditions and B) predicted climatic conditions
under the RCP 8.5 scenario and at the year 2070. The overall risk model takes into account: Bsal climatic suitability, infection and mortality risks, distance to pet
trade, and protected area use based on total and international visitation rates. Landscapes in red are at greatest risk of Bsal emergence. Pie charts show the percent
contribution each metric has in the risk analysis for the top four most at risk ecoregions determined from the current climate analysis. Map lines delineate study areas
and do not necessarily depict accepted national boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

9.6). Overall, under predicted climate models, risk values were lower,
driven mostly by the reduction in Bsal climatic suitability (Fig. 7b;
Table 3).

4. Discussion

Due to high salamander species richness in the U.S.A., understanding
and predicting how Bsal may emerge is a conservation priority (Gray
et al., 2015). Overall, our analysis suggests that under both current and
predicted climatic conditions, the Coast Range, Blue Ridge, Northern
Piedmont, and Atlantic Coastal Pine Barrens ecoregions are at greatest
risk for Bsal emergence. In general, the drivers of high risk in our models
were the accumulated infection and mortality values, which we referred
to as the consequences of introduction. The most at-risk ecoregions had
the greatest number of susceptible hosts. This pattern was also observed
in previously published risk predictions, with the southeastern and

northwestern U.S.A. representing areas of high risk for Bsal emergence
(Richgels et al., 2016; Yap et al., 2015).

In general, our model suggests that patterns of accumulated infection
and mortality follow patterns of salamander richness. This provides
evidence in support of previous assumptions that Bsal emergence risk
scales with local salamander richness (Richgels et al., 2016; Yap et al.,
2015). Furthermore, models of changes in suitability due to climate
change support previous patterns of shifting climatic suitability, spe-
cifically towards higher elevations, as well as higher latitudes (Lyons
and Kozak, 2020). As a result of this shift in climatic conditions, there is
a predicted shift in both accumulated infection and accumulated mor-
tality towards the coasts and towards greater elevations in landscapes
that are currently climatically suitable for the Bsal pathogen. It is
important to note that our modeling of Bsal susceptibility (infection and
mortality) is informative only for the risk of pathogen introduction and
should be used with caution when inferring spread of Bsal within
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Table 3

Mean values for each of the factors that contribute to overall Bsal emergence risk in the U.S.A. for current climate models (A), and predicted models based on RCP 4.5 at year 2050 (B), RCP 4.5 at year 2070 (C), RCP 8.5 at

year 2050 (D), and RCP 8.5 at year 2070 (E). Across models, the Coast Range and the Blue Ridge ecoregions are at greatest risk.

Ecoregion Mean current Bsal suitability =~ Mean accumulated Mean accumulated Mean distance to wildlife =~ Mean Protected Area Mean Protected Area use by Overall risk
scores (£SD) infection (4SD) mortality (+SD) trade (+SD) use (£SD) international visitors (+SD) (+SD)
A) Current
Atlantic Coastal Pine Barrens 31.8+9.9 27.1+6.5 38.5+9.6 8.0 £3.7 79.7 £11.3 56.0 £ 5.6 65.4 + 4.6
Blue Ridge 24.7 £ 3.2 60.7 £ 11.5 58.8 + 8.3 30.0 £ 11.7 50.3 + 13.5 204 +71 68.8 + 8.4
Coast Range 74.4 +21.1 21.7 £ 10.6 17.9 +£7.2 24.2 +£11.5 29.1 +12.4 16.6 + 11.1 67.8 +£10.3
Northern Piedmont 22.5+ 3.6 36.9 +4.5 48.3+5.8 7.3+3.9 89.4 +12.0 52.0 + 11.0 66.7 + 6.5
B) RCP 4.5 at 2050
Atlantic Coastal Pine Barrens 32.6 £9.9 27.7 +£5.8 39.7+7.8 8.0 +£3.7 79.7 £ 11.3 56.0 + 5.6 61.7 + 3.8
Blue Ridge 253 +2.8 61.1 +£12.3 64.7 + 11.2 30.1 +£11.7 50.3 + 13.5 204 +7.1 66.2 + 8.5
Coast Range 74.4 + 20.8 27.0 £10.8 254 +7.8 24.2 +£11.5 29.1 +12.4 16.6 + 11.1 66.8 +10.3
Northern Piedmont 24.6 + 2.6 343+5.8 46 + 4.2 7.3+3.9 89.4 +12.0 52.0 + 11.0 61.7 + 3.4
C) RCP 4.5 at 2070
Atlantic Coastal Pine Barrens 33.4+9.6 28.1 £ 6.0 40.0 £7.9 8.0 +3.7 79.7 £11.3 56.0 + 5.6 59.8 + 3.9
Blue Ridge 25.3 +2.9 60.7 +£12.8 64.3 +11.6 30.1 +£11.7 50.3 + 13.5 204 +7.1 63.2 + 8.6
Coast Range 74.6 + 20.4 27.3 £10.4 26.1 +7.6 24.2 +£11.5 29.1 +12.4 16.6 + 11.1 64.4 +10.0
Northern Piedmont 26.0 + 3.0 34.9 £ 6.0 46.9 + 4.5 7.3 +3.9 89.4 +12.0 52.0 £ 11.0 60.3 + 3.6
D) RCP 8.5 at 2050
Atlantic Coastal Pine Barrens 32.2+9.5 28.2 + 6.0 40.1 +£ 8.0 8.0 +3.7 79.7 £11.3 56.0 + 5.6 60.4 + 4.0
Blue Ridge 249 + 2.7 60.4 +£12.9 63.6 + 11.4 30.1 +£11.7 50.3 + 13.5 204 +7.1 63.9 + 8.6
Coast Range 74.3 £ 21.0 27.4 £10.3 26.3+7.6 24.2 £11.5 29.1 +12.4 16.6 + 11.1 65.6 + 10.0
Northern Piedmont 251 +25 34.3+5.7 46.0 + 4.5 7.3+39 89.4 +£12.0 52.0 £11.0 60.6 + 3.3
E) RCP 8.5 at 2070
Atlantic Coastal Pine Barrens 32.0+9.1 28.5+ 6.4 38.9 + 8.0 8.0 £3.7 79.7 £11.3 56.0 + 5.6 60.3 + 4.2
Blue Ridge 253+ 2.5 59.9 +13.2 61.9 + 11.6 30.1 +£11.7 50.3 + 13.5 204 +7.1 63.8 £+ 8.6
Coast Range 74.1 £21.2 28.5+9.9 27.5+7.2 24.2 +£11.5 29.1 +12.4 16.6 + 11.1 66.5 + 11.0
Northern Piedmont 26.6 +£ 2.0 345+ 5.6 44.7 £5.0 7.3+39 89.4 +£12.0 52.0 £11.0 61.5 + 3.2
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salamander assemblages. Understanding how amphibian diversity and
abundance interact to influence pathogen dynamics is not well under-
stood (Rohr et al., 2020); however, previous studies on amphibian as-
semblages have shown both pathogen dilution (negative relationship
between diversity and pathogen abundance; Venesky et al., 2014), and
amplification (positive relationship; Tornabene et al., 2018) within
amphibian host-pathogen systems.

Our models predict that the greatest climatic suitability for Bsal, both
currently and under projected climate change, is predicted in the
northwestern U.S.A. Our current climate model agrees with other suit-
ability models produced by Yap et al. (2015), Richgels et al. (2016), and
Moubarak et al. (2022). Differences in climatic suitability across these
risk models are likely attributed to differences in modeling algorithms.
For example, Richgels et al. (2016) used a mechanistic approach based
on a thermal maximum temperature for Bsal (25 °C) to identify
climatically suitable landscapes. This mechanistic approach may over-
predict suitable climate (Buckley et al., 2010), as the assumed reliance
exclusively on temperature is likely an oversimplification of physio-
logical and ecological requirements. On the other hand, our model, like
Yap et al. (2015), used a correlative approach, which has been suggested
to under-predict invasive species ranges (Tingley et al., 2014). While our
model and the Yap et al. model are similar, Yap et al. (2015) found a
second highly suitable area further south along the eastern coast of the
U.S.A., which was only moderately suitable in our model. This differ-
ence in suitability may be due to the differences in the species occur-
rence points, along with our incorporation of the RF modeling approach.
Yap et al. (2015) used occurrences of salamanders that are known to
carry Bsal in their native range in Asia, whereas our model used points of
Bsal positive salamanders sampled in both Asia and Europe.

When comparing the suitability scores associated with the highest
quantiles under current and predicted climate models, in general there is
areduction in highly suitable climatic conditions for Bsal. It is likely that
this reduction in highly suitable climatic conditions is due to predicted
increased temperatures. Previous work has suggested that Bsal has a
thermal maximum temperature of 25 °C (Martel et al., 2013). In addi-
tion, our models show that suitable climate shifts towards higher ele-
vations and latitudes, similar to what has been predicted for Bd (Xie
et al., 2016). This shift is especially apparent in the Rocky Mountain
region, where only the greatest elevations maintain high suitability. It is
important to note that the grain of our study was based on our raster
dataset, which had a resolution of 30 s (approximately 1 km?). There-
fore, at this scale we cannot assess the role of microenvironments in
climatic suitability, likely resulting in an under-prediction of both risk
and suitable habitat across the U.S.A. Additionally, our model of cli-
matic suitability for Bsal was based on 77 occurrence points, and while it
has been shown that MaxEnt can generate accurate predications based
on as few as 30 points (Wisz et al., 2008), increasing the sampling effort
for Bsal, and ultimately occurrence points, within its native and intro-
duced range will help refine future predictions of climatic suitability.

Provided that the U.S.A. leads the world in amphibian imports (Can
et al., 2019), it is likely that Bsal emergence is only a matter of time,
considering practices that promote international clean trade of wildlife
are not encouraged or required in the U.S.A. (Richgels et al., 2016; Yap
et al., 2015). Previous work has suggested that the risk of Bsal emer-
gence due to spillover will scale with the Euclidean distance from the pet
trade (Richgels et al., 2016); however, this may be an oversimplification
of this risk. The online pet trade has increased in popularity (Siriwat and
Nijman, 2020) and obscures the relationship between wildlife trade
locations and spillover risk. While previous risk models have empha-
sized the pet trade as a major introduction route for Bsal, multiple
wildlife pathogens have likely emerged through fomite-mediated
dispersal, i.e., Pseudogymnoascus destructans (Blehert et al., 2009) and
Batrachochytrium dendrobatidis (Walker et al., 2008). Here, we used
protected area visitation rates as a metric of risk for fomite-mediated
pathogen dispersal and encourage others to consider this approach in
future risk analyses. One of the major hotspots identified in our analysis
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contains the epicenter for P. destructans spread in the U.S.A. (Blehert
et al., 2009), providing additional support that introduction of novel
pathogens via fomite-mediated dispersal to protected areas with high
visitation rates is a real threat.

Across climate models, we found that the greatest risk of Bsal
emergence in the U.S.A. is predicted in the Southeast and Northwest,
following patterns of salamander species susceptibilities. Across climate
change models, there is a general lack of change in overall risk at the
ecoregion level, however, there is a general reduction in predicted cli-
matic suitability for Bsal. Our models add to the growing literature
predicting risk of Bsal emergence in the U.S.A. via incorporation of
variation in species susceptibilities paired with the additional influence
of climate change and human-mediated introductions. Conservation
efforts should focus on preventing the spread of Bsal in the U.S.A. and
North America, as preventative measures are more cost effective than
removal or mitigation efforts (Karesh et al., 2005). Additionally, efforts
should include enhanced surveillance and monitoring, especially in the
pet trade and areas with high salamander diversity. Future work should
aim to understand the role of microhabitats for affecting Bsal environ-
mental suitability and persistence and incorporate estimates into risk
assessments, as well as continued evaluations of species susceptibilities
to the Bsal pathogen.

CRediT authorship contribution statement

Matthew Grisnik: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Visualization, Writing — original draft,
Writing — review & editing. Matthew J. Gray: Data curation, Funding
acquisition, Writing — original draft, Writing — review & editing. Jonah
Piovia-Scott: Data curation, Funding acquisition, Writing — original
draft, Writing — review & editing. Edward Davis Carter: Data curation,
Writing — original draft, Writing — review & editing. William B. Sutton:
Conceptualization, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Supervision, Writing — original draft,
Writing — review & editing.

Declaration of competing interest
The authors declare no conflict of interests.
Data availability

All data used are taken from published sources and cited in text, all
code used to generate figures is included in the Supplemental File.

Acknowledgements

Funding and support for this research project was provided by the
United States Department of Interior Fish and Wildlife Service TN-U2-
FI9AP00047. We thank two anonymous reviewers for valuable feedback
on earlier versions of this manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.biocon.2023.110181.

References

AmphibiaWeb, 2015. Information on amphibian biology and conservation. http://amphi
biaweb.org/.

Anderson, R.P., Gonzalez, 1., 2011. Species-specific tuning increases robustness to
sampling bias in models of species distributions: an implementation with Maxent.
Ecol. Model. 222 (15), 2796-2811.

Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W., 2012. Selecting pseudo-absences
for species distribution models: how, where and how many? Methods Ecol. Evol. 3,
327-338.


https://doi.org/10.1016/j.biocon.2023.110181
https://doi.org/10.1016/j.biocon.2023.110181
http://amphibiaweb.org/
http://amphibiaweb.org/
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0010
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0010
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0010
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0015
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0015
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0015

M. Grisnik et al.

Basanta, M.D., Rebollar, E.A., Parra-Olea, G., 2019. Potential risk of Batrachochytrium
salamandrivorans in mexico. PLoS One 14 (2), e0211960.

Blehert, D.S., et al., 2009. Bat white-nose syndrome: an emerging fungal pathogen?
Science 2009, 323-227.

Buckley, L.B., et al., 2010. Can mechanism inform species’ distribution models? Ecol.
Lett. 13, 1041-1054. https://doi.org/10.1111/j.1461-0248.2010.01479.x.

Can, O.E., D'Cruze, N., Macdonald, D.W., 2019. Dealing in deadly pathogens: taking
stock of the legal trade in live wildlife and potential risks to human health. GECCO.
https://doi.org/10.1016/j.gecco.2018e00515.

Carter, E.D., et al., 2020. Conservation risk of Batrachochytrium salamandrivorans to
endemic lungless salamanders. Conserv. Lett. 13 (1), e12675.

Carter, E.D., et al., 2021. Winter is coming-temperature affects immune defenses and
susceptibility to Batrachochytrium salamandrivorans. PloS Pathog. 17 (2) https://
doi.org/10.1371/journal.ppat.1009234.

Cobos, M.E., Peterson, A.T., Barve, N., Osorio-Olvera, L., 2019. Kuenm: an R package for
detailed development of ecological niche models using Maxent. PeerJ 7, e6281.

DiRenzo, G.V., Grant, E.H.C., 2019. Overview of emerging amphibian pathogens and
modeling advances for conservation-related decisions. Biol. Conserv. 236, 474-483.

Elith, J., et al., 2006. Novel methods improve prediction of species’ distributions from
occurrence data. Ecography 29, 129-151.

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate
surfaces for global land areas. Int. J. Climatol. 37, 4302-4315.

Fitzpatrick, L.D., Pasmans, F., Martel, A., Cunningham, A.A., 2018. Epidemiological
tracing of Batrachochytrium salamandrivorans identifies widespread infection and
associated mortalities in private amphibian collections. Sci. Rep. 8 (1), 1-10.

Fox, N., et al., 2020. “Photosearcher” package in R: an accessible and reproducible
method for harvesting large datasets from Flickr. SoftwareX 12, 100624.

Gallana, M., Ryser-Degiorgis, M.P., Wahli, T., Segner, H., 2013. Climate change and
infectious diseases of wildlife: altered interactions between pathogens, vectors and
hosts. Curr. Zool. 59 (3), 427-437.

Gallant, A.L., Loveland, T.R., Sohl, T.L., Napton, D.E., 2004. Using an ecoregion
framework to analyze land-cover and land-use dynamics. Environ. Manag. 34,
S$89-S110.

Gascon, C., et al., 2007. Amphibian Conservation Action Plan. IUCN/SSC Amphibian
Specialist Group.

Grant, E.H., et al., 2017. Using decision analysis to support proactive management of
emerging infectious wildlife diseases. Front. Ecol. Environ. 15, 214-221.

Gray, M.J., et al., 2015. Batrachochytrium salamandrivorans: the North American
response and a call for action. PLoS Pathog. https://doi.org/10.1371/journal.
ppat.1005251.

Gray, M.J., et al., 2023. Broad host susceptibility of North American amphibian species
to Batrachochytrium salamandrivorans suggests high invasion potential and
extinction risk. Nat. Commun. https://doi.org/10.1038/541467-023-38979-4.

Hijmans, R.J., Cameron, S.E., Parra, J.J., Jones, P.G., Jarvis, A., 2005. Very high
resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25,
1965-1978.

Hijmans, R.J., et al., 2013. Raster Package in R.: 2-2.

Hill, A.J., et al., 2021. Absence of Batrachochytrium salamandrivorans in a global
hotspot for salamander biodiversity. J. Wildl. Dis. 57 (3), 553-560.

Karesh, W.B., Cook, R.A., Bennett, E.L., Newcomb, J., 2005. Wildlife trade and global
disease emergence. Emerg. Infect. Dis. 11, 1000-1002. https://doi.org/10.3201/
€id1107.020194.

Kass, J.M., Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla-Buitrago, G.E., Boria, R.A.,
Soley-Guardia, S., Anderson, R.P., 2023. ENMeval 2.0: redesigned for customizable
and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol.
12, 1602-1608.

Kembel, S.W., et al., 2010. Picante: R tools for integrating phylogenies and ecology.
Bioinformatics 26, 1463-1464.

Knutti, R., Masson, D., Gettelman, A., 2013. Climate model genealogy: generation CMIP5
and how we got there. Geophys. Res. Lett. 40, 1194-1199. https://doi.org/10.1002/
grl.50256.

Kramer-Schadt, S., et al., 2013. The importance of correcting for sampling bias iMaxEnt
species distribution models. Divers. Distrib. 19 (11), 1366-1379.

Lambert, M.R., et al., 2020. Comment on “amphibian fungal panzootic causes
catastrophic and ongoing loss of biodiversity”. Science 367, 6484.

Leopardi, S., Blake, D., Puechmaille, S.J., 2015. White-nose syndrome fungus introduced
from Europe to North America. Curr. Biol. 25 (6), R217-R219.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2 (3),
18-22.

Lyons, M.P., Kozak, K.H., 2020. Vanishing islands in the sky? A comparison of
correlation-and mechanism-based forecasts of range dynamics for montane
salamanders under climate change. Ecography 43 (4), 481-493.

Martel, A., et al., 2013. Batrachochytrium salamandrivorans sp. nov. causes lethal
chytridiomycosis in amphibians. PNAS 110 (38), 15325-15329.

Martel, A., et al., 2014. Recent introduction of a chytrid fungus endangers Western
Palearctic salamanders. Science 346 (6209), 630-631.

12

Biological Conservation 284 (2023) 110181

McNew, G.L., 1960. The nature, origin, and evolution of parasitism. In: Horsfall, J.G.,
Dimond, A.E. (Eds.), Plant Pathology: An Advanced Treatise. Academic Press, New
York, pp. 19-69.

Moubarak, M., Fischhoff, I.R., Han, B.A., Castellanos, A.A., 2022. A spatially explicit risk
assessment of salamander populations to Batrachochytrium salamandrivorans in the
United States. Divers. Distrib. https://doi.org/10.1111/ddi.13627.

Olson, D.M., Dinerstein, E., 1998. The Global 200: a representation approach to
conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 13,
502-512.

Owens, H.L., et al., 2013. Constraints on interpretation of ecological niche models by
limited environmental ranges on calibration areas. Ecol. Model. 263, 10-18.

Phillips, S., Dudik, M., 2008. Modeling of species distributions with MaxEnt: new
extensions and a comprehensive evaluation. Ecography 31, 161.

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of
species geographic distributions. Ecol. Model. 190 (3-4), 231-259.

Phillips, S.J., et al., 2009. Sample selection bias and presence-only distribution models:
implications for background and pseudo-absence data. Ecol. Appl. 19 (1), 181-197.

R Core Team, 2021. R: a language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Refsnider, Jeanine M., et al., 2015. Genomic correlates of virulence attenuation in the
deadly amphibian chytrid fungus, Batrachochytrium dendrobatidis. G3 5 (11),
2291-2298.

Richgels, K.L., Russell, R.E., Adams, M.J., White, C.L., Grant, E.H.C., 2016. Spatial
variation in risk and consequence of Batrachochytrium salamandrivorans
introduction in the USA. R. Soc. Open Sci. 3 (2), 150616.

Ripley, B., et al., 2013. “Package ‘mass’.” Cran r, 538, pp. 113-120.

Rohr, J.R,, et al., 2020. Towards common ground in the biodiversity-disease debate. Nat.
Ecol. Evol. 4, 24-33.

Rollins-Smith, L.A., 2020. Global amphibian declines, disease, and the ongoing battle
between Batrachochytrium fungi and the immune system. Herpetologica 76 (2),
178-188.

Scheele, B.C., et al., 2019. Amphibian fungal panzootic causes catastrophic and ongoing
loss of biodiversity. Science 363 (6434), 1459-1463.

Sessions, C., Wood, S.A., Rabotyagov, S., Fisher, D.M., 2016. Measuring recreational
visitation at US National Parks with crowd-sourced photographs. J. Environ. Manag.
183, 703-711.

Siriwat, P., Nijman, V., 2020. Wildlife trade shifts from brick-and-mortar markets to
virtual marketplaces: a case study of birds of prey trade in Thailand. J. Asia Pac.
Biodivers. 13, 454-461. https://doi.org/10.1016/j.japb.2020.03.012.

Stegen, G., et al., 2017. Drivers of salamander extirpation mediated by Batrachochytrium
salamandrivorans. Nature 544 (7650), 353-356.

Sutton, W.B., et al., 2015. Predicted changes in climatic niche and climate refugia of
conservation priority salamander species in the northeastern United States. Forests 6
(1), 1-26.

Tingley, R., Vallinoto, M., Sequeira, F., Kearney, M.R., 2014. Realized niche shift during
a global biological invasion. PNAS 111, 10233-10238. https://doi.org/10.1073/
pnas.1405766111.

Tornabene, B.J., et al., 2018. The influence of landscape and environmental factors on
ranavirus epidemiology in a California amphibian assemblage. Freshw. Biol. 63,
639-651.

van Vuuren, D.P., et al., 2011. The representative concentration pathways: an overview.
Clim. Chang. 109, 5-31.

Venesky, M.D., Liu, X., Sauer, E.L., Rohr, R., 2014. Linking manipulative experiments to
field data to test the dilution effect. J. Anim. Ecol. 83, 557-565.

Waddle, J.H., et al., 2020. Batrachochytrium salamandrivorans (Bsal) not detected in an
intensive survey of wild North American amphibians. Sci. Rep. 10 (1), 1-7.

Wake, D.B., Vredenburg, V.T., 2008. Are we in the midst of the sixth mass extinction? A
view from the world of amphibians. PNAS 105, 11466-11473.

Walker, S.F., et al., 2008. Invasive pathogens threaten species recovery programs. Curr.
Biol. 18, R853-R854.

Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of
model complexity and the performance of model selection criteria. Ecol. Appl. 21,
335-342.

Wisz, M.S,, et al., 2008. Effects of sample size on the performance of species distribution
models. Divers. Distrib. 14, 763-773.

Wood, S.A., Guerry, A.D., Silver, J.M., Lacayo, M., 2013. Using social media to quantify
nature-based tourism and recreation. Sci. Rep. 3 (1), 1-7.

Wright, A.N., Hijmans, R.J., Schwartz, M.W., Shaffer, H.B., 2015. Multiple sources of
uncertainty affect metrics for ranking conservation risk under climate change.
Divers. Distrib. 21 (1), 111-122.

Xie, G.Y., Olson, D.H., Blaustein, A.R., 2016. Projecting the global distribution of the
emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on
IPCC climate futures. PLoS One 11 (8), e0160746.

Yap, T.A., Koo, M.S., Ambrose, R.F., Wake, D.B., Vredenburg, V.T., 2015. Averting a
north American biodiversity crisis. Science 349 (6247), 481-482.


http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0020
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0020
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0025
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0025
https://doi.org/10.1111/j.1461-0248.2010.01479.x
https://doi.org/10.1016/j.gecco.2018e00515
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0040
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0040
https://doi.org/10.1371/journal.ppat.1009234
https://doi.org/10.1371/journal.ppat.1009234
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0050
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0050
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0055
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0055
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0060
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0060
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0065
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0065
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0070
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0070
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0070
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0075
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0075
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0080
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0080
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0080
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0085
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0085
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0085
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0090
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0090
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0095
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0095
https://doi.org/10.1371/journal.ppat.1005251
https://doi.org/10.1371/journal.ppat.1005251
https://doi.org/10.1038/s41467-023-38979-4
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0110
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0110
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0110
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0115
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0120
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0120
https://doi.org/10.3201/eid1107.020194
https://doi.org/10.3201/eid1107.020194
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0130
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0130
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0130
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0130
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0135
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0135
https://doi.org/10.1002/grl.50256
https://doi.org/10.1002/grl.50256
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0145
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0145
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0150
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0150
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0155
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0155
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0160
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0160
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0165
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0165
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0165
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0170
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0170
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0175
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0175
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0180
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0180
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0180
https://doi.org/10.1111/ddi.13627
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0190
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0190
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0190
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0195
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0195
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0200
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0200
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0205
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0205
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0210
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0210
https://www.R-project.org/
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0220
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0220
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0220
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0225
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0225
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0225
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0230
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0235
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0235
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0240
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0240
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0240
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0245
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0245
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0250
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0250
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0250
https://doi.org/10.1016/j.japb.2020.03.012
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0260
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0260
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0265
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0265
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0265
https://doi.org/10.1073/pnas.1405766111
https://doi.org/10.1073/pnas.1405766111
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0275
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0275
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0275
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0280
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0280
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0285
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0285
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0290
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0290
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0295
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0295
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0300
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0300
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0305
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0305
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0305
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0310
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0310
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0315
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0315
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0320
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0320
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0320
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0325
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0325
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0325
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0330
http://refhub.elsevier.com/S0006-3207(23)00282-3/rf0330

	Incorporating caudate species susceptibilities and climate change into models of Batrachochytrium salamandrivorans risk in  ...
	1 Introduction
	2 Methods
	2.1 Salamander species distribution modeling
	2.2 Batrachochytrium salamandrivorans climatic suitability prediction
	2.3 Predicting mortality and infection
	2.4 Estimating risk of Bsal introduction
	2.5 Overall invasion risk

	3 Results
	3.1 Estimating Bsal climatic suitability and shifts due to climate change
	3.2 Estimating human-mediated risk of Bsal introduction
	3.3 Estimating consequences of introduction
	3.4 Overall risk of Bsal invasion (all metrics combined)

	4 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


