

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1084-4309/2023/1-ART1 $15.00
http://dx.doi.org/10.1145/3603501

ACM Trans. Des. Autom. Electron. Syst.

Dynamic Power Management in Large Manycore Systems: A Learning-to-Search

Framework

GAURAV NARANG

Washington State University, Pullman, WA

ARYAN DESHWAL

Washington State University, Pullman, WA

RAID AYOUB

Intel Research LABS, Hillsboro

MICHAEL KISHINEVSKY

Intel Research Labs, Hillsboro

JANARDHAN RAO DOPPA

Washington State University, Pullman, WA

PARTHA PRATIM PANDE

Washington State University, Pullman, WA

The complexity of manycore System-on-chips (SoCs) is growing faster than our ability to manage them to reduce
the overall energy consumption. Further, as SoC design moves towards 3D-architectures, the core’s power density
increases leading to unacceptable high peak chip temperatures. In this paper, we consider the optimization
problem of dynamic power management (DPM) in manycore SoCs for an allowable performance penalty (say 5%)
and admissible peak chip temperature. We employ a machine learning (ML) based DPM policy, which selects the
voltage/frequency (V/F) levels for different cluster of cores as a function of the application workload features
such as core computation and inter-core traffic etc. We propose a novel learning-to-search (L2S) framework to
automatically identify an optimized sequence of DPM decisions from a large combinatorial space for joint energy-
thermal optimization for one or more given applications. The optimized DPM decisions are given to a supervised
learning algorithm to train a DPM policy, which mimics the corresponding decision-making behavior. Our
experiments on two different manycore architectures designed using wireless interconnect and monolithic 3D
demonstrate that principles behind the L2S framework are applicable for more than one configuration. Moreover,
L2S-based DPM policies achieve up to 30 energy-delay product savings and reduce the peak chip temperature
by up to 17 compared to the state-of-the-art ML methods for an allowable performance overhead of only 5 .

CCS CONCEPTS • Hardware On-chip resource ŵaŶageŵeŶt • CoŵputiŶg ŵethodologies Machine learning
algorithms

Additional Keywords and Phrases: Dynamic Power Management, Large Manycore Systems, Voltage Frequency Island,
Machine Learning, Thermal-aware

1 INTRODUCTION

Large-scale manycore systems are essential for executing compute and data-intensive applications [1].
However, the design of high-performance manycore chips is dominated by power and thermal

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603501&domain=pdf&date_stamp=2023-06-06

ACM Trans. Des. Autom. Electron. Syst.

constraints. Higher on-chip temperature accelerates aging, thereby degrading the system reliability
[2]. Hence, we need to establish suitable power-performance-thermal trade-offs while designing a
manycore system. In this regard, Voltage-Frequency Island (VFI) is an enabling methodology to create
energy-efficient and thermally-optimized manycore architectures [3]. VFI works on the premise that
each core’s computation and communication patterns vary during the execution of the application and
similar cores and associated routers/links should be clustered together. The voltage/frequency (V/F)
of each cluster can be regulated dynamically depending on the workload. VFI is a scalable dynamic
power management (DPM) strategy for manycore chips. Developing a DPM strategy to control V/F
knobs of VFI clusters in a manycore chip poses two key challenges. First, the search space of DPM
decisions is exponential in the number of VFIs, V/F levels, and decision epochs (i.e., number of decision
intervals while executing given application workloads). Second, optimal DPM decisions change
depending on the desired trade-off among target objectives (e.g., optimize power subject to
performance penalty and the thermal budget). In addition to power-performance optimization,
controlling temperature is important for three key reasons. First, thermal effect (unlike
power/energy) is both spatial (heat transfer) and temporal (heat capacity) [4]. As a result, on-chip
temperature can have non-trivial impact on lifetime and reliability of the chip and higher on-chip
temperatures can even lead to permanent chip failures [5]. Second, even low but persistent power
consumption can lead to hotspots (temporal thermal effects). Third, power and performance depend
on the instruction sequence, CPU microarchitecture, and V/F levels whereas chip temperature
depends on physical aspects of the chip as well such as power density, floorplan, and cooling [6]. This
paper considers the general problem of creating DPM policies to make optimal decisions for any pre-
specified power-performance-thermal trade-off.

Prior work has demonstrated the effectiveness of machine learning (ML)-based methods to
implement VFI control policies. Both reinforcement learning (RL) and imitation learning (IL) have
been extensively studied for VFI control and other DPM policies for manycore chips [7][8][9].
Moreover, IL has been shown to outperform RL for implementing VFI control in manycore systems
[10][6]. Unlike RL, which relies on exploratory learning guided by a hand-designed reward function, IL
relies on supervised learning guided by an expert policy. However, the effectiveness of IL critically
depends on the accuracy of the expert policy. Prior work on IL for DPM has used hand-designed expert
policies, which are based on performing heuristic search in the combinatorial space of DPM decision
sequence guided by power and performance models. These expert policies can be sub-optimal for
different target design objectives and trade-offs [11]. Moreover, configuring RL and IL appropriately is
even more challenging when considering more than two objectives as we demonstrate by considering
power-performance-thermal trade-offs.

In this paper, we propose a novel learning-to-search (L2S) framework to automatically construct
high-quality expert DPM policies for any desired power-performance-thermal trade-off. The key and
significant advantage of L2S over prior ML methods including RL and IL is that it provides a design
automation view for DPM: the designer specifies the available control knobs and the target trade-offs
for a set of design objectives (what part), and L2S automatically creates DPM policies to achieve the
specified trade-offs (how part). L2S employs parameterized DPM policies, which consider workload-
aware features of the system state as input and obtain power management decisions in each epoch

ACM Trans. Des. Autom. Electron. Syst.

(DPM policy is executed at 1ms interval). The key idea behind L2S is to formulate an explicit search in
the continuous space of DPM policy parameters and solve this search problem using the principles of
Bayesian optimization [12]. Specifically, the search is guided by learned statistical models from the
training data in the form of parameters (input) and the corresponding power, performance, and
thermal evaluations (output). In each iteration, L2S selects one candidate policy parameters and
evaluates the corresponding power, performance, and peak temperature by executing the application
workload on the target manycore platform with the goal of quickly finding highly optimized DPM
decisions. L2S employs an information-theoretic principle to select the parameters for DPM policy
evaluation: one that maximizes information gain of the constrained optimal Pareto front. The
constraint, in this paper, corresponds to performance penalty and a user-specified thermal budget.
The Pareto front refers to the feasible solution in the power, performance, and the peak chip
temperature space.

The search space of DPM decisions is exponential in the number of VFIs, V/F levels, and decision
epochs (e.g., ሺ ሻ candidate policies for a 4 VFI system with 8 V/F levels running an application
with 1000 epochs). Hence, the above search problem is extremely challenging because there will be a
handful of policies, which satisfy the performance constraint for various workloads considered
here. To overcome this challenge, we propose a refined policy evaluation approach, i.e., we prune such
DPM decisions, which do not satisfy the performance penalty constraint and select the highest
scoring DPM decision from the promising ones at each decision epoch. This modified policy evaluation
scheme allows L2S to uncover high-quality DPM decisions which optimize power and meets the joint
performance-thermal constraints in a small number of iterations. To the best of our knowledge, L2S is
the first ML framework which allows designers to automate the construction of ML-based joint
performance-thermal constrained DPM policies without significant input from the system designer
(RL requires good hand-engineered reward function and IL requires hand-designed expert policy).

Contributions. The key contribution of this paper is the development and evaluation of L2S
framework with refined policy evaluation to create VFI-based DPM policies in manycore systems to
achieve target power-performance-thermal trade-offs. Specific contributions include:

 We propose a scalable, automated L2S framework for constructing high-quality expert DPM policies as a

search process in the continuous space of policy parameters. Subsequently, we iteratively improve the accuracy

of this search process guided by the predictions and uncertainty of statistical models created from past policy

evaluations.
 We demonstrate the effectiveness of L2S framework via evaluation on two manycore architectures designed

using emerging technologies such as wireless interconnect and monolithic 3D (M3D).
 Experimental results show that the DPM policies from the L2S framework reduce Energy-Delay Product

(EDP) by up to 26% and 30% and reduce the peak temperature by 13 and 17 when compared to IL and

RL respectively.

2 RELATED WORK

VFI based power management has become a mainstream solution to minimize the energy
consumption of mobile and manycore systems [9][13][14]. Classical (i.e., non-ML) proactive

ACM Trans. Des. Autom. Electron. Syst.

[15][16][17][18] and reactive [19][20] approaches have been proposed to either predict operating
frequency such that temperature constraint is not violated in subsequent intervals (proactive) or
throttle the cores if certain threshold temperature is reached (reactive) to manage the temperature
and power consumption. Reactive methods are not efficient due to the delay between the action (V/F
tuning) and response (temperature violation). Proactive methods such as in [15] uses core utilization
and temperature to predict the operating frequency in the next decision epoch. However, simple
average core utilization may not capture the information required to accommodate every core, router
within a VFI with large intra-VFI workload variance. Dynamic thermal and power management
(DTPM) algorithm [16][17] regulates temperature with minimal performance impacts using gradient
search algorithm (GSA). Power budget is computed using predicted temperature for a future decision
epoch and number of active cores and their maximum frequencies are computed using GSA to avoid
temperature violations. However, GSA can become intractable for large decision spaces such as in the
case of manycore systems. Furthermore, these methods do not formulate DPM as multi-objective
optimization problem (i.e., optimize all three objectives collectively: temperature, energy, and
performance).

Fig. 1: (a) Mapping from continuous DPM policy parameter space to discrete DPM configuration space (b) DPM policy maps the
system state to produce a power-management decision.

ML methods such as RL and IL have successfully been deployed in various architectures starting
from manycore systems to mobile platforms [7][4][13]and shown to be better than classical non-ML
methods [9][10]. Boosting metric is proposed in [21], which is based on V/F sensitivities of
performance, power, temperature, and it maximizes performance under temperature constraint. Their
method utilizes a neural network (NN)-based model to estimate the sensitivity of power and
performance from applications’ performance counters at runtime. Their principal focus was on
minimizing the temperature violations while boosting the performance for mobile SoCs. Recent work
used Q-learning based RL approach to solve the VFI control problem [9]. However, the hardware
overhead to store the VFI control policies increases for large state spaces and can become very high
without a function approximator. To address this challenge, Q-function can be approximated as linear
combination of a series of radial basis functions [22] or deep Q-learning method is used in which a NN
acts as a function approximator [23][24]. However, none of these RL-based methods address the
challenge of designing a good reward function, which is critical for an effective RL-based DPM policy.
Prior RL-based work used a single objective reward function comprising of only thermal objective, and

ACM Trans. Des. Autom. Electron. Syst.

it was oblivious to energy minimization [24][22]. Even the state model also comprised of only the
temperature values [22]. To better model the system variance, the combination of each core’s
frequency and utilization is used to model the environmental state but most RL-based investigations
either optimize temperature or save energy [24]. However, a joint power-performance-thermal
optimization in manycore system is necessary. Generally, such DPM policy involves establishing
suitable trade-offs between multiple objectives. A scalar parameter is associated with each objective
in the reward function and tuning to achieve the desired trade-off also makes RL a computationally
expensive method. In a recent work [25], both energy and thermal savings are combined in a single
reward function using proximal policy approximation (PPO) based RL technique, but the work is
limited to objective of optimal task scheduling. Moreover, to avoid convergence and complexity arising
from RL, feasible action space is limited to four V/F levels or less [5].

IL has addressed the challenges of RL and demonstrated its superiority over RL for VFI-based
power management in large-scale manycore systems [9][10][26]. Besides the goal of power/energy
minimization, temperature optimization with performance constraint has been studied for mobile
platforms where IL has been shown to be a lightweight and optimal solution compared to RL [6]. IL
requires the construction of a high-quality expert policy for providing supervised training. Prior work
has employed hand-designed heuristic search procedures over a large combinatorial space of DPM
decision sequences guided by power and performance models to construct the expert policies [9][4].
Expert policy is constructed by dividing the application into phases and the best configuration for
energy minimization with performance penalty is searched for each phase. This applies well to the
power and performance metric since these models are phase independent and depend on V/F
configuration. However, such application window splitting cannot be accurately applied to
temperature models due to their spatial/temporal effects i.e., temperature in one phase depends on
the temperature values in all previous phases. As a result, expert policy is constructed for task
migration objective while per-cluster V/F tuning is not done using IL (but using a simpler feedback
control loop) [6]. Thus, creating expert policy for joint energy-performance-thermal optimization is
challenging. The generated expert policy can be sub-optimal for such complex target design objectives
and trade-offs, which means IL based DPM policies can be sub-optimal.

In contrast, the proposed L2S framework is aimed at automating the construction of high-quality
expert policies. L2S formulates a search process in a relatively small continuous space of policy
parameters and employs ML to automatically improve the accuracy of this search process.
Furthermore, L2S does not need to break the application into phases or windows, and it can very
effectively consider temporal effects of temperature leading to more accurate search process. L2S
learns statistical models from training data in the form of evaluation of policy parameters to make
DPM decisions and employs an information-theoretic principle to select the sequence of candidate
policy parameters for evaluation to quickly uncover high-quality expert DPM policies.

3 PROBLEM SETUP

We consider a manycore system with cores (e.g., systems with 64 cores) divided into VFIs. We are
given a set of target application workloads, which will be executed on the manycore system. Our target

ACM Trans. Des. Autom. Electron. Syst.

is to create a runtime power management policy to optimize power consumption subject to an
allowable performance penalty and admissible peak chip temperature. The DPM policy takes the
current system state (e.g., key performance indicators, temperature information and workload
features) and produces a decision vector (ሻ, where each decision variable allocates the
V/F for a single VF). The system state is represented by the workload features such as each VF)’s
average and peak inter-VF) communication ȋor trafficȌ, VF)’s average and peak core computation
(measured by instructions per cycle or)PCȌ, and VF)’s previous epoch V/F level. These features
capture the average computation and communication patterns of the VFI, variance of the computation
and communication patterns within the VFI and use the contextual knowledge of the previous
prediction.

In this work, we consider DPM policies represented as functions of the system state with
continuous parameters , where represents the weights of a multi-layer perceptron (MLP).
Prior IL work [9] demonstrated that simple linear functions are very effective and regression tree
based non-linear models provide small benefits. Therefore, we consider a simple MLP as a non-linear
function without adding too many weight parameters beyond the linear model. For example, the
system state is represented as input features ሺ ሻ and the DPM policy ሺ ሺ ሻ ሻ maps the system
state to produce a power-management decision vector as shown in Fig. 1(b). Suppose ሺ ሻ, ሺ ሻ,
 ሺ ሻ denote the energy consumption, execution time, and peak temperature using the policy with
parameters over decision epochs respectively, i.e., the cumulative sum of energy and execution-
time in each decision epoch with respect to the corresponding V/F allocation decisions and the peak
chip temperature when running the target application workload. In other words, every candidate
corresponds to one candidate DPM sequence (trajectory) (red-colored path) as shown in Fig. 1(a),
where the power management configuration (PMC) sequence space is a discrete space of size
(are the candidate configurations). Total possible PMC in each epoch i.e., is
equal to ሺ ሻ , where is the number of VFIs. The effectiveness of the DPM
policy critically depends on the parameters . Given a manycore architecture, application workload
 , and a maximum allowed performance penalty (), our goal is to find the optimal parameters
such that ሺ ሻ is minimized with respect to the performance penalty constraint and peak
temperature ሺ ሻ for a given distribution of initial states.

 ሺ ሻ (1)

 ሺ ሻ ሺ ሻ

 ሺ ሻ

where is the policy that selects the highest V/F (i.e., nominal V/F) for all decision variables.
To aid in this process, we assume the availability of power and performance models that can be used
to estimate the energy and execution time for any given sequence of power management decision
vectors. L2S performs search in the continuous space of parameters to iteratively improve the
quality of power management configuration sequence. Finally, we perform supervised learning to
identify the parameters ̂ which mimic the behavior of the best uncovered power management
configuration sequence. We demonstrate that the principles behind the L2S framework are applicable

ACM Trans. Des. Autom. Electron. Syst.

for more than one configuration by experimenting with manycore platforms integrated via two
different emerging network-on-chip (NoC) architectures, viz., wireless NoC and M3D NoC.

Algorithm 1. L2S for power management in Manycore systems

Input: ARCH = target manycore system with cores,

APP = target applications,

 ሺ ሻ= features of the system state ,

 ሺ ሺ ሻ ሻ= neural network (NN) based DPM policy with parameters ,

p = maximum allowable performance penalty

 = Peak temperature constraint

Output: ̂, parameters of the optimized DPM policy

 1: Initialize: = small number of training examples in the form of and corresponding ሺ ሻ ሺ ሻ ሺ ሻ; and

 2: Expert policy = sequence of nominal V/F pairs (empty if none identified to meet the performance penalty)

 3: Repeat:

 4: Learn statistical models ሺ ሻ, ሺ ሻ ሺ ሻ from training data (section 4.1)

 5:

 Select to maximize the information gain about optimal energy with performance constraint (see Eq. 3)

 6: Evaluate policy ሺ ሺ ሻ ሻ over samples of initial states:

 ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሺ ሺ ሻ ሻሻ

 7: Update training data:

 ሼ ሺ ሻ ሺ ሻ ሺ ሻሽ

 8: If ሺ ሻ meets the % performance constraint and ሺ ሻ meets peak temperature constraint, update the

Expert policy (lowest energy DPM configuration sequence) depending on the value of ሺ ሻ (section 4.2)

 9:

 10: Until convergence or maximum iterations

 11: Perform supervised learning using Expert policy to estimate ̂ (section 4.4)

 12: return ̂ the parameters of the learned DPM policy

ACM Trans. Des. Autom. Electron. Syst.

Wireless NoC: The achievable performance of VFI-based manycore platforms depends on the

overall communication backbone, which relies predominantly on Networks-on-Chip (NoCs).
Traditionally mesh-based NoCs have been used in VFI-based systems. However, mesh-based NoCs
have large latency and energy overheads due to their inherently long multihop paths. In a wireless
NoC, where the long-range shortcuts are implemented through mm-wave wireless links operating in
the 10–100 GHz range, is shown to improve the energy dissipation profile and latency characteristics
of manycore chips [27]. In a VFI-based system the wireless links are mainly used for inter-VFI data
exchange [28]. It has been shown to improve the energy dissipation profile and latency characteristics
compared to mesh NoC-enabled VFI systems [29].

Monolithic 3D (M3D) NoC: Emergence of monolithic 3D (M3D) integration has opened the
possibility of designing the ultra-low-power and high-performance circuits and systems. The smaller
dimensions of monolithic inter-tier vias (MIVs) offer high density integration, the flexibility of
partitioning logic blocks across multiple tiers, and significantly reduced total wire-length [30]. On the
other hand, NoC is an enabling solution for integrating large numbers of embedded cores in a single
die. M3D NoC architectures combine the benefits of these two paradigms (M3D IC and NoC) to offer an
unprecedented performance gain even beyond the Moore’s law regime. By exploiting the MIV-based
vertical connections in M3D, the multi-hop long-range planar links can be placed along the shorter Z-
dimension, and hence, overall system performance is improved significantly [31][32].

4 LEARNING TO SEARCH (L2S) FRAMEWORK

In this section, we first provide a high-level overview of the proposed L2S framework to create
optimized dynamic power management policies to achieve a target power-performance-thermal
trade-off. Subsequently, we describe the details of the key elements of the L2S framework.

Overview of L2S framework. The L2S approach has two key steps. First, L2S conducts search in
the continuous space of policy parameters to identify the optimized sequence of power management
decision vectors using the principles of Bayesian optimization [12]. Bayesian optimization algorithms
intelligently search the given input space to find optimized solutions using a small number of
iterations or expensive-to-evaluate objective function calls (e.g., energy and execution time by running
the target applications on the given manycore platform). These methods employ a statistical model to
guide the search process. The main advantage of this model-guided search is that it helps in reducing
the number of expensive objective function evaluations to solve optimization problems over large
search spaces. A key distinguishing feature of this step compared to IL is that L2S uses an information-
theoretic reasoning principle to automatically guide the search towards high-quality power
management decisions. This contrasts with the existing sub-optimal approach of executing a hand-
designed heuristic search procedure directly over the combinatorial space of power management
decision sequences [9][10]. Second, L2S performs supervised learning to estimate ̂ to mimic the best
power management decision-making behavior uncovered by the search process in the first step.

To identify the best sequence of power management decisions, we learn statistical models for
energy, execution-time, and temperature over the parameter space using the training data in the
form of policy evaluations ሺ ሻ, ሺ ሻ, and ሺ ሻ and use them to guide our search. These surrogate

ACM Trans. Des. Autom. Electron. Syst.

statistical models allow L2S to make predictions with quantified uncertainty about energy, execution
time, and peak temperature for policy parameters which are not evaluated yet. We perform the
following steps in each iteration: 1) We reason using the current statistical models to select the next
candidate policy parameters that maximizes the information gain about optimal energy with the
performance constraint and peak temperature constraint. 2) We evaluate the power management
policy ሺ ሺ ሻ ሻ by executing it on the manycore system running the target applications to
measure energy ሺ ሻ, execution-time ሺ ሻ, and on-chip peak temperature ሺ ሻ. The next step is to
use power/performance models to prune "bad" power management decisions before selecting the
highest-scoring power management decisions by the DPM policy ሺ ሺ ሻ ሻ. This pruning step allows
us to identify power management decision sequences, which satisfy the performance penalty
constraint. The fraction of feasible DPM decision sequences is significantly smaller than all possible
decision sequences, which makes it a particularly challenging problem. This step provides critical
training data for the statistical models. We determine the peak temperature by executing the
application workload and prune such policies which do not satisfy the peak temperature constraint. 3)
We use the training data in the form of (input) policy parameters and (output) policy evaluations
 ሺ ሻ, ሺ ሻ, and ሺ ሻ to update the statistical models. After maximum iterations or convergence, we
use the best uncovered sequence of power management decisions (minimum energy and meets the
performance/peak temperature constraint) to perform supervised learning to estimate the
corresponding policy parameters ̂. Algorithm 1 provides the pseudo-code and Fig. 2 shows an
overview of the L2S framework for power-performance-thermal design objectives. Please note that
the L2S framework is general for any user-defined design objectives.

Fig. 2: High-level overview of the L2S framework, which is executed offline and the trained DPM policy is deployed for execution.

4.1 Training Data and Learning Statistical Models

In each iteration of the L2S framework, we collect one training example by evaluating a candidate
policy parameter (input variables) to get the corresponding energy ሺ ሻ, execution time ሺ ሻ, and

ACM Trans. Des. Autom. Electron. Syst.

temperature ሺ ሻ (output variables) when running the given application workload APP on the target
manycore platform. At the end of iterations, the aggregate training dataset consists of training
examples of input-output pairs.

Fig. 3: Statistical model of the objective function ሺ ሻ. For example, ሺ ሻ is a random gaussian process (GP) model and looks
like (a) prior to any optimization iteration (at =0). Over the iterations, training examples (shown as datapoints in (b)) give us

more information about the objective function ሺ ሻ and guide the search towards promising candidate parameters for solving
the optimization problem. Uncertainty is low for policy parameters close to those in the training data and vice-versa as shown

by the shaded region in (b). The thick line corresponds to the mean of the GP model and the shaded region corresponds to the
variance in the prediction.

Fig. 4: Effectiveness of policy-refinement algorithm (a) no refinement (b) refined policy evaluation.

We want to learn statistical models from the aggregate training dataset after each iteration. Fig. 3
depicts the evolution of the statistical model for an objective over iterations. These statistical models
are used for two purposes. First, to make fast predictions about the energy and execution time of
(unknown) policy parameters which are not evaluated yet, i.e., outside the training data. Second, to
quantify uncertainty of predictions, which is a critical component that allows us to reason about which
candidate policy parameters to evaluate next to quickly uncover the optimal constrained Pareto front.
Note that power and performance models estimate the power and performance in each decision epoch,
whereas statistical models map the policy parameters to cumulative power, performance, and peak
temperature over decision epochs which is critical to solve Equation (1). We employ Gaussian
processes (GPs) [33] as our statistical models due to their ability to approximate arbitrarily complex
functions and principled uncertainty quantification due to Bayesian interpretation. Intuitively,
uncertainty will be low for policy parameters close to those in the training data and vice versa. We
learn three GP models , , and for execution time ሺ ሻ , energy ሺ ሻ , and peak chip
temperature ሺ ሻ objectives respectively. Note that GPs are typically used in the small training data
settings and since we are performing active learning to automatically select new training examples,

ACM Trans. Des. Autom. Electron. Syst.

our approach is naturally designed to be efficient in terms of the number of training examples
required to solve the given optimization problem. Importantly, the role of statistical models is not to
mimic the true energy, execution time, and peak temperature functions uniformly over the entire
policy parameter space, but to only guide the search towards efficiently solving the optimization
problem at hand.

4.2 Policy Evaluation via Power and Performance Models

The straightforward approach to perform policy evaluation is to select the highest scoring DPM
configuration from all the candidates using the policy parameters at each decision epoch. However,
the space of candidate policy parameters is very large and only a tiny fraction of the policy parameters
will meet the performance penalty constraint. Hence, the goal of L2S is to uncover the optimal
Pareto set from this tiny set of feasible policy parameters.

Fig. 5: Detailed description and illustration of policy evaluation step (Section 4.2) within the L2S framework. Policy parameters
 are input to this block and corresponding objective evaluations are output. Target application(s) is run on the given

manycore platform for decision epochs. In each decision epoch, each VFI controller predicts V/F level by taking features
into consideration. Pruning is done in this step to predict V/F which satisfies the given performance penalty constraint.

Performance counters corresponding to pruned V/F level are given as input to power/performance models to predict power
consumption and execution time in each decision epoch. Next, temperature corresponding to this V/F trajectory is calculated

using power and physical floorplan details of the manycore system using a temperature measurement tool. Finally, cumulative
Energy ሺ ሻ, execution time ሺ ሻ, and temperature ሺ ሻ are then calculated at the end of decision epochs.

Table 1: List of performance counters for power/performance predictors

Performance counters recorded
IPC Branch instructions Instruction fetch

access
Branch mispredictions

Instructions retired Floating point
instructions

Memory access
latency

L2 cache requests

Num cycles Number of load/stores L2 cache miss Data cache access

Each candidate policy can be mapped to -dimensional output space for the given target
objectives. Fig. 4 shows such policies evaluated and mapped to 2D space for two objectives, i.e., energy
and performance when L2S is run for 1000 iterations. Fig. 4(a) illustrates that the naïve L2S approach
is not able to uncover even a single policy in the desired ǲgoodǳ policies space ȋ5% is the user-defined

ACM Trans. Des. Autom. Electron. Syst.

performance penalty constraint). From the sequence of DPM configurations, we observed that there
are many DPM configurations, which do not satisfy the allowable performance penalty. One reason is
that we don’t have any training data about the feasible DPM policies yet and we rely on exploration
using the available (possibly incorrect) knowledge in the form of statistical models. This observation
motivated us to refine the policy evaluation by avoiding such obvious bad DPM configurations. The key
idea is to use power/performance models [34] and the definition of DPM problem to prune undesired
DPM configurations at each decision epoch and have the power management policy select the best
scoring DPM configuration among the promising DPM configurations after pruning. As shown in Fig.
4(b), our refined policy evaluation with pruning allows us to quickly uncover policy parameters which
meet the (e.g., 5%) performance constraint: the initial ones will serve as high-quality training
examples for statistical models and the learned statistical models will allow us to further accelerate
the search for feasible DPM policies and the optimal constrained Pareto set of policy parameters. Fig. 5
provides the detailed description and illustration of policy evaluation step within the L2S framework.

Table 2: MLP regressor configuration for power/performance models (section 4.2)

Model
Hyperparameters

No. of hidden layers 2
No. of Neurons 20 in each layer
Activation ReLU
Optimizer Adam
Learning Rate 0.001
Loss function Cross entropy

Training
parameters

Batch size 200
Epochs 500

To perform pruning, we use power/performance models which are parametric functions of the
performance counters listed in Table 1. These models are trained using a non-linear NN regressor [35]
and Table 2 shows the MLP configuration of the NN regressor used. Training these models requires
characterization of the applications while running at different configurations. Specifically, we sweep
the V/F levels from 0.65V to 1.0V in steps of 0.05V (and corresponding frequency levels mentioned in
Section 5.1). Next, we divide the aggregate set of training data into ten folds. We separate out three
randomly selected folds for validation and use the remaining seven folds for training. Mean absolute
percentage error (MAPE) as shown in Equation (2) is typically used as an error metric for the
regression-based approach. Here, is the real value and ̂ is the predicted value. MAPE error of the
NN regressor remains within 3 to 4 for power/performance models across all applications. It may
be noted that any other regression model such as support vector regression, regression tree, and their
ensemble variants can be employed to form the model and analysis of different regression models lie
outside the scope of the paper.

∑ ሺ ̂ሻ

 ሺ ሻ

ACM Trans. Des. Autom. Electron. Syst.

At each decision epoch, we prune the bad DPM configurations to identify the promising set using
the power/performance models as follows. First, we check if the predicted V/F levels by the power
management policy with parameters satisfies the performance constraint or not using the
performance model. If not, we iterate over the next best V/F configurations from the policy until we
find a V/F configuration that meets the performance constraint. In other words, we improve the
performance of VFI with highest performance penalty by iteratively increasing the V/F level.
Second, we iterate over the next best V/F configurations from the policy to find the V/F configuration
that maximizes energy savings (via power model) while satisfying the performance constraint (via
performance model). In other words, we reduce the power by iteratively lowering down the V/F level
of VFI such that performance constraint holds true for the entire system. These two steps are
repeated for each VFI. Once we identify the performance constrained pareto-frontier policies, we
further constrain the DPM policy space by examining ሺ ሻ trajectory and pruning the policies which
do not satisfy the peak temperature constraint . Pruning is done in the order: performance
energy temperature to reduce the algorithmic computation and hence, LʹS framework’s runtime to
find an optimal policy. Performance pruning is executed before energy and temperature due to an
observation that majority V/F configurations do not satisfy the performance constraint.

Fig. 6: Policy parameters with least EDP uncovers a V/F trajectory (selected configuration after pruning at each decision
epoch). For each decision epoch, we add regression/training examples (features such as IPC, inter-core traffic and the V/F of

the VFI from the V/F trajectory), one for each VFI. Finally, DPM policy parameters ̂ are learnt for VFIs using supervised
learning via a MLP classifier.

4.3 Selecting Policy Parameters

The effectiveness of L2S framework also depends on the reasoning procedure to select the candidate
policy parameters for evaluation in each iteration. Our goal is to use the predictions and uncertainty
estimates from the learned statistical models to quickly approximate the constrained optimal Pareto
front (i.e., the part of the optimal Pareto front that meets the performance penalty constraint) in a
small number of iterations. For the sake of completeness, we also define the notion of optimal Pareto
set and Pareto front. The set of policy parameters such that no other policy parameters ’
Pareto-dominates a policy in is called the optimal Pareto set of policies and the corresponding
objective values (⃗ execution time and energy for each policy in) is called the optimal Pareto
front . Generally, ⃗ is an output vector over design objectives.

Recall that we formulate the problem of finding DPM policy as an optimization problem in the space
of policy parameters . Our goal is to find policy parameters in the search space with optimal energy
consumption subject to performance and temperature constraints. Intuitively, L2S iteratively selects

ACM Trans. Des. Autom. Electron. Syst.

candidate policy parameters for evaluation that will take us closer to the optimal solution in a small
number of iterations. We formalize this through the notion of maximizing information gain about the
constrained optimal Pareto front . We propose to apply an information-theoretic algorithm [36]
that selects the next candidate policy parameters given the aggregate training data of policy
evaluation : pairs of input (policy parameters) and output (energy, execution time, and peak
temperature evaluation) as explained in 4.1. Our utility function is given by the following
mathematical expression:

Table 3: MLP classifier configuration for supervised learning (section 4.4)

Model
Hyperparameters

No. of hidden
layers

1

No. of Neurons 5
Activation ReLU
Optimizer Adam
Learning Rate 0.003
Loss function Cross

entropy
Training parameters Batch size 20

Epochs 200

 ሺ ሻ (ሼ ⃗ ሽ ∣∣) ሺ ሻ

 ሺ ∣ ሻ [(∣∣ ሼ ⃗ ሽ)] ሺ ሻ

 (⃗ ∣∣) [(⃗ ∣∣
)] ሺ ሻ

Information gain ሺ ሻ is defined as the expected reduction in entropy ሺ ሻ of the posterior
distribution ሺ ∣∣ ሻ over the optimal constrained Pareto front as given in Equations (4) and
(5) resulting from the symmetric property of information gain. The first term in the R.H.S of Equation
(5), i.e., the entropy of a factorizable -dimensional Gaussian distribution (⃗ ∣∣) can be
computed in closed form as shown in Equation (6):

 (⃗ ∣∣)
 ሺ ሺ ሻሻ

 ∑ (ሺ ሻ)

 ሺ ሻ

where ሺ ሻ is the predictive variance of GP model at input . Intuitively, it says that the entropy is
distributed over the GP models by the sum of their log standard-deviations. The second term in the
R.H.S of Equation (5) is an expectation over the optimal constrained Pareto front . We can
approximately compute this term via Monte-Carlo sampling as shown in Equation (7) where is the
number of samples and

 denote a sample Pareto front. The reader is referred to [36] for complete
details of the derivation.

ACM Trans. Des. Autom. Electron. Syst.

 [(⃗ ∣∣
)]

 ∑[(⃗ ∣∣

)]

 ሺ ሻ

4.4 Supervised Learning to Estimate ̂

Once we identify the constrained Pareto front (or Pareto set) from L2S, we perform full system
simulations using a cycle-accurate simulator to measure the energy-delay product (EDP) associated
with the sequence of DPM configurations selected by each candidate policy in the Pareto set, i.e., policy
evaluation with pruning. Next, we select the best policy with the lowest EDP and perform
supervised learning using the sequence of DPM configurations obtained by policy after pruning
for a sample of initial states to learn the parameters of the DPM policy function ̂. Recall that we get
one single trajectory (sequence of DPM decisions for each epoch) for each initial state. Our goal is to
learn the parameters of policy function ̂ to mimic the corresponding power management behavior
without any pruning. In other words, if we use the policy function with parameters ̂ to make DPM
decision at each epoch using the input features of the application workload, then these decisions
should match with the trajectory. This is done by collecting classification examples at each decision
epoch (features of the system as input and V/F level from the trajectory as output) and the aggregate
set of classification training examples over (different) application workloads and initial states are used
to estimate the parameters ̂ by minimizing the classification error as shown in Fig. 6. A MLP classifier
(parameters listed in Table 3) is used for supervised learning. We divide the aggregate set of
classification training examples into ten folds. We separate out three randomly selected folds for
validation and use the remaining seven folds for training. MAPE loss (Equation 2) of the MLP regressor
is within 5 on the validation set.

5 EXPERIMENTS AND RESULTS

5.1 Experimental Setup

Manycore platform and Benchmarks. We employ GEM5 [37], a full-system simulator, to obtain
detailed processor and network-level information. In all the experiments, we consider a system with
64 X86 cores running Linux within the GEM5 platform in full-system mode, noting that L2S principles
are applicable to higher core count as well. Three SPLASH-2 [38] benchmarks: FFT, LU, and WATER;
and four PARSEC [39] benchmarks: CANNEAL, FLUIDANIMATE (FLUID), DEDUP, VIPS are considered
for experimental evaluation noting that our findings are similar for the other benchmarks. These
applications are selected as they are representative of various characteristics as follows: FFT (high IPC
and high traffic), CANNEAL (memory intensive but low IPC), WATER and LU (high IPC and low traffic),
FLUID (high off-chip bandwidth requirement). The performance counters generated by GEM5
simulations are given as input to McPAT [40] to determine the power values. Steady state on-chip
temperature at each decision epoch is calculated by Hotspot [41] using the power traces as input.

VFI system. We consider four VFI clusters as shown in Table 4, while imposing a minimum VFI
cluster size of four cores. By using the k-means algorithm, we cluster the cores to minimize each VF)’s
intra-cluster variation in the time-varying computation and traffic statistics [42]. It should be noted

ACM Trans. Des. Autom. Electron. Syst.

that the analysis of VFI clustering methods is beyond the scope of this paper and any clustering
approach could be used to similar effect.

Design Objectives. We consider three primary design objectives, namely, performance and energy,
peak chip temperature to test the effectiveness of different DPM algorithms.

Decision space for DPM policies. We consider nominal range of operation in the 28-nm
technology node. We use eight discrete V/F pairs for both the wireless- and the M3D NoC-enabled
architectures. Due to the difference in the physical layer characteristics of wireless and M3D
architectures, their V/F levels differ. The V/F levels for wireless architecture are (Volts/GHz): 1.0/3.0,
0.95/2.75, 0.9/2.5, 0.85/2.23, 0.8/1.94, 0.75/1.64, 0.7/1.33, 0.65/1.02 and the corresponding levels
for the M3D architecture are (Volts/GHz): 1.0/3.5, 0.95/3.2, 0.9/2.9, 0.85/2.58, 0.8/2.25, 0.75/1.9,
0.7/1.54, 0.65/1.18. The DPM decision space is defined by the number of VFIs and their respective V/F
values. As we have four VFIs and eight V/F pairs, there are 4096 possible DPM decisions for each
system state.

DPM policy representation. One function (e.g., MLP) is used for each VFI to predict V/F values at
each decision epoch using the following input features: each VF)’s average and peak traffic, average
and peak computation, and previous epoch V/F level [9]. The MLP configuration used to represent
each of the four VFI controllers is as follows: one input layer with the ReLU activation and an output
layer with the softmax activation. The number of output layer neurons is equal to number of possible
DPM decisions (e.g., 8 for discrete V/F levels).

5.2 L2S Framework and Baseline DPM Algorithms

L2S method. We used initial 30 samples (consisting of policy parameter and corresponding energy
 ሺ ሻ, execution time ሺ ሻ and temperature ሺ ሻ) to bootstrap the statistical models. L2S is an
iterative method and high-quality pareto-optimized policies are generated within 200 iterations
across all the benchmarks. We select the policy from the pareto-front that minimizes EDP subject to
 (set to 5% in experiments) performance penalty and (set to 85) peak temperature
constraint for runtime execution. We compare the performance of our L2S framework with the
existing ML methods such as RL and IL.

Table 4: VFI cluster sizes for various benchmarks

Benchmark VFI 1 VFI 2 VFI 3 VFI 4
CANNEAL 22 22 16 4
FFT 29 23 7 5
FLUID 40 16 4 4
LU 32 24 4 4
WATER 41 15 4 4
DEDUP 40 16 4 4
VIPS 30 26 4 4

ACM Trans. Des. Autom. Electron. Syst.

Reinforcement Learning (RL). We use the state-of-the-art RL method, namely, proximal policy
optimization (PPO) in our experiments. PPO is shown to achieve high accuracy for the learned policy
[43][44]. We employ the same policy representation as the L2S framework for actor-critic networks
for PPO. Prior work [9][11] has constructed a single reward function for two objectives, i.e., energy
 ሺ ሻ and performance ሺ ሻ in Equation (8), where ሺ ሻ represents state-action pair. In this work,
we extend the reward function to include the third objective i.e., temperature ሺ ሻ for peak
temperature constraint. The scalarization parameters are varied in the range: {1,10,100,1000} to
achieve a desired trade-off for each application workload. Although PPO is a sample-efficient method,
over 1000 iterations were needed for convergence.

 ሺ ሻ
 ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

Imitation Learning (IL). For VFI-enabled systems, an expert is defined as the policy that allocates
the best V/F levels for each VFI to minimize EDP while satisfying the performance constraint and
peak temperature constraint. In our experiments, we consider 5% performance penalty and 85
peak temperature constraint to construct the hand-designed expert DPM policy from prior work [9].
Exact IL algorithm with regression tree learning combined with data aggregation technique (to avoid
error propagation) is employed to mimic the expert DPM policy.

DTPM. We adapt the algorithm proposed in [16] to VFI-enabled manycore platform for comparison
with the proposed L2S framework. DTPM algorithm starts from the temperature constraint (85
) and works backward to compute power budget and corresponding maximum V/F values of the
VFIs to maintain the temperature below . The goal of DTPM is to prevent temperature violations
while maximizing the performance. If the predicted temperature of any VFI cluster exceeds the
constraint, power budget is computed, and V/F is reduced to the level which satisfies the power
budget.

5.3 Energy-Performance-Thermal trade-off

One key advantage of L2S over IL and RL-based methods is that pareto-optimized policies are
available to the designer with minimal effort i.e., pareto-optimal policies are available to the designer
in one L2S run whereas one needs to vary the scalarization parameters to uncover multiple
policies in IL and RL-based methods. Fig. 7 shows the pareto-optimal L2S policies demonstrating
energy-performance-thermal tradeoff for various applications for (a) wireless and (b) M3D NoC-
enabled manycore systems. We show that L2S policies with 4 to 5 performance penalty, dissipate
less energy and have lower peak temperatures compared to policies with near-zero performance
penalty. L2S uncovers DPM policies which reduce energy by up to 20% for various application
workloads almost at zero performance penalty. These policies may appear attractive to the designer if
thermal constraints were not considered. However, such policies may not satisfy peak temperature
constraint and thereby reduce thermal reliability. For example, in M3D NoC-enabled manycore
systems, several L2S policies with low (near-zero) performance penalty do not satisfy the 85 peak
temperature constraint and hence, cannot be considered. We demonstrate that the joint performance-

ACM Trans. Des. Autom. Electron. Syst.

thermal constrained pareto-front is both, workload and NoC architecture-dependent and L2S
automates the search process enabling the designer to choose a DPM policy along the pareto-front
which has desired thermal margin and performance penalty.

(a) (b)

Fig. 7: Pareto-optimal policies uncovered by L2S method, illustrating energy-performance-thermal trade-off for (a) wireless, and
(b) M3D-NoC architecture for various applications.

Next, we compare the performance of the proposed L2S framework with respect to IL- and RL-
based methods. All the results are normalized with respect to a system without VFI (NVFI). Since, EDP
is a metric that captures both energy and execution time in one parameter, we use it as the relevant
measure to evaluate the quality of L2S, IL, and RL methods. Figs. 8(a) and 8(b) shows the EDP and
peak temperature comparison for L2S, IL, and RL for the wireless NoC- enabled manycore architecture.
The optimized DPM policy uncovered by the proposed L2S reduces the EDP over IL and RL by up to
10% and 22% respectively. Furthermore, these application-specific L2S policies reduce the peak
temperature by up to 3 and 12 over IL and RL-based methods respectively. Similarly, Figs. 8(c)
and 8(d) show the EDP and peak temperature results for the M3D NoC-enabled architecture, where
L2S policy reduces EDP (peak temperature) by up to 26% and 30% (5 and 17) compared to IL
and RL respectively. L2S performs better compared to IL and RL due to its effective search process in
the continuous space of parameters guided by learned statistical models thereby reducing the EDP and
peak temperature by highest margin. Fig. 9 illustrates the V/F sequence and corresponding
temperatures for L2S, IL, and RL based DPM policies considering the FFT application on the wireless
NoC-based system as an example. It is evident that throughout the application lifetime, the predicted
V/F values are lower for L2S than both IL and RL policies, reducing the power consumption and peak
temperature while satisfying the user-defined performance penalty constraint. For brevity, we do
not show the V/F sequence for all other applications. However, similar results are observed across all
the benchmarks on both wireless and M3D architectures. Overall, our results demonstrate that the L2S
policy performs equally well irrespective of the physical layer of the NoC architecture. Hence, we can
conclude that the proposed L2S methodology is effective for wireless- and M3D-NoC enabled
architectures.

ACM Trans. Des. Autom. Electron. Syst.

(a)

(b)

(c)

(d)

Fig. 8: EDP (normalized with respect to NVFI) and peak temperature comparison of RL, IL, and L2S policies for wireless (a and
b), and M3D (c and d) NoC architectures.

0

0.2

0.4

0.6

0.8

1

FFT CANNEAL FLUID WATER LU VIPS DEDUP

N
or

m
al

ize
d

ED
P

NVFI RL IL L2S

83

62

72
67

60 59
63

73

58
63

59 58 57 60

71.4

57
62

57 55 55 58

50

60

70

80

90

100

FFT CANNEAL FLUID WATER LU VIPS DEDUP

Pe
ak

 T
em

pe
ra

tu
re

 (o C
) RL IL L2S

0

0.2

0.4

0.6

0.8

1

FFT CANNEAL FLUID WATER LU VIPS DEDUP

N
or

m
al

ize
d

ED
P

85

58

77
70

78

61

69

83

58
65 68

75

59

67

80

55
60 60

73

56
62

50

60

70

80

90

100

FFT CANNEAL FLUID WATER LU VIPS DEDUP

Pe
ak

 T
em

pe
ra

tu
re

 (o C
)

RL IL L2S

ACM Trans. Des. Autom. Electron. Syst.

Fig. 9: VF) ͳ’s predicted voltage for RL,)L and LʹS policy running FFT on the wireless NoC architecture.

5.4 Comparison with DTPM

In this section, we compare the performance of the L2S policy with the DTPM (non-ML state of the art)
method in terms of the EDP and peak temperature. As shown in Fig. 10 (a), EDP achieved via DTPM
policy is up to 45 higher than the L2S policy for the LU benchmark. Moreover, the temperature in
case of DTPM method remains closer to the 85 peak temperature constraint in four of the
benchmarks and is higher than L2S policies across all the benchmarks as shown in Fig. 10 (b). There
are two key reasons behind these sub-optimal results of DTPM policy. First, DTPM utilizes default
frequency governor such as Ondemand [45] which takes only CPU utilization into consideration to
predict frequency. Second, the goal of DTPM is to reduce frequencies only if the temperature is
violated. In case temperature is less than 85 peak temperature constraint, it tries to increase the
frequency to highest V/F level of the system without considering power consumption. In other words,
it doesn’t solve the multi-objective problem of optimizing power, performance, and temperature and is
sub-optimal.

(a) (b)

Fig. 10: (a) EDP (normalized with respect to L2S) and (b) peak temperature comparison of L2S and DTPM (state-of-the-art non-
ML) policies on the wireless NoC architecture.

0.65

0.75

0.85

0.95

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Vo
lta

ge
 (V

)

epochs

RL_vfi1 IL_vfi1 L2S_vfi1

1.21
1.35

1.23 1.27
1.45

1.31 1.25

0.8

1

1.2

1.4

1.6

N
or

m
al

ize
d

ED
P

L2S DTPM

71.4

57
62

57 55 55 58

85 82 85
80

75
70 72

50
60
70
80
90

100

Te
m

pe
ra

tu
re

 (o C
)

L2S DTPM

ACM Trans. Des. Autom. Electron. Syst.

5.5 Application-agnostic Policy

In this section, we discuss that an application-agnostic L2S policy can show similar performance as an
application-specific L2S policy. To design an application agnostic L2S based DPM policy (termed as
AVG), we consider a set of training applications and learn policy parameters from the aggregate
training data from expert DPM policies for those applications. For each of the applications, we
create a different AVG policy using the set of remaining applications (leave-one-out). Each AVG
configuration executes the aggregate DPM policy (trained using the aggregate supervised data from
expert policy for each of the applications) on the application that was left out during policy
optimization (otherwise unknown to the optimization). As an example, we learned an AVG policy using
CANNEAL, WATER, LU, and FLUID and left out FFT. Next, we execute FFT using this AVG policy. Fig. 11
shows the normalized EDP and temperature of AVG policy on the wireless NoC-based architecture for
all the applications under consideration. From Fig. 11(a), we note that on average, only 3.6%
degradation in EDP is observed for all applications when compared to application-specific policies
with worst case reaching only up to 5%. We see the same trend for the M3D-based architecture too.
Similarly, temperature of AVG policy has variance of 1.7 on an average with respect to application-
specific policies as shown in Fig. 11(b). By learning from aggregate training data of multiple
applications, application-agnostic policy can better generalize to the unseen application. Therefore, an
application-agnostic policy optimized for a subset of applications can be reused for a new application
of the suite without significant penalty in EDP.

(a)

(b)

Fig. 11: (a) EDP comparison and (b) temperature of application-specific policies vs AVG policy.

1 1 1 1 1 1 1 1.01 1.03 1.05 1.05 1.04 1.03 1.03

0
0.2
0.4
0.6
0.8

1
1.2
1.4

FFT CANNEAL WATER LU FLUID VIPS DEDUP

N
or

m
al

ize
d

ED
P

App-specific AVG

80

55 60 60
73

56 62

84

56 61 62
72

55
64

0

20

40

60

80

100

FFT CANNEAL WATER LU FLUID VIPS DEDUP

Te
m

pe
ra

tu
re

 (o
C)

App-specific AVG

ACM Trans. Des. Autom. Electron. Syst.

5.6 Implementation Overhead

The VFI controller is represented by the same MLP function for all three ML-based methods (L2S, IL,
and RL). Hence, the storage cost and decision-making time for each method is the same. The memory
required to store the DPM policy is 4 Kb, which is negligible. Area overhead of the VFI controller is
0.03% for a die. Energy consumed per decision is 62.4 pJ and per-decision execution of a
DPM policy takes 0.24% of the decision epoch interval. Note that all ML-based methods (L2S, IL, and
RL) are executed offline to create DPM policies which are executed at runtime (i.e., no training at
runtime). Therefore, we do not report training overhead details noting that L2S has relatively less
overhead.

6 CONCLUSION

Dynamic power management (DPM) is a common strategy to reduce energy consumption of a
manycore system without introducing unnecessary performance overhead. We proposed a learning-
to-search (L2S) framework for creating optimized DPM policies for manycore systems, where the
search is intelligently guided by learned statistical models. We considered a VFI-based DPM to show
the effectiveness of L2S with respect to existing machine learning-based methods. Our experiments
demonstrate that DPM policy uncovered by the proposed L2S framework reduces energy-delay-
product (peak temperature) over imitation learning (IL) and reinforcement learning (RL) policies by
up to 26% and 30% (13 and 17) respectively for two qualitatively different manycore
architectures. Furthermore, we demonstrate the application-agnostic nature of the L2S policy. An
application-agnostic policy achieves equally good performance as the application-specific counterpart.

ACKNOWLEDGEMENT
This work was supported in part by the National Science Foundation’s grants CNS-1955353, OAC-1910213, IIS-

1845922, and in part by the Semiconductor Research Corporation’s AI Hardware program task 3014.001.

REFERENCES
[1] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang and A. Yakovlev, "Power-Aware Performance Adaptation of Concurrent Applications in

Heterogeneous Many-Core Systems," Proceedings of the 2016 International Symposium on Low Power Electronics and Design, pp. 368-373, 2016.

[2] S. M. P. Dinakarrao, A. Joseph, A. Haridass, M. Shafique, J. Henkel and H. Homayoun, "Application and thermal-reliability-aware reinforcement
learning based multi-core power management," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 15.4, pp. 1-19, 2019.

[3] U. Ogras, R. Marculescu, D. Marculescu and E. G. Jung, "Design and management of voltage-frequency island partitioned networks-on-chip," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 3, pp. 330-341, 2009.

[4] A. Sartor, N. Krohmer, H. Khdr and J. Henkel, "HiLITE: Hierarchical and Lightweight Imitation Learning for Power Management of Embedded
SoCs," IEEE Computer Architecture Letters, vol. 19, no. 1, pp. 63-67, 2020.

[5] M. Shafique, S. Garg, J. Henkel and D. Marculescu, "The EDA challenges in the dark silicon era: Temperature, reliability, and variability
perspectives," In Proceedings of the 51st Annual Design Automation Conference, pp. 1-6, 2014.

[6] M. Rapp, N. Krohmer, H. Khdr and J. Henkel, "NPU-Accelerated Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous
Multi-Cores," In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 584-587, 2022.

[7] H. Li, Z. Tian, R. K. Maeda, X. Chen, J. Feng and J. Xu, "Co-Manage Power Delivery and Consumption for Manycore Systems Using
Reinforcement Learning," 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1-8, 2018.

[8] Z. Chen and D. Marculescu, "Distributed reinforcement learning for power limited many-core system performance optimization," 2015 Design,

Automation & Test in Europe Conference & Exhibition (DATE), pp. 1521-1526, 2015.

[9] R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu and R. Marculescu, "Imitation learning for dynamic VFI control in large-scale
manycore systems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2458-2471, 2017.

[10] S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande and U. Y. Ogras, "Dynamic Resource Management of Heterogeneous Mobile Platforms
via Imitation Learning," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2842-2854, 2019.

ACM Trans. Des. Autom. Electron. Syst.

[11] A. Deshwal, S. Belakaria, G. Bhat, J. R. Doppa and P. P. Pande, "Learning Pareto-Frontier Resource Management Policies for Heterogeneous SoCs:
An Information-Theoretic Approach," In 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 607-612, 2021.

[12] S. Bobak, K. Swersky, Z. Wang, R. P. Adams and N. D. Freitas, "Taking the human out of the loop: A review of Bayesian optimization,"
Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, 2015.

[13] S. Pagani, P. S. Manoj, A. Jantsch and J. Henkel, "Machine learning for power, energy, and thermal management on multicore processors: A survey."
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 39.1, pp. 101-116, 2018.

[14] A. K. Singh, S. Dey, K. McDonald-Maier, K. R. Basireddy, G. V. Merrett and B. M. Al-Hashimi, "Dynamic energy and thermal management of
multi-core mobile platforms: A survey.," IEEE Design & Test, vol. 37.5, pp. 25-33, 2020.

[15] A. Prakash, H. Amrouch, M. Shafique, T. Mitra and J. Henkel, "Improving mobile gaming performance through cooperative CPU-GPU thermal
management," In Proceedings of the 53rd annual design automation conference, pp. 1-6, 2016.

[16] G. Singla, G. Kaur, A. Unver and U. Ogras, "Predictive dynamic thermal and power management for heterogeneous mobile platforms," In 2015

Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 960-965, 2015.

[17] G. Bhat, G. Singla, A. K. Unver and U. Y. Ogras, "Algorithmic optimization of thermal and power management for heterogeneous mobile
platforms," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 544-557, 2017.

[18] E. W. Wächter, C. D. Bellefroid, K. R. Basireddy, A. K. Singh, B. M. Al-Hashimi and G. Merrett, "Predictive thermal management for energy-

efficient execution of concurrent applications on heterogeneous multicores," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 27, no. 6, pp. 1404-1415, 2019.

[19] G. Bhat, S. Gumussoy and U. Y. Ogras, "Power temperature stability and safety analysis for multiprocessor systems," ACM Transactions on

Embedded Computing Systems (TECS), vol. 16, no. 5, pp. 1-19, 2017.

[20] S. Isuwa, S. Dey, A. K. Singh and K. McDonald-Maier, "TEEM: Online thermal- and energyefficiency management on CPU-GPU MPSoCs," In
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 438-443, 2019.

[21] M. Rapp, M. B. Sikal, H. Khdr and J. Henkel, "SmartBoost: Lightweight ML-driven boosting for thermally-constrained many-core processors," In

2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 265-270, 2021.

[22] S. Lu, . R. Tessier and W. Burleson, "Reinforcement learning for thermal-aware many-core task allocation.," In Proceedings of the 25th edition on

Great Lakes Symposium on VLSI, pp. 379-384, 2015.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski and S. Petersen,
"Human-level Control Through Deep Reinforcement Learning," nature, vol. 518(7540), pp. 529-533, 2015.

[24] S.-G. Yang, Y.-Y. Wang, D. Liu, X. Jiang, H. Fang, Y. Yang and M. Zhao, "ReLeTA: reinforcement learning for thermal-aware task allocation on
multicore," in arXiv preprint arXiv:1912.00189, 2019.

[25] S. Mandal, K. Gaurkar, P. Dasgupta and A. Hazra, "An RL based Approach for Thermal-Aware Energy Optimized Task Scheduling in Multi-core
Processors.," In 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID), pp.
181-186, 2021.

[26] S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande and U. Y. Ogras, "An energy-aware online learning framework for resource management in
heterogeneous platforms," ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 25.3, pp. 1-26, 2020.

[27] S. Deb, K. Chang, X. Yu, S. P. Sah, M. Cosic, A. Ganguly, P. P. Pande, B. Belzer and D. Heo, "Design of an energy-efficient CMOS-compatible
NoC architecture with millimeter-wave wireless interconnects," IEEE Transactions on Computers, vol. 62.12, pp. 2382-2396, 2012.

[28] R. G. Kim, W. Choi, Z. Chen, P. P. Pande, D. Marculescu and R. Marculescu, "Wireless NoC and dynamic VFI codesign: Energy efficiency without
performance penalty.," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24.7, pp. 2488-2501, 2016.

[29] J. Murray, R. Kim, P. Wettin, P. P. Pande and B. Shirazi, "Performance evaluation of congestion-aware routing with dvfs on a millimeter-wave
small-world wireless noc.," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 11.2, pp. 1-22, 2014.

[30] Y.-J. Lee and S. K. Lim, "Ultrahigh Density Logic Designs Using Monolithic 3-D Integration," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 12, pp. 1892-1905, 2013.

[31] A. Chatterjee, S. Musavvir, R. G. Kim, J. R. Doppa and P. P. Pande, "Power Management of Monolithic 3D Manycore Chips with Inter-tier Process
Variations.," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 17.2, pp. 1-19, 2021.

[32] C. Liu and S. Lim, "A design tradeoff study with monolithic 3D integration," In Thirteenth International Symposium on Quality Electronic Design

(ISQED), pp. 529-536, 2012.

[33] C. Rasmussen, "Gaussian Processes in Machine Learning," in Advanced Lectures on Machine Learning, Springer, Berlin, Heidelberg, 2003, pp. 63-
71.

[34] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse and Z. Wang, "PPEP: Online Performance, Power, and Energy Prediction Framework and DVFS

Space Exploration," In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 445-457, 2014.

[35] P. Fabian, G. Varoquaux, A. Gramfort and V. Michel et al., "Scikit-learn: Machine learning in Python," the Journal of machine Learning research,

vol. 12, pp. 2825-2830, 2011.

[36] S. Belakaria, A. Deshwal and J. R. Doppa, "Output space entropy search framework for multi-objective Bayesian optimization," Journal of Artificial
Intelligence Research, vol. 72, pp. 667-715, 2021.

[37] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu and J. Hestness et al., "The gem5 simulator," ACM SIGARCH Computer

Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

ACM Trans. Des. Autom. Electron. Syst.

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, "The SPLASH-2 programs: Characterization and methodological considerations," ACM

SIGARCH computer architecture news, vol. 23, no. 2, pp. 24-36, 1995.

[39] C. Bienia, S. Kumar, J. P. Singh and K. Li, "The PARSEC benchmark suite: Characterization and architectural implications," In Proceedings of the

17th international conference on Parallel architectures and compilation techniques, pp. 72-81, 2008.

[40] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P. Jouppi, "McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures," In Proceedings of the 42nd annual ieee/acm international symposium on microarchitecture,

pp. 469-480, 2009.

[41] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron and M. R. Stan, "HotSpot: A compact thermal modeling methodology for
early-stage VLSI design.," IEEE Transactions on very large scale integration (VLSI) systems, vol. 14.5, pp. 501-513, 2006.

[42] S. Hajiamini, B. Shirazi and H. Dong, "A Fast Heuristic for Improving the Energy Efficiency of Asymmetric VFI-Based Manycore Systems," IEEE

Transactions on Sustainable Computing, vol. 7.2, pp. 358-370, 2022.

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, "Proximal Policy Optimization Algorithms," CoRR, vol. abs/1707.06347, 2017.

[44] Y. Meng, S. Kuppannagari and V. Prasanna, "Accelerating Proximal Policy Optimization on CPU-FPGA Heterogeneous Platforms," In 2020 IEEE

28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 19-27, 2020.

[45] P. Venkatesh and A. Starikovskiy, "The ondemand governor," Proceedings of the linux symposium, vol. 2, no. 00216, 2006.

