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Cabling in terms of immersed curves

JONATHAN HANSELMAN
LiAm WATSON

In joint work with J Rasmussen (Proc. Lond. Math. Soc. (3) 125 (2022) 879-967), we
gave an interpretation of Heegaard Floer homology for manifolds with torus boundary
in terms of immersed curves in a punctured torus. In particular, knot Floer homology is
captured by this invariant (arXiv 1810.10355). Appealing to earlier work of the
authors on bordered Floer homology (Geom. Topol. 27 (2023) 823—924), we give a
formula for the behaviour of these immersed curves under cabling.

57M25, 57M27

Knot Floer homology, as introduced by Ozsvath and Szabo [18] and Rasmussen [20],
provides a categorificaLtion: Givgn a knot K in the three-sphere, this invariant is a

bigraded vector space Km.K; a/ with the property that

a,m2Z
X
1/mdim.l-me.K; a//t?

a,m
recovers the (symmetrized) Alexander polynomial. This polynomial knot invariant
satisfies natural properties associated with operations on knots; for instance, it is well
behaved under cabling. Understanding how this particular property manifests at the
categorified level drove some of the early calculations of knot Floer homology; see in
particular work of Hedden [7; 8; 9].

Bordered Floer homology provides an essential tool for studying decompositions of
three-manifolds along essential tori; see Lipshitz, Ozsvéath and Thurston [15]. They laid
out a framework of bimodules, of relevance to satellite operations, in [14]. The work of
Levine [13], Hom [11], and Petkova [19], for example, puts this to use in an essential
way. In the setting of manifolds with a single toroidal boundary component, the relevant
bordered invariants have been recast in terms of immersed curves in the once-punctured
torus; see Hanselman, Rasmussen and Watson [4; 5]. For the purpose of this note, the
examples of interest will be provided by the complement of a knot in the three-sphere;
our aim is to establish formulas for how these invariants behave under cabling. Namely,
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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926 Jonathan Hanselman and Liam Watson

.2; 1/ .2;1/

Figure 1: The Heegaard Floer homology for the .2; 1/-and .2; 1/—cables of
the right-hand trefoil; the invariant for the trefoil complement is shown in grey.

for a knot K in S3, let Kp;q denote the .p; q/—cable of K, and denote the respective
knot complements by M D S3 n.K/ and Mp;q D S3 n.Ky;q/; given the immersed
multicurve AF.M /, we wish to describe HF.My.q/ explicitly. For example, immersed
curves for two cables of the right-hand trefoil are illustrated in Figure 1; the expert
reader already familiar with the passage from K.K/ to K.Kp;q/ should compare
these pictures with the detailed calculations of Hedden [7] or Ozsvéth, Stipsicz and
Szabo [17]. Our calculation makes an explicit appeal to a bordered trimodule calculated
by the first author [3], which was reinterpreted combinatorially in work of the authors
predating the immersed curves invariant [6]. Indeed, central to this article is the work of
translating our merge operation (described in terms of loop calculus) into the language of
immersed curves (Section 1); cabling is then seen as a special case of the merge
operation (Section 2).

Recall from [4; 5] that, for a (connected, orientable) three-manifold M with torus
boundary, the invariant HF.M / takes the form of a collection of immersed curves,
possibly decorated with local systems, in the punctured torus T D @M nz, where z is
some fixed basepoint in @M. If we choose a pair of parametrizing curves ._; “/ on @V,
then T can be identified with the square (E0;1e¢ (EQ;1e with opposite sides identified
such that , runs in the positive vertical direction, ” runs in the positive horizontal
direction, and the puncture z is identified with .0; 0/. For a knot complement, there is
a preferred choice of parametrizing curves, .;/, where is the meridian and is the
Seifert longitude. The invariant HF.M /Ccomes equipped with grading data which,
among other things, specifies a lift of these curves to the punctured cylinder
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Cabling in terms of immersed curves 927

T D.RZnZ2/=hi; in the standard framing, this can be identified with .R=Z/R with
punctures at each lattice point .0; n/. (Note that this is the point of view taken in the
presentation of the invariants in Figure 1: in each rectangle, the sides are identified to
form a cylinder.) Thus as a graded object it makes sense to view HF.M / as a collection

possibly decorated with local systems. For knots in S 3, these curves have the property
that, possibly after a homotopy, the curve set intersects the vertical line lz R exactly
once; we will always assume that g is the curve component containing this intersection.
In other words, o wraps around the cylinder exactly once, while the remaining j>o
can be confined to a neighbourhood of the vertical line through the punctures. We
remark also that, while may carry nontrivial local systems, ¢ always carries the
trivial 1-dimensional local system (otherwise the rank of Hf of the meridional filling of
K would be greater than one). Finally, it is sometimes convenient to work in the plane
T D RZn Z2 rather than the cylinder, with the multicurve lifting to one that is invariant
under translation by ; note that in this cover g lifts to a single periodic curve while each
i>o lifts to infinitely many copies of the same curve.
We will show that the .p; q/—cable operation acts on HF.M / by applying a particular
diffeomorphism to the plane. Let g,,q be a diffeomorphism of R? defined on the
lattice Z2 by sliding each lattice point leftward along lines of slope 2 until they first
meet a vertical line x D np for some integer n. Note that gy 4 does not fix the lattice Z2 but
rather takes it to pZ 1Z; let f,, 4 be the composition of this map with vertical
stretching by a factor of p and horizontal compression by a factor of p, so that f,; 4
takes Z2 to Z2, followed by a vertical shift of %.p 1/.9 1/. We remark that the
vertical shift is forced by the symmetry of the curves €F.M / for any M and our
convention that these curves are centred at height Zl; with this convention understood
we will generally ignore the vertical positioning of the curves, but it is sometimes
helpful to keep track of this vertical translation explicitly. The map f,;q is not linear,
though in some sense it is as close to being linear as possible: it is the composition of
linear transformations, which can each be realized as a sequence of plane shears, with a
single fractional plane shear (defined in Section 2).

Theorem 1 If is the immersed multicurve associated with K, ,.q is the immersed
multicurve associated with Ky.q, and z and z 4 are the corresponding lifts to T B R?2
nZ2, thenz .q js homotopic to f,;q.2/.

Note that fy, ¢ is periodic with period p in the horizontal direction, so it makes sense to
view f,,q as a map from the cylinder pT WD.R=pZ/R to T WD.R=Z/ R taking
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928 Jonathan Hanselman and Liam Watson

Figure 2: Computation of the immersed curve associated with the .3;2/-
cable of the right-hand trefoil, starting from the trefoil curve pictured on the
left. The two middle diagrams are two ways of thinking about the construction
starting from three copies of the trefoil curve: we either slide lattice points
along lines of slope % or we stagger the heights of the three copies of the
trefoil curve and then slide lattice points horizontally. Either way the result is
the curve on the right.

lattice points to lattice points. With this view, the process of computing FIF.Mp.q/ from
KHF.M /istoliftfromT topT andthenapply fo;q. In practice, thisamounts to drawing p
copies of HFEM / in sequence, perturbing the curve by pushing lattice points along

lines of sIopeﬂIO until they all lie on the same vertical line, and then scaling vertically
by a factor of p. This procedure is depicted in Figure 2 for the case of the .3; 2/—cable
of the right-hand trefoil. It is helpful to note that the procedure of pushing lattice points
along lines of slope % can equivalently be viewed as drawing p copies of the input
curve with staggered heights and then translating punctures horizontally. In practice,

the process for computing lF.Mp,q/ from KF.M / amounts to a three-step process:

(1) draw p copies of HF.M / next to each other, each scaled vertically by a factor
of p, staggered in height such that each copy of the curve is a height of q units
lower than the previous copy;

(2) connect the loose ends of the successive copies of the curve; and

(3) translate the pegs horizontally so that they lie in the same vertical line, carrying
the curve along with them.

Numerical concordance invariants extracted from curves

As an illustration of Theorem 1 at work, we can revisit the work of Hedden [8; 9] and
Van Cott [21], culminating in a result of Hom [11], which establishes the behaviour of
the —invariant under cabling. Since . K/ can be easily extracted from the immersed
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multicurve HF.M /, we can recover this cabling behaviour from Theorem 1. The same
is true for some other numerical invariants. We begin by making an observation that is

curves for HF.M /, with o the unique component which wraps around the cylinder.

This component is itself an invariant of K, so it will sometimes be convenient to express
itasg.K/.

Proposition 2 The curve o.K/ is an invariant of the concordance class of K.

Proof This follows from Hom [12] and the recipe for deriving @F.M / from CFK .K/
described in [5, Section 4]. The concordance invariant described in [12] is the smallest
direct summand of CFK .K/, up to homotopy equivalence, which supports the ho-
mology of S3. The set of immersed curves derived from this summand is a subset of
the immersed curves |HF.M / which necessarily contains o.K/. This subset of curves,

and in particular g.K/, is thus a concordance invariant. O

Note that the concordance invariant described in [12] is slightly stronger than ¢ since
some information may be lost when passing from complexes to immersed curves
(namely, diagonal arrows are ignored). In fact, o.K/ carries exactly the same in-
formation as the —equivalence class of K defined in [12]. Any number that can
be extracted from g is automatically a concordance invariant, and several familiar
concordance invariants can be defined in this way. The two most common are and
Hom'’s —invariant, which are extracted from ¢ as follows: Starting on the section of
o Which wraps around the back of the cylinder — say, at the unique intersection

of o with the line x D %—and moving rightward along o, let a denote the first
intersection of o with the vertical axis x D 0. Then the integer records the height of the
intersection point a (here we use a discrete notion of height given by the greatest
integer less than the y—coordinate of a). Continuing along ¢ from a, one of three
things can happen: o can turn downwards, it can turn upwards, or it can continue
straight to wrap around the cylinder. This is recorded by , which takes the values C1,
1 or 0 in these three cases, respectively. (Both of these observations are made in [5].)
Note that if D 0 then there is only one intersection of g with the vertical axis, so g is
simply a horizontal curve, which is the immersed curve associated with the
complement of the unknot. Now consider the effect of cabling on each of these
invariants. Throughout, let 9 D ¢.K/ and let ; D §.Kp;q/.

Theorem 3 (Hom [11, Theorem 2]) If .K/ D "1 then .Ky.q/ D .K/; and if
K/ D Othen .Kp.q/ D .Tp,q/-

Geometry & Topology, Volume 27 (2023)
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A quick reproof of Theorem 3 By Theorem 1, { is obtained from o by placing p
copies of g next to each other, with appropriate vertical shifts, and compressing them
into one vertical line. The first intersection of © \6vith the vertical axis thus comes from

the first intersection of the first copy of o with the vertical axis, and clearly if o turns
upward or downward at this point then00 does also. On the other hand, if .K/ D 0

then o is simply a horizontal line, the same as the curve associated with the unknot. It
follows that o fBrees with 0.Tp;q/, since T4 is the .p; q/—cable of the unknot, and thus

Kp:q/ D Tp,q/. O

The value .Tp,q/ was also computed in [11, Theorem 2]; we can recover this computa-
tion by viewing Tp.q as the .p; q/—cable of the unknot. In this case g is horizontal in T N
and lifts to a horizontal line in pT. To compute 0grom this we shift the ith column
downwards by ipﬂ and then compress horizontally. If jgj D 1 then Ty, 4 is unknotted
and we must have .Tp.q/ D 0; indeed, in this case every column of lattice points shifts
by less than one unit, so it is possible for 0to remain horizontal despite the shift. On
the other hand, if g > 1 then the shift causes to turn downwards, so .Tp;q/ D C1;
similarly, if < 1then j turns upward and .Ty;q/ D 1.

Theorem 4 [11, Theorem1] If .K/ D "1 then.K,,q/D p.K/Cl—.p2 1/.q1/; and if
.K/ D Othen .Kp;q/ D .Tp;q/ D . 1/5879/.p 1/jdj 1/.

A quick reproof of Theorem 4 The first intersection of 0( with the vertical axis
clearly comes from the first intersection of the first copy of o with the vertical axis.
This intersection occurs between the lattice points at height .K/ and .K/ C 1; after
applying f,.q and the appropriate vertical shift, these lattice points map to heights
hiDp.K/C,% 1/.g 1/andh,D p.K/CpC,.p11/.q 1/. Notethatthereare p
1 lattice points between these two heights; whether or not , first intersects the vertical

axis above or below these points depends on the behaviour of o just after it crosses
the vertical axis, as pictured in Figure 3. If g turns downward (ie if

ol C1 oCpC ,p 1/q 1/
— -
. o C ,ip 1/q 1/

Figure 3: Calculating .Kp;q/.
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.K/ D C1), then Will also turn downward and meet the vertical axis just above
height hy; thus .Kp;q/ D hy. If o turns upward (ie if .K/ D 1), then wifl also turn
upwards and meet the vertical axis just below height hy; thus .Kp.q/ D h, 1D p.K/C

ip 1/.q2C 1/. Finally, if .K/ D 0 then g agrees with the curve invariant of the unknot,
so , is the curve asdsociated with Tp,q, and thus .Ky;q/ D .Tp;q/. In particular, if g > 1

then © bends down after its first intersection with the vertical axis, and as above Kp;q/

DhiDlp 1/q 1/.1fq < 1 then 9 bends upward and .Kp-oq/ D hy 1D
Llp 1/. q R 1/, while if joj D 1 then , is horizgntal and .Kp;q/ D
0- D

Other concordance invariants can be extracted from o.K/. For instance, for any
positive integer i, the invariant ;. K/ introduced recently by Dai, Hom, Stoffregen and
Truong [1] counts the number of left arcs of ¢ of length i, where a left arc of length i
refers to a segment of g connecting successive intersections with the vertical axis
whose height differ by i which does not wrap around the cylinder and which lies to the
left of the vertical axis. These arcs are counted with sign coming from the orientation of
o0, with downward oriented arcs counting positively.? Like , the integers ; are of
particular interest in the study of knot concordance because they are additive under
connected sum; that is, they define concordance homomorphisms.

Returning to cabling, the behaviour of the invariants ; is more complicated. In
particular, ;.Kp;q/ does not depend only on ;.K/, or even on the collection of
invariants .K/, .K/ and .K{ forall j. In order to express the effect of cabling we

need to keep track of how each left arc in o.K/ behaves at each end. For example, we

¢ - ¢ and,  encoding the signed count of four

can define refined invariants cic ,
different types of length i left arcs in g. The type is determined by the direction ¢ turns
at each end of the segment; C indicates that ¢ turns upward and indicates that o
turns downward, with the first sign indicating the behaviour at the top of the arc and the
second sign indicating the behaviour at the bottom of the arc, as in Figure 4. Note
that; D €€ C© € ©C, . With these extra quantities defined, it is possible to

i i i
derive explicit formulas for ;.K5.1/. More generally, we could derive explicit
formulas for i .K,.q/ in a similar way; the key difference is that the notions of turning
up or turning down used in defining the invariants ~ are dependent on p
i

Lthis-isa-straightforward translation of the definition of ; given in [1] to the language of immersed
curves. The standard complex described in [1] corresponds precisely to the component g of HE.M /.
The integers ; count horizontal arrows of length i in the standard complex, which correspond to length i
right arcs in g. By symmetry, we can equivalently count length i left arcs in g.

Geometry & Topology, Volume 27 (2023)



932 Jonathan Hanselman and Liam Watson

C C ccC
2 2 2 2

Figure 4: Four cases complete the proof.

and q (here turning up means moving upward vertically or rightward with slope greater
than pﬂ). The formulas are cumbersome so, rather that derive the general case, we focus

instead on the special case of .2; 1/—cabling.

Proposition 5 For i > 1 all the variants of ;.K5.1/ are either determined by
,K2;1/ D .K/; an1-K2;1/ D LK/
or they are trivial. In particular, forn 1,
2n.K2;1/D , K/ C, .K/; 2nc1.K2;1/ D SK/C¢q.K:

Proof The curve OCD 0-K2.1/ is constructed in three steps: take two consecutive
copies of g D o.K/; scale vertically by a factor of two and shift the second copy of o down
one unit; and compress horizontally (compare Figure 2). Before compressing
horizontally, we can divide this curve into two (nonconnected) subcurves which lie to
the left and right of vertical line through the first column of lattice points; let | and g
denote the images of these subcurves after horizontal compression, so that b, [r.

The key observation is that every component of g lies to the right of every even height
lattice point, and therefore any left arc on jtwhich lies in g must have length 1. It
is also clear that any left arc of olintersects at most one component of |, since
otherwise it contains a full component of g which must lie to the right of some lattice
point. Thus each left arc of length greater than 1 in {comes from a component of |,
which in turn comes from a left arc of the first copy of o. Conversely, every left arc
of length i in the first copy of o gives rise to exactly one left arc in ©, which has the
same end behaviour. The length of this new arc depends on the endobehaviour: itis

2i 1for C arcs,2i forCC or arcs, and 2i C 1 for C  arcs (see Figure 4). O

We will say that g has a unique maximal-length left arc of type C C and length N if
€K/ D1, K/Do0foralli>N,and® .k/D ©.K/D; .K/D Oforalli
N. The following is an immediate consequence of the formulas above:

Geometry & Topology, Volume 27 (2023)



Cabling in terms of immersed curves 933

Figure 5: Immersed curves for the first few iterated .2; 1/—cables of the right-
hand trefoil. These are also the distinguished curve o for the knots Ko, K1,
K2 and K3 from Corollary 7. The longest left arc (highlighted) is stretched
by a factor of two with each cabling iteration; thus, the length of the longest
left arc for K, is 2".

Proposition 6 If o.K/ has a unique maximal-length left arc of type C C and length N,
then 9.K2,1/ has a unique maximal-length left arc of type C C and length 2N.

Consider for example iterated .2; 1/—cables of the right-hand trefoil T,.3; the immersed
curves for the first few of these knots are shown in Figure 5. The immersed curve
0-T2.:3/ has only one left arc, which has type C C and length 1. If we repeatedly
.2; 1/—cable this knot, there is always a single left arc of maximal length, which always
has type CC, and the length of this arc doubles in length with each iteration.

In [1], the concordance invariants ; were used to identify aZ 1 direct summand in
the topologically slice smooth concordance group Crs; see also [17]. The relevant

Geometry & Topology, Volume 27 (2023)



934 Jonathan Hanselman and Liam Watson

infinite family of knots is built from cables of a certain knot D, the untwisted positively
clasped Whitehead double of T;.3. More precisely, the family of knots is given by
Dn;nc1 # Tn;nci- Using Proposition 6, we can construct another Z 1 summand
from D by instead taking iterated .2; 1/—cables. The key properties of D are that

(i) the Alexander polynomial of D is trivial, and

(ii) the distinguished component o associated to D agrees with ¢.T2.3/.

The knot D can be replaced with any other knot which shares these two properties —
an example of a hyperbolic knot with this property is 15n113775.

Corollary 7 LetK D Ko be a knot for which ex .t/ D 1land 9.K/ D .T2;3/. Forn 1

let K, bethe .2; 1/—cable of K,, 1. The knots fKng,pospanaz 1 summand of Crs.

Proof According to a result of Freedman, e .t/ D 1 implies that K is topologically
slice [2]. The .2; 1/—cable of a topologically slice knot is topologically concordant to the
.2; 1/—cable of the unknot, which is the unknot; thus, by induction, K, is topologically
slice for all n. On the other hand, Ko has a unique maximal-length left arc of type C C
and length 1, so Proposition 6 and induction implies that K, has a unique maximal-
length left arc of type C C and length 2". In particular, for each n we have n.K,/ D 1 and
i.Kn/DO foralli>2". Sinceeach; is a concordance homomorphism, it follows that the
knots are linearly independent in the smooth concordance group. Moreover, it

is straightforward to see that the homomorphism

M M1
21 Wrs ! Z
iDO iDO
is an isomorphism when restricted to the span of the K. Indeed, it follows from the
information above that the images of the K,, form a basis for Z 1 (see for instance [17,
Proposition 6.4]). In fact, by the remark below we also have that;.K,/ D 0 foralli <
2", so the image of K, is the standard it" basis vector of Z1 . 0

Remark 8 We leave the behaviour of 1 under .2; 1/—cabling, which was not needed
in the above application, as an exercise to the motivated reader, who will find that

X 1 if.K/>0;
Ky.1/ D K/ C : ’
1-K2;1/ iy if .K/ O

=
Using corresponding formulas for variants of ; along with those from Proposition 5
and induction on n, it can be shown that the knots K, in Corollary 7 in fact satisfy

Geometry & Topology, Volume 27 (2023)
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i.Kn/ D 1ifi D 2"and;.K,/ D 0 otherwise. Thus the map
M m1
5i WpanfK,g! Z
iDO iDO
defines an explicit isomorphism from the span of the K, in the topologically slice
concordance groupto Z 1.

Curves that do not come from cables

In many cases Theorem 1 provides a simple obstruction to a knot being a nontrivial
cable. For example, if the curve set corresponding to a knot contains a figure-eight
component enclosing two adjacent lattice points (as is the case, for example, for any
nontorus alternating knot; see [19]), then the knot is not a cable of a knot in S3. This is
because any closed component of FIF.My.q/ comes from one copy of HF.M / before
the transformation of the plane and thus encloses only lattice points with the same
height modulo p. If we restrict our attention to o, we can find knots which are not
concordant to a nontrivial cable. An example of this is the knot 12n242, whose ¢ is
pictured in Figure 6. Because the first left arc has length 2, if this curve comes from a
.p; q/—cable then p must be at most 3. If p D 1, the cable operation is trivial. If p
D 2, then the curve should not pass to the left of an odd-height lattice point (grey in
Figure 6) after passing to the right of an even-height lattice point (black in the figure),
but this clearly happens. Similarly, if p D 3 then the curve should not pass to the left of
a point whose height is congruent to 2 mod 3, after passing to the right of a lattice point
with a different height modulo 3, but this also happens. We thank Tye Lidman for
asking us about the existence of such an example.

Figure 6

Geometry & Topology, Volume 27 (2023)
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Figure 7: The .3; 4/—cable (left) and the .3; 2/—cable (right) of the right-hand trefoil.
L—space surgeries on cable knots

Other properties of the knot Floer homology of cable knots are made relatively trans-
parent by Theorem 1. The following is a well-known property that was established by
Hom [10] (building on work of Hedden [9]):

Theorem 9 [10, Theorem] For any knotK in S3, Kp.q admits a positive L—space
surgery if and only if K admits a positive L—space surgery and pﬂ is at least 2g 1,
where g denotes the Seifert genus of K.

Note that K admits a positive L—space surgery if and only if HF.M / is a single curve
which, apart from the segment that wraps around the cylinder, moves monotonically
downward in the neighbourhood of the vertical axis (see [4, Section 7.5]). When this
curve is pulled tight in the cylinder T (or in the plane 7), the slope of the nonvertical
segment is 2g 1. Following Theorem 1, we construct HFG M./ from p columns of the

lift of HF.®M / to T by&ranslating lattice points along lines of slope o a

A quick reproof of Theorem 9 If HF.M / is oriented upward at any point apart from
the nonvertical segment, it is clear the same will be true at the image of this point on
KF.Mp;q/; thus K having a positive L—space surgery is a necessary condition for K q

to have one. Supposing K has a positive L—space surgery, it is clear that if % >2g 1
then the p copies of the downward-oriented portion of EIF.M / miss each other, so
the resulting curve moves monotonically downward and K. 4 has a positive L—space
surgery. On the other hand, if pﬂ < 2g 1then these sections of curves overlap, forcing
some backtracking in the resulting curve, implying that Ky, 4 has no L—space surgeries.
An example is given in Figure 7. O

Geometry & Topology, Volume 27 (2023)
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Figure 8: The .3;2/—cabling operation interpreted as a plane tiling: three
copies of the standard square tile (above) are carried to a new regular tile in
T3;2 (below) under the operation f,; q appearing in Theorem 1. To illustrate, the
image of the longitude has been included (gradually homotoped to a
simpler form moving rightward), which recovers the invariant associated with
the right-hand trefoil as expected.

Cabling via tiling

From Theorem 1 it is possible to interpret cabling in terms of plane tilings. That is, in
a visual summary of the above discussion, we record the following:

Corollary 10 For every relatively prime pair .p; q/ there is a periodic tiling Ty.q of
the plane, unique up to lattice-fixing planar isotopy, such that .K;.q/ is the image of
.K/ under the transformation taking the lattice T to %,q.

Geometry & Topology, Volume 27 (2023)
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Proof This is a simple reformulation of Theorem 1: Consider the standard square
tiling of the plane  defined by the preferred .; /~framing. The image of p square tiles
aligned horizontally, under the application of f,,q, gives a tile in a periodic tiling of the
plane. O

This is best illustrated in an example, and we have shown the tiling associated with
.3; 2/—cabling in Figure 8. Note that this point of view comes with a built-in sanity
check: one can check that the image of a longitudinal curve under the transformation to
Tp;q is the immersed curve .Tp.q/. Recalling that, as a polynomial in t, the
Alexander polynomial satisfies

'-Kp;q/ D '-K/jtp "Tp;q/;

our formula has Tp.q playing the role of ¢.T,.q/ in this formula while replacing t
with tP corresponds to the p repeated copies of .K/.

In general, one expects bimodules in bordered Floer homology (for manifolds with
two boundary tori) to be associated with Lagrangians in T T. A simple first
example of this is the bimodule associated with a diffeomorphism of the torus, where
the (embedded) Lagrangian surface is the graph of the diffeomorphism. In that case
we can interpret the action of the bimodule as follows: to compute the image of an
immersed curve , we consider T, intersect with the Lagrangian surface, and project
to the second coordinate. Cabling bimodules provide a first glimpse at how this
construction might be generalized to arbitrary bimodules. The diffeomorphism of the
plane f,,q does not descend to a diffeomorphism of the torus, but, since f,;q is
periodic and is determined by its effect on p consecutive tiles of the plane, it can be
viewed as a p—valued function on T; that is, to each point in T it associates an
unordered tuple of p points in T. The graph of this multivalued function is an
(immersed) Lagrangian surface in T T, and the action of the bimodule on curves can
be interpreted geometrically as before.

1 Immersed cu.ves and the merge operation

For any orientable manifold M with torus boundary, the Heegaard Floer homology
#HF.M / is an immersed multicurve in the marked torus @\ [4], as introduced above.
This view of the Heegaard Floer invariants of M arises from an interpretation of
bordered Floer homology [15], and is closely related to the loop calculus introduced
in [6]. This section builds a glossary between loop calculus [6] and immersed curves [4];
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K%O
3200

Figure 9: The torus algebra A as the path algebra of a quiver with relations.

in the former we developed the machinery for understanding gluing pairs of manifolds
along essential annuli in their boundaries, which we aim to interpret in terms of the
immersed curves in the case of cabling knots in the three-sphere.

1.1 From puzzle pieces to curve segments

Assuming familiarity with some subset of [4; 6; 15], we give a very terse summary of
the bordered invariants in order to set up the desired glossary.

The torus algebra A is obtained as the path algebra of the quiver described in Figure 9.
Let I A denote the subring of idempotents generated by ¢ and 1. Working over the
two-element field F, a type D structure over A is a finite-dimensional left I-module V
together witha map WV | A “, V. This map must satisfy a compatibility condition
equivalent to ensuring that @.a “ x/ D a1.x/ is a differential on the A-module A | V.

There is a simple interpretation of the above data in terms of decorated graphs: the
vertices encode the generating set (these come in two types and 1, depending on
the idempotents g and 1, respectively) and, by passing to type D structures that are
reduced, the directed edges are labelled by the set f1;2;3;12;23;123g in order to
encode the coefficient maps; see Figure 11. These graphs can be naturally immersed in
the marked torus or, more precisely, in the once-punctured torus with a fixed choice
of 1-handle cocores cutting the surface into a disk. In our case, these cocores will
always coincide with the preferred .; /—pair, since we are focussed on knots in S3.
With this data in hand, we can decompose the torus into the familiar square patch
with opposite edges identified. The type D structures of interest then are immersed
train tracks (in the sense of Thurston [16]) where all of the vertices/switches lie on the
horizontal or vertical edges; when such a train track comes from a three-manifold, the
classification theorem proved in [4] tells us it is equivalent to an immersed multicurve,
possibly decorated with local systems, which we denote by HF.M / [4].

In the case where the local systems are trivial, we recover the class of loop-type
manifolds considered in our earlier work [6] (see also [5, Section 1]). Central to
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Figure 10: Segments of immersed curve in the cover of the marked torus,
labelled to be consistent with the puzzle pieces given in [6]. The integer
subscript k > 0 indicates the number of 1 generators in the segment. These
letters can appear forwards or backwards in a cyclic word, so that &l runs
against the direction indicated by the blue arrow. We can also extend our
notation by settinga D&, b DB\, c Dd\, d D&y and doDdNo De;
note that then a segment with subscript k moves upward k units in the plane.

this is the observation that, when the type D structure in question can be represented
by a valence 2 graph, it is possible to decompose along vertices into segments,
each of which takes one of five possible forms as described in Figure 10 (compare
[6, Figure 1]).2 As a result, studying these type D structures amounts to a calculus
for manipulating cyclic words in the infinite alphabet A D fay; by; ci; di; eg for all
positive integers k. The segments corresponding to these letters may appear backwards
as we traverse a loop; this is indicated by a bar. There are rules governed by the
algebra restricting the letters that can be concatenated, which are most easily described
by noting that each segment also corresponds to a segment of immersed curve as in
Figure 10: if two curve segments share an endpoint, they must lie on opposite sides
of the vertical near that point. (In [6], a puzzle piece convention is used to describe
these rules.) Note that the a, and the by correspond to the two types of stable chains
introduced in [15], while ¢y, d and e correspond to the three types of unstable chains.
In fact, it makes sense to view the three types of unstable chain as part of a single
family, and with this in mind we set co D Mand ¢ D d}. The example in Figure 11
explains this for the right-hand trefoil exterior.

Now consider a component ofHF.M /, that is, an immersed curve decorated with a
local system .V ; "/ of dimension n. Following [4], we can interpret this as a curve-like

2There are certain exceptional type D structures that cannot be decomposed in this way; however, these
examples are not particularly important in this setting. The interested reader can consult [6] for a dual
notation that decomposes along 1 vertices.
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Y-
N NI A

Figure 11: Three different views of the invariant associated with the exterior of
the right-hand trefoil. In all three cases, we have fixed the preferred .; /-
framing in order to present the torus boundary. On the lower left, the
decorated graph describing the type D structure has been immersed in the
marked torus as a train track. This description exhibits the redundancy in
the edge labels: as shown in the lower right figure, the idempotents can be
recovered from the horizontal and vertical edges while the coefficient maps
are determined by which of the labelled corners are traversed by the curve
segments (a region indicating the 23 edge is shaded). Finally, lifting the curve to
the cover T (or, as pictured, T) makes obvious the cyclic word a;&N2bs, which
in [6] is referred to as a loop.

train track, which consists of n parallel copies of along with some additional edges that
we may assume all lie on a portion of corresponding to a single segment (that is, along
one letter of A as described above). When M is the complement of a knot K in S3,
we may in fact assume that these edges lie on a segment of type a; this is because
the curve o.K/ does not carry a nontrivial local system, and all other curves are closed
in the lift to the plane T and thus rhust contain a type a, segment. The portion of the
train track containing the extra edges is precisely a type ay segment with local system
.V; "/. These extra edges determine an nn matrix over F, where the .i;j/ entry is
nonzero if the curve-like train track contains a copy of the a, segment
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Figure 12: A 3—dimensional local system, expanded at an a; to give a train track.

J

\

from the ith copy of the initial generator in the segment to the jt" copy of the final
generator of the segment. By construction, this matrix represents the local system ~.

It is relatively straightforward to extend this language to cases admitting a nontrivial
local system. Recall that each letter in A corresponds to a (portion of a) type D structure
that is a linear chain of arrows. We allow a letter in A to be decorated by a local system, as
follows. Let V be a vector space over F of dimension n, and let "WV ! V bean
endomorphism. Decorating a segment with .V; "~/ amounts to taking n parallel
copies of the appropriate chain, with the n parallel copies of any one arrow in the
chain replaced with a collection of arrows determined by *; see Figure 12 for an
example. Suppose the relevant arrow in the chain connects generators (ie vertices) x
and y, with x occurring first in the chain (ie there is an edge connecting x to y).

representing " ; these arrows connect the ith copy of x (ie x;) to the jt" copy of y (ie
y ) if and only if the .i; j/ entry of the matrix is nonzero (again, see Figure 12). If
all letters in a cyclic word carry a local system (each having the same dimension), then
the local system on the cyclic word is determined by composing the endomorphisms.
Note that a letter decorated by the trivial local system of dimension n corresponds to n
parallel copies of the relevant curve segment.

To summarize, given a knot K in S3, the invariant IF.M / is an immersed multicurve

above discussion, we can assume that each component of . K/ is represented by a cyclic
word in A, possibly with a nontrivial local system on a single a, segment.

1.2 The merge operation

Given type D structures # and , we describe a new type D structure m.; #/. This
follows the notation set out in [6], where we showed that this type D structure agrees
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wite HF.M.M1; M3// in the case where and # correspondto EHF.M 1/ and HF.M/,
respectively.3 The operations M and M are referred to as merges; the latter glues two
manifolds along essential annuli in their torus boundaries. We will first describe the
operator M algebraically, and then explain the gluing conventions for M in the next
section in the context of cabling.

Some simplifications are possible in the present setting. First, we assume that is a loop

consisting only of some ¢, for integers k. This assumption holds in particular when M1 is
a solid torus, in which case M.M1; / will give rise to a cabled knot.* Further, as
described above, we assume that # is represented as a curve-like train track. This may

consist of several disjoint components, but we can restrict to connected train tracks with-

The main tool used in this paper is a distilled version of [6, Proposition 6.4]:

Proposition 11 Let # be a type D structure represented by a single cyclic word in A
and let be a word containing only the c. If the local system on # is trivial then the type
D structure m.; #/ is obtained by applying the rules

M.Ck,'aj/D 9, M.Ck;bj/D b',' M.Ck,'Cj/D chk

to every letter in #, ranging over all letters for , and assembling the result together
using a toroidal grid to match up the endpoints, as described in Figure 13.

The proof of this result is contained in [6]; however, because nontrivial local systems
are not handled there, we want to be precise about how to extend the result based on
the material in our earlier work.

Proposition 12 Proposition 11 holds when # carries a local system, where, for each
letter u in the word representing # and each cy in the word representing , M.cy; u/
carries the same local system as u.

3More specifically treating and # as type D structurgs, in [6] we use M.; #/ as a shorthand for the type D
structure CFDAALR S1/.;#/, where CFDAA.P Slj.is the bordered trimodule calculated in [3] and the
three-manifold P S is a circle bundle over a pair of pants (this plays a key role in the next section).

4In fact, everything we do works in a much more general setting: Any manifold admitting L—space
surgeries has a type D structure that, relative to a slope corresponding to an L—space filling, can be
expressed in terms of only letters c,. We have opted to simplify matters and focus on a well-known

construction with well-established conventions in order to illustrate the key principle. More general cases
follow the same lines, and can be extracted from [4; 6].
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1 2 1 1 2 1

Figure 13: Merging a pair of curves, as in Proposition 11, described graphi-
cally: On the left-hand side of the diagram, the output curve is interpreted
on a toroidal grid, where the ¢, from (written on the horizontal) act on the
letters in # (written on the vertical). On the right, this process in interpreted
in terms of curves, where the top right figure gives a section of the (periodic)
curve in E while the bottom right figure is the result of the merge. Note that
the horizontal is moved to the key curve bc.

Vi

de
bc

Figure 14: The PL key curves approximating .
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Proof There is nothing to check for trivial local systems, as these are just disjoint
copies of some curve and Proposition 11 applies. For a nontrivial local system, we
need to carry out the computation in [6, Figures 10, 11 and 12], replacing the simple
segments for the 5 input with segments carrying an arbitrary local system as in, for
example, Figure 12. This is a straightforward computation. Note that we do not need to
check this computation for type b, pieces, since we may assume a local system on a

loop is concentrated on any one letter and a loop containing a by must also contain
an g . (Furthermore if # is the multicurve corresponding to a knot in S3, as in this
paper, it is enough to check the computation for a, pieces since any component with a
nontrivial local system must contain an ay piece.) O

The takeaway from Proposition 11 (and its extension to nontrivial local systems in
Proposition 12) is a graphical calculus used to determine the merge of two curves when
one contains only ¢, segments; this is the content of Figure 13. Consider a word (in the
¢, ) representing , and write this along the top of a rectangular grid; consider a word in
A representing #, and write this along the side of the rectangular grid. Then, following
the letter-by-letter instructions in Proposition 11, the new word m.; #/ can be obtained by
running through the grid, starting at the top left. As shown in Figure 13,the m.c ;¢ /D ¢
ck run diagonally, while the m.c ; ax/ D ay and m.g ; b/ D by change direction. The
sides of this grid are identified to form a toroidal grid, and this connects up the
endpoints of the segments to form the new loop m.; #/.

Note that, as the resulting loop is traversed, horizontal motion in the grid corresponds
exactly to horizontal motion of the corresponding curve in the plane. In particular, each
vertical line of lattice points in the plane corresponds to a column of the grid containing
some ¢ in, and the effect of merging on the curve for # is to shear the plane along that
vertical line by k.

The graphical shorthand from Figure 13 suggests an interpretation of the merge operation in
terms of immersed curves, which we can think of as acting on #. To describe this, it is
useful to have a piecewise-linear representative of the curve . Let be expressible as a word
in only the ¢y, so that, viewed in the plane T, is a grapB. Let bc be the curve consisting
of linear segments that, at each integer in the horizontal direction, intersects the lattice
point immediately below . The curve de is defined similarly, by instead pushing up to the
lattice points immediately above ; see Figure 14. Note that this is closely related to the
pegboard diagrams introduced in [4].

Geometry & Topology, Volume 27 (2023)



946 Jonathan Hanselman and Liam Watson

Recall that the immersed multicurve HF.M / coming from a bordered 3—manifold M
lives in the cylinder .R2 nZ2/=hi, where corresponds to the homological longitude of
M. Equivalently, we think of this as a multicurve in R2 n Z2 which is invariant under the
action of . We will say that such a curve has horizontal period p if translation by
moves p units in the horizontal direction.

Corollary 13 Let # be an immersed multicurve with local systems in T2 with horizon-
tal period g, and let be a curve in T #ith no vertical tangent lines (ie the graph of a
function) with horizontal period p, with p and q relatively prime. Then the immersed
multicurve for m.; #/ is obtained by adding bc to # vertically. That is, we find the
image # under the transformation of 7 which translates along each vertical line to
take the horizontal axis to bc.

Proof This is the main thrust of Figure 13: For a component homologous to , the new
cyclic word moves g columns to the right in the grid each time it traverses the grid
vertically. Since p and q are relatively prime, the new word makes p vertical passes,
tracing out the entire grid, before returning to the starting point. The new word is
p copies of the word representing #, with the indices on type c letters shifted according
to the column in the grid; this corresponds to p copies of the fundamental region in #,
each of wBich moves q units to the right, with a plane shear applied along each column
of lattice points. The magnitude of each shear is determined by the index of the
corresponding letter in , which amounts to shifting each column upwards by the height
of bzc in that column. The resulting curve has horizontal period pg. For a
nullhomologous component, the grid gives rise to p separate cyclic words, each
traversing the grid vertically once starting in a different column. Each word is a copy of
# with shifted indices on type c letters. The nullhomologous component of # lifts to
infinitely many copies of the same closed curve in #, which are translations of each other
by multiples of . Taking p consecutive copies corresponds to the p cyclic words in the
grid, and adding bzc corresponds to the required shifts in indices. O

As mentioned previously, the setup of Corollary 13 is more general than we need for
cabling; we will only need the case that is in fact a straight line of some rational
slope. Note that, when is a line of slope 1, the transformation taking the horizontal axis
to bc is a lift to T of aZzDehn twist in T. This is a linear transformation of the plane,
which we refer to as a plane shear in the vertical direction. The case that is a line of
rational slope is a mild generalization of this, which we call a fractional plane shear.
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2 The proof of Theorem 1

In order to complete the proof of our theorem, we need to connect the operation
described in Corollary 13 to the specific context of cabling. To do this we first set our
conventions.

2.1 Cabling conventions

Recall that, fixing a knot K, we let M denote the complement S3 n .K/ and Mp.q
denote the complement of the cable Cy,.q.K/. Let P denote a two-sphere with three
disks removed (so that P is homeomorphic to a pair of pants). The manifold Mp.q can be
obtained by gluing M into one boundary component of P S 1 and an appropriately framed
solid torus D2 S into another boundary component. We will briefly review this
construction, paying particular attention to framing conventions.

Each torus boundary in this construction has a natural choice of parametrizing curves.
For @M, we use a meridian and the Seifert longitude , fixing orientations on these
curves with the convention that D C1. For @.D251/, we let m be a meridian @D?
fptg and let * be the longitude fptg S, with the orientation convention thatm * D
C1. Fori 2 f1;2;3g, the it" boundary component of the S1—bundle P S1is
parametrized by a fibre f; D fptg S and b; D @;.P/fptg, where @;.P/ denotes the it
boundary component of the base surface . We $et orientations on these curves so that
bi f; D C1.

The third boundary component of P S will ultimately become the boundary of Mp;q;
however, it is helpful for the moment to fill this third boundary component in with a
solid torus in a trivial way so that P S becomes AS 1, where A is an annulus. This solid
torus can be removed later by deleting a neighbourhood of a fibre of AS1. We glue D2
S 1to the first boundary component of P S1 (now AS1) such that f1 is identified with
p " Cq m; this means that by is identified with r * Cs m for some integers r and s with ps
qr D 1 (we canchoose r and s arbitrarily subject to this condition, but the choice affects
the framings on the resulting boundary components). The result of this gluing is a solid
torus, equipped with a Seifert fibration in which the core of the solid torus is a singular
fibre and the regular fibres wind p times longitudinally and g times meridionally. This
solid torus is glued to the knot complement M such that the result is S 3 and the core of
the solid torus is identified with K. As a result, a regular fibre of D2 S1[ A S1lis the
cable Cp.q.K/, and removing a neighbourhood of
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one of these (or, equivalently, not filling in the third boundary of P S1) yields the
complement Mp.q.

Note that inserting AS® S T 2 E0;1e between M and D2 S amounts to a change
of framing and, in particular, f; can be identified with f, and b1 can be identified
with by. To recover S3, we want to be identified with m and to be identified with ".

It follows that f, glues to pC g and b, gluesto r s. To summarize, We have ;
1
pa f p q
D’ ;

b1 rs m' sz r s

with ps gqr D 1. Inverting these matrices,

m r
S qfq s qfy

D Dbz

p b1 't p

If we do not fill in the third boundary of P S1 in the construction above, the resulting
manifold with torus boundary is My,q; it is clear that the meridian ¢ of the cable
knot is given by bs. While not required, as will follow from the computation below,
one can check that the Seifert longitude ¢ of the cable knot is given by f3 Cq2bs.

2.2 Applying the merge operation

We are interested in obtaining the immersed curve set FIF.My;q/ from the immersed
curve set HHF.M /. We can do this by applying the merge operation to HF.M / and
HF.D2 S1/, keeping in mind the framings discussed above. Following Section 1
and the conventions in [6], the first step is to draw lifts of both curve sets in the plane
with respect to the parametrization by f; and b; (or, more precisely, by the curves in
@.D2S1/ or @M which are identified with f; and b;j) such that b; is the horizontal
direction and f; is the vertical direction. Recall our convention is that b; f; D 1,
but we are now considering the plane as a lift of @.D2 S1/ or of @M, which are
identified with boundary tori of P S by an orientation-reversing diffeomorphism, so
if we take b; to be the positive horizontal axis then f; is the negative vertical axis.
Note that we could instead choose the opposite orientation for both axes, but this
ambiguity can be ignored since immersed curves for bordered invariants are symmetric
under the elliptic involution of the torus by [5, Theorem 7]. SincectHF.D2 S1/ is the
meridian m D rf;  pbjy, this curve is simple to describe in the relevant basis: it is a
line of slope 5 [4]. The second step is to apply Corollary 13 by taking the vertical
sum of &€lF.M / and bmc; note that the conditions of the corollary are satisfied because
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Figure 15: The fractional plane shear in the vertical direction associated with
computing a .p; q/—cable, viewed with respect to the . f; b/—framing. Other
relevant curves are shown, with respect to this framing, in the top left. The
bottom left shows a copy of m through the origin and the corresponding curve
bmc obtained by dropping down to the highest peg below m in each column.
This curve serves as a “key” for the plane shear — that is, we shift each column
of pegs upward by the height of bmc in that column. Thus the plane shear is
determined by the fact that it takes b to bmc, or equivalently that it takes de to
b. The right shows the effect of this shear on the curve for the right-hand
trefoil. For the concrete example in the figure, .p; q/D .2;1/and .r;s/D .1;0/.

components EF.M / are homologous to zero or to the rational longitude , which
moves horizontally by g units, while m moves horizontally by p units. The result is (a lift
to the plane of) HF.My.4/, though given with respect to the framing .f3; b3/ rather than
the usual .¢ ; ¢ /; see Figure 15.

While the previous paragraph gives a complete procedure for computing FHF.Mp.q/,
performing the change of basis to draw the curve set HHF.M / with respect to the
.f; b/—framing can be cumbersome. Instead, we can follow the same operation but
view the plane with respect to .;/, the preferred framing for @M, throughout the
process. Now, instead of shifting pegs in each vertical column, we shift along lines
parallel to the fibre direction; since f; D pCq, this is a line of slope b T keep
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Figure 16: Starting with the curve HF.M / drawn in the plane with respectto
the standard .; /~framing, the fractional plane shear in the f direction which
takes de to b produces the curve HF.By.q/, though not in terms of a
convenient parametrization. shearing back partially along f gives the curve
with the standard parametrization, up to rescaling the lattice. These two steps
can be combined into one, as shown in the box: each lattice point is translated

¢

leftward along lines of slope 2 until its x—coordinate is a multiple of p. Note
that p copies of the curve EIF.M / are involved in each copy of €1F.M;;q/. The
figure shows the case of the .2; 1/—cable of the right-hand trefoil.

track of how much to shift along each line of slope %, we can draw a copy of the
piecewise linear curve de; note that this is obtained from a vertical line through the
origin by pushing each point @ o On leftward along a line of slope % to the first
lattice point it encounters (see Figure 16, top left). To perform the cable operation, we
shear along lines of slope pﬂ to bring this curve de to b (see Figure 16, bottom left).

We can now start with the curve HF.M / represented in terms of its standard framing
.;/ and produce the immersed curve HE.Mg.q/ in one simple step. However, as
before, the output is not given with respect to the standard framing by .c ;¢ /. Of
course, it is straightforward to determine the slopes of ¢ and ¢ in the output picture
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and then we simply need to change basis applying a linear map to the plane which
takes these to the vertical and horizontal directions, respectively. This can always be
accomplished by a sequence of (integral) plane shears in the horizontal and vertical
directions. However, this too is cumbersome, so we will describe a shortcut to this
reparametrization making use of a linear transformation of the plane which does not
preserve the lattice. More precisely, consider the linear transformation which fixes f
and takes b to ; this can be understood as translating each lattice point on b along a

line of sIopélp until it reaches the vertical line (see Figure 16, bottom right). Note
that the lattice Z2 is not mapped to itself under this transformation, but rather its image
ispZ , Z. Even so, in this new deformed lattice the directions corresponding to ¢ and

¢ are vertical and horizontal, as desired, and we can recover the usual lattice by

ending with another linear transformation which scales and compresses by a factor
of p in the vertical direction and horizontal direction, respectively.

Finally, we mention that there are now two steps which involve shearing along the lines
of slope pﬂ: the fractional plane shear taking de to b (this transformation is not linear), and

the linear transformation taking b to . These steps can be combined in one by shearing

along lines of slope p 10 push de onto . In other words, every pt vertical column of
lattice points is fixed, while all other points are pushed leftward along lines
of slope pﬂ until they reach a vertical line containing one of the fixed columns (see the

boxed portion of Figure 16). This proves Theorem 1.
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