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High-strength ordered intermetallic alloys are always sought-after in sophisticated structural applications.
However, their practical applications have long been hindered by the severe grain-boundary embrittlement.
Here, we designed a Co-rich chemically complex intermetallic alloy (CCIMA) with the L1,-type ordered struc-
ture, which exhibits an ultrahigh tensile strength of ~1,611 MPa and a substantial ductility of ~37%. These
exceptional strength-ductility combination outperforms the majority of common Co-rich intermetallic alloys. The

multi-addition of Ta, Ti, and V elements is largely responsible for the significantly increased antiphase boundary
energy of the L1, superlattice, which accounts for the high strength. This high degree of ductility is attributed to
both the increased fracture resistance of grain boundaries brought about by co-segregation-induced order-to-
disorder phase transformation, as well as the high work-hardening capability.

Intermetallic alloys with the L1,-ordered crystal structure provide
enormous advantages over conventional disordered alloys for serving as
high-temperature structural components in the aerospace and power
generation. In particular, the long-range ordered (LRO) crystal structure
produces strong chemical bonding between elements, rendering a rela-
tively low atomic mobility and unique dislocation dynamics in the
materials, and thus, giving rise to an unusual yield-anomaly behavior at
elevated temperatures [1,2]. However, most of the conventional poly-
crystalline intermetallic alloys exhibit severe grain-boundary embrit-
tlement during tensile deformation, which reduces their fracture
toughness and restricts their capacity to be fabricated [3].

Researchers have realized that this brittleness puzzle can be largely
addressed through the subtle manipulation of microalloying and mac-
roalloying adjustments [4-6]. For example, boron is found to be an
effective cohesive element for the grain boundary in the binary NizAl
intermetallic alloy. Even a modest amount of the element (in ppm) can
significantly improve the ductility of the alloys [7]. Whereas, it exhibits
a marginal effect on alleviating the grain-boundary embrittlement of the

* Corresponding author.

CosTi alloy deformed in air [8]. Instead, Liu et al.’s investigation
revealed that the CosTi alloy can be ductilized with the assistance of
substitutional ternary elements, namely Fe [9], although its physical
origin has not been fully understood yet. Nevertheless, the mechanical
performances of most conventional L1, intermetallic alloys developed
so far are still unsatisfactory. The discovery of intermetallic alloys with
gigapascal strength and decent tensile ductility remains elusive, which
severely restricts their widespread structural applications and creates a
huge barrier to their commercialization.

Recently, a new class of alloying concept that consists of multi-
principal-element alloys (also known as high-entropy alloys, HEAs, or
chemically complex alloys) has produced a vast array of novel alloys
with a variety of alluring properties [10-14], including superior me-
chanical performances, sluggish diffusion, good corrosion resistance,
etc. Based on this concept, the realm of high-entropy materials has been
extended to versatile categories [15]. In particular, the emerging
chemically complex intermetallic alloys (CCIMAs) have attracted a great
deal of attention due to their excellent mechanical properties and
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enormous potential for high-temperature applications. For example,
Yang et al. proposed an “interfacial disordered nanolayer (IDN) induced
ductilization” approach in a interesting Llo-type Ni-rich CCIMA,
(Ni43_9C022_4F€8_8A110.7Ti11,7B2.5, at.%) by delicately modulating the
elemental synergism [16]. The underlying idea is to raise the antiphase
boundary (APB) energy of the alloy by the addition of Ti element on one
hand and form interfacial disordered nanolayers along the grain
boundaries driven by a synergetic co-segregation behavior of Co, Fe, and
B on the other hand. These together, consequently, enable a simulta-
neous increase in both the strength and ductility of this CCIMA, which
readily override the properties of conventional NizAl-type intermetallic
alloys. The success of these efforts has rekindled the interest in the or-
dered intermetallic alloys and greatly encourages the creation of CCI-
MAs as a promising class of structural materials for high-temperature
applications.

Nonetheless, compared to the Ni-rich intermetallic alloys developed
so far, Co-rich intermetallic alloys are intuitively expected to achieve a
higher upper limit of operation temperature due to the inherent
advantage of pure Co on the melting temperature. This feature allows
Co-rich materials to have higher melting points than the Ni-rich alloys
by greater than 50 ~ 100 °C [17], rendering Co-rich intermetallic alloys
great prospects for structural applications at elevated temperatures.
Recently, Long et al. thoroughly exploited the potential of a L1a-type
Co-rich (Co,Ni)3(ALW,Ti,Ta) CCIMA (denoted as L26 henceforth) to
serve as a high-temperature structural material. Results showed that the
L26 CCIMA exhibits decent high-temperature compressive strengths and
a comparable creep property as NisAl compounds, which preliminarily
demonstrates the latent performance advantage of Co-rich CCIMAs for
high-temperature applications [18]. However, to date, there are still few
studies that have concentrated on the tensile properties and the related
plastic-deformation mechanisms of those CCIMAs.

Here, we innovatively developed a Co-rich CCIMA by exploiting the
IDN ductiliztion effect. A detailed investigation of the grain-boundary
chemistry and structure, and their contribution to the mechanical
properties will be conducted. Alloys with a nominal composition of
(Co47NigpAl;gVsTasTig)goB, (at.%, denoted as Co-rich CCIMA hereafter)
were prepared by mixing high-purity materials (> 99.9%) in an arc-
melting machine within an argon-filled environment. All ingots were
repeatedly flipped over and remelted at least eight times to ensure
chemical homogeneity, which was then cast into a sheet-shaped Cu mold
surrounded by cooling water. The as-cast specimen was homogenized at
1150 °C for 24 h. Subsequently, a cycling process, including cold-rolling
with a reduction ratio of ~20% and followed by annealing at 1150 °C for
15 mins, was performed until a total reduction of thickness reached
~66%. Dog-bone-shaped specimens with a gauge dimension of ~12.5
mm X 3.2 mm x 1 mm were machined from the well-crafted sheets by
an electro-discharge machine. The surfaces of the tensile specimens
were mechanically ground and then tested at a strain rate of 1.0 x
1073571 using an Instron testing machine.

Microstructural analyses were performed by a field-emission scan-
ning electron microscope (SEM) equipped with an electron-
backscattered diffraction (EBSD, Oxford) detector. Phase characteriza-
tion and deformation behavior were investigated by a JEM-2100F
transmission electron microscope (TEM) operated at an acceleration
voltage of 200 kV. Samples for SEM and EBSD characterizations were
prepared by electro-polishing with an HNO3 (~25%)/ CH3OH (~75%)
solution by volume under a direct voltage of 20 V at a temperature of
—40 °C. A detailed chemical distribution across the grain boundary was
quantitively examined by the atom probe tomography (APT) at 70 Kin a
voltage mode (200 kHz), and a pulse fraction of 20%.

Fig. 1 shows the microstructure of the designed Co-rich CCIMA. The
SEM image (see Fig. 1a) and the EBSD inverse pole figure (IPF, see
Fig. 1b) taken along the normal direction of the sample clearly reveal a
non-textured equiaxed grain structure with an average grain size of 5.8
+ 0.7 pm. Also note that despite a small amount of randomly dispersed
borides, no secondary precipitates can be detected in the present CCIMA.
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Fig. 1. Overall microstructures of the present Co-rich CCIMA. (a) typical SEM
image, (b) EBSD inverse pole figure, and (c) typical TEM image and the cor-
responding selected diffraction (SAED) patterns of the grain interior with (110)
and (100) zones. The faint superlattice diffraction spots that reflect the L1,
structure are indicated by yellow dashed circle in the SAED patterns.

The structural features obtained from the TEM analysis, including the
bright-field (BF) TEM image and the associated selected area diffraction
(SAD) patterns acquired along (100) and (110) zone axes (see Fig. 1c),
further demonstrated that the grain interior of this Co-rich CCIMA
comprises a single L1, phase.

To reveal the microstructure and the chemical distribution near the
vicinity of the grain boundary, both the high-resolution TEM (HRTEM)
and APT were carefully performed. Excitingly, in addition to the L1,
grain interior, an evident disordered face-centered-cubic (FCC) nano-
layer is found near the grain boundary, which can be confirmed by the
fast Fourier transform (FFT) image inserted on the up-right corner in
Fig. 2a. This trend means that the IDN dutilization may be triggered at
the present Co-rich CCIMA. Fig. 2b shows three-dimensional (3-D)
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Fig. 2. (a) High-resolution TEM image and the insetted fast fourier transform
(FFT) revealing the interfacial disordered nanolayer (IDN) formed at the grain
boundary; (b) 3D reconstructions of individual element maps for an APT tip
contains a grain boundary; (c¢) and (d) the corresponding chemical profile
across the grain boundary, showing a co-segregation behavior of B and Co.
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reconstructions of a typical APT tip taken from the present Co-rich
CCIMA, where a near-edge-on grain boundary can be clearly visual-
ized. From the individual atom maps in Fig. 2b, B shows substantial
segregation, whereas Co segregates marginally. Fig. 2c and d further
present the precise quantitative measurement of the chemical distribu-
tions across the grain boundary. The one-dimensional (1-D) concentra-
tion profiles obtained perpendicular to the grain-boundary plane
indicated a co-segregation of Co and B at the grain boundary, concur-
rently with the depletion of Ni, Ti, and Ta. Other elements, such as Al
and V, did not show any preferential segregation. The enrichment of B
and Co can approximately rise by ~1 and 3 at.%, respectively, in com-
parison to the surrounding grain interior.

Fig. 3a displays the mechanical performance (tensile deformation) of
the present Co-rich CCIMA at ambient temperature. As compared to the
chemically simple Co-rich L1, intermetallic alloy (i.e., the Co3Ti [19]
and Co-12A1-11 W [20]) as well as the earlier multicomponent L1,-type
intermetallic alloy (i.e., the L26 intermetallic alloy) [18], our present
Co-rich CCIMA exhibits outstanding tensile properties with both supe-
rior strength (yield strength of ~748 MPa and ultimate tensile strength
of ~1611 MPa) and exceptionally large ductility (~37%). Generally, the
strength of an L1; intermetallic alloy originates from the high resistance
of deformation caused by the formation of APB domains, which in-
creases with the APB energy. Archive literature shows that the APB
energy (AEapg) of the L1, phase in multicomponent Ni-based superalloys
is very sensitive to the alloy composition. According to the study by
Crudden et al., the APB energy can be calculated by superposing the
contributions from individual alloying elements [21]:AEapp = EQpp +
> F(kix;), where EY, is the APB energy of NisAl, k; and x; are the cor-
relation coefficient and concentration of the corresponding alloying el-
ements (in at.%), respectively. Liang et al. further resolved the
correlation coefficients for some commonly-alloyed elements based on
theoretical calculations [22]. Their results revealed that both Ta and Ti
elements have considerably large positive correlation coefficients (27.1
and 15, respectively) among those commonly-alloyed elements, such as
W (4.6), demonstrating the effectiveness of these elements in increasing
the APB energy [22]. Meanwhile, the addition of V to the current Co-rich
CCIMA also plays an important role in strengthening materials. Given
that V and Ti manifest the nearly identical linear compositional
dependence with the APB energy [23], the correlation coefficient of V
will be assumed to have the same value as Ti in the present work for the
sake of simplicity. Based on the aforementioned equation, the APB
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energy of the present Co-rich CCIMA is estimated to be 413 mJ/m?
which is significantly greater than that of the other alloys [24,25] dis-
played in Fig. 3a. Given that the critical shear stress for dislocation
nucleation in an ordered L1; alloy has a positive correlation with its APB
energy [26], this substantially increased APB energy driven by the
addition of multiple positive elements (i.e., Ta, Ti, and V) in turn raise
the barrier of dislocation movement and contributes to the high yield
strength of the present Co-rich CCIMA.

The fracture surface of the present alloy is shown as the inset in
Fig. 3a. Instead of intergranular fracture that is often shown in the
conventional L1, alloys, transgranular fracture with numerous dimples
is clearly observed, implying the ductile nature of the present alloy. The
large ductility of polycrystalline materials relies principally on their
strong load-bearing grain boundaries together with a high work-
hardening capability [27]. Fig. 3b demonstrates the variation of
strain-hardening rates (SHRs) with the applied true strain. Note that
only the data from the uniform plastic deformation are used here for
analysis. Three distinct stages can be evidenced in the SHR curves. In
stage I, a dramatic drop in the SHR can be visible, which is correlated to
the unnoticeable yielding plateau. Such a discontinuous yielding
behavior is also frequently observed in many other ordered alloys sub-
ject to stretching [28,29]. Soon after the drop, an up-turn of the SHR is
observed, followed by a gentle decrease till the true strain reaches ~10%
(stage II). After that, interestingly, a second up-turn appears as the
tensile deformation continues (stage III). Noticeably, the
work-hardening rates of the present alloy are anomalously high (~5
GPa), as compared to the disordered alloys [30]. The strain-hardening
exponent, n, is calculated, based on the constitutive law of ¢ = ke",
where ¢ and ¢ are the true stress and plastic strain, respectively. k is a
scaling constant. As can be seen in Fig. 3c, the constant, n, varies with
the true strain and surges to ~0.7 at stage III, which surpasses almost all
the single-FCC HEA with a high fracture energy [31] and also TWIP/-
TRIP steels [32,33], demonstrating a superb work-hardening capability.

To further reveal the plastic-deformation micro-mechanisms of the
present Co-rich CCIMA, detailed EBSD and TEM analyses on the
deformed specimen were conducted. Fig. 4a shows the typical TEM
observations on the deformation substructures of the specimen
deformed by a ~2% true plastic strain. An enlarged view of the region
indicated in Fig. 4a was imaged by the weak-beam dark-field (WBDF)
technique (see the inset), where superlattice dislocation pairs are clearly
discernible. The separation distance between superlattice dislocation
pairs is in the range of 2.5 ~ 6 nm. At the initial stage of plasticity, those
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Fig. 3. (a) tensile properties of the present Co-rich CCIMA, compared with the well-studied Co-rich intermetallic alloys and the L26 CCIMA; (b) and (c) the cor-
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pair-wised superlattice dislocations serve as the dominant deformation
carrier, which behaves in a similar fashion in the conventional L1,-type
intermetallic alloys for energy minimization [34]. Careful tilting ex-
periments demonstrated that they have primary burgers vectors of b =a
/2[011] and b = a/2[110], highlighted by red and yellow arrows,
respectively. To further reveal the dissociated behavior of the screw
superlattice dislocations, trace analysis along the direction of the bur-
gers vector was performed. An example of a superlattice dislocation pair
under different tilting conditions is present in Fig. 4b and c. The varia-
tion of the separation distance between those superlattice dislocations
during tilting manifests the segments X, P, C of this superlattice dislo-
cation dissociated on different planes. With careful analysis, segment C
of the superlattice dislocations appears to undergo a cube cross slip. This
trend can be deduced as the dislocation tends to be overlapped when the
cube cross-slip plane is projected nearly edge-on (see Fig. 4b). The other
segments X and P are demonstrated to be dissociated on the (111) and
(111) planes, respectively. Another feature that is worth noting is the
frequent occurrence of dislocation dipoles, which is considered to be the
result of elastic interactions between the expanding dislocation loops or
the dislocation reaction during their cross slip [35]. In fact, both screw
and edge dipoles are frequently observed in the L1, alloys during plastic
deformation, such as the NizAl [36] and NisFe alloys [37], etc. Apropos
of the deformation characterization (see Fig. 4), the specific explanation
based on the APB tube mechanism [38,39] for the anomalous high work
hardening is the lack of meaning, since no APB tube is observed in the
present work. Given that the secondary slip systems have been already
activated at the early stage of deformation (see Fig. 4), the mutual in-
teractions of the superlattice dislocations activated in multiple slip
systems and the associated jog dragging or/and kink locking in the wake
of further straining can be expected, which will result in an additional
frictional drag and make the major contribution to the exceptionally
high work hardening in the present work [30]. Based on the Considere’s
criterion, such a high work-hardening capability help to postpone plastic
(geometric) instability and promote a balanced mechanical property.
As the tensile stretching increases, massive dislocations mutually
interacted and accumulated at the grain-boundary region. Fig. 4c shows
the Kernel average misorientation (KAM) map taken from the fractured
specimen. Evidently, most of the grain boundaries are surrounded by a
higher density of geometry necessary dislocations (GNDs), also referred
to by the high KAM value, implying that the plastic strain is considerably
localized in the IDNs at grain boundaries. Fig. 4d presents a TEM image
for the typical deformation substructures from the sample deformed by

Scripta Materialia 229 (2023) 115371

Fig. 4. (a) TEM images showing the dominated deforma-
tion substructure of the sample deformed by a ~2% plastic
strain. The pair-wised feature of the superlattice disloca-
tions is verified and shown as inset; (b) and (¢) Weak-beam
dark-field (WBDF) micrographs showing different dissoci-
ated behaviors of the segments (X, P, C) of the superlattice
screw dislocations; (d) and (e) Kernel average misorienta-
tion (KAM) map and TEM image of the dislocations in the
vicinity of the grain boundary revealing the strong load-
bearing ability of the beneficial IDNs in the grain-
boundary regions.

an ~31% true plastic strain, which reveals a pronounced dislocation
activity in the IDN regions without forming detectable grain-boundary
cleavages. This feature again manifests the considerable load-bearing
capability of the beneficial disordered grain-boundary nanolayer.
Certainly, such a remarkable improved grain-boundary strength of
the intermetallic alloys could be attributed to the elemental co-
segregation behaviors through delicate atomic-scale grain-boundary
engineering. In the present study, the role of B addition is mainly
twofold. First, B is believed to increase the cohesive strength of the grain
boundary of the Co-rich alloys [40], which, to some extent, facilitates an
improved plastic ability. Second, it helps promote the segregation of Co
element [16]. Since Co is traditionally viewed as a face-centered-cubic
(FCC) stabilizer [41], the segregation of Co would degrade the
ordering energy in the grain-boundary region, leading to a localized
order-disorder transformation and resulting in the formation of IDN in
that region (see Fig. 2). In contrast to the disordered FCC alloy, the
specific atomic occupation behavior and the associated long-range or-
dered structure produce stronger chemical binding between atoms (i.e.,
ionic/covalent-like binding with a directional character). As such, it is
generally assumed that the grain-boundary structures of a highly or-
dered alloy are considerably distorted [42], making it more prone to
brittle fracture. As disordering (L1o—FCC) occurs near the grain
boundary, forming the IDNs with less distorted structure, the critical
stress for dislocation nucleation and transmission can be substantially
decreased, resulting in the ease of local shear and increasing dislocation
motion and activities at grain boundary regions [43,44]. This would
effectively relieve the local stress concentration raised by dislocation
accumulation at grain boundaries and accommodate the plastic defor-
mation compatibility for the adjacent grains. Additionally, the presence
of INDs will also lower the stress for a dislocation emission from a crack
tip, which helps to suppress the propagation of cracks at the interfaces
accordingly. Collectively, the corresponding fracture resistance of this
well-crafted CCIMA substantially increases, which shakes off the
shackles of severe brittleness that are generally encountered in con-
ventional polycrystalline intermetallic alloys. In strong contrast, though
a co-segregation of Al and B elements can be clearly observed in the L.26
CCIMA [18], the alloy exhibits extreme brittleness ( < 0.42%) under
mechanical straining. This could be related to the segregation of Al
element. Such a segregation creates a nearly ideal stoichiometric
composition (A3B-type) in the vicinity of the grain boundary, which is
expected to increase the ordering energy and the associated distortion
for an enhanced brittle tendency [42]. More specifically, on account of
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the electronegativity difference of the A and B elements in an A3B-type
ordered alloy, the B atom generally has a strong tendency to draw charge
from the A atom, leaving less charge participating in the A-A bonds
nearby. Since the A-A bond is assumed to be the major bond at the grain
boundary, the reduction of charge density results in a decreased
grain-boundary cohesion [45]. In other words, the increased ordering
energy in the grain-boundary region tends to aggravate charge
hetero-distribution, leading to weakened grain boundaries accordingly
[45]. These two distinctive scenarios suggest that the grain-boundary
chemistry and the associated disordered nanolayer formed at the grain
boundary hold the key to the improved ductility. The deviation of the
elemental segregation tendency in the two cases could be associated
with the different segregation enthalpy of elements in their surroundings
[46]. Jin et al. reported that W holds a stronger bonding strength with
Co than that of Co-Al pairs [47]. One can expect that the relatively weak
bonded element (Al) may have a higher chance to segregate and occupy
the grain-boundary site for a reduced energy. Yet the physical origins of
the segregation tendency of elements in CCIMA systems remain unclear
at the present. More detailed studies especially with the assistance of
theoretical studies will be necessary to further clarification.

In summary, we designed and successfully fabricated a Co-rich L15-
type chemically complex intermetallic alloy (CCIMA) with interfacial
disordered nanolayers formed at grain boundaries. This intriguing ar-
chitecture enables these CCIMA to have a superior mechanical property
that overrides most of the conventional Co-rich intermetallic alloys.
Specifically, the multi-additions of Ta, Ti, and V elements are demon-
strated to substantially increase the antiphase-boundary energy, leading
to an elevated impediment for dislocation motion and an increased
strength consequently. The large ductility in our CCIMA at such a high
strength level could be attributed to the combined effect of the high
work-hardening ability and increased fracture resistance raised by IDNs
at grain boundaries. Detailed analysis of the deformed microstructure
revealed that the high work-hardening capability of the present CCIMA
could be attributed to the mutual interaction of superlattice dislocations
from multiple slip systems and their associated dragging effect. Besides,
driven by the elemental co-segregation of Co and B elements, the
disordered nanolayers produce a relatively undistorted grain-boundary
regions and allow greater freedom for dislocation activities to occur,
thereby enhancing the fracture resistance of the alloy without grain-
boundary embrittlement. This study provides insight into the micro-
mechanism of the deformation behaviors of the CCIMA and will offer
the guidance for the development of the CCIMA with enhanced me-
chanical properties for high-temperature applications.
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