
Biological Conservation 284 (2023) 110181

Available online 20 July 2023
0006-3207/© 2023 Elsevier Ltd. All rights reserved.

Incorporating caudate species susceptibilities and climate change into 
models of Batrachochytrium salamandrivorans risk in the United States 
of America 
Matthew Grisnik a, Matthew J. Gray b, Jonah Piovia-Scott c, Edward Davis Carter b, William 
B. Sutton a,* 

a Wildlife Ecology Laboratory, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA 
b Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA 
c School of Biological Sciences, Washington State University, Vancouver, WA, USA   

A R T I C L E  I N F O   

Keywords: 
Fungus 
Climate change 
Disease 
Emerging pathogens 
Introduction risk 
Landscape 

A B S T R A C T   

Worldwide, amphibians are threatened by several factors including climate change and pathogens. One emerging 
fungal pathogen, Batrachochytrium salamandrivorans (Bsal) has caused die-offs of European salamander pop-
ulations, representing a conservation concern for hotspots of salamander diversity in the United States of 
America (U.S.A). While Bsal has not been detected in the U.S.A., previous work has suggested high invasion 
potential. As species susceptibility to Bsal is temperature dependent, we expect climate change to impact Bsal 
risk, which has not been explored. Here, we used predicted changes in environmental conditions, species-specific 
susceptibility estimates, and novel approaches assessing introduction risks to estimate current and future Bsal 
invasion risk. To generate predictions, we used geospatial data representing introduction risks, species suscep-
tibility, and climatic suitability. Across climatic scenarios, our models predicted greatest overall risk of Bsal 
emergence in the southeastern and northwestern U.S.A. Bsal climatic suitability was greatest in the northwest, 
whereas the greatest number of susceptible species was predicted in the southeast. Under future scenarios, we 
predicted that climatically suitable areas for Bsal will be reduced by 3–14 % under the most extreme climate 
model.   

1. Introduction 

Worldwide, amphibian populations are threatened by multiple 
stressors including anthropogenic disturbance, climate change, and 
emerging infectious diseases (Wake and Vredenburg, 2008). Of partic-
ular concern for amphibians are emerging fungal pathogens (e.g., DiR-
enzo and Grant, 2019), particularly those that cause chytridiomycosis. 
One of the fungal agents of chytridiomycosis, Batrachochytrium den-
drobatidis (Bd), has been associated with the decline of many amphibian 
species (Scheele et al., 2019), though disentangling the impacts of Bd 
from other stressors is challenging (Lambert et al., 2020). The number of 
susceptible species to this pathogen, as well as its capability to cause 
extinctions, have led many to describe it as the worst vertebrate infec-
tious disease in recorded history (Gascon et al., 2007). 

More recently, a second fungal agent of chytridiomycosis, Batra-
chochytrium salamandrivorans (Bsal) has been identified and associated 
with localized and regional salamander die-offs in Europe (Martel et al., 
2013). In addition to causing salamander population collapses, Bsal has 
been shown to retain virulence in the environment, reservoir species, 
and salamanders that have survived previous infection (Stegen et al., 
2017), emphasizing its potential to have long-term effects on susceptible 
host populations. Evidence suggests that Bsal is endemic to East Asia, 
where the pathogen is documented in asymptomatic salamander pop-
ulations and is hypothesized to have spread to Europe through the 
amphibian trade (Martel et al., 2014). With over 4 million amphibians 
imported into the U.S.A. every year and no requirement for animal 
health certificates (Grant et al., 2017), there is a considerable need to 
understand locations at greatest risk of Bsal invasion and potential 
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consequences on native amphibian species. To date, Bsal has not been 
detected in North America (Waddle et al., 2020; Hill et al., 2021), 
however the spread of Bsal into North America is of concern as 48 % of 
described salamander species are endemic to North America (Amphib-
iaweb.com). 

The total risk of disease outbreak can be summarized as a combi-
nation of two factors, specifically the introduction of a pathogen, and the 
consequences of that introduction (Richgels et al., 2016). There have 
been multiple hypothesized routes for the introduction of other fungal 
pathogens into North America. The first is through spillover from the 
wildlife trade, which is the current hypothesis for the origin of Bsal in 
Europe (Martel et al., 2014). This hypothesis is supported by detection of 
Bsal infection in commonly traded amphibians, as well as in European 
pet collections (Martel et al., 2014; Fitzpatrick et al., 2018). Thus, the 
greatest risk of Bsal introduction may be located near the greatest 
density of pet stores, and therefore pet amphibian consumers (Richgels 
et al., 2016). Alternatively, a second route is through fomite-mediated 
dispersal. For example, Pseudogymnoascus destructans, the fungal agent 
of white-nose syndrome, which is causing bat population die-offs across 
North America, is hypothesized to have been introduced from Europe 
through contaminated caving equipment (Leopardi et al., 2015). Hence, 
locations with high tourist visitation may have the greatest likelihood of 
Bsal invasion. To date, previous Bsal risk analyses (Moubarak et al., 
2022; Yap et al., 2015; Richgels et al., 2016) have not considered both of 
these routes of human-mediated introduction to the U.S.A. 

Once a pathogen has been introduced, the consequences of the 
introduction are likely an interaction of pathogen traits, host suscepti-
bility, and environmental conditions – as emphasized in the epidemio-
logical triangle (McNew, 1960; Fig. 1). In terms of pathogen traits, 
previous work has suggested that the Bd genotype has implications for 
disease outcomes, with some isolates showing reduced virulence 
(Refsnider et al., 2015). However, there is currently a lack of informa-
tion on variation in Bsal virulence. Species-specific susceptibility to Bsal 
has been documented in salamander species worldwide, with responses 
varying from 100 % mortality to full infection resistance (Martel et al., 
2014; Carter et al., 2020; Gray et al., 2023). This variability in species 
responses indicates that Bsal invasion risk in the U.S.A. is likely not 

uniform; areas with salamander assemblages made up of highly sus-
ceptible species represent a greater conservation risk than areas with 
resistant species. 

Host environment, more specifically, climate can presumably impact 
pathogen invasion and pathogen emergence by affecting environmental 
suitability for the pathogen, as well as host tolerance, susceptibility, and 
distribution (Carter et al., 2021; Gallana et al., 2013). While our un-
derstanding of Bsal thermal preference on the landscape is lacking, 
previous work has shown that in vitro, Bsal has optimal growth between 
10 and 15 ◦C, with a thermal maximum temperature of 25 ◦C (Martel 
et al., 2013). For host amphibians, the environmental temperature af-
fects physiological processes such as immune function (Rollins-Smith, 
2020). Additionally, previous work has suggested that temperature in-
fluences Bsal infection and mortality rates of Notophthalmus viridescens 
(Carter et al., 2021), which supports the importance of host, pathogen, 
and environmental interactions. Previous work has modeled the climatic 
suitability of Bsal in the U.S.A. using multiple methods (Moubarak et al., 
2022; Yap et al., 2015), but these efforts have not considered future 
climate change scenarios. Climate change models for Bd climatic suit-
ability suggest a northward shift in suitability for the pathogen in the 
Northern Hemisphere (Xie et al., 2016). Therefore, it is important not 
only to understand the interactions between pathogen and environment, 
but also understand how environmental change will influence Bsal 
emergence risks. 

Our primary study objective was to evaluate Bsal invasion risk and 
potential consequences on resident amphibian populations in the U.S.A. 
at the ecoregion level, while taking into consideration: (1) possible 
routes of Bsal invasion, (2) susceptibility of resident species, (3) envi-
ronmental suitability of Bsal, and (4) projected climate change. This 
work is essential to understand locations of greatest likelihood of Bsal 
invasion currently and in the future, which can be used to guide sur-
veillance plans and respond to outbreaks if Bsal is introduced to the U.S. 
A. 

2. Methods 

2.1. Salamander species distribution modeling 

To model the interactions between hosts and the environment 
(Fig. 1a), we employed an ecological niche modeling (ENM) approach in 
R 4.1.0 (R Core Team, 2021) to predict the climatic suitability for sal-
amander species in the U.S.A. based on species accounts described on 
amphibiaweb.com. We obtained locality data for each salamander spe-
cies (n = 204 species) from the Global Biodiversity Information Facility 
(GBIF; www.gbif.org/; citations in Supplemental File S1.1), VertNet 
(www.vertnet.org), and Biodiversity Information Serving Our Nation 
(BISON; www.bison.usgs.gov/#home) databases. To curate occurrence 
data, we removed duplicate occurrences, potential outliers, and occur-
rence records that were collected prior to 1970. Specifically, outliers 
were defined as occurrence points found outside a 50 km buffered In-
ternational Union for Conservation of Nature (IUCN) species range map 
as completed in Sutton et al. (2015). Additionally, species with fewer 
than 30 occurrences were not included in further analyses (Wisz et al., 
2008), resulting in the removal of 70 salamander species (Supplemental 
File S2.1). To reduce bias caused by oversampling at well-known loca-
tions (e.g., biological research stations, national parks, and sites near 
roads; Kramer-Schadt et al., 2013), we filtered samples within a 5 km 
radius (Sutton et al., 2015). Our final dataset included 134 salamander 
species, including 21 genera, and 8 families (Supplemental File S2.1). 

For each salamander species evaluated, we used the Maximum En-
tropy algorithm (MaxEnt; Phillips et al., 2006; version 3.4.3) in the R 
package ENMeval (version 2.0.3; Kass et al., 2023) and the Random 
Forest (RF) algorithm within the R package randomForest (Liaw and 
Wiener, 2002) to determine the current and projected climatic suit-
ability for the years 2050 and 2070. These machine learning algorithms 
were selected as they have been shown to outperform other regression- 

Fig. 1. Conceptual diagram of our modeling approach based on the epidemi-
ological triangle (McNew, 1960). To generate a prediction of Bsal emergence 
risk, we incorporated the interactions among three factors, including host, 
pathogen, and favorable environment. To model the interaction between hosts 
and the environment (A), we used ecological niche modeling (ENM) to identify 
areas of suitability for each host species. We then evaluated the influence of 
climate change on the climatic suitability for hosts and the pathogen, which we 
incorporated through ENMs. To model the interaction between host and 
pathogen (B), we incorporated the variation in host susceptibility. Lastly the 
interaction between pathogen and environment (C) was incorporated by iden-
tifying areas (under both current and predicted climate models) of climatic 
suitability for Bsal. 
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based ENM methods (Elith et al., 2006). For MaxEnt models, previous 
work has suggested that modification of two parameters within MaxEnt, 
the regularization parameter and the feature class, increases model 
predictability (e.g. Anderson and Gonzalez, 2011). Therefore, we tested 
a combination of four feature classes (linear, linear quadratic, linear 
quadratic hinge, and hinge) as well as four regularization parameters 
(0.5, 1, 2, and 5). For some species, hinge feature classes were dropped 
as a modeling option due to inadequate model convergence. We then 
selected the model with the combination of regularization parameter 
and feature classes that produced the lowest AICc value (Warren and 
Seifert, 2011) for downstream analyses. 

Both MaxEnt and RF approaches require background locations (i.e., 
pseudoabsences), therefore we used a bias file approach (e.g., Phillips 
and Dudik, 2008) to model climatic suitability for each salamander 
species. This approach helps to counteract bias that may be present 
within occurrence data points, as is common with data acquired from 
museum and other public databases (Phillips et al., 2009). We developed 
the bias file using locations for all salamander species in the U.S.A. and 
included geographic ranges for salamander species that extended into 
both Canada and Mexico using locality data downloaded from the GBIF, 
VertNet, and BISON databases. These occurrence points were then 
transformed into a kernel density map using a combination of the ras-
terize (raster package; Hijmans et al., 2013) and kde2d command (MASS 
package; Ripley et al., 2013) to generate a raster with an estimate of 
salamander survey effort in each raster cell. This layer was clipped to the 
50 km buffered range of each focal species to limit background locations 
within the focal species range. The number of background points were 
model algorithm-specific, as previous work has suggested that the ratio 
of background points to occurrence points can influence model accuracy 
(Barbet-Massin et al., 2012). Specifically, following Barbet-Massin et al. 
(2012), we used 10,000 background points for MaxEnt models, and an 
equal number of background points to occurrence points for RF models. 
Background points were allocated following the kernel density distri-
bution, with areas of relatively greater occurrence points receiving a 
greater allocation of background points. 

Baseline (1970–2000) and projected climatic data were acquired 
from the Worldclim database (www.worldclim.org; Fick and Hijmans, 
2017; version 2.1) at a 30 s resolution. We selected CMIP5 models 
despite the recent introduction of CMIP6 models due to the lack of 
availability of CMIP6 models at the 30 s resolution. These data represent 
19 geospatial layers of bioclimatic variables that represent temperature 
and precipitation trends derived from global temperature and precipi-
tation grids (Hijmans et al., 2005). To prevent model over- 
parameterization, we removed climate layers that were correlated 
with a Pearson's correlation coefficient ≥ 0.75, while maintaining the 
variable of hypothesized importance (Sutton et al., 2015), which 
resulted in the inclusion of nine bioclimatic variables (Bio 2, Bio 3, Bio 5, 
Bio 7, Bio 8, Bio 9, Bio 15, Bio 17, Bio 19; Supplemental File S2.2). These 
same nine bioclimatic variables were included in future climate suit-
ability predictions for all species. 

We evaluated 12 projected Global Climatic Models (GCMs; Supple-
mental File S2.2) to model the projected climatic suitability for each 
species and reduce between-model variability (Lyons and Kozak, 2020; 
Wright et al., 2015). We selected 12 GCMs based on a clustering analysis 
conducted by Knutti et al. (2013). Specifically, we identified 12 clusters 
of similar models and randomly selected a single GCM within each 
cluster (Lyons and Kozak, 2020). To account for additional uncertainty 
in climatic projections, we used two Representative Concentration 
Pathways (RCPs), which included the RCP 4.5 and RCP 8.5 greenhouse 
gas scenarios. The RCPs are projected greenhouse gas emission scenarios 
into the year 2100 and represent the radiative forcing of greenhouse 
gases on future climate change (van Vuuren et al., 2011). The RCPs of 
4.5 and 8.5 were selected as they represent a range of greenhouse gas 
emissions from moderate (RCP 4.5) to extreme (RCP 8.5) scenarios, 
similar to Sutton et al. (2015). This resulted in 97 climatic suitability 
models per species (n = 12,998 total models). For each salamander 

species, we generated one current climatic suitability model, and four 
projected climatic suitability models. The four projected climatic suit-
ability models were generated by averaging the 12 GCMs generated by 
both MaxEnt and RF within year (either 2050 or 2070) and RCP (either 
4.5 or 8.5), resulting in four projected suitability models (RCP 4.5 at 
year 2050, RCP 4.5 at year 2070, RCP 8.5 at year 2050, and RCP 8.5 at 
year 2070). 

2.2. Batrachochytrium salamandrivorans climatic suitability prediction 

To model the interactions between pathogen and the environment 
(Fig. 1c), we predicted the climatic suitability for Bsal within the U.S.A. 
by employing the same species distribution modeling framework as 
described above for both current and predicted (12 GCMs) climatic 
conditions (Section 2.1). We used 77 Bsal occurrence points from the 
native range in Asia as well as the introduced locations in Europe as 
published in Basanta et al. (2019) to estimate climatic suitability for 
Bsal. We followed the same modeling approaches outlined above using 
both the RF and MaxEnt algorithms. We selected background points at 
random from within a 50 km buffer for each occurrence location, as the 
overall native range of Bsal is unknown. As conducted with the sala-
mander climatic suitability analysis, we used 10,000 background points 
for MaxEnt and the same number of background points as occurrence 
points (n = 77) for the RF analysis (Barbet-Massin et al., 2012). Once the 
model was generated for the climatic suitability in Asia and Europe, we 
projected this model onto the same bioclimatic variables throughout the 
U.S.A. to predict climatically suitable landscapes. To assess model fit, we 
used Area Under the Curve (AUC) estimates based on cross-validation of 
five subsampled replicates, as well as the true skill statistic (TSS) based 
on the maximum sensitivity plus specificity threshold. 

To identify climatic conditions within the U.S.A that are highly dis-
similar from conditions in the native and introduced range of Bsal, we 
used the mobility-oriented parity (MOP) analysis via the kuenm R 
package (Cobos et al., 2019). The MOP analysis creates multivariate 
distances between climatic variables at points in the native and intro-
duced range (Asia and Europe) and climatic variables in the U.S.A. 
(Owens et al., 2013) and identifies areas of high extrapolation risk. 

To obtain a broader view of Bsal climatic suitability across the U.S.A. 
and identify zones of concern, we used R to define quantiles of climatic 
suitability for the current Bsal climate suitability model (defined as Low, 
Medium Low, Medium High, and High). We then used these quantiles to 
determine how these categories changed for Bsal suitability across 
predicted climatic change scenarios, which was measured as relative 
change in suitability. 

2.3. Predicting mortality and infection 

To model the interaction between hosts and pathogen (Fig. 1b), we 
generated a raster layer that represented mortality and infection risk 
within salamander assemblages using data from laboratory studies that 
determined the percent mortality and infection of salamander species 
exposed to Bsal (Carter et al., 2020; Gray et al., 2023). For species in 
which we lacked laboratory infection and mortality data (n = 99), we 
used a phylogenetic approach to predict mortality as conducted in Gray 
et al. (2023). Briefly, we used the function phyEstimate in the picante R 
package (Kembel et al., 2010), which uses known trait data to predict 
the ancestral trait for a phylogeny. The phylogeny used for salamanders 
was created from the Timetree database (timetree.org). When there 
were insufficient data to predict susceptibility based on phylogenetic 
relatedness (n = 7; Supplemental File S2.1), we averaged species mor-
tality and infection potential values from congenerics. 

To determine how salamander susceptibility is distributed across the 
landscape, we multiplied the suitability scores from the averaged Max-
Ent and RF models by the infection and mortality rates as described 
above. We then summed these layers across species to generate two 
separate models of accumulated infection and accumulated mortality for 
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both current and the four predicted climate change scenarios. 

2.4. Estimating risk of Bsal introduction 

We estimated Bsal introduction risk into the U.S.A. via human 
mediated dispersal. To do this, we generated a kernel density map of 
Flickr photographs within protected lands throughout the U.S.A. We 
hypothesized that if humans were to unintentionally introduce Bsal into 
the U.S.A., this would likely occur in a protected area due to the 
comparably high visitation rates to these habitats and the abundance 
and diversity of potentially suitable salamander hosts at these locations. 
Previous work has demonstrated that the number of photographs taken 
and posted to the social media site Flickr (www.flickr.com) within 38 US 
national parks was highly correlated with the number of recorded visi-
tors to those parks (Sessions et al., 2016), and has been suggested to be a 
metric with which to measure park visitation rates (Wood et al., 2013). 
To generate a kernel density map of photos, we used the R package 
photosearcher (Fox et al., 2020), which uses the Flickr Application Pro-
gramming Interface (API) to collect geographic coordinates from posted 
photos, as well as user information. We used the photo_search command 

to collect all photos that were taken within protected lands in the U.S.A. 
Protected lands were identified using a shapefile of the Protected 

Areas Dataset of the United States (PADUS; US Geological Survey, Gap 
Analysis Program 2012), which contains data on the type and extent of 
protection provided to a landscape. We placed the extent of protection 
given to a landscape on the following scale of one to four, where one 
represents landscapes with permanent protection and a management 
plan that mimics natural disturbance events, two represents an area with 
permanent protection, but receives management practices that might 
degrade habitat, three represents permanent protection but has extrac-
tive uses, and four represents a landscape that is protected, but lacks 
data on the protection type. Based on this PADUS database, we defined a 
protected area as a landscape of one to three on this scale as these areas 
are most likely to see greatest tourist visitation. Following the methods 
in Sessions et al. (2016), we limited photos taken within these areas 
between 01/01/2015 and 12/31/2019. To reduce bias driven by a 
single user posting many photos from a single day, we subset this 
database to photos that were unique to a user and a date, which resulted 
in 32,701 total photos. We transformed these photo coordinates into a 
kernel density using a combination of the rasterize (raster package; 

Fig. 2. Climatic suitability models for Batrachochytrium salamandrivorans (Bsal). A) Climatic suitability for the Bsal pathogen within the U.S.A. based on current 
climate data, B) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 8.5 and year 2070, C) predicted climatic suitability for 
Bsal within the U.S.A. based on climate projection with RCP 4.5 and year 2050, D) predicted climatic suitability for Bsal within the U.S.A. based on climate projection 
with RCP 4.5 and year 2070, and E) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 8.5 and year 2050. For climate 
models, areas in red display greatest suitability. F) Mobility-oriented parity (MOP) analysis results for extrapolation risk within Bsal models. For the MOP analysis, 
areas in red indicate areas of high dissimilarity from climates within the native and introduced range of Bsal. Map lines delineate study areas and do not necessarily 
depict accepted national boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Mean Bsal climatic suitability scores (±standard deviation) for the three most suitable ecoregions in the U.S.A. based on the average of a MaxEnt and RF model.  

Ecoregion Current RCP 4.5 year 2050 RCP 4.5 year 2070 RCP 8.5 year 2050 RCP 8.5 year 2070 
Coast Range 74.4 ± 20.9 74.4 ± 20.9 74.6 ± 20.4 74.3 ± 21.0 74.1 ± 21.2 
North Cascades 56.6 ± 29.2 56.8 ± 30.4 56.2 ± 30.4 55.8 ± 30.5 55.1 ± 30.8 
Puget Lowlands 51.6 ± 16.3 49.4 ± 16.4 48.8 ± 16.3 48.1 ± 16.4 45.6 ± 17.1  
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Fig. 3. Climatic suitability model for Batrachochytrium salamandrivorans (Bsal) divided into suitability quantiles defined based on the current climate suitability 
model. A) Climatic suitability for the Bsal pathogen within the U.S.A. based on current climate data, B) predicted climatic suitability for Bsal within the U.S.A. based 
on climate projection with RCP 8.5 and year 2070, C) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 4.5 and year 2050, 
D) predicted climatic suitability for Bsal within the U.S.A. based on climate projection with RCP 4.5 and year 2070, and E) predicted climatic suitability for Bsal 
within the U.S.A. based on climate projection with RCP 8.5 and year 2050. Map lines delineate study areas and do not necessarily depict accepted na-
tional boundaries. 

M. Grisnik et al.                                                                                                                                                                                                                                 



Biological Conservation 284 (2023) 110181

6

Hijmans et al., 2013) and kde2d command (MASS package; Ripley et al., 
2013) to generate a raster showing protected area visitation rates. As 
Bsal has not yet been detected in the U.S.A., we generated a second 
kernel density map of photographs taken by international photogra-
phers to weight protected areas visited by international travelers more 
heavily. We used the user_info command (photosearcher package; Fox 
et al., 2020) to identify unique photographers (5757) that took pictures 
in protected areas between 01/01/2015 and 12/31/2019. Using a 
combination of user provided home country and current city, we 
removed all users that were from the U.S.A., resulting in 902 unique 
individual international photographers. We then generated a second 
kernel density map of photographs taken by these international pho-
tographers to represent international park visitation rates. 

A second hypothesized route of Bsal transmission into the U.S.A. is 
through a spillover event from the wildlife/pet-trade (Richgels et al., 
2016). To determine landscape distance to pet trade vendors, we used 
the 2019 U.S.A. census data to identify U.S.A. zip codes where pet stores 
(code: North American Industry Classification System; 45391) were 
located. Additionally, we conducted a Google search to identify the 
location of major exotic pet shows across the U.S.A. In total, we gener-
ated a database of the locations of 94 exotic pet shows planned for 2022. 
For the pet store location and reptile show location databases, we 
generated a raster layer that represented the Euclidean distance of a 
raster cell to the nearest pet store/reptile show. We assumed that if Bsal 
was introduced into the U.S.A. through the wildlife trade, the risk will 
have a negative relationship with the distance to a trade event. These 

Fig. 4. Risk of introduction of Batrachochytrium sala-
mandrivorans (Bsal) into the U.S.A. represented by, A) 
overall US park visitation rates as determined by 
Flickr photograph density, B) US park international 
visitation rates as determined by Flickr photograph 
density, and C) Euclidean distance to the wildlife 
trade, including pet stores and reptile shows. Areas in 
red represent areas with greater risk of Bsal intro-
duction either due to proximity to high park usage (A 
and B) or close proximity to the wildlife trade (C). 
Map lines delineate study areas and do not necessarily 
depict accepted national boundaries. (For interpreta-
tion of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 5. Current and predicted accumulated Batrachochytrium salamandrivorans infection risk. (A) Current infection risk to salamander populations across the U.S.A. 
based on current climate models, (B) predicted infection risk based on climate models with RCP 8.5 at year 2070, (C) predicted infection risk based on climate models 
with RCP 4.5 at year 2050, (D) predicted infection risk based on climate models with RCP 4.5 at year 2070, and (E) predicted infection risk based on climate models 
with RCP 8.5 at year 2050. Map lines delineate study areas and do not necessarily depict accepted national boundaries. 
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two raster layers were averaged into a single raster of distance to wildlife 
trade and represented the risk associated with potential Bsal spillover 
from the wildlife trade (Richgels et al., 2016). 

After formation of all rasters, we reclassified each to a scale of 0–100, 
with 100 representing greatest risk. For distance to wildlife trade, after 
rescaling the data on a 0–100 scale, we subtracted the layer from 100 to 
allow a value of 100 to represent the greatest risk. The Flickr-generated 
park visitation rasters were resampled using bilinear interpolation to 
match the resolution and extent of other layers. 

2.5. Overall invasion risk 

To generate an overall risk prediction for the invasion of Bsal into the 
U.S.A., we evaluated risk based on three components, including intro-
duction risk, consequences of Bsal introduction, and Bsal suitability. We 
calculated the average value for the introduction of Bsal (raster layers: 
distance to wildlife trade, international park visitation, and park visi-
tation) and the average for consequences of Bsal introduction (raster 
layers: mortality and infection). We added these two mean values to the 
current and projected Bsal climatic suitability, and then reclassified 
these raster layers on a scale of 0–100, with 100 representing greatest 
risk of Bsal emergence. We summarized all metrics by EPA Level III 
ecoregions, which represent effective conservation units (Olson and 
Dinerstein, 1998) and provide a framework for relating impacts of land- 
use on biodiversity patterns (Gallant et al., 2004). 

3. Results 

3.1. Estimating Bsal climatic suitability and shifts due to climate change 

Our models for Bsal climatic suitability had good fit (MaxEnt AUC: 
0.81 ± 0.07, TSS: 0.53 ± 0.1; RF AUC: 0.75 ± 0.06, TSS: 0.44 ± 0.08). 
The MOP analysis identified areas in the Northeastern and Southeastern 
coasts as well as areas in the Northwestern U.S.A. as areas of high 
extrapolation risk (Fig. 2f), suggesting that the interpretation of climatic 
suitability of Bsal within those areas should be done with caution. Model 
selection via AICc identified the model that included the regularization 
parameter set to 2 and hinge set as feature class as the model that best 
explained the data. Under current climatic conditions, climatic suit-
ability (on a scale of 0–100, with 100 representing greatest suitability) 
for Bsal was greatest on the west coast of the U.S.A., with the Coast 

Range (mean: 74.4 ± 21.1; Fig. 2a; Table 1), North Cascades (mean: 
56.6 ± 29.2; Fig. 2a; Table 1), and the Puget Lowland (mean: 51.6 ±
16.3; Fig. 2a; Table 1) ecoregions having greatest suitability. 

Under climatic conditions predicted by the most extreme model (RCP 
8.5 at year 2070), average Bsal suitability was predicted as greatest in 
the Coast Range (mean: 74.1 ± 21.2; Fig. 2b; Table 1), North Cascades 
(mean: 55.1 ± 30.8; Fig. 2b; Table 1), and the Puget Lowland (mean: 
45.6 ± 17.1; Fig. 2b; Table 1) ecoregions. Across all models, 35 ecor-
egions (41 %) had at least one climate model predicting an increase in 
average climatic suitability for Bsal. Of these 35 ecoregions, 29 
increased in suitability for all models, two increased for all models 
except for RCP 8.5 at year 2070, three increased for all models with RCP 
4.5, and one ecoregion increased only for the RCP 4.5 at year 2070. 

At a broader scale, the two greatest suitability quantiles, High and 
Medium High, lost the greatest area across models due to predicted 
climate change (Fig. 3). Both High and Medium High quantiles went 
from 27 % and 26 % respectively of the total area, to 24 % (High) and 12 
% (Medium High) of the total area (Fig. 3), representing a large loss of 
potentially climatically suitable area for Bsal. All results are reported in 
Supplemental File 2 tables S2.5–2.9. 

3.2. Estimating human-mediated risk of Bsal introduction 

Overall, protected area visitation as determined by Flickr photo-
graph density was greatest in the Northern Piedmont (mean: 89.4 ±
12.0, on a scale of 0–100, with 100 representing highest visitation), 
Atlantic Coastal Pine Barrens (mean: 79.7 ± 11.3; Fig. 4a), and the 
Northeastern Coastal Zone (mean: 65.4 ± 12.6; Fig. 4a) ecoregions. 
Secondary hotspots included the Ridge and Valley (54.6 ± 24), Southern 
Rockies (51.4 ± 24.0), Sierra Nevada (51.5 ± 16.3), and Blue Ridge 
(50.3 ± 13.5) ecoregions. International visitation rates as determined by 
Flickr photograph density was greatest in the Mojave Basin and Range 
(mean: 75.5 ± 19.9; Fig. 4b), Colorado Plateaus (mean: 63.9 ± 17.8; 
Fig. 4b), and Arizona/New Mexico Plateau (mean: 59.3 ± 20.3; Fig. 4b) 
ecoregions. A secondary hotspot of international visitation rates was 
found in the Atlantic Coastal Pine Barrens (56.0 ± 5.6; Fig. 4b), and 
Northern Piedmont (52.0 ± 11; Fig. 4b). Distance to wildlife trade was 
smallest (highest introduction risk) in the Northern Piedmont (mean: 7.3 
± 3.9; Fig. 4c), Puget Lowland (mean: 7.8 ± 3.7; Fig. 4c), and Southern 
California/Northern Baja Coast (mean: 8.0 ± 4.3; Fig. 4c) ecoregions. 

Fig. 6. Current and predicted accumulated Batrachochytrium salamandrivorans mortality risk. (A) Current mortality risk to salamander populations across the U.S.A. 
based on current climate models, (B) predicted mortality risk based on climate models with RCP 8.5 at year 2070, (C) predicted mortality risk based on climate 
models with RCP 4.5 at year 2050, (D) predicted mortality risk based on climate models with RCP 4.5 at year 2070, and (E) predicted mortality risk based on climate 
models with RCP 8.5 at year 2050. Map lines delineate study areas and do not necessarily depict accepted national boundaries. 
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3.3. Estimating consequences of introduction 

Under current climatic conditions, accumulated infection risk (on a 
scale of 0–100, with 100 representing greatest risk) was greatest on the 
eastern coast of the U.S.A., with greatest risk in the Blue Ridge (mean: 
60.7 ± 11.5; Fig. 5a), Southwestern Appalachians (mean: 53.7 ± 9.8; 
Fig. 5a), and Southern Coastal Plains (mean: 53.6 ± 15.1; Fig. 5a) 
ecoregions. Under current climatic conditions, accumulated mortality 
risk was also greatest in this region, with the Blue Ridge (mean: 58.8 ±
8.3; Fig. 6a), Southwestern Appalachians (mean: 54.6 ± 7.7 Fig. 6a), 
and Southern Coastal Plain (mean: 50.0 ± 14.0 Fig. 6a) ecoregions 
having greatest risk. 

Under climatic conditions predicted by the most extreme model (RCP 
8.5 and at the year 2070), accumulated infection risk was greatest in the 
Blue Ridge (mean: 59.9 ± 13.2; Fig. 5b; Table 2a), Southern Coastal 
Plain (mean: 54.2 ± 13.0; Fig. 5b; Table 2a), and Middle Atlantic Coastal 
Plain (mean: 53.9 ± 15.5; Fig. 5b; Table 2a) ecoregions. Under climatic 
conditions predicted by models with RCP 8.5 and at the year 2070, 
accumulated mortality risk followed the same pattern as infection risk 
and was greatest in the Blue Ridge (mean: 61.9 ± 11.6; Fig. 6b; 
Table 2b), Middle Atlantic Coastal Plain (mean: 61.2 ± 13.0; Fig. 6b; 
Table 2b), and Southeastern Plains (mean: 58.6 ± 10.9; Fig. 6b; 
Table 2b) ecoregions. 

3.4. Overall risk of Bsal invasion (all metrics combined) 

The Bsal invasion risk under current climatic conditions was greatest 
in the Blue Ridge (Risk value: 68.8 ± 8.4; Fig. 7a), Coast Range (Risk 
value: 67.8 ± 10.3; Fig. 7a), Atlantic Coastal Pine Barrens (Risk value: 
65.4 ± 4.6; Fig. 7a), and Northern Piedmont (Risk value: 66.7 ± 6.5; 
Fig. 7a) ecoregions. For the Blue Ridge, the predicted high risk was 
driven by a high consequence of introduction, with high accumulated 
infection (mean: 60.6 ± 11.5), as well as high accumulated mortality 
(mean: 58.8 ± 8.3). For the Coast Range, the high risk was driven by 
Bsal climatic suitability (mean: 74.4 ± 21.1). For the Atlantic Coastal 
Pine Barrens, the high risk was driven by high introduction risks, spe-
cifically a low distance to the wildlife trade (mean: 8.0 ± 3.7), as well as 
high overall protected area visitation (mean: 79.7 ± 11.3), and high 
international protected area visitation (mean: 56.0 ± 5.6). For the 
Northern Piedmont ecoregion, the high risk was caused by the high 
introduction risks, specifically high protected area visitation (mean: 
89.4 ± 12.0), high international park visitation (mean: 52.0 ± 11.0), 
and low distance to wildlife trade (mean: 7.3 ± 3.9). Lastly, the 
Northern Piedmont ecoregion had high accumulated mortality risk 
(mean: 48.3 ± 5.8). 

Under climatic conditions predicted by all models (RCP 4.5 at year 
2050 and 2070, and RCP 8.5 at year 2050 and 2070), overall risk for Bsal 
introduction was greatest in the Coast Range (mean risk range: 64.4 ±
10.0–66.8 ± 10.3), Blue Ridge (mean risk range: 63.2 ± 8.6–66.2 ±
8.5), Northern Piedmont (mean risk range: 60.3 ± 3.6–61.7 ± 3.4), and 
Atlantic Coastal Pine Barrens (mean risk range: 59.8 ± 3.9–61.7 ± 3.8) 
ecoregions. The high overall risk for the Coast Range was driven by high 
climatic suitability for Bsal (mean suitability range: 74.1 ± 21.2–74.6 ±
20.4). For the Blue Ridge ecoregion, the overall high risk was attributed 
to high values for both mean accumulated infection (mean infection 
range: 59.9 ± 13.2–61.1 ± 12.3) and accumulated mortality (mean 
mortality range: 61.9 ± 11.6–64.3 ± 11.6). For the Northern Piedmont, 
the overall high risk was driven by high introduction risks, specifically 
high overall protected area visitation (mean visitation: 84.4 ± 12.0), 
high international protected area visitation (mean visitation: 52.0 ±
11.0), and low distance to wildlife trade (mean distance: 7.3 ± 4.0). 
Lastly, for the Atlantic Coastal Pine Barrens, the high overall risk was 
driven by a combination of protected area visitation both overall (mean 
visitation: 79.7 ± 11.3), as well as protected area visitation by inter-
national visitors (mean visitation: 56.0 ± 5.6), and relatively high cli-
matic suitability for Bsal (mean suitability range: 32.0 ± 9.1–33.4 ±Ta
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9.6). Overall, under predicted climate models, risk values were lower, 
driven mostly by the reduction in Bsal climatic suitability (Fig. 7b; 
Table 3). 

4. Discussion 

Due to high salamander species richness in the U.S.A., understanding 
and predicting how Bsal may emerge is a conservation priority (Gray 
et al., 2015). Overall, our analysis suggests that under both current and 
predicted climatic conditions, the Coast Range, Blue Ridge, Northern 
Piedmont, and Atlantic Coastal Pine Barrens ecoregions are at greatest 
risk for Bsal emergence. In general, the drivers of high risk in our models 
were the accumulated infection and mortality values, which we referred 
to as the consequences of introduction. The most at-risk ecoregions had 
the greatest number of susceptible hosts. This pattern was also observed 
in previously published risk predictions, with the southeastern and 

northwestern U.S.A. representing areas of high risk for Bsal emergence 
(Richgels et al., 2016; Yap et al., 2015). 

In general, our model suggests that patterns of accumulated infection 
and mortality follow patterns of salamander richness. This provides 
evidence in support of previous assumptions that Bsal emergence risk 
scales with local salamander richness (Richgels et al., 2016; Yap et al., 
2015). Furthermore, models of changes in suitability due to climate 
change support previous patterns of shifting climatic suitability, spe-
cifically towards higher elevations, as well as higher latitudes (Lyons 
and Kozak, 2020). As a result of this shift in climatic conditions, there is 
a predicted shift in both accumulated infection and accumulated mor-
tality towards the coasts and towards greater elevations in landscapes 
that are currently climatically suitable for the Bsal pathogen. It is 
important to note that our modeling of Bsal susceptibility (infection and 
mortality) is informative only for the risk of pathogen introduction and 
should be used with caution when inferring spread of Bsal within 

Fig. 7. Overall risk of Batrachochytrium salamandrivorans (Bsal) emergence in the U.S.A based on A) current climatic conditions and B) predicted climatic conditions 
under the RCP 8.5 scenario and at the year 2070. The overall risk model takes into account: Bsal climatic suitability, infection and mortality risks, distance to pet 
trade, and protected area use based on total and international visitation rates. Landscapes in red are at greatest risk of Bsal emergence. Pie charts show the percent 
contribution each metric has in the risk analysis for the top four most at risk ecoregions determined from the current climate analysis. Map lines delineate study areas 
and do not necessarily depict accepted national boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Table 3 
Mean values for each of the factors that contribute to overall Bsal emergence risk in the U.S.A. for current climate models (A), and predicted models based on RCP 4.5 at year 2050 (B), RCP 4.5 at year 2070 (C), RCP 8.5 at 
year 2050 (D), and RCP 8.5 at year 2070 (E). Across models, the Coast Range and the Blue Ridge ecoregions are at greatest risk.  

Ecoregion Mean current Bsal suitability 
scores (±SD) 

Mean accumulated 
infection (±SD) 

Mean accumulated 
mortality (±SD) 

Mean distance to wildlife 
trade (±SD) 

Mean Protected Area 
use (±SD) 

Mean Protected Area use by 
international visitors (±SD) 

Overall risk 
(±SD) 

A) Current 
Atlantic Coastal Pine Barrens 31.8 ± 9.9 27.1 ± 6.5 38.5 ± 9.6 8.0 ± 3.7 79.7 ± 11.3 56.0 ± 5.6 65.4 ± 4.6 
Blue Ridge 24.7 ± 3.2 60.7 ± 11.5 58.8 ± 8.3 30.0 ± 11.7 50.3 ± 13.5 20.4 ± 7.1 68.8 ± 8.4 
Coast Range 74.4 ± 21.1 21.7 ± 10.6 17.9 ± 7.2 24.2 ± 11.5 29.1 ± 12.4 16.6 ± 11.1 67.8 ± 10.3 
Northern Piedmont 22.5 ± 3.6 36.9 ± 4.5 48.3 ± 5.8 7.3 ± 3.9 89.4 ± 12.0 52.0 ± 11.0 66.7 ± 6.5  

B) RCP 4.5 at 2050 
Atlantic Coastal Pine Barrens 32.6 ± 9.9 27.7 ± 5.8 39.7 ± 7.8 8.0 ± 3.7 79.7 ± 11.3 56.0 ± 5.6 61.7 ± 3.8 
Blue Ridge 25.3 ± 2.8 61.1 ± 12.3 64.7 ± 11.2 30.1 ± 11.7 50.3 ± 13.5 20.4 ± 7.1 66.2 ± 8.5 
Coast Range 74.4 ± 20.8 27.0 ± 10.8 25.4 ± 7.8 24.2 ± 11.5 29.1 ± 12.4 16.6 ± 11.1 66.8 ± 10.3 
Northern Piedmont 24.6 ± 2.6 34.3 ± 5.8 46 ± 4.2 7.3 ± 3.9 89.4 ± 12.0 52.0 ± 11.0 61.7 ± 3.4  

C) RCP 4.5 at 2070 
Atlantic Coastal Pine Barrens 33.4 ± 9.6 28.1 ± 6.0 40.0 ± 7.9 8.0 ± 3.7 79.7 ± 11.3 56.0 ± 5.6 59.8 ± 3.9 
Blue Ridge 25.3 ± 2.9 60.7 ± 12.8 64.3 ± 11.6 30.1 ± 11.7 50.3 ± 13.5 20.4 ± 7.1 63.2 ± 8.6 
Coast Range 74.6 ± 20.4 27.3 ± 10.4 26.1 ± 7.6 24.2 ± 11.5 29.1 ± 12.4 16.6 ± 11.1 64.4 ± 10.0 
Northern Piedmont 26.0 ± 3.0 34.9 ± 6.0 46.9 ± 4.5 7.3 ± 3.9 89.4 ± 12.0 52.0 ± 11.0 60.3 ± 3.6  

D) RCP 8.5 at 2050 
Atlantic Coastal Pine Barrens 32.2 ± 9.5 28.2 ± 6.0 40.1 ± 8.0 8.0 ± 3.7 79.7 ± 11.3 56.0 ± 5.6 60.4 ± 4.0 
Blue Ridge 24.9 ± 2.7 60.4 ± 12.9 63.6 ± 11.4 30.1 ± 11.7 50.3 ± 13.5 20.4 ± 7.1 63.9 ± 8.6 
Coast Range 74.3 ± 21.0 27.4 ± 10.3 26.3 ± 7.6 24.2 ± 11.5 29.1 ± 12.4 16.6 ± 11.1 65.6 ± 10.0 
Northern Piedmont 25.1 ± 2.5 34.3 ± 5.7 46.0 ± 4.5 7.3 ± 3.9 89.4 ± 12.0 52.0 ± 11.0 60.6 ± 3.3  

E) RCP 8.5 at 2070 
Atlantic Coastal Pine Barrens 32.0 ± 9.1 28.5 ± 6.4 38.9 ± 8.0 8.0 ± 3.7 79.7 ± 11.3 56.0 ± 5.6 60.3 ± 4.2 
Blue Ridge 25.3 ± 2.5 59.9 ± 13.2 61.9 ± 11.6 30.1 ± 11.7 50.3 ± 13.5 20.4 ± 7.1 63.8 ± 8.6 
Coast Range 74.1 ± 21.2 28.5 ± 9.9 27.5 ± 7.2 24.2 ± 11.5 29.1 ± 12.4 16.6 ± 11.1 66.5 ± 11.0 
Northern Piedmont 26.6 ± 2.0 34.5 ± 5.6 44.7 ± 5.0 7.3 ± 3.9 89.4 ± 12.0 52.0 ± 11.0 61.5 ± 3.2  
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salamander assemblages. Understanding how amphibian diversity and 
abundance interact to influence pathogen dynamics is not well under-
stood (Rohr et al., 2020); however, previous studies on amphibian as-
semblages have shown both pathogen dilution (negative relationship 
between diversity and pathogen abundance; Venesky et al., 2014), and 
amplification (positive relationship; Tornabene et al., 2018) within 
amphibian host-pathogen systems. 

Our models predict that the greatest climatic suitability for Bsal, both 
currently and under projected climate change, is predicted in the 
northwestern U.S.A. Our current climate model agrees with other suit-
ability models produced by Yap et al. (2015), Richgels et al. (2016), and 
Moubarak et al. (2022). Differences in climatic suitability across these 
risk models are likely attributed to differences in modeling algorithms. 
For example, Richgels et al. (2016) used a mechanistic approach based 
on a thermal maximum temperature for Bsal (25 ◦C) to identify 
climatically suitable landscapes. This mechanistic approach may over-
predict suitable climate (Buckley et al., 2010), as the assumed reliance 
exclusively on temperature is likely an oversimplification of physio-
logical and ecological requirements. On the other hand, our model, like 
Yap et al. (2015), used a correlative approach, which has been suggested 
to under-predict invasive species ranges (Tingley et al., 2014). While our 
model and the Yap et al. model are similar, Yap et al. (2015) found a 
second highly suitable area further south along the eastern coast of the 
U.S.A., which was only moderately suitable in our model. This differ-
ence in suitability may be due to the differences in the species occur-
rence points, along with our incorporation of the RF modeling approach. 
Yap et al. (2015) used occurrences of salamanders that are known to 
carry Bsal in their native range in Asia, whereas our model used points of 
Bsal positive salamanders sampled in both Asia and Europe. 

When comparing the suitability scores associated with the highest 
quantiles under current and predicted climate models, in general there is 
a reduction in highly suitable climatic conditions for Bsal. It is likely that 
this reduction in highly suitable climatic conditions is due to predicted 
increased temperatures. Previous work has suggested that Bsal has a 
thermal maximum temperature of 25 ◦C (Martel et al., 2013). In addi-
tion, our models show that suitable climate shifts towards higher ele-
vations and latitudes, similar to what has been predicted for Bd (Xie 
et al., 2016). This shift is especially apparent in the Rocky Mountain 
region, where only the greatest elevations maintain high suitability. It is 
important to note that the grain of our study was based on our raster 
dataset, which had a resolution of 30 s (approximately 1 km2). There-
fore, at this scale we cannot assess the role of microenvironments in 
climatic suitability, likely resulting in an under-prediction of both risk 
and suitable habitat across the U.S.A. Additionally, our model of cli-
matic suitability for Bsal was based on 77 occurrence points, and while it 
has been shown that MaxEnt can generate accurate predications based 
on as few as 30 points (Wisz et al., 2008), increasing the sampling effort 
for Bsal, and ultimately occurrence points, within its native and intro-
duced range will help refine future predictions of climatic suitability. 

Provided that the U.S.A. leads the world in amphibian imports (Can 
et al., 2019), it is likely that Bsal emergence is only a matter of time, 
considering practices that promote international clean trade of wildlife 
are not encouraged or required in the U.S.A. (Richgels et al., 2016; Yap 
et al., 2015). Previous work has suggested that the risk of Bsal emer-
gence due to spillover will scale with the Euclidean distance from the pet 
trade (Richgels et al., 2016); however, this may be an oversimplification 
of this risk. The online pet trade has increased in popularity (Siriwat and 
Nijman, 2020) and obscures the relationship between wildlife trade 
locations and spillover risk. While previous risk models have empha-
sized the pet trade as a major introduction route for Bsal, multiple 
wildlife pathogens have likely emerged through fomite-mediated 
dispersal, i.e., Pseudogymnoascus destructans (Blehert et al., 2009) and 
Batrachochytrium dendrobatidis (Walker et al., 2008). Here, we used 
protected area visitation rates as a metric of risk for fomite-mediated 
pathogen dispersal and encourage others to consider this approach in 
future risk analyses. One of the major hotspots identified in our analysis 

contains the epicenter for P. destructans spread in the U.S.A. (Blehert 
et al., 2009), providing additional support that introduction of novel 
pathogens via fomite-mediated dispersal to protected areas with high 
visitation rates is a real threat. 

Across climate models, we found that the greatest risk of Bsal 
emergence in the U.S.A. is predicted in the Southeast and Northwest, 
following patterns of salamander species susceptibilities. Across climate 
change models, there is a general lack of change in overall risk at the 
ecoregion level, however, there is a general reduction in predicted cli-
matic suitability for Bsal. Our models add to the growing literature 
predicting risk of Bsal emergence in the U.S.A. via incorporation of 
variation in species susceptibilities paired with the additional influence 
of climate change and human-mediated introductions. Conservation 
efforts should focus on preventing the spread of Bsal in the U.S.A. and 
North America, as preventative measures are more cost effective than 
removal or mitigation efforts (Karesh et al., 2005). Additionally, efforts 
should include enhanced surveillance and monitoring, especially in the 
pet trade and areas with high salamander diversity. Future work should 
aim to understand the role of microhabitats for affecting Bsal environ-
mental suitability and persistence and incorporate estimates into risk 
assessments, as well as continued evaluations of species susceptibilities 
to the Bsal pathogen. 
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