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In the present work, the effects of oxidation treatment on the structures and properties of a novel TiZrHfNbFe 5
refractory multi-principal element alloy (MPEA) were reported. It is found that the TiZrHfNbFe, s MPEA exhibits
a sluggish oxidation rate at 1,000 °C, which is attributed to the formation of a compact and stable oxide layer
consisting of complex metallic oxides like TiZrOg and Fe;Os. In comparison with the as-cast MPEA, the
microhardness of the 1,000 °C oxidized MPEA significantly increases by 1.6 times, resulting in a two orders of

magnitude higher wear resistance. Furthermore, the bio-corrosion resistance, hydrophilicity, and bioactivity of
the MPEA are remarkably enhanced by the 1,000 °C oxidation. In short, the formation of a highly protective
oxide layer with enhanced wear and corrosion resistance by heating the TiZrHfNbFe, 5 MPEA at 1,000 °C, which
shows promising prospects for biomedical applications.

Owing to their good bio-corrosion and mechanical performances,
titanium alloys have been widely employed in the application of
orthopedic-implantation [1,2]. However, current implant titanium al-
loys, e.g., Ti6Al4V, still encounter several complexities in clinical ser-
vice. For instance, titanium alloys exhibit a much higher elastic modulus
of 110 GPa than that of human bones of 10 - 40 GPa, resulting in the
stress-shielding effect [3]. Moreover, the elemental Al of the Ti6Al14V
alloy may cause Alzheimer’s disease, and the elemental V has a high
biological toxicity and may cause cancer [4]. Furthermore, due to the
poor wear resistance of titanium alloys, wear products may induce
inflammation and cause aseptic loosening [5]. In addition, titanium
alloys are generally bioinert, which prevents them forming an active
bond with human bones [2,3].

High-entropy alloys (HEAs) are composed of at least five principal
elements, which exhibit a nominally single-phase structure and excel-
lent performances [6,7]. In fact, more broadly alloy systems, termed
multi-principal element alloys (MPEAs) have in many instances also
demonstrated unique properties [6]. Among various MPEAs systems,

TiZr-transition group metal refractory MPEAs, such as Ti-Zr-Hf-Nb [8],
Ti-Nb-Ta-Zr [9], Ti-Nb-Ta-Zr-Mo [10-12], Ti-Nb-Ta-Zr-Hf [13-18],
Ti-Nb-Zr-Hf-Mo [19], Ti-Zr-Hf-Nb-Fe [20] et al., display a variety of
properties superior to those of traditional biomedical metallic materials.
For instance, the TiNbTaZrHf MPEA is composed of the
body-centered-cubic (BCC) phase and tiny HCP phase and display a
lower elastic modulus of 78 GPa than that of the Ti6Al4V alloy, which
weakens the stress-shielding effect [15]. Furthermore, due to the low
biotoxicity of constituent elements, such as Ti, Zr, Hf, Nb, Ta, and Mo,
refractory MPEAs show low cell cytotoxicity, high cell adsorption and
proliferation ability, and thus good biocompatibility [4,15,17]. As a
result, the refractory MPEAs exhibit promising application potential as
biomedical-implant materials.

Although the wear performance of the refractory MPEAs reported so
far is mostly superior to that of Ti6Al4V alloy, it is still significantly
inferior to that of well-known biomedical alloys of the 316 L stainless
steel and CoCrMo alloy [12,20]. Furthermore, the bioinert nature of the
refractory MPEAs should be improved when they are used as implant
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Fig. 1. (a) Weight gain per unit area of the TiZrHfNbFe, 5s MPEA as a function of heating time under the oxidation temperature of 1000 °C. (b) XRD patterns of the as-
cast and 1000 °C-oxidized TiZrHfNbFe, s MPEAs. (c1) Backscattered electron SEM image of the surface morphology for the as-cast TiZrHfNbFe, s MPEA. (c2-c3) SEM
images of surface morphologies for the 1000 °C-oxidized TiZrHfNbFeq s MPEA. (el) Cross-sectional backscattered electron SEM morphology, and corresponding EDS
mapping of the (e2) oxide layer and (e3) inner matrix regions of the 1000 °C-oxidized TiZrHfNbFe, 5 MPEA.



N. Hua et al. Scripta Materialia 225 (2023) 115165

107
(a) <z as-cast
10y v TiZrHfNbFe, , This vork]
4 A 4 1000°C-Oxidized
ﬁ'E 10 TiZrH{NbFe, 5 [This work]
£ «Ti6AI4Y [This¥ord
e 1y A CoCrFeMnNil'Z]
g 106 » 316LSS 13
g % @ AICrFeMnV [
g 1074 ne - ® CoCrMo P
5 > M Ti, ;ZrNbTaMo 1'%
§ 108 4 ¢ ¥ AlCoCrFeNi B34
*
10”° T T T T T T
200 400 600 800 1000 1200
Hardness (Hv)
(b1) Ti6AI4V (b2) Oxidized TiZrHfNbFe,
98.410 um I X 24.820 um"
3.506 m I‘ l
2.630 - N »~ ,
1.753 A : 4675 mm 245794 pm 2538 mm 25746 um
’ X 3.506
0.877
1.169
» 0.476
o

0.635

Fig. 2. (a) Wear rates and hardness of various MPEAs and the conventional biometals. Three-dimensional morphologies of the (b1) Ti6Al4V alloy and (b2) 1000 °C-
oxidized TiZrHfNbFe, s MPEAs. (c1-c4) SEM morphologies of worn scars for the 1000 °C-oxidized MPEA.
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materials. To improve surface performances, various surface-treatment
technologies, including the oxidation heat treatment [21], nitriding
[22], micro-arc oxidation [23], ion implantation [24], physical vapor
deposition [25], and laser cladding [26], have been performed on tita-
nium alloys. Among those, the oxidation heat treatment is characterized
by the simple process, low cost, and large film thickness, and thus,
exhibit a promising application prospect. Nevertheless, investigations
on the oxidation treatment of TiZr-based refractory MPEAs to improve
their performance for biomedical applications have not yet been re-
ported to date.

In our previous work, a new TiZrHfNbFe 5 refractory MPEA was
developed, which shows a relatively low Young’s modulus of 50 GPa,
high strength of 1450 MPa, and distinct plasticity [20]. Moreover, the
refractory MPEA is corrosion-resistant in a phosphate buffer saline (PBS)
solution [20]. In the present study, a compact and stable layer with
complex metallic oxides was obtained on the TiZrHfNbFe( 5 MPEA after
being oxidized at 1000 °C for 6 h. The hardness, wear resistance,
bio-corrosion resistance, and surface bioactivity of the MPEA were
significantly improved, which effectively promotes the application of
MPEA in the field of biomedical-implant alloys.

Pure metals with a purity of above 99.5 wt percent (wt.%) were arc-
melted for at least 4 times to fabricate master alloys with a composition
of TiZrHfNbFeq 5 (in a molar ratio) on a water-cooled copper crucible
under a high-purity argon atmosphere. Rectangular-plate samples with a
gage of 10 x 10 x 2 mm® were machined from the central part of master
alloys, ground with diamond sandpapers, and then polished. The alloy
samples were heated in the atmosphere at 1000 °C for 6 h. The weight
gain of the MPEA was measured for each hour by an electronic balance
with a high precision of 0.0001 g. The structures of the as-cast and
oxidized MPEAs were examined by an X-ray diffractometer (XRD, D8
advance). The surface morphologies and compositions of samples were
analyzed by scanning electron microscopy (SEM, Nova nano SEM 450)
with an X-ray energy spectrum (EDS).

The micro-hardness test was performed by a THV-10D Vickers
hardness tester using a load of 300 gf and a dwell time of 15 s. The
reciprocating sliding tests were carried out by an MSR-2T tribometer,
employing a SigN4 couple pair ball. The wear volume (AW) of MPEAs
was measured by a GT-X 3D surface profilometer. The wear rate (Ws) of
samples is calculated, according to the formula: AW = Ws / (S-N), where
N is the applied normal load, and S is the friction distance. SEM and EDS
were employed to analyze the morphology and composition of wear
scars.

The potentiodynamic-polarization curves of samples in the phos-
phate buffer saline (PBS) solution were examined by a PGSTAT 302 N
electrochemical workstation. The surface chemistry of RHEAs was
analyzed by the ESCALab250Xi X-ray photoelectron spectroscopy (XPS).
The contact angle and surface-free energy (SFE) of alloys were measured
by a DSA 25 CAM-Plus contact angle meter. To evaluate the bioactivity
of the 1000 °C-oxidized MPEA, the surfaces of alloy samples were
immersed in a simulated body fluid (SBF) for 14 days, and then exam-
ined by SEM and EDS. The components of the PBS and SBF solutions can
be found in references [12,27].

Fig. 1(a) shows the weight gain per unit area of the TiZrHfNbFe 5
MPEA as a function of the heating time under the oxidation temperature
of 1000 °C, using a Ti6Al4V alloy as a reference sample. The insets
present the morphology images of the as-cast and 1000 °C-oxidized alloy
samples. The weight gain of the Ti6Al4V alloy nearly linearly increases
as the heating time prolongs. Spall-off fragments of the oxidation layer
can be observed for the Ti6Al4V alloy after being heated at 1000 °C. The
weight gain of the MPEA promptly increases at the initial 1 h of
oxidation and then remains almost steady as the oxidation time pro-
longs, exhibiting a sluggish oxidation behavior. It is visible that a
consecutive oxide layer in silver gray is formed on the surface of the
MPEA after being heated at 1000 °C.

Fig. 1(b) displays the XRD patterns of the as-cast and 1000 °C-
oxidized TiZrHfNbFey s MPEAs. The as-cast MPEA consists of the BCC
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and Laves phases. After the oxidation treatment at 1000 °C, an oxide
layer, including Ti»ZrOg and Fe30s3, is formed on the alloy surface. It has
been reported that titanium alloys are usually oxidized at 600 ~ 800 °C
to obtain a TiOy-surface film. Unfortunately, during the long-time
oxidation process at high heating temperatures, the oxide film is easy
to delaminate, which results from the localized stress [28,29]. Owing to
the characteristics of multi-principal elements and the simple
solid-solution structure, the formation of TiyZrOg (2TiO2-ZrO,) can
occur due to TiO, reacting with ZrO, [30]. It was found that the thick
TipZrOg layer was intact and protective, which led to the sluggish
oxidation kinetics and acted as the barrier layer [30].

Fig. 1(cl) presents the backscattered-electron SEM image of the
surface morphology for the as-cast TiZrHfNbFey 5 MPEA. The as-cast
MPEA is composed of the bright-contrast dendrite (DE) and dark-
contrast interdendrite (ID) regions. The inset of Fig. 1(c1) lists the EDS
results on typical sites of DE and ID regions. It is seen that there are Ti,
Zr, Hf, Nb, and Fe elements in both DE and ID regions. Nevertheless, the
enriched Nb and depleted Fe is found in the DE region, whereas the Fe is
enriched, and Nb is depleted in the ID region.

Figs. 1(c2-c3) depict the SEM images of surface morphologies for the
1000 °C-oxidized TiZrHfNbFe( 5 MPEA. It is visible that the connected
island-shaped oxidation products with a width of about 10 ym formed
on the alloy surface. The island-shaped oxidation products consist of a
variety of closely accumulating particles with a size of 1 ~ 2 pm.
Meanwhile, nano-sized particles are homogeneously and compactly
distributed on the relatively flat area around the island-shaped convex.
Combined with the EDS mapping [Fig. 1(d2)] and XRD analysis results
[Fig. 1(b)], it is illustrated that the island-shaped convex region with a
high fraction of Fe and O is mainly composed of FepO3 grains, which
locates above the ID region enriching in the elemental Fe. The flat area
merely consists of nano-sized TisZrOg oxide particles, which corre-
sponds to the DE region. The surface morphology image of the 1000 °C-
oxidized Ti6Al4V alloy (not shown here) that there are a large amount of
pores on the oxide layer, which provides several channels for oxygen
passing through and results in the linear oxidation kinetics.

The grain size of Fe;O3 is obviously larger than that of TiyZrOs,
which is related to the oxidation rate of different constituent compo-
nents. According to the Wagner’s parabolic oxidation theory, the para-
bolic oxidation rate constant, K.y, of metallic oxides correlates to the
oxidation velocity and does not necessarily related to the stability of the
corresponding metallic oxides [31]. Although the TiOj is thermody-
namic stabler than Fe;Os, the Ky, of TiO, is one order of magnitude
smaller than that of Fe;O3 [32]. For the Fe-rich phase, the fraction of Fe
ions diffusing through the metallic oxide layer is lager than that of the
Fe-depleted phase. Owing to the high Ky, of Fe203, the oxidation rate of
thickness of the FeyO3 oxide layer is significantly larger than that of
TipZrOg, resulting in the formation of island-shaped convex.

Figs. 1(el) present the cross-sectional backscattered-electron SEM
morphology of the 1000 °C-oxidized TiZrHfNbFey s MPEA. Figs. 1(e2)
and 1(e3) display the EDS mapping of the oxide layer and inner matrix
regions. The oxide layer on the MPEA surface has a thickness of about
180 pm with a distinct higher fraction of oxygen than that of the region
below the oxide layer [Fig. 1(e2)]. It can be seen that there is dual phase
structure in the core area of the annealed MPEA, which is almost iden-
tical with that of the as-cast alloy [Fig. 1(e3)].

Fig. 2(a) summarizes the wear rate and hardness of various MPEAs
and the conventional biometals. The microhardness enhances from 440
HV for the as-cast RHEA to 1146 HV for the 1000 °C-oxidized MPEA. The
wear rate of the Ti6Al4V alloy is 2.4 x 1077 mm®>mm™1-N ~ !, which is
two orders of magnitude larger than that of 3.23 x 10~° mm®mm™!.N ~
! for the 1000 °C-oxidized MPEA. The wear resistance of the oxidized
TiZrHfNbFe( 5s MPEA is significantly higher than that of the other MPEAs
and the Ti6Al4V, 316 L stainless steel, and CoCrMo alloys [12,17-20,33,
34], which implies that the oxidized MPEA is promising in the appli-
cation of high wear-resistant implantation instruments.

Figs. 2(b1-b2) present the three-dimensional morphologies of the
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Ti6Al4V alloy and 1000 °C-oxidized TiZrHfNbFe( 5 MPEA, respectively.
There is a deep and wide wear scar on the surface of the Ti6Al4V alloy
after the reciprocating friction for 5 h. However, the wear scar surface of
the 1000 °C-oxidized MPEA is relatively flat with only slight scratches,
indicating the excellent wear resistance of the oxidized MPEA. Figs. 2
(c1-c4) exhibit the SEM morphologies of worn scars for the 1000 °C-
oxidized MPEA. It can be seen from Fig. 2(c1) that the SigNy4 ball debris
was dispersed in the worn scar of the oxidized MPEA, which further
confirms its high wear resistance. Figs. 2(c2-c4) demonstrate that the
island-shaped convex region is worn down, and the pm-sized Fe;O3
grains are ground to ~ 100 nm-sized grains, which has been reported to
be beneficial to forming a lubricating tribolayer and improving the wear
resistance [35]. Moreover, the flat area consisted of nano-sized TisZrOg
particles shows scarcely any sign of wear and tear, which indicates that
the high wear resistance mainly results from the compact and stable
nanostructured oxide layer.

The potentiodynamic-polarization curves of the as-cast and oxidized
TiZrHfNbFeo 5 MPEAs as well as the Ti6Al4V alloy in the PBS solution
are presented in Fig. 3(a). The corrosion potentials of the as-cast and
oxidized MPEAs are higher than that of the Ti6Al4V alloy. The oxidized
MPEA exhibits the highest corrosion potential of - 0.21 V, indicating the
formation of the highly stable passive film in the PBS solution. More-
over, the oxidized MPEA displays the lowest corrosion current density
and passivation current density, demonstrating the superior corrosion
resistance among all alloy samples.

Figs. 3(b-c) display the full spectrum and narrow scanning spectra of
constituent elements for the as-cast and oxidized TiZrHfNbFeq 5 MPEAs,
respectively. It is seen in Fig. 3(b) that the peaks of Ti 2p, Zr 3d, Hf 4f, Nb
3d, Fe 2p, C 1 s, and O 1 s are detected in the full spectrum for both as-
cast and oxidized MPEAs. The O on the surface of the as-cast MPEA is
mainly in terms of 02_, OH™, and bound water (H20). Due to the
oxidation at 1000 °C, the O on the surface of the oxidized MPEA turns
into chiefly the O?~. From the narrow scanning spectra of Ti 2p, Zr 3d,
Hf 4f, Nb 3d, Fe 2p, and O 1 s in Fig. 3(c), it can be found that the
fractions of Zr** and Hf*" are reduced, and Ti*", Nb®>", Fe®*, and 0> on
the oxidized MPEA are significantly enriched in comparison with those
of the as-cast MPEA. The existence of the highly-protective nano-struc-
tured TisZrOg on the oxidized MPEA surface contributes to the enhanced
corrosion resistance.

Figs. 4(al-a2) illustrate the contact angle and surface free energy
(SFE) of the deionized water (DI) and diiodomethane (DII) on the sur-
face of the as-cast and 1000 °C-oxidized TiZrHfNbFe( s MPEAs as well as
the Ti6Al4V alloy, respectively. It is noted that the oxidized MPEA ex-
hibits the lowest water contact angle of about 40° and the highest sur-
face energy up to 61.29 mN/m. Previous reports demonstrated that
when the water contact angle is less than the Berg limit (¢ = 65°) or the
SFE value exceeds 50 mN/m, the surface of materials exhibits good
hydrophilicity, which is conducive to cell adhesion and growth, and thus
results in good biocompatibility [36].

Figs. 4(b1-b2) show the SEM images of the surface morphologies of
the 1000 °C-oxidized TiZrHfNbFeys MPEA, immersed in a simulated
body fluid (SBF) at 37 °C for 14 days. A compact and intact reaction
product layer is found, covering on the whole surface of the oxidized
MPEA. The high-magnification SEM image on the island-shaped Fe-ox-
ides convex in Fig. 4(b2) demonstrates that a great number of nano-sized
needle-like precipitation products filled in the glaze-like reaction layer.
The EDS mapping of the constituent elements is listed in Fig. 4(c). It is
discovered that Ca and P are found on the surface of the oxidized MPEA,
which corresponds to the formation of the hydroxyapatite. The great
hydroxyapatite-forming ability of the oxidized MPEA further indicates
its good bioactivity and preliminary biocompatibility.

In conclusion, the microstructures and properties of the surface oxide
layer for the TiZrHfNbFe( 5 MPEA heated at the temperature of 1000 °C
were investigated. The MPEA exhibits a sluggish oxidation behavior at
1000 °C owing to the formation of the complex metallic oxide on the
alloy surface, which consists of Ti»ZrOg and FeoO3. The complex metallic
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oxide layer has a compact and stable structure, which remarkably
improve the hardness, wear and corrosion resistance, as well as surface
bioactivity of the MPEA. In short, the highly-protective oxide layer
forming on the surface of the TiZrHfNbFe( s MPEA by heating at 1000 °C
offers a novel strategy to fabricate materials or coating with excellent
corrosion and wear resistance.
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